

Influencia de los residuos calcáreos en propiedades físico-mecánicas del concreto f'c= 210 kg/cm² - Nuevo Chimbote

Tesis para obtener el título profesional de Ingeniero Civil

Autores:

Bach. Cárdenas Lavado, Dam Junior Bach. Soto Aguilar, Miguel Neftali

Asesora:

Dra. Ing. Fernández Mantilla, Jenisse del Rocío DNI. N° 33264434 Código ORCID: 0000-0003-3336-4786

"Influencia de los residuos calcáreos en propiedades físico- mecánicas del concreto f'c= 210 kg/cm2 - nuevo chimbote"

INFORME FINAL DE TESIS PARA OBTAR POR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL REVISADO Y APROBADO POR :

Dr. Ing. Jenisse del Rocío Fernández Mantilla

Asesor

DNI:33264434 CÓDIGO ORCID: 0000-0003-3336-4786

NUEVO CHIMBOTE – PERU 2025

"Influencia de los residuos calcáreos en propiedades físico- mecánicas del concreto f'c= 210 kg/cm2 - nuevo chimbote"

INFORME FINAL DE TESIS PARA OBTAR POR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL REVISADO Y APROBADO POR LOS SIGUIENTES JURADOS:

Dr. Ing. Abner Itamar León Bobadilla

Presidente

DNI:32942184 CÓDIGO ORCID: 0000-0003-2948-6561 Ms. Ing. Luz Esther Alvarez Asto

secretario

DNI: 32968961

CÓDIGO ORCID: 0000-0001-6491-6569

Dr. Ing. Jenisse del Rocío Fernández Mantilla

Integrante

DNI:33264434

CÓDIGO ORCID: 0000-0003-3336-4786

NUEVO CHIMBOTE – PERU 2025

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil
- EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 09 días del mes de septiembre del año dos mil veinticinco, siendo las 11:00 horas, en el Laboratorio de Topografía del edificio de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución Nº 396-2025-UNS-CFI, con fecha 31.07.2025, integrado por los siguientes docentes: Dr. Abner Itamar León Bobadilla (Presidente), Ms. Luz Esther Álvarez Asto (Secretaria), Dra. Jenisse del Rocío Fernández Mantilla (Integrante), Dr. Atilio Rubén López Carranza (Accesitario), en base a la Resolución Decanal Nº 603-2025-UNS-FI se da inicio la sustentación de la Tesis titulada: "INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO FC=210 KG/CM² – NUEVO CHIMBOTE", presentado por los Bachilleres CÁRDENAS LAVADO DAM JUNIOR con cód. Nº 0201813054 y SOTO AGUILAR MIGUEL NEFTALI con cód. Nº 0201813023, quienes fueron asesorados por la docente Dr. Jenisse del Rocío Fernández Mantilla según lo establece la T. Resolución Decanal Nº 473-2023-UNS-FI, de fecha 06.07.2023.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
CÁRDENAS LAVADO DAM JUNIOR	17	BUENO

Siendo las 12:00 horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 09 de septiembre de 2025.

Dr. Abner Itamar León Bobadilla Presidente

Ms. Luz Esther Álvarez Asto Secretaria

Dra. Jenisse del Rocío Fernández Mantilla

Integrante

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil
- EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 09 días del mes de septiembre del año dos mil veinticinco, siendo las 11:00 horas, en el Laboratorio de Topografía del edificio de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución Nº 396-2025-UNS-CFI, con fecha 31.07.2025, integrado por los siguientes docentes: Dr. Abner Itamar León Bobadilla (Presidente), Ms. Luz Esther Álvarez Asto (Secretaria), Dra. Jenisse del Rocío Fernández Mantilla (Integrante), Dr. Atilio Rubén López Carranza (Accesitario), en base a la Resolución Decanal Nº 603-2025-UNS-FI se da inicio la sustentación de la Tesis titulada: "INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO FC=210 KG/CM² – NUEVO CHIMBOTE", presentado por los Bachilleres CÁRDENAS LAVADO DAM JUNIOR con cód. Nº 0201813054 y SOTO AGUILAR MIGUEL NEFTALI con cód. Nº 0201813023, quienes fueron asesorados por la docente Dr. Jenisse del Rocío Fernández Mantilla según lo establece la T. Resolución Decanal Nº 473-2023-UNS-FI, de fecha 06.07.2023.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
SOTO AGUILAR MIGUEL NEFTALI	17	BUENO

Siendo las 12:00 horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 09 de septiembre de 2025.

Dr. Abner Itamar León Bobadilla Presidente Ms. Luz Esther Álvarez Asto

Dra. Jerfsse de Rocío Fernández Mantilla Integrante

www.uns.edu.pe

Recibo digital

Este recibo confirma quesu trabajo ha sido recibido por Turnitin. A continuación podrá ver la información del recibo con respecto a su entrega.

La primera página de tus entregas se muestra abajo.

Autor de la entrega: Miguel Neftali Soto Aguilar

Título del ejercicio: proyectos

Título de la entrega: INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES ...

Nombre del archivo: PROPIEDADES_F_SICO-MEC_NICAS_DEL_CONCRETO_F_C_210_...

Tamaño del archivo: 81.1M


Total páginas: 204

Total de palabras: 23,169

Total de caracteres: 125,776

Fecha de entrega: 18-sept-2025 11:39a.m. (UTC-0500)

Identificador de la entrega: 2686025728

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO F'C= 210 KG/CM2 - NUEVO CHIMBOTE

INFORM	ME DE ORIGINALIDAD				
1 INDICE	7 % E DE SIMILITUD	18% FUENTES DE INTERNET	3% PUBLICACIONES	8% TRABAJOS DEL ESTUDIANTE	
FUENTE	S PRIMARIAS				
1	reposito Fuente de Inte	rio.uns.edu.pe			5%
2	hdl.hand				3%
3	Submitte Trabajo del est	ed to Universida	d Cesar Valle	jo	1%
4	reposito Fuente de Inte	rio.ucv.edu.pe			1 %
5	Submitte Trabajo del est	ed to Universida	d Andina del	Cusco	1%
6	reposito	rio.upla.edu.pe			1 0%

6	Fuente de Internet	%
7	repositorio.unap.edu.pe Fuente de Internet	<1%
0	dspace.unitru.edu.pe	

Fuente de Internet

DEDICATORIA

Primeramente, a **DIOS**, por la fortaleza espiritual que me ha dado cada día de mi vida, en los momentos buenos y momentos difíciles, para seguir esforzándome cada día de mi vida.

A mi mamá JULIA ROSA AGUILAR ALVARADO, por su amor incondicional y apoyo constante, que me han permitido crecer y desarrollarme como persona y profesional.

A mis **tíos, hermanos, amigos y colegas**, por su apoyo y colaboración, que me han permitido aprender y crecer en un entorno de amistad y respeto.

A mi asesora de tesis, **Dr. Ing. Jenisse Fernández Mantilla** por su guía y
orientación, que han contribuido a mi
formación y crecimiento, les expreso mi más
sincero agradecimiento.

BACH. MIGUEL SOTO AGUILAR

Primeramente, a **DIOS**, por la fortaleza espiritual que me ha dado cada día de mi vida, en los momentos buenos y momentos difíciles, para seguir esforzándome cada día de mi vida.

A mis **PADRES**, por su amor incondicional y apoyo constante, que me han permitido crecer y desarrollarme como persona y profesional.

A mis **amigos y colegas**, por su apoyo y colaboración, que me han permitido aprender y crecer en un entorno de amistad y respeto.

A mi asesora de tesis, **Dr. Ing. Jenisse Fernández Mantilla** por su guía y
orientación, que han contribuido a mi
formación y crecimiento, les expreso mi más
sincero agradecimiento.

BACH. DAM CÁRDENAS LAVADO

AGRADECIMIENTO

Quiero expresar mi más sincero agradecimiento a todas las personas que han sido parte fundamental en la culminación de esta tesis.

A Dios, por brindarme la fortaleza, paciencia y perseverancia para superar cada etapa de este camino académico.

A mis padres, por su amor incondicional, su apoyo constante y por ser mi mayor fuente de inspiración. Gracias por enseñarme el valor del esfuerzo y la dedicación.

A mis profesores y asesores, especialmente a la **Dr. Ing. Jenisse Fernández Mantilla** por su guía, sus valiosos comentarios y por compartir conmigo su conocimiento y experiencia a lo largo de este proceso.

A mis amigos y compañeros, por su compañía, su ánimo en los momentos difíciles y por compartir conmigo este viaje.

A todas aquellas personas que, de una u otra forma, contribuyeron a que hoy pueda alcanzar esta meta: gracias por estar presentes.

Este logro no es solo mío, sino de todos los que creyeron en mí.

BACH. MIGUEL SOTO AGUILAR Y BACH. DAM CÁRDENAS LAVADO

ÍNDICE GENERAL

I.	INTRODUCCIÓN	9
II.	MARCO TEÓRICO	17
III.	METODOLOGÍA	51
3.1	Enfoque de la investigación	51
3.2	Método de la investigación	52
3.3	Diseño de investigación	54
3.4	Población y muestra	57
3.5	Operacionalización de Variables	59
3.6	Técnicas e instrumentos de recolección de datos	60
3.7	Técnicas de análisis de resultados	63
IV.	RESULTADOS Y DISCUCION	67
VI.	CONCLUSIONES Y RECOMENDACIONES	106
VII	BIBLIOGRAFÍA	110
VII	I. ANEXOS	114
Ane	exo 01- Ensayo de los agregados	114
Ane	exo 02- Diseño de concreto	121
Ane	exo 03- Análisis Químico	124
Ane	exo 04- Certificado de Acreditación	127
Ane	exo 06- Ensayos de resistencia a compresión y flexión	147
Ane	exo 07- Ensayos físicos de las probetas	169
Ane	exo 08- Análisis Estadístico	177
Ane	exo 09- Certificado de calibracion	189
Ane	exo 10- Fichas de recolección de datos	191

LISTA DE TABLAS

Tabla 1.	Resistencia Promedio Requerida	37
Tabla 2.	Porcentajes que pasan las siguientes mallas-agregado grueso	38
Tabla 3.	Asentamiento máximos y mínimos en tipos de construcción	39
Tabla 4.	Agua en l/m3 para los tamaños máximo nominales de agregado grueso y consistencia indica-	dos
		40
Tabla 5.	Aire atrapado	41
Tabla 6.	Contenido de aire total en %.	42
Tabla 7.	Relación Agua/Cemento (a/c) de diseño según la resistencia a compresión del concreto a los	28
días		44
Tabla 8.	Requisitos de relación a/c y resistencia mínima del concreto según condiciones de exposición	1
ambiental		45
Tabla 9. (Clasificación de la exposición a sulfatos y requisitos del concreto según nivel de agresividad	46
Tabla 10.	Corrosión del acero de refuerzo.	47
Tabla 11.	Volumen de agregado grueso, seco y compactado de volumen de concreto, para diversos	
módulos o	le fineza.	48
Tabla 12.	Poblacion y Muestra	58
Tabla 13.	Operacionalizacion de Variables	59
Tabla 14.	Ensayos y sus respectivas normas	61
Tabla 15.	Composición química expresados como óxidos	68
Tabla 16.	Composición química expresados como elementos	68
Tabla 17.	Resultados de ensayos realizados al agregado grueso	69
Tabla 18.	Resultados de ensayos realizados del agregado fino	70
Tabla 19.	Resultado del diseño de mezcla	71
Tabla 20.	Propiedades físicas de probetas con 0%,5%,10% y 15% de Residuos Calcáreos	72
Tabla 21.	Resistencia a la compresión de probetas patrón de f'c=210 kg/cm2.	73
Tabla 22.		75
Tabla 23.	Resultados de probetas con el 5% de Residuos Calcáreos	76
Tabla 24.	Resistencia a la compresión de probetas con 10% de Residuos Calcáreos de f'c=210 kg/cm	n2.
		76
Tahla 25	Resultados de probetas con el 10% de Residuos Calcáreos	77

Tabla 26.	ola 26. Resistencia a la compresión de probetas con 15% de Residuos Calcáreos de f'c=210 kg/c		
		77	
Tabla 27.	Resultados de probetas con el 15% de Residuos Calcáreos.	78	
Tabla 28.	Resistencia de probetas con 10% de Residuos Calcáreos a los 28 días de curado	79	
Tabla 29.	Resistencia a la flexión de vigas con 0% de Residuos Calcáreos de f'c=210 kg/cm2	80	
Tabla 30.	Resultados promedios de la resistencia a la flexión con el 0% de Residuos Calcáreos	80	
Tabla 31.	Resistencia a la flexión de vigas con 5% de Residuos Calcáreos de f'c=210 kg/cm2	81	
Tabla 32.	Resultados promedios de la resistencia a la flexión con el 5% de Residuos Calcáreos	82	
Tabla 33.	Resistencia a la flexión de vigas con 10% de Residuos Calcáreos de f'c=210 kg/cm2	82	
Tabla 34:	Resultados promedios de la resistencia a la flexión con el 10% de Residuos Calcáreos	83	
Tabla 35:	Resistencia a la flexión de vigas con 15% de Residuos Calcáreos de f'c=210 kg/cm2	84	
Tabla 36:	Resultados promedios de la resistencia a la flexión con el 15% de Residuos Calcáreos	85	
Tabla 37:	Resultados del ensayo a flexión con el 10% de Residuos Calcáreos	85	
Tabla 38:	Análisis de varianza -Anova	90	
Tabla 39:	Método de Tukey	91	
Tabla 40:	Análisis de varianza -Anova	94	
Tabla 41:	Método de Tukey	94	
Tabla 42:	Análisis de varianza-Anova-(Densidad)	95	
Tabla 43:	Análisis de varianza-Anova-(Absorción)	96	
Tabla 44:	Análisis de varianza-Anova- (Porcentaje de Vacíos)	96	
Tabla 45:	Análisis de varianza-Anova- (slump)	97	
Tabla 46:	Análisis de varianza-Anova- (Exudación)	98	

LISTA DE FIGURAS

Figura 1: Ensayo Granulométrico de los Residuos Calcáreos	67
Figura 2: Histograma de ensayos de resistencia a compresión	87
Figura 3: Curva de distribución normal	88
Figura 4: Diagrama de Distribución Normal	89
Figura 5: Histograma de ensayos de resistencia a Flexión	91
Figura 6: Curva de Distribución normal	92
Figura 7: Diagrama de Distribución normal	93

LISTA DE ECUACIONES

Ecuación 1: Desviación Estándar	36
Ecuación 2: Resistencia a Compresión requerida	36
Ecuación 3: Resistencia a Compresión de diseño	37
Ecuación 4: Formula del cemento en relación al agua	48
Ecuación 5: Absorción	49

RESUMEN

La presente investigación se centra en evaluar las propiedades físico-mecánicas sustituyendo agregado fino por residuos calcáreos triturados provenientes de la playa la Bonita -Nuevo Chimbote. Se estudiaron las propiedades físcas (densidad, absorción, porcentaje de vacíos, asentamiento y exudación); y las propiedades mecánicas (resistencia a la compresión y a la flexión). Se realizo el diseño de mezcla del concreto de resistencia 210 kg/cm2 según la norma ACI para la muestra patrón y luego se sustituyó porcentajes de 5%, 10% y 15% en peso del agregado fino por residuos calcáreos; y la trituración manual de los residuos calcáreos debe aproximarse a la del agregado fino convencional.

Después se elaboraron probetas de forma cilíndricas de 30 cm de altura y 15 cm de diámetro; se realizó el ensayo de resistencia a la compresión a los 7 días ,14 días y 28 días; también se realizaron vigas de medidas 45 cm (luz entre apoyos) y 15 cm (ancho); 15 cm (alto) para el ensayo de resistencia a flexión a los 7 días ,14 días y 28 días.

Se concluyo que al sustituir los residuos calcáreos al 5 %,10% y 15% no hay varianza significativa en las propiedades físicas, respecto al concreto patrón; pero se registraron varianzas significativas en las propiedades mecánicas del concreto; obteniendo que el porcentaje de 10 % por sustitución en peso del agregado fino por residuos calcáreos obtuvo un incremento en la resistencia a compresión y flexión, a diferencia de los porcentajes de 5% y 15%.

Palabras clave: concreto, propiedades físico-mecánicas, residuos calcáreos.

ABSTRACT

This research focuses on evaluating the physical and mechanical properties of fine aggregate by replacing crushed calcareous waste with crushed calcareous waste from La Bonita Beach, Nuevo Chimbote. Physical properties (density, absorption, void percentage, slump, and bleeding) and mechanical properties (compressive and flexural strength) were studied. A concrete mix design with a strength of 210 kg/cm2 was carried out according to the ACI standard for the standard sample, and then percentages of 5%, 10%, and 15% by weight of the fine aggregate were replaced with calcareous waste. Manual crushing of the calcareous waste should approximate that of conventional fine aggregate.

Cylindrical specimens measuring 30 cm in height and 15 cm in diameter were then prepared; compressive strength tests were performed at 7 days, 14 days, and 28 days. Beams measuring 45 cm (span between supports) and 15 cm (width) were also constructed, along with 15 cm (height) for flexural strength testing at 7, 14, and 28 days.

It was concluded that replacing calcareous waste at 5%, 10%, and 15% showed no significant variance in the physical properties compared to the standard concrete; however, significant variances were recorded in the mechanical properties of the concrete. It was found that replacing the fine aggregate with calcareous waste at 10% by weight resulted in an increase in compressive and flexural strength, compared to the 5% and 15% percentages.

Keywords: concrete, physical-mechanical properties, calcareous waste.

INTRODUCCIÓN

I. INTRODUCCIÓN

La industria de la construcción representa una de las principales fuentes de impacto ambiental a nivel global, debido al alto consumo de recursos naturales y a las significativas emisiones de gases de efecto invernadero asociadas tanto a la producción de cemento como a la extracción masiva de agregados para construcción. A esto se suma la generación de residuos inorgánicos en entornos costeros, particularmente derivados de actividades pesqueras y acuícolas, cuyos subproductos, como los caparazones de moluscos, suelen carecer de una gestión adecuada pese a su potencial aprovechamiento.

Según la ONU (2024), la extracción y el procesamiento masivo de materiales, incluidos minerales no metálicos como arena y grava, junto al uso intensivo de combustibles fósiles, contribuyen a más de la mitad de las emisiones globales de gases de efecto invernadero, además de provocar severos impactos en la biodiversidad y la contaminación ambiental.

Según la UNEP (2022), el sector de la construcción, incluida la producción de cemento, acero y agregados, representa cerca del 37 % del consumo energético mundial y aproximadamente el 34 % de las emisiones globales de CO₂ vinculadas a la energía y procesos industriales. La fabricación de cemento por sí sola contribuye con entre el 7 % y el 8 % de estas emisiones, debido tanto a la calcinación del carbonato de calcio como al empleo intensivo de combustibles fósiles. Para hacer frente a estos impactos, la UNEP trabaja activamente en el impulso de acciones que contribuyan al cumplimiento de los Objetivos de Desarrollo Sostenible, especialmente aquellos relacionados con la sostenibilidad urbana (ODS 11), la producción y el consumo responsables (ODS 12) y la lucha contra el cambio climático (ODS 13), promoviendo prácticas que reduzcan el

uso excesivo de recursos, minimicen las emisiones contaminantes y fomenten el aprovechamiento de materiales.

Según el Servicio Geológico de Estados Unidos (2023), en Estados Unidos se extrajeron aproximadamente 970 millones de toneladas métricas de arena y grava durante 2022, destinadas principalmente a la industria de la construcción, con implicaciones ambientales significativas por la alteración de ecosistemas fluviales y costeros.

Además, según la Universidad de Florida (2023) destacan que los residuos de conchas de ostras generados en actividades acuícolas y restaurantes pueden convertirse en un problema ambiental si no se gestionan adecuadamente, aunque se han implementado programas de reciclaje para restaurar arrecifes y ecosistemas costeros.

Según el Instituto Francés de Investigación para la Explotación del Mar (2021), en Francia, la extracción de arena marina en Francia causa impactos ambientales graves, como la destrucción de hábitats bentónicos y pérdida de biodiversidad, con una recuperación parcial tras 5-10 años donde persisten alteraciones en los ecosistemas, destacando la necesidad de regular esta actividad y promover alternativas sostenibles para minimizar daños irreversibles.

Según Zuo et al. (2020), en Europa y Asia las conchas de moluscos (desechos ricos en carbonato cálcico) emergen como material sostenible para construcción, usándose como agregados en concreto (hasta 20% de sustitución), aditivos para cemento y revestimientos, reduciendo la explotación de recursos naturales y promoviendo la economía circular.

Según el Instituto del Mar del Perú (2022), regiones costeras como Lambayeque, Piura y La Libertad concentran una alta producción de moluscos marinos, especialmente conchas de abanico, generando grandes volúmenes de residuos calcáreos que frecuentemente carecen de una gestión adecuada. Estos desechos suelen abandonarse en playas, muelles o zonas próximas a

plantas de procesamiento, provocando problemas de contaminación, malos olores y riesgos sanitarios, una situación particularmente visible en ciudades portuarias como Chimbote, donde la actividad pesquera produce diariamente toneladas de desperdicios hidrobiológicos.

Según el MINEM (2022), la industria de la construcción en Perú continúa sustentándose en un uso intensivo de agregados como arena y grava, cuya extracción ejerce presión sobre recursos naturales y eleva los costos de producción.

Si bien estudios realizados en el país han evidenciado el potencial técnico de las conchas de abanico como material sustituto parcial de agregados en morteros y concretos, su aplicación práctica sigue siendo limitada, lo que representa una oportunidad para avanzar hacia una construcción más sostenible y alineada con principios de economía circular (Pacheco-Torres et al., 2021; IMARPE, 2022).

El uso de residuos calcáreos de moluscos, como las conchas de abanico, ofrece una solución innovadora y sostenible en la construcción, gracias a su riqueza en carbonato de calcio (CaCO₃), que permite incorporarlos como agregado parcial o aditivo en el concreto. Investigaciones muestran que reemplazar entre un 10 % y 25 % de agregados tradicionales por conchas molidas mantiene o mejora la resistencia mecánica, mientras se reduce la acumulación de desechos costeros, se impulsa la economía circular y se disminuyen costos, especialmente en zonas cercanas a centros pesqueros, avanzando así hacia una construcción más ecológica y eficiente.

Se propone sustituir parcialmente el agregado fino por residuos calcáreos de moluscos para abordar esta situación. El propósito principal es maximizar el desempeño de las propiedades mecánicas y lograr una minúscula variación de propiedades físicas. Esta innovación permitirá la elaboración de concreto de manera sostenible. Se efectuarán procedimientos en los laboratorios

para respaldar esta idea. Estos experimentos demostrarán cómo estos residuos calcáreos influyen en las propiedades físicas y mecánicas del concreto.

A partir del contexto expuesto, surge el siguiente problema que orienta el desarrollo de nuestra investigación: ¿Como influyen los residuos calcáreos en las propiedades físicas y mecánicas del concreto f'c = 210 kg/cm2?; y como problemas específicos; ¿Cuáles son las propiedades físicas y químicas de los residuos calcáreos procedentes de moluscos, que permitan evaluar su potencial uso como sustituto parcial de agregado fino en concreto?; ¿Cuál es la relación agua/cemento adecuada para producir un concreto con resistencia f'c = 210 kg/cm² al sustituir el 5 %, 10 % y 15 % en peso del agregado fino por residuos calcáreos?; ¿Cómo varían las propiedades físicas y mecánicas del concreto diseñado para f'c = 210 kg/cm² al sustituir el 0 %, 5 %, 10 % y 15 % del agregado fino por residuos calcáreos?.

Una vez teniendo comprendida la problemática a abordar, se establece el siguiente **objetivo general** que guiará el desarrollo del estudio:" Determinar la influencia de los residuos calcáreos en las propiedades físicas y mecánicas del concreto f 'c = 210 kg/cm2 en el distrito de Nuevo Chimbote"; y como **objetivos específicos**; "Determinar las propiedades físicas y químicas de los residuos calcáreos"; "Determinar la relación agua / cemento para un concreto de f 'c = 210 kg/cm2 y la mezcla modificada al sustituir el 5%, 10% y 15% en peso de agregado fino por residuos calcáreos."; "Evaluar la variación de las propiedades físicas y mecánicas del concreto f 'c = 210 kg/cm2 modificado al sustituir el 0%,5%, 10% y 15% en peso de agregado fino por residuos calcáreos."

A partir del planteamiento del problema y los objetivos definidos, se propone la siguiente **hipótesis**; al sustituir en 10 % en peso de agregado fino por residuos calcáreos influye

significativamente una variación positiva en las propiedades mecánicas, mientras que las propiedades físicas no varían significativamente en el concreto de f 'c= 210 kg/cm2.

El presente proyecto se justifica; desde un enfoque teórico, esta investigación se sustenta en la necesidad de desarrollar soluciones sostenibles dentro del campo de la ingeniería civil, particularmente en el diseño de materiales de construcción. Diversos estudios científicos han demostrado que los residuos calcáreos provenientes de moluscos, como las conchas de abanico, están compuestos principalmente por carbonato de calcio (CaCO3), un material que posee propiedades químicas similares a ciertos componentes del cemento Portland y de los agregados utilizados tradicionalmente. En ese sentido, su aplicación en el concreto puede aportar mejoras en aspectos como la resistencia a la compresión, trabajabilidad, durabilidad y comportamiento estructural, siempre que se manejen proporciones adecuadas.

Además, esta investigación se alinea con marcos teóricos relacionados con la economía circular, sostenibilidad ambiental y gestión de residuos sólidos, que promueven el aprovechamiento de subproductos o materiales desechados en nuevos procesos productivos. Asimismo, contribuye al avance del conocimiento científico en la búsqueda de materiales alternativos que puedan sustituir parcial o totalmente los recursos naturales no renovables empleados en la construcción.

En el ámbito práctico, este estudio busca aportar una solución concreta a dos problemáticas actuales: por un lado, la acumulación de residuos marinos, especialmente en zonas costeras donde la actividad acuícola genera grandes cantidades de conchas de moluscos, y por otro, la alta demanda de materiales convencionales de construcción, como el cemento y los agregados finos y gruesos, cuya extracción afecta el medio ambiente y eleva los costos de obra.

El uso de conchas de moluscos trituradas en la elaboración de concreto representa una alternativa técnica, económica y ambientalmente viable. Su aplicación no solo permitiría reducir los volúmenes de desechos en ecosistemas costeros, sino también disminuir el consumo de materiales vírgenes, abaratar costos en ciertos casos y promover prácticas constructivas más responsables. Adicionalmente, en ciudades como Chimbote, donde la industria pesquera tiene gran presencia, esta propuesta puede generar beneficios locales como la revalorización de residuos, generación de empleo asociado a su recolección y procesamiento, y mejora de las condiciones ambientales.

En conjunto, la presente investigación tiene una importancia tanto teórica como aplicada, ya que no solo contribuye al cuerpo de conocimientos sobre materiales sostenibles, sino que también propone una solución real y adaptable a contextos con alta producción de residuos marinos.

En el ámbito práctico; las conchas tienen un gran impacto en el medio ambiente debido a que estos desechos contienen sustancias orgánicas que se descomponen en sedimentos terrestres y acuáticos, provocando malos olores y crecimiento de microbios e insectos; esto ocurre particularmente en las ciudades costeras, por lo que se aprovechará este recurso natural para reducir la contaminación ambiental. En el ámbito económico; el empleo de los residuos calcáreos como sustituto parcial del agregado fino, ofrece una sólida justificación económica. Esto se debe a que reduce los costos de eliminación de residuos, disminuye la dependencia de recursos pétreos debido al ahorro en la compra de agregados finos convencionales, además tiene el potencial de brindar una mayor durabilidad y resistencia del concreto, lo que puede reducir los costos de mantenimiento a largo plazo. En el ámbito social; el uso de residuos calcáreos como sustituto parcial del agregado fino, genera empleo local de recolección en comunidades costeras y promueve

la sostenibilidad ambiental al reducir desechos, también mejora la calidad de vida al proporcionar viviendas más seguras y accesibles. Además, al reducir los costos de construcción, facilita el acceso a viviendas dignas, promoviendo la inclusión social. En el ámbito industrial; el uso de residuos calcáreos como sustituto parcial del agregado fino en concreto ofrece una justificación industrial significativa. Optimiza recursos al convertir un subproducto en un componente valioso, reduce costos de producción al disminuir la necesidad de agregados convencionales, mejora la competitividad al adoptar prácticas sostenibles y reduce los residuos enviados a vertederos, por lo que esta práctica contribuye a la sostenibilidad y eficiencia de la industria del concreto.

MARCO TEÓRICO

II. MARCO TEÓRICO

2.1 ANTECEDENTES

Para el desarrollo de nuestro proyecto, tomamos como referencia investigaciones previas relacionadas con nuestro tema de estudio; de esta manera, a nivel internacional, se identifican los siguientes antecedentes:

El Mendili & Benzaama (2022) en su investigación "Investigation of Mechanical and Thermal Performance of Concrete with Scallop Shells as Partial Cement Replacement: Alternative Binder and Life Cycle Assessment" [Investigación del desempeño mecánico y térmico del concreto con conchas de vieira como sustituto parcial del cemento: aglutinante alternativo y evaluación del ciclo de vida]; el tipo de investigación es experimental; el objetivo principal de este estudio fue evaluar el uso de conchas de vieira como sustituto parcial del cemento en concreto, analizando sus propiedades mecánicas, higrotérmicas y su impacto ambiental mediante un análisis del ciclo de vida.

Este estudio evaluó el uso de conchas de vieira como sustituto parcial del cemento mediante un enfoque experimental y numérico. Las conchas, procesadas hasta obtener un polvo fino, se incorporaron en mezclas de mortero y concreto con sustituciones del 5% y 10% en peso de cemento. Se analizaron propiedades mecánicas (resistencia a compresión y flexión), físicas (permeabilidad, porosidad) y térmicas (conductividad, capacidad calorífica), junto con su microestructura (Difracción de Rayos X, Espectroscopía Raman). Adicionalmente, se simuló el comportamiento higrotérmico en edificios (WUFI Plus) y se evaluó el impacto ambiental mediante análisis de ciclo de vida (SimaPro/Pleiades), integrando los resultados para validar la viabilidad técnica y sostenible del material.

Los resultados mostraron que al sustituir 0%, 5% y 10% de cemento por conchas de vieira, las resistencias a compresión a 28 días fueron 56.7 MPa, 60.45 MPa y 50.95 MPa respectivamente, mientras que las resistencias a flexión alcanzaron 7.95 MPa, 8.56 MPa y 7.48 MPa en los mismos porcentajes; la permeabilidad presentó valores de 2.80×10⁻¹² m/s, 2.12×10⁻¹² m/s y 1.87×10⁻¹² m/s, la conductividad térmica registró 1.95 W/m·K, 1.86 W/m·K y 1.78 W/m·K, y la porosidad fue de 32%, 28% y 25% para cada porcentaje de sustitución; el análisis mediante difracción de Rayos X confirmó 95% calcita en las conchas y la Espectroscopía de Raman detectó mayor formación de silicato de calcio hidratado (680 cm⁻¹) y presencia de etringita en muestras de conchas de vieira. El ACV mostró reducción del 40% en impacto ambiental con 10% de sustitución.

De lo cual se concluyó que la incorporación de conchas de vieira como sustituto parcial del cemento de un 10 %, mejora significativamente las propiedades del concreto, ofreciendo una solución técnica y ambientalmente sostenible. Los análisis demostraron incrementos en resistencia mecánica, reducción en conductividad térmica y disminución de hasta 40% en el impacto ambiental, gracias a la formación optimizada de compuestos que dan fortaleza al material. La capacidad del material para regular la humedad y su procedencia como residuo renovable lo convierten en una alternativa viable para la construcción ecológica, alineándose con los objetivos de economía circular y reducción de emisiones en la industria.

Wang et al. (2024) en su investigación "EFECTO DE LOS AGREGADOS DE CONCHAS BIOLÓGICAS EN LAS PROPIEDADES MECÁNICAS Y LA SOSTENIBILIDAD DEL CONCRETO"; el tipo de investigación es experimental; el objetivo principal de este estudio fue evaluar la viabilidad de utilizar conchas biológicas (como residuos de moluscos) como reemplazo de agregados tradicionales en el concreto, evaluando sus propiedades mecánicas, beneficios económicos y reducción de emisiones de carbono.

Este estudio evaluó el uso de conchas de moluscos (ostras, almejas, mejillones) como sustituto parcial de agregados en concreto mediante un enfoque experimental. Las conchas, procesadas (calcinadas y trituradas a <0.5 mm), se incorporaron en mezclas con tasas de sustitución del 10%, 30% y 50% para sustituir al agregado grueso por conchas de moluscos. Se analizaron propiedades mecánicas (resistencia a compresión y flexión según EN 12390-3 y ASTM C78/C78M), microestructura (SEM) y absorción de agua (EN 12390-8). Adicionalmente, se evaluó el impacto económico (costos en estructuras reales en China) y ambiental (huella de carbono mediante análisis de ciclo de vida), integrando resultados para validar la viabilidad técnica y sostenible del material.

Los resultados mostraron que el concreto estándar (0% conchas) presentó una resistencia a flexión de 6.5 MPa, a compresión de 20 MPa y absorción de agua del 3.27%. Al sustituir agregado grueso por conchas trituradas, se obtuvieron mejoras significativas: con 10% de conchas, las resistencias alcanzaron 7.5-14.25 MPa (flexión) y 22-23.4 MPa (compresión); con 30%, 9.75 MPa (flexión) y 22.9 MPa (compresión); y con 50%, 10.5 MPa (flexión) y 23.3 MPa (compresión). La absorción de agua aumentó moderadamente (5.25% al 10%, 4.61% al 30%, 4.79% al 50%). El análisis microestructural mostró mayor compactibilidad en los concretos modificados,

especialmente con 50% de conchas. Adicionalmente, estas mezclas redujeron costos en ~10% y disminuyeron emisiones de carbono respecto al concreto convencional.

De lo cual; se concluyó que el reemplazo del 50% de agregado grueso por conchas de moluscos fue la proporción óptima, logrando las mayores mejoras en resistencia mecánica (+64.6% flexión, +17.8% compresión) y microestructura más compacta, con solo un moderado aumento en absorción de agua (+46%). Esta proporción mantuvo la reducción del 10% en costos y los beneficios ambientales, superando claramente a las mezclas con 10% y 30% de sustitución, lo que la convierte en la mejor opción para aplicaciones estructurales sostenibles que requieran alta resistencia.

A nivel Nacional tenemos las siguientes investigaciones:

Espinoza Núñez y Vivas Flores (2023); en esta investigación" **DISEÑO DE CONCRETO SIMPLE ADICIONANDO RESIDUOS DE CONCHA DE ABANICO EN AGREGADO FINO – PIURA"** el tipo de estudio es experimental, el objetivo es Determinar la influencia de los residuos de concha de abanico en la dosificación de mezclas del concreto; se evaluó la influencia de la incorporación de residuos de concha de abanico triturada como reemplazo parcial del agregado fino en la elaboración de concreto simple. Se realizaron sustituciones del 15%, 25% y 30% del agregado fino por concha de abanico, elaborando un total de 36 probetas para ensayos de resistencia a la compresión y 24 probetas para ensayos de resistencia a la tracción, evaluadas a los 7, 14 y 28 días de curado.

Los resultados mostraron que la mezcla con un 25% de concha de abanico presentó los mejores resultados en resistencia a la compresión, alcanzando 128.33 kg/cm² a los 7 días, 163.33 kg/cm² a los 14 días y 192.33 kg/cm² a los 28 días. Además, las mezclas con 15% y 25% de concha de abanico superaron las expectativas en los ensayos de tracción, con resistencias superiores al

100% respecto al diseño patrón. Estos hallazgos sugieren que la incorporación de concha de abanico triturada en proporciones adecuadas puede mejorar las propiedades mecánicas del concreto, ofreciendo una alternativa sostenible al reutilizar residuos marinos.

En conclusión, el uso de conchas de abanico trituradas como reemplazo parcial del agregado fino en concreto simple no solo es viable, sino que puede mejorar significativamente las propiedades mecánicas del material. Los resultados alcanzados con un 25% de sustitución validan el potencial técnico y ambiental de esta práctica. Esto impulsa la implementación de soluciones sostenibles en la construcción, alineadas con los Objetivos de Desarrollo Sostenible y los principios de economía circular, promoviendo una gestión más eficiente de los residuos marinos.

Velásquez Alarcón (2023) en su investigación: "EVALUACIÓN DE LA RESISTENCIA DEL CONCRETO MEDIANTE EL USO DE LAS CONCHAS DE ABANICO -LAMBAYEQUE"; el tipo de estudio es experimental, el objetivo es Evaluar la resistencia del concreto mediante el uso de las conchas de abanico, reemplazando parcialmente al agregado fino en porcentajes de 5%, 10%, 20% y 30%.

El estudio consistió en reemplazar el agregado fino por conchas de abanico (*Argopecten purpuratus*) trituradas en proporciones de 5%, 10%, 20% y 30% del peso total del agregado fino. Se elaboraron probetas cilíndricas de concreto para cada porcentaje de sustitución, las cuales fueron sometidas a ensayos de resistencia a la compresión, tracción y flexión a los 28 días de curado. En el estado endurecido a los 28 días reemplazando 5%, 10%, 20% y 30% se evidenció una resistencia a la compresión de 222.04, 228, 235.88, 223.58 kg/cm2, a la tracción se obtuvo 18.34, 21.36, 23.71 y 20.19 kg/cm2 y a la flexión se obtuvo 67.40, 74.82, 86.88, 73.79 kg/cm2 respectivamente

En conclusión, la sustitución del 20% del agregado fino por conchas de abanico mejoró significativamente las propiedades mecánicas del concreto. En particular, se observó un incremento en la resistencia a la compresión, tracción y flexión en comparación con el concreto patrón (sin sustitución). Este hallazgo sugiere que las conchas de abanico pueden ser utilizadas como un material alternativo sostenible en la producción de concreto, contribuyendo tanto a la mejora de las propiedades mecánicas como a la mitigación del impacto ambiental asociado a los residuos marinos.

Domínguez y Flores (2023), llevaron su investigación titulada "DISEÑO DE UNA LOSA DE CONCRETO F'C=210 KG/CM² INCORPORANDO CONCHA DE ABANICO TRITURADA PARA REDUCIR SU FISURACIÓN, SECHURA – 2023"; el tipo de estudio es experimental, el estudio tuvo como objetivo analizar las fisuras del concreto al incorporar concha de abanico triturada como reemplazo parcial del agregado fino, específicamente de la arena gruesa, en proporciones de 10%, 20% y 30%.

Los resultados probetas cilíndricas de concreto para cada porcentaje de sustitución, las cuales fueron sometidas a ensayos de resistencia a la compresión a los 28 días de curado. Los resultados obtenidos fueron los siguientes; con 10% ,20%,30%,de sustitución resistencia a la compresión de 319.4 kg/cm² y fisura de 0.40 mm; 301.5 kg/cm² y fisura de 0.10 mm; 321.0 kg/cm² y fisura de 0.10 mm; respectivamente; estos resultados indican que la incorporación de concha de abanico triturada no solo mejora la resistencia a la compresión del concreto, superando el diseño inicial de f'c=210 kg/cm², sino que también reduce significativamente la formación y visibilidad de fisuras en los elementos estructurales. La mejora en las propiedades del concreto se atribuye al contenido de carbonato de calcio presente en las conchas de abanico, que contribuye a las propiedades aglomerantes del cemento.

En conclusión, que el uso de concha de abanico triturada como reemplazo parcial del agregado fino es una alternativa viable y sostenible para mejorar las propiedades mecánicas del concreto, especialmente en elementos estructurales como vigas, columnas y losas aligeradas.

A nivel Local tenemos las siguientes investigaciones:

Ucañán y Mejía (2022), llevaron a cabo una investigación titulada "RESISTENCIA A LA COMPRESIÓN DEL CONCRETO F'C=210KG/CM2 ADICIONANDO CONCHAS DE ABANICO AL 1, 2.5 Y 5 PORCIENTO PARA PAVIMENTOS RÍGIDOS, CHIMBOTE-2021."; el tipo de estudio es experimental, el estudio tuvo como objetivo determinar la resistencia del concreto f´c=210kg/cm2 adicionando conchas de abanico en 1%, 2.5% y 5% del agregado grueso.

Esta investigación evaluó el efecto de la incorporación de conchas de abanico trituradas como aditivo en el agregado grueso del concreto, en proporciones de 1%, 2.5% y 5%, para pavimentos rígidos con una resistencia de diseño de f'c=210 kg/cm². Se elaboraron 48 probetas cilíndricas y 32 prismáticas, sometidas a ensayos de compresión y flexión a los 28 días de curado.

Los resultados mostraron que las mezclas con 1% y 2.5% de conchas de abanico alcanzaron resistencias a la compresión de 237 kg/cm² y 243 kg/cm², respectivamente, y resistencias a la flexión de 37,657 N y 45,926 N. Estos valores superaron la resistencia del concreto patrón, indicando una mejora en las propiedades mecánicas del concreto.

En conclusión, la adición de conchas de abanico trituradas en proporciones de 1% y 2.5% al agregado grueso de la concreta mejora significativamente la resistencia a la compresión y flexión, superando los valores del concreto convencional. Este estudio demuestra que el uso de residuos marinos, como las conchas de abanico, puede ser una alternativa sostenible y eficiente en la mejora de las propiedades mecánicas del concreto para pavimentos rígidos.

Con el propósito de sustentar teóricamente esta investigación, se establece el siguiente marco conceptual, el cual define y desarrolla los términos clave, categorías y fundamentos técnicos necesarios para comprender y orientar el estudio.

2.2 MARCO CONCEPTUAL

2.2.1 RESIDUOS CALCÁREOS

Los residuos calcáreos corresponden a subproductos de origen natural, compuestos en su mayoría por **carbonato de calcio (CaCO₃)**, y se generan a partir de organismos marinos como las conchas de moluscos, corales y otros invertebrados. Gracias a sus características físico-químicas, estos residuos poseen un alto potencial de reutilización en diversas industrias, entre ellas la construcción, donde pueden mejorar las propiedades de mezclas como el concreto, contribuyendo a un enfoque más ecológico en el uso de materiales (Cruz-Yusta et al., 2013).

A. CONCHAS DE ABANICO

Como sabemos, las conchas de abanico son moluscos que cuentan con 2 valvas en forma de abanico, suelen vivir en bahías que se encuentran protegidas del oleaje con temperaturas entre 14 y 20°C. También suelen vivir en zonas arenosas, bosques de manglares, sobre bases de rocas y gravas. Las valvas de estas conchas de abanico están compuestas principalmente de calcio. Por lo tanto, sus propiedades físicas serán consideradas como agregado fino para la producción de concreto ya que si el tamaño es menor a 4.76 mm se obtienen buenos resultados. Por lo tanto, en nuestro estudio utilizaremos la medida que consiste.

2.2.2 CONCRETO

Es un material compuesto por partículas individuales, siendo tanto los áridos como los otros materiales. En la mezcla, la arena y los agregados gruesos se mezclan en un compuesto con el cemento que puede ser Portland; una reacción entre H2O y los minerales que contiene el cemento crea una matriz fuerte que contiene los agregados en su lugar y le da a la mezcla una excelente resistencia a la compresión. (Askeland, Fulay & Engl., 2017, p. 667)

El concreto es un material heterogéneo el cual está principalmente de la combinación de cemento, agua y agregados finos y grueso. El concreto contiene un pequeño volumen de aire atrapado, y puede contener también aire mediante intencionalmente incorporado mediante el empleo de un aditivo. (Rivva, 1992, pág. 9)

El concreto es el material constituido por la mezcla en ciertas proporciones de cemento, agua, agregados y opcionalmente aditivos, que inicialmente denota una estructura plástica y moldeable, y que posteriormente adquiere una consistencia rígida con propiedades aislantes y resistentes, lo que lo hace un material ideal para la construcción. (Pasquel, 1998, pág. 11)

a. COMPONENTES

- CEMENTO

Es un aglomerante hidrófilo, resultante de la calcinación de rocas calizas, areniscas y arcillas, de manera de obtener un polvo muy fino que en presencia de agua endurece adquiriendo propiedades resistentes y adherentes. (Pasquel, 1998, pág. 17)

Se dividen en hidráulicos y no hidráulicos. El cemento hidráulico se endurece cuando se expone al H20. Los cementos no hidráulicos (por ejemplo, CaO, cal) no pueden endurecerse en agua y requieren aire para endurecerse. El cemento Portland es el material de fabricación más utilizado en la construcción. Fue registrado por Joseph Aspdin en el año 1824 y recibió su nombre

de los acantilados de piedra caliza de la isla de Portland en Inglaterra. (Askeland, Fulay y J., 2017, p. 667)

El cemento hidráulico está elaborado a partir de silicato de calcio, con una composición aproximada de óxido de calcio (60 a 65%); SiO2 (20 a 25%) y FeO y Al2O3 (7 a 12%).

El aglomerante del cemento, que está formado por partículas muy diminutas, se compone de muchas cantidades de 3CaO.Al2; 2CaO·SiO2; 3CaO·SiO2; 4CaO·Al2O3·Fe2 O3 y entre otros minerales. En la terminología del cemento, a veces CaO, SiO2, Al2 O3 y Fe2 O3 se conocen como C, S, A y F respectivamente, por lo que C3 S significa 3CaO-SiO2. Cuando se agrega H2O al cemento, se produce una reacción de hidratación que produce un gel sólido que une las partículas de agregado. Las reacciones que pueden ocurrir incluyen:

$$3CaO \cdot Al_2 + 6H_2O \rightarrow 3Ca_3A_{12}(OH)_{12} + calor$$

 $3CaO + SiO_2 + (x + 1)H_2O \rightarrow Ca_2SiO_4 \cdot xH_2O + Ca(OH)_2 + calor$

Una vez que el cemento se hidrata, proporciona una unión entre las partículas de agregado. Por lo tanto, es necesario agregar cemento para cubrir todas las partículas de agregado. El cemento a menudo constituye alrededor del 15 por ciento en volumen de los sólidos del concreto. La constitución del cemento determina la velocidad de fraguado y las propiedades finales de la mezcla. Generalmente, se espera que el concreto cure completamente dentro de 28 días, pero es posible que continúe fraguándose durante años. (Askeland, Fulay, & J., 2017, pág. 667)

Para estructuras enormes, como ejemplo cortinas de presas, el fraguado debe ocurrir lenta mente para impedir un calentamiento excesivo debido a la reacción de hidratación; Estos cement os suelen contener una baja proporción de 3CaO·SiO2, al igual que los cementos de tipos II y IV, sin embargo, en algunas obras de construcción es necesario retirar y reutilizar los encofrados lo

más rápido posible; los cementos para estos fines pueden englobar una gran cantidad de 3CaO·Si O2, como por ejemplo del Tipo III. (Askeland, Fulay, & J., 2017, pág. 668)

- ARENA

Químicamente hablando, la arena se compone principalmente de sílice (SiO2). La arena es un mineral fino, típicamente de 0,1 a 1,0 mm de diámetro de espesor. A menudo contienen al menos algo de humedad absorbida y esto debe tenerse en cuenta al preparar mezclas de concreto. La arena ayuda a completar los huecos entre los agregados gruesos, proporcionando un alto factor de llenado y reduciendo la cantidad de poros abiertos (o interconectados) en el concreto finalizado, que resiste la congelación y descongelación repetidas durante su vida útil. Reduce el problema de la descomposición del concreto debido a la congelación y descongelación reiterados durante su existencia de prestación. (Askeland, Fulay, & J., 2017, pág. 668)

- AGREGADOS

El agregado grueso está formado por grava y piedras. Debe estar limpio, duradero. Las partículas de agregado con formas redondeadas y angulares proporcionan resistencia debido a los enlaces mecánicos entre ellas, pero las partículas angulares también tienen una superficie mayor, lo que puede conducir a la formación de huecos y grietas. En general, se prefieren tamaños de agregado más grandes, lo que también minimiza el área de superficie para que se formen grietas y huecos. El tamaño del agregado debe corresponder al tamaño de la estructura que se está construyendo. Las partículas de agregado no deben exceder el 20% del espesor de la estructura. (Askeland, Fulay, & J., 2017, p. 668)

En algunos casos se pueden utilizar áridos especiales. La escoria mineral producida durante la producción de acero tiene excelentes propiedades aislantes, lo que permite producir concreto ligero. Otra opción es fabricar concreto especialmente pesado a partir de densas partículas

minerales o metálicas. Estas mezclas pesadas se utilizan en la construcción de reactores nucleares para aumentar la absorción de radiación. (Askeland, Fulay & J., 2017, p. 668).

- AGUA

Es un ingrediente del concreto que le da al cemento la propiedad de sufrir una reacción química y formar un solo sólido con el agregado.

Agua de la mezcla es la porción de agua por la unidad de volumen de concreto en la que el cemento contenido en la unidad de volumen tiene una fluidez que permite la lubricación suficiente del árido necesaria para producir una hidratación eficiente y pegar con la mezcla está en estado plástico. (Sánchez de Guzmán, 2001, p. 57)

El agua empleada en la preparación y curado del concreto deberá cumplir con los requisitos de la Norma ITINTEC 334.088 y ser, de preferencia, potable. (Rivva, 1992, p.23)

- AIRE

Cuando el concreto está en proceso de mezclado, es normal que quede aire en la masa (el aire queda atrapado, claro). Este aire luego es liberado por el proceso de compactación que sufre el concreto tras su colocación. Sin embargo, la compresión no es perfecta, por lo que siempre queda aire residual en la masa endurecida. Por otro lado, dependiendo del uso, también se pueden mezclar burbujas de aire mediante aditivos. (Sánchez de Guzmán, 2001, pág. 23)

b. PROPIEDADES

CONCRETO FRESCO

El concreto en su estado fresco tiene como propiedad más notable a la trabajabilidad; esta determina con qué facilidad se puede trabajar una mezcla de concreto, asimismo se toma en cuenta la granulometría, dosificación y las propiedades de los materiales" (Martínez & Pérez, 2023, p. 5)

- TRABAJABILIDAD

Está definida por la mayor o menor dificultad para el mezclado, transporte, colocación y compactación del concreto. Su evaluación es relativa por cuanto depende realmente de las facilidades manuales o mecánicas de que se disponga durante las etapas del proceso, ya que un concreto que puede ser trabajable bajo ciertas condiciones de colocación y compactación, no necesariamente resulta tal si dichas condiciones cambian. Esta influenciada principalmente por la pasta, el contenido de agua y el equilibrio adecuado entre gruesos y finos, que produce en el caso optimo una suerte de continuidad en el desplazamiento natural y /o inducido de la masa. (Pasquel, 1998, p. 131).

Según el Comité ACI 211, la trabajabilidad del concreto (también llamada docilidad), se refiere a su capacidad para ser colocado, compactado y terminado de manera eficaz, sin que se produzca segregación perjudicial. No obstante, algunos investigadores argumentan que este concepto es aún impreciso, ya que aspectos como la facilidad de vertido y la resistencia a la segregación no alcanzan a describir completamente esta propiedad esencial del concreto (Sánchez de Guzmán, 2001, p. 111).

El British Road Research Institute define la trabajabilidad en términos de compactación, ya que es necesario superar la fricción interna que se produce cuando la mezcla endurece en el molde. La fricción entre las diferentes partículas de los materiales que componen el concreto, y el exterior o superficie entre concreto y la superficie del encofrado o armadura, con el fin de extraer de forma natural el aire atrapado y conseguir la mayor densidad posible, provoca fricción. Así, dado que la fricción interna es una propiedad inherente de una mezcla y no depende de un tipo o

sistema estructural particular, la trabajabilidad se define como la cantidad de trabajo interno efectivo requerido para lograr una compactación completa. (Sánchez de Guzmán, 2001, p. 111)

- EXUDACIÓN

Propiedad por la cual una parte del agua de mezcla se separa de la masa y sube hacia la superficie del concreto. Es un caso típico de sedimentación en que los sólidos se asientan dentro de la masa plástica. El fenómeno está gobernado por las leyes físicas del flujo de un líquido en un sistema capilar, antes que el efecto de la viscosidad y la diferencia de densidades. (Pasquel, 1998, p. 139).

La exudación es un fenómeno que ocurre en el concreto fresco, en el cual el agua tiende a migrar hacia la superficie debido al asentamiento de los componentes sólidos más pesados. Esta situación suele estar asociada a un contenido elevado de agua o a una distribución ineficiente de los materiales, lo que puede generar deficiencias en la textura superficial y disminuir la resistencia del concreto si no se gestiona de forma adecuada (Neville, 2013).

Para minimizar los efectos de la exudación del concreto, es importante controlar adecuadamente la humedad, las condiciones de almacenamiento y manipulación del material.

También es una buena idea realizar una prueba de resistencia al fuego en concreto recién vertido, ya que los lixiviados pueden crear áreas de mala resistencia al fuego en caso de incendio.

En resumen, la exudación en el concreto es un fenómeno natural que puede causar problemas si no se trata adecuadamente. El control adecuado de la humedad, el almacenamiento del material y las condiciones de manipulación es importante para minimizar los efectos negativos de la exudación sobre el concreto.

SEGREGACIÓN

Es la separación de materiales que forman una mezcla heterogénea y la no uniformidad de su distribución por falta de cohesión. Las causas específicas del concreto que pueden causar segregación incluyen tamaños variables de partículas y sus distribuciones de tamaño de partículas, densidades de componentes y proporciones de componentes en la mezcla. Dependiendo del manejo y colocación, las posibles causas incluyen mezcla deficiente, transporte y vibración prolongada, colocación inadecuada y vibración excesiva durante la solidificación. La segregación generalmente ocurre de dos maneras. Primero, porque las partículas gruesas tienden a separarse debido al desplazamiento en la pendiente de la mezcla apilada, o porque se sedimentan más que las partículas finas debido a la influencia de la gravedad. Esto suele ocurrir con mezclas secas y poco cohesivas. (Sánchez de Guzmán, 2001, p. 123)

Otra forma de separación es la separación del adhesivo (agua y cemento) de la mezcla. Esto ocurre con mezclas húmedas y adhesivos muy diluidos. Para evitar la segregación en la mezcla, al considerar el diseño se debe verificar la correcta alimentación de los materiales y la apariencia de la mezcla. Por otro lado, los procedimientos adecuados de mezcla, transporte, colocación y consolidación del concreto, como lo establece el código ACI-304, reducen significativamente la posibilidad de segregación. (Sánchez de Guzmán, 2001, p.123)

- CONSISTENCIA

La consistencia se refiere a su estado de fluidez, es decir, qué tan dura (seca) o blanda (fluida) es una mezcla de concreto cuando se encuentra en estado plástico, por lo cual se dice que es el grado de humedad de la mezcla. (Sánchez de Guzmán, 2001, p. 111).

La consistencia del concreto representa la capacidad de la mezcla fresca para deformarse o fluir bajo su propio peso, permitiendo su manipulación, colocación y compactación sin pérdida de uniformidad. Esta característica está determinada por la cantidad de agua presente y se mide comúnmente mediante el ensayo de asentamiento (slump) (Mehta & Monteiro, 2014).

CONCRETO ENDURECIDO

Se denomina concreto endurecido al material que, luego de haber sido colocado y fraguado, ha adquirido la firmeza suficiente para resistir cargas estructurales. En esta fase, sus propiedades físicas y mecánicas, como la resistencia a la compresión, la rigidez y la durabilidad, ya pueden evaluarse. Estas características se ven influenciadas por el proceso de curado, los materiales empleados y las condiciones ambientales durante su maduración (Mehta & Monteiro, 2014).

- RESISTENCIA

La resistencia de un material depende de su capacidad para soportar una carga sin presentar deformación o falla, esta propiedad es inherente al propio material y debe determinarse mediante experimentación, una de las pruebas más importantes a este respecto es el ensayo de tensión o compresión. (Hibbeler, 2017, p. 85)

La resistencia del concreto puede entenderse como su capacidad para oponerse a fuerzas externas aplicadas, sin romperse ni deformarse de manera permanente. Esta propiedad depende de varios factores, como la calidad de los materiales, la relación agua-cemento, el curado y el tiempo de endurecimiento. Se considera una característica fundamental para garantizar la estabilidad y durabilidad de las estructuras (Mindess, Young & Darwin, 2003).

Pasquel (1998) plantea que "la resistencia en compresión está inversamente relacionada con la porosidad y la absorción y directamente con el peso específico" (p. 78).

Por otro lado, la resistencia a la flexión es una propiedad mecánica que se manifiesta con la presencia de esfuerzos justo antes de que logre ceder un ensayo a flexión. (Callister, 1995)

- CARACTERÍSTICAS DE LOS AGREGADOS EN EL CONCRETO

Los agregados constituyen uno de los componentes principales del concreto, representando entre el 60% y el 75% de su volumen total (Mindess, Young, & Darwin, 2003). Su influencia en las propiedades del concreto es significativa, ya que afectan aspectos fundamentales como la resistencia, la durabilidad, la trabajabilidad y el comportamiento frente a condiciones ambientales. Existen dos tipos principales de agregados: los agregados finos, usualmente arena natural o manufacturada, y los agregados gruesos, comúnmente grava o piedra triturada (Neville, 2012).

A continuación, se describen detalladamente las principales características físicas de los agregados y su impacto en las propiedades del concreto:

- TAMAÑO

El tamaño de los agregados influye directamente en la cantidad de pasta de cemento necesaria para recubrir su superficie. Los agregados finos tienen un tamaño inferior a 5 mm, mientras que los gruesos pueden variar desde los 5 mm hasta 40 mm o más. Agregados más grandes reducen el área superficial total, disminuyendo el requerimiento de cemento y agua, pero también pueden generar segregación si no se dosifican adecuadamente (Kosmatka, Kerkhoff, & Panarese, 2002; Alexander & Mindess, 2005).

- FORMA

La forma del agregado puede ser angular, redondeada, laminar o alargada. Los agregados redondeados, como los de origen natural de ríos, mejoran la trabajabilidad del concreto, permitiendo un mejor flujo. En cambio, los agregados angulares, que provienen generalmente de

piedra triturada, proporcionan mayor adherencia con la pasta de cemento y aumentan la resistencia del concreto endurecido (Mehta & Monteiro, 2014; Neville, 2012).

- TEXTURA SUPERFICIAL

La textura de la superficie del agregado afecta la adherencia entre el agregado y la pasta de cemento. Una textura rugosa, típica de agregados triturados, mejora la interacción mecánica con la pasta, incrementando la resistencia del concreto. Por otro lado, los agregados con superficies lisas tienen menor adherencia, lo que puede disminuir la resistencia a la tracción y flexión (Neville, 2012; Taylor, 1997).

- GRANULOMETRÍA

La distribución de tamaños dentro de una muestra de agregado se denomina granulometría. Una curva granulométrica bien graduada mejora la compacidad del concreto, reduce vacíos y por lo tanto disminuye el requerimiento de pasta. Esto contribuye a un concreto más económico y con mejor desempeño estructural (Kosmatka et al., 2002; Siddique & Kadri, 2011).

PESO ESPECÍFICO Y ABSORCIÓN

El peso específico indica la densidad del agregado, mientras que la absorción mide su capacidad para retener agua. Estos dos parámetros son fundamentales para el diseño de mezclas, ya que permiten calcular la cantidad de agua efectiva en el concreto. Agregados con alta absorción pueden alterar la relación a/c (agua/cemento), afectando la resistencia final del concreto (Mehta & Monteiro, 2014; Dobrowolski, 1998).

La absorción del agregado es una propiedad esencial en la tecnología del concreto, ya que influye directamente en su comportamiento físico y mecánico. Agregados con alta absorción tienden a requerir más agua en la mezcla, lo que puede afectar la trabajabilidad y resistencia del concreto final. Según Bracho y Alvarado (2003), las características del agregado, como la

absorción, la densidad y el desgaste, están altamente relacionadas con su capacidad para transmitir adecuadamente el pulso ultrasónico, lo cual se asocia a mejores propiedades elásticas del concreto. Por otro lado, Dzul, Herrera y Núñez (2008) encontraron que en la Península de Yucatán los agregados derivados de la roca caliza presentan una elevada absorción y contenido de finos, lo cual puede disminuir la resistencia del concreto si no se controla adecuadamente la relación agua/cemento. Asimismo, Vásquez-Fuentes et al. (2024) observaron que el uso de polvo y arena de sílice en mezclas de concreto puede modificar las propiedades físicas de los bloques, incluida la absorción, lo que demuestra la importancia de seleccionar cuidadosamente los materiales para garantizar el rendimiento del producto final.

- CONTENIDO DE IMPUREZAS

La presencia de materiales extraños como arcilla, materia orgánica o sales puede comprometer la calidad del concreto. Las impurezas pueden inhibir el fraguado del cemento o reducir la adherencia entre los componentes. Por ello, es esencial que los agregados sean lavados y seleccionados adecuadamente antes de su uso (Neville, 2012; Jackson & Dhir, 1996).

- DURABILIDAD

Los agregados deben ser resistentes a la acción de agentes químicos y físicos, especialmente si el concreto estará expuesto a ambientes agresivos, como zonas costeras o industriales. Los agregados no durables pueden reaccionar con los componentes del cemento, generando expansiones internas que agrietan el concreto (Mindess et al., 2003; Aïtcin, 2000).

2.2.3 DISEÑO DE MEZCLA

A) MÉTODO ACI 211

- DETERMINACIÓN DE LA RESISTENCIA

Rivva (1992) plantea que "las mezclas de concreto deben diseñarse para una resistencia promedio cuyo valor es siempre superior al de la resistencia de diseño especificada por el ingeniero proyectista" (p. 51).

Si se cuenta con un registro de los resultados de las pruebas de los trabajos realizados durante los 12 meses anteriores, deberá calcularse la desviación estándar de esos resultados que deberán ser por lo menos 30 resultados de pruebas. (Rivva, 1992)

La desviación estándar se obtiene por la siguiente ecuación:

Ecuación 1:

Desviación Estándar

$$\bar{s} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \cdots (x_n - \bar{x})^2}{n_1 - 1}}$$

s: desviación estándar

n: número de ensayos de la serie

 x_1, x_2, x_n : Resultados de resistencia de muestras de ensayo individuales

 \overline{x} : promedio de todos los ensayos

La resistencia a la compresión promedio requerida debe usarse como base para seleccionar las proporciones de la mezcla de concreto y debe ser el máximo de los valores obtenidos de la solución de las ecuaciones que se presentan a continuación. (Rivva, 1992)

Ecuación 2:

Resistencia a Compresión requerida

$$f'cr = f'c + 1.34s$$

Ecuación 3:

Resistencia a Compresión de diseño

$$f'cr = f'c + 2.33s - 35$$

s: desviación estándar

f'cr: resistencia a compresión requerida

f'cr: resistencia a compresión de diseño

Si no hay una data de los resultados obtenidos de las pruebas a partir de los cuales se pueda calcular la desviación estándar anterior, la resistencia promedio requerida se determina utilizando los valores de la siguiente tabla. (Rivva, 1992)

Tabla 1:Resistencia Promedio Requerida

Resistencia especificada f'c (kg/cm²)	Resistencia requerida f'cr (kg/cm²)
Menos de 210	f'c + 70
210 - 350	f'c + 84
Más de 350	f'c + 98

NOTA. La tabla representaLa resistencia requerida f'cr se calcula con base en la resistencia especificada f'c, añadiendo un margen de seguridad según el rango de f'c.

Fuente: ACI COMITÉ 211.

- SELECCIÓN DEL TAMAÑO MÁXIMO NOMINAL

Rivva (1992) afirma que "las normas de diseño estructural recomiendan que el tamaño máximo nominal del agregado grueso sea el mayor que pueda ser económicamente disponible, siempre que sea compatible con las dimensiones y características de la estructura" (p.69).

Se contempla que el tamaño máximo nominal del árido grueso en ningún caso deberá superar; el 1/5 de la menor medida entre caras de encofrados, el 1/3 del peralte de las losas y los 3/4 del espacio libre menor entre barras o alambres individuales de refuerzo, paquetes de barras, tendones o ductos de pre esfuerzo. (Rivva, 1992)

 Tabla 2:

 Porcentajes que pasan las siguientes mallas-agregado grueso

Tamaño máximo nominal	2"	1 ½"	1"	3/4"	1/2"	3/8"	N.º 4	N.º 8
2"	95–100		35–70		10–30		0.5	
1 ½"	100	95–100	35–70		10–30		0.5	
1"			95–100	25–60			0.10	0.5
3/4"			100	90–100	20–55		0.10	0.5
1/2"				100	90–100	40–70	0.15	0.5
3/8"	•••	•••	•••	•••	100	85–100	10–30	0.10

NOTA. La tabla presenta los rangos de porcentaje que deben pasar por diferentes mallas para distintos tamaños nominales de agregado grueso.

Fuente: ACI COMITÉ 211

La selección del tamaño máximo nominal del agregado fino se basa en identificar el mayor tamaño de partícula que cumple con los requisitos de paso a través de ciertas mallas, sin que se retenga una cantidad significativa. Este parámetro es esencial para asegurar una mezcla de concreto uniforme, con buena trabajabilidad y resistencia. La elección correcta influye en la necesidad de pasta, el grado de compactación y el comportamiento mecánico del concreto fresco y endurecido (Kosmatka & Wilson, 2016).

- SELECCIÓN DEL ASENTAMIENTO

El asentamiento que se va a utilizar deberá ser aquel que se presente en las especificaciones, en caso de no contar con ello se toman los siguientes criterios: Para una consistencia plástica; se tomará un asentamiento entre 3 y 4 pulgadas, si se compacta mediante la vibración; se tomará un asentamiento de 5 pulgadas o menos si se compacta mediante varillado. Se optará el valor más idóneo, para el cual se deberá disponer de la siguiente tabla del Comité ACI 211.

 Tabla 3:

 Asentamiento máximos y mínimos en tipos de construcción

Tipo de construcción	Asentamiento máximo (")	Asentamiento mínimo (")
Zapatas y muros de cimentación armados	3"	1"
Cimentaciones simples, cajones y	3"	1"
subestructuras de muros		
Vigas y muros armados	4"	1"
Columnas de edificios	4"	1"
Losas y pavimentos	3"	1"
Concreto ciclópeo	2"	1"

NOTA. Fuente: El asentamiento se mide en pulgadas (") y se refiere a la consistencia del concreto fresco, evaluado mediante el ensayo de asentamiento (slump)

- ESTIMACIÓN DEL AGUA

La estimación de agua se realiza mediante la elección de su volumen unitario, el cual se refiere a la determinación de la proporción de agua que se debe incorporar a una máquina mezcladora, por unidad cúbica de concreto, con el fin de conseguir una consistencia determinada cuando el agregado está al estado seco, que luego se corregirá en función a su absorción y contenido de humedad. (Rivva, 1992)

Rivva (1992) afirma que la siguiente tabla "ha sido preparada en base a las recomendaciones del Comité 211 del ACI. Ella permite seleccionar el volumen unitario de agua" (p.75)

Tabla 4:

Agua en l/m3 para los tamaños máximo nominales de agregado grueso y consistencia indicados

Asentamiento	3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	6"
Concretos sin aire incorporado								
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	
Concretos con aire incorporado								
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	

NOTA. Los valores representan la cantidad de agua estimada en litros por metro cúbico (l/m³) según el asentamiento deseado y el tamaño máximo del agregado grueso, diferenciando concretos con y sin aire incorporadoFuente: ACI COMITÉ 211

- CONTENIDO DE AIRE

Rivva (1992) afirma que "en los concretos siempre hay un pequeño porcentaje de aire atrapado, el cual depende del aporte de materiales y las condiciones de operación" (p. 81).

Es decir, para las mezclas de concreto sin excepción alguna, va a existir una mínima cantidad de aire atrapado, el cual va a depender directamente de los materiales, sobre todo los agregados y también va a estar relacionado con la manipulación del concreto. (Rivva, 1992)

Tabla 5: *Aire atrapado*

TMN	Aire atrapado (%)
3/8"	3.00 %
1/2"	2.50 %
3/4"	2.00 %
1"	1.50 %
1 1/2"	1.00 %
2"	0.50 %
3"	0.30 %
6"	0.20 %

NOTA. El contenido de aire atrapado disminuye a medida que aumenta el tamaño máximo nominal del agregado. Estos valores representan el aire no intencionalmente incorporado durante el mezclado.

Fuente: ACI COMITÉ 211

Aunque se puede incorporar aire por consideraciones de diseño, se deben tener en cuenta las siguientes consideraciones:

Cada entrada de aire del 1% reduce la resistencia hasta en un 5%. Aumenta la plasticidad y la resistencia a los ciclos de hielo-deshielo. La incorporación de aire incluido es significativamente menor en los elementos de concreto que no estarán expuestos a condiciones extremas.

Tabla 6:

Contenido de aire total en %.

TMN	Exposición suave	Exposición moderada	Exposición severa
3/8"	4.50 %	6.00 %	7.50 %
1/2"	4.00 %	5.50 %	7.00 %
3/4"	3.50 %	5.00 %	6.00 %
1"	3.00 %	4.50 %	6.00 %
1 1/2"	2.50 %	4.50 %	5.50 %
2"	2.00 %	4.00 %	5.00 %
3"	1.50 %	3.50 %	4.50 %
6"	1.00 %	3.00 %	4.00 %

NOTA. Los valores indican el contenido total de aire recomendado en el concreto según el tamaño máximo nominal del agregado (TMN) y el nivel de exposición.

Fuente: ACI COMITÉ 211

- RELACIÓN AGUA/CEMENTO

Rivva (1992) afirma que la relación agua y cemento "se refiere a la cantidad de agua que interviene en la mezcla cuando el agregado está en condición de saturado superficialmente seco" (p.87).

Mientras que la relación efectiva de agua y cemento indica aquella cantidad de agua cuando se incluya la condición real de humedad de los agregados. La selección de la proporción aguacemento se tiene en cuenta la exposición de los elementos de concreto, si es necesario, primero se determina esta proporción teniendo en cuenta la durabilidad y luego la resistencia, después se selecciona el valor más bajo. (Rivva, 1992)

- RESISTENCIA

La elección de la proporción de agua y cemento por resistencia se debe en primer lugar a las condiciones de exposición del concreto, si estas no van a afectar significativamente su durabilidad se realiza esta elección, en segundo lugar, se debe a la simplicidad de la obtención de la resistencia, ya que, en ciertas restricciones, está regulada por la proporción de agua al de cemento en la unidad cúbica de la mezcla. (Rivva, 1992)

Tabla 7:

Relación Agua/Cemento (a/c) de diseño según la resistencia a compresión del concreto a los 28 días

f c (28 días) (kgf/cm²)	Concretos sin aire incorporado	Concretos con aire incorporado
150	0.80	0.71
200	0.70	0.61
250	0.62	0.53
300	0.55	0.46
350	0.48	0.40
400	0.43	-
450	0.38	-

NOTA. La tabla muestra la relación agua/cemento (a/c) recomendada en función de la resistencia especificada a los 28 días (f'c) para concretos con y sin aire incorporado. La relación a/c disminuye conforme aumenta la resistencia deseada. Los valores para concretos con aire incorporado no se especifican para resistencias superiores a 350 kgf/cm². Fuente: ACI COMITÉ 211.

- DURABILIDAD

La elección de la relación agua-cemento por durabilidad se debe a aquellas condiciones ambientales a las que van a ser expuestos los elementos de concreto, si estas condiciones van a afectar significativamente, se deberá realizar la elección de relación agua-cemento por durabilidad. (Rivva, 1992)

Tabla 8:Requisitos de relación a/c y resistencia mínima del concreto según condiciones de exposición ambiental.

Condiciones de exposición	a/c máxima, agregados convencionales	f'c mínima, agregados livianos (kgf/cm²)
Concretos de baja permeabilidad		
a) Expuesto a agua dulce	0.50	
 b) Expuesto a agua de mar o aguas salobres 	0.45	260
 c) Expuesto a la acción de aguas cloacales 	0.45	
Concretos expuestos a procesos de congelación y deshielo en condición húmeda		
 a) Sardineles, cunetas, secciones delgadas 	0.45	300
b) Otros elementos	0.50	
Protección contra la corrosión del concreto expuesto a agua de mar, aguas salobres, neblina o rocío	0.40	325
Si el recubrimiento mínimo se incrementa en 15 mm	0.45	300

NOTA. Esta tabla establece las relaciones agua/cemento máximas y las resistencias mínimas requeridas para el concreto bajo diversas condiciones de exposición ambiental. Fuente: ACI COMITÉ 211

Tabla 9:Clasificación de la exposición a sulfatos y requisitos del concreto según nivel de agresividad

Exposición a sulfatos	Sulfato soluble en agua (SO4) en el suelo, % en peso	Sulfato (SO4) en agua (ppm)	Tipo de cemento	Máxima relación a/c	Resistencia mínima f'c (kgf/cm²)
Despreciable	0.00 < SO ₄ < 0.10	0.00 < SO ₄ < 0.10	-	-	-
Moderado	0.10 < SO ₄ < 0.20	150 < SO ₄ < 1500	II, IP (MS), IS (MS), P (MS), I (PM)(MS), I (SM)(MS)	0.50	280
Severo	0.20 < SO ₄ < 2.00	1500 < SO ₄ < 10000	V	0.45	310
Muy severo	SO ₄ > 2.00	SO ₄ > 10000	V + puzolana	0.45	310

NOTA. La tabla muestra los límites de sulfatos en el suelo y el agua, los tipos de cemento recomendados, y los requisitos de diseño del concreto para distintas condiciones de exposición a sulfatos. Fuente: ACI COMITÉ 211

Tabla 10:Corrosión del acero de refuerzo.

Elemento	Máximo ion cloruro soluble en el agua en el concreto, expresado como % en peso del cemento
Concreto pretensado	0.06
Concreto armado expuesto a la acción de cloruros	0.15
Concreto armado que deberá estar seco o protegido de la humedad durante su vida	1.00
Otras construcciones de concreto armado	3.00

NOTA. Estos valores representan los límites máximos de ion cloruro soluble permitidos para diferentes tipos de elementos estructurales, con el fin de evitar la corrosión del acero de refuerzo.

Fuente: ACI COMITÉ 211

- CONTENIDO DE CEMENTO

Sabiendo el volumen unitario para el agua por la unidad de volumen de la mezcla de concreto y la proporción agua-cemento resultante; el factor del cemento por metro cúbico (m³) de la mezcla se puede determinar simplemente dividiendo la unidad de volumen de agua, expresada en litros (lt) por metro cúbico (m³), entre la relación agua-cemento, adquiriendo una cantidad de kilogramos de cemento por metro cúbico (m³) de concreto. (Rivva, 1992)

La cantidad de cemento se obtiene por la siguiente ecuación.

Ecuación 4:

Formula del cemento en relación al agua

Cemento (kg) =
$$\frac{\text{Agua}}{\text{Relación A/C}}$$

El contenido de agua y la relación A/C han sido establecidos previamente

- PROPORCIÓN DE AGREGADOS

Los agregados deben cumplir con las especificaciones de tamaño de partículas ASTM C-33 o NTP 400.037. El contenido de agregado grueso en estado seco comprimido se determina con base en la dimensión máxima nominal del agregado fino y el factor de finura; una vez conocidos los volúmenes del resto de componentes (agua, cemento, aire y agregado grueso), se puede determinar el volumen de la arena por diferencia. (Rivva, 1992)

Tabla 11:

Volumen de agregado grueso, seco y compactado de volumen de concreto, para diversos módulos de fineza.

TMN de Ag. Grueso	2.4	2.6	2.8	3.0
3/8"	0.50	0.48	0.46	0.44
1/2"	0.59	0.57	0.55	0.53
3/4"	0.66	0.64	0.62	0.60
1"	0.71	0.69	0.67	0.65
1 1/2"	0.76	0.74	0.72	0.70
2"	0.78	0.76	0.74	0.72
3"	0.81	0.79	0.77	0.75
6"	0.87	0.85	0.83	0.81

NOTA. Los valores representan el volumen del agregado grueso seco y compactado por unidad de volumen de concreto, dependiendo del tamaño máximo nominal (TMN) del agregado grueso y el

módulo de fineza de la arena.

Fuente: ACI Committee 211.

HUMEDAD DE AGREGADOS

Debido a que los agregados o áridos son naturalmente húmedos, su peso seco debe

aumentar con el porcentaje de humedad, la absorción y el área de superficie. La cantidad de agua

de la mezcla absorbida por la mezcla debe reducirse en una cantidad idéntica a la humedad

superficial o libre suministrada por el agregado, es decir, el contenido de saturación del agregado

restando su tasa de absorción. (Rivva, 1992)

Ecuación 5:

Absorción

$$\% \ Absorci\'on = \frac{100(SSS - S)}{S}$$

SSS: Peso del agregado en estado saturado superficialmente seco

S: Peso del agregado en estado seco

$$\% \ Humedad = \frac{100(H-S)}{S}$$

H: Peso del agregado

METODOLOGÍA

III.METODOLOGÍA

3.1 ENFOQUE DE LA INVESTIGACIÓN

Esta investigación se ejecutó con un enfoque cuantitativo debido a que; se midieron de manera precisa aquellas variables involucradas, particularmente las propiedades físicas (densidad, absorción, porcentaje de vacíos, exudación y asentamiento) y mecánicas (resistencia a flexión y compresión). Estas mediciones se realizaron utilizando equipos específicos de laboratorio, lo que permitió obtener datos numéricos objetivos que fueron esenciales para evaluar la influencia de la sustitución parcial del agregado fino por residuos calcáreos de conchas de moluscos. Además, se manipuló la variable independiente, que en este caso fue el porcentaje de residuo calcáreo (0%, 5%, 10%, 15%), para observar su impacto en la variable dependiente, las propiedades mecánicas y físicas en el concreto. Esta manipulación controlada y sistemática de las variables es una característica distintiva del enfoque cuantitativo, ya que permite un análisis detallado de cómo diferentes niveles de la variable independiente afectan los resultados. Asimismo, se recolectaron datos numéricos a partir de las pruebas de las propiedades físicas y mecánicas realizadas. Estos datos fueron cruciales para el análisis estadístico, que incluyó cálculos de medias, desviaciones estándar y la realización de pruebas inferenciales, como la prueba ANOVA. Este análisis estadístico permitió probar la hipótesis planteada y determinar la significancia de los resultados obtenidos. El uso de métodos estadísticos es una herramienta clave en el enfoque cuantitativo, ya que proporciona una base sólida para validar o refutar hipótesis de manera objetiva. Otra razón por la cual esta investigación se enmarcó en un enfoque cuantitativo fue la búsqueda de objetividad y reproducibilidad. El estudio se llevó a cabo utilizando métodos y procedimientos estandarizados que minimizaron el sesgo del investigador. Finalmente, el enfoque cuantitativo fue ideal para probar la hipótesis formulada en la investigación. A través del análisis de datos numéricos, se pudo

determinar de manera objetiva si la sustitución de agregado fino por residuos cálcareos tienen un óptimo desempeño en las propiedades mecánicas y no alteran significativamente las propiedades físicas del concreto. Esto permitió determinar conclusiones basadas en evidencia estadística sólida y proporcionó una comprensión clara de la influencia de la sustitución de agregado fino por residuos calcáreos en las propiedades físicas y mecánicas del concreto.

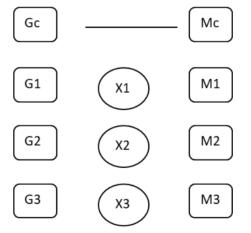
3.2 MÉTODO DE LA INVESTIGACIÓN

Esta investigación fue aplicada, enfatizando su propósito práctico y alineado con el desarrollo sostenible, directamente vinculado con la elaboración de concreto y el mal sistema de gestión en la producción de agregados en el entorno de la localidad de Nuevo Chimbote. A diferencia de los estudios que buscan principalmente expandir el conocimiento teórico sin un fin práctico ni sostenible, este proyecto aplicado tuvo como meta abordar desafíos de controlar el impacto ambiental, y mejorar el desempeño del concreto, ofreciendo soluciones prácticas y sostenibles. En particular, el estudio se enfocó en la evaluación de la influencia de la sustitución de agregados finos por residuos calcáreos en concreto con resistencia a compresión de 210 kg/m2, especialmente en la fabricación de concreto en el distrito de Nuevo Chimbote. Esta investigación cobró relevancia práctica en el distrito de Nuevo Chimbote, donde la falta de implementación de un sistema de gestión ambiental en las canteras y el mal manejo de los residuos sólidos de las conchas de moluscos en las playas ocasionan no solo un impacto ambiental sino también sobrecostos. Mediante la aplicación de los hallazgos de este estudio, se buscó brindar datos concretos que pudieran conducir a la adopción de soluciones efectivas.

Entre estas soluciones se contempló sustituir parcialmente el agregado fino por residuos calcáreos, enfrentando así de manera eficaz los retos impuestos por la deficiente cultura de gestión ambiental en la localidad.

Según Hernández (2014), el nivel de investigación explicativo se enfoca en identificar y comprender las causas y efectos de los sucesos o fenómenos bajo estudio, así como las circunstancias en las que se manifiestan.

La investigación tuvo un enfoque explicativo con el objetivo de evaluar la influencia de la sustitución de agregados finos por residuos calcáreos en concreto de 210 kg/cm² de resistencia a compresión. Este estudio se aplicó a la elaboración de concreto en el distrito de Nuevo Chimbote, Ancash.


El propósito fue entender detalladamente cómo la sustitución del agregado fino por residuos calcáreos altera las propiedades del concreto, diferenciándolo de estudios exploratorios, descriptivos o correlacionales. Este enfoque explicativo proporcionó un marco metodológico robusto para abordar la complejidad de los efectos causales entre las variables, aportando una comprensión clara sobre la influencia de los residuos calcáreos en la calidad y durabilidad del concreto.

3.3 DISEÑO DE INVESTIGACIÓN

La presente investigación empleó un diseño cuasi-experimental, caracterizado por la selección no aleatoria de testigos de concreto con diferentes porcentajes de sustitución de agregado fino por residuos calcáreos (0%, 5%, 10%, 15%), siguiendo criterios de conveniencia determinados por el investigador. Aunque se incluyó un grupo de control, la asignación a los grupos y la selección de la muestra no se realizaron de forma aleatoria, lo que justifica la elección de este tipo de diseño. A pesar de sus limitaciones, este enfoque permitió evaluar la influencia de la sustitución parcial de agregado fino por residuos calcáreos en concreto con una resistencia a compresión de 210 kg/cm². En la siguiente figura se muestra el esquema del diseño, el cual representa la estructura de los grupos, los niveles de intervención aplicados y la comparación de resultados obtenidos en los especímenes de concreto patrón y modificado.

GC: Ejemplares de concreto patrón.

G1, G2 y G3: Ejemplares de concreto experimental.

X1, X2 Y X3: Adiciones de residuos calcáreos en distintos porcentajes.

MC: Resultados de los ejemplares del concreto patrón.

M1, M2 Y M3: Resultados de los ejemplares de concreto modificado

Para evaluar el efecto de la sustitución parcial del agregado fino por residuos calcáreos en el concreto, se formularon hipótesis diferenciadas según el tipo de propiedad analizada (mecánica o física), considerando que la hipótesis general de la investigación sostiene que: "Al sustituir en 10% en peso de agregado fino por residuos calcáreos influye significativamente una variación positiva en las propiedades mecánicas, mientras que las propiedades físicas no varían significativamente en el concreto de f 'c= 210 kg/cm2.". A partir de esta hipótesis general, se establecieron los siguientes contrastes:

- Propiedades mecánicas (resistencia a compresión y flexión):

- ⊙ Hipótesis nula (H₀m): La sustitución parcial del agregado fino por residuos calcáreos no influye significativamente la resistencia a compresión ni la resistencia a flexión del concreto.
- Hipótesis alternativa (H₁m): La sustitución parcial del agregado fino por residuos calcáreos influye significativamente la resistencia a compresión y flexión del concreto.

- Propiedades físicas (densidad, absorción, porcentaje de vacíos, exudación y asentamiento):

- ⊙ Hipótesis nula (H₀f): La sustitución parcial del agregado fino por residuos calcáreos no genera variaciones significativas en el peso unitario ni en la absorción del concreto, preservando su durabilidad.
- o Hipótesis alternativa (H₁f): La sustitución parcial del agregado fino por residuos calcáreos altera significativamente el peso unitario y/o la absorción del concreto.

El procedimiento analítico consistió en cuatro etapas:

Recolección de datos:

Se elaboraron especímenes con sustituciones del 0%, 5%, 10% y 15% de agregado fino por

residuos calcáreos, y se ensayaron sus propiedades mecánicas y físicas según normas técnicas establecidas.

Análisis de varianza (ANOVA):

Se aplicó un ANOVA de un factor para cada propiedad con un nivel de significancia del 5% $(\alpha = 0.05)$, a fin de determinar diferencias estadísticamente significativas entre los grupos.

Prueba post hoc de Tukey (HSD):

En caso de obtener diferencias significativas en alguna propiedad, se utilizó esta prueba para identificar los grupos con diferencias específicas y establecer el porcentaje óptimo de sustitución.

Interpretación de resultados:

3.4 Para las propiedades mecánicas:

Si p < 0.05, se rechazó Hom y se concluyó que los residuos calcáreos incrementan la resistencia.

Si p \geq 0.05, no se rechazó H₀m.

3.5 Para las propiedades físicas:

Si p < 0.05, se rechazó H_0f , indicando que la sustitución altera las propiedades físicas.

Si $p \ge 0.05$, no se rechazó Hof, validando que las propiedades físicas se mantienen estables.

Este enfoque analítico permitió contrastar la hipótesis con rigurosidad estadística, diferenciando claramente los efectos de la sustitución sobre las propiedades del concreto.

3.6 POBLACIÓN Y MUESTRA

Según la NTP 339.034:2021, al evaluar la resistencia a compresión de tres probetas cilíndricas de concreto de 150 mm × 300 mm en condiciones de laboratorio, el coeficiente de variación aceptado es de 2,4 % y la diferencia máxima permitida entre cada cilindro individual respecto al promedio no debe exceder el 7,8 %; la norma establece rangos de aceptación únicamente para ensayos realizados con dos o tres cilindros, se infiere que estos constituyen la cantidad reglamentaria para determinar un resultado válido.Por lo tanto la población y muestra en este proyecto está conformada por todas las probetas del diseño de concreto, 212 muestras de resistencia de f'c=210 kg/cm2.

Tabla 12:Poblacion y Muestra

		PROPIEDADES MECÁNICAS							PROPIEDADES FÍSICAS			
INDICADOR	RESISTENCIA A COMPRESIÓN		RESISTENCIA A FLEXIÓN		DENSIDAD	ABSORCIÓN	PORCENTAJE DE VACÍOS	ASENTAMIENTO	EXUDACIÓN			
	7 DÍAS	14 DÍAS	28 DÍAS	7 DÍAS	14 DÍAS	28 DÍAS	28 DÍAS	28 DÍAS	28 DÍAS	ESTADO FRESCO	ESTADO FRESCO	
CONCRETO CON 0% DE												
SUSTITUCIÓN DE RESIDUOS CALCÁREOS DE MOLUSCO	3	3	3	3	3	3	4	4	4	4	4	
CONCRETO CON 5% DE SUSTITUCIÓN DE RESIDUOS CALCÁREOS DE MOLUSCO	3	3	3	3	3	3	4	4	4	4	4	
CONCRETO CON 10% DE SUSTITUCIÓN DE RESIDUOS CALCÁREOS DE MOLUSCO	3	3	3	3	3	3	4	4	4	4	4	
CONCRETO CON 15% DE SUSTITUCIÓN DE RESIDUOS CALCÁREOS DE MOLUSCO	3	3	3	3	3	3	4	4	4	4	4	
CONCRETO CON % DE R.C.M. CON MEJOR DESEMPEÑO		30			30							
TOTAL							2	212				

NOTA. La tabla presenta las muestras a realizar para determinar las propiedades del concreto.

Fuente: Elaboración propia 2025.

3.7 OPERACIONALIZACIÓN DE VARIABLES

Tabla 13:Operacionalizacion de Variables

Variables	Definición conceptual	Definición operacional	Dimensión	Indicadores
Independiente	Residuos calcáreos: Son residuos ricos en carbonato cálcico (caco ₃), como los caparazones de los moluscos que puede reutilizarse como	Los residuos calcáreos se van a trituran cumpliendo los parámetros de la granulometría	Propiedades químicas	- Composición química
	materia prima para construcción. (Bellei, Torres, Solstad, & Flores-Colen, 2023)	de la arena, para luego sustituirse por la arena.	Propiedades físicas	- Granulometría
Dependiente	Propiedades del concreto: Las propiedades del concreto se refieren a las propiedades físicas, mecánicas y químicas que determinan su	Se preparan diversas mezclas de concreto con proporciones de sustitución de arena por residuos calcáreos del 5, 10 y 15% y se moldean muestras para someterlas a diversos	Propiedades mecánicas	 Resistencia a compresión Resistencia a flexión
	comportamiento y desempeño. Estas propiedades son cruciales para garantizar la calidad y la idoneidad del concreto para diversas aplicaciones de construcción. (mehta & monteiro, 2001).	ensayos. Estas pruebas determinarán el rendimiento y la viabilidad de la sustitución y proporcionarán información para futuras aplicaciones y mejoras concretas en la formulación.	Propiedades físicas	 Densidad Absorción Porcentaje de vacíos Asentamiento Exudación

NOTA. La tabla presenta las variables, definicion conceptual y operacional, dimensiones e indicadores de la investigación .

Fuente: Elaboración propia 2025.

3.8 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

Según Arias y Corvinos (2021), la observación directa y las fichas de observación son herramientas eficaces para documentar características específicas de los materiales estudiados, asegurando precisión y detalle en la recolección de datos. Para el desarrollo de esta investigación se empleó como técnica a la observación directa y como instrumentos a fichas de observación.

Para la elaboración de las fichas utilizamos hojas diseñadas para recopilar información relevante siguiendo los lineamientos regulatorios aplicables como los lineamientos de las Normas NTP/ASTM. Estas fichas son la principal herramienta utilizada en la investigación. Está estructurado de acuerdo con los parámetros y requisitos establecidos en los documentos reglamentarios pertinentes. La recopilación de datos es sistemática y rigurosa, y durante el proceso de seguimiento se obtiene información relevante.

El uso de estas fichas según las regulaciones existentes garantiza la coherencia en la recopilación de datos y la uniformidad del enfoque de la investigación. Esta hoja le permite capturar datos precisos y detallados que son importantes para análisis posteriores como parte de su proyecto de investigación.

En resumen, la técnica de observación se respalda con instrumentos concretos en forma de fichas de recopilación de datos, las cuales se adhieren a las directrices de las normativas, asegurando un proceso de investigación estructurado y confiable.

La siguiente tabla muestra las normas, las cuales fueron los parámetros para realizar las fichas de observación:

Tabla 14:

Ensayos y sus respectivas normas

Ensayo de resistencia a compresión:	ASTM C39 / NTP 339.034	
Ensayo para determinar densidad, absorción y	ASTM C642 / NTP 339.187	
porcentaje de vacíos:		
Ensayo de la determinación de la exudación:	ASTM C232 / NPT 339.077	
Medición del asentamiento:	ASTM C143 / NTP 339.035	
Análisis granulométrico del agregado fino y grueso:	ASTM C136 / NTP 400.012	
Peso unitario y vacío de los agregados:	ASTM C29 / NTP 400.017	
Contenido de humedad de agregados:	ASTM C566 / NTP 339.185	
Peso específico y absorción del agregado grueso:	ASTM C127 / NTP 400.021	
Peso específico y absorción del agregado fino:	ASTM C128 / NTP 400.022	
Elaboración y curado de especímenes de concreto:	ASTM C192 / NTP 339.183	
Ensayo de la resistencia a flexión	ASTM C293 / NTP 339.079	
Requisitos de Reglamento para Concreto	ACI 318-19	
Estructural		

NOTA. Todas las pruebas se realizaron siguiendo los procedimientos establecidos por las normas ASTM; las Normas Técnicas Peruanas – NTP y ACI 318-19. Fuente: elaboración propia.

En este contexto de investigación, el énfasis está en garantizar la confiabilidad y validez de los instrumentos utilizados. Para lograr esto, seguimos los procedimientos y pautas especificados en las regulaciones ASTM para proporcionar una base sólida y profesional para realizar pruebas y recopilar datos. Cada prueba realizada en el laboratorio se realiza bajo la supervisión y firma del Ingeniero-Especialista responsable.

Esto asegura la verificación técnica y aprobación de cada paso del proceso, respaldando la integridad y calidad de los resultados obtenidos. Además, existe un certificado de calibración que acredita que el equipo utilizado para las pruebas ha pasado por un proceso de verificación y calibración para garantizar exactitud y precisión.

El proceso de investigación se llevará a cabo de la siguiente manera:

Recolección de residuos calcáreos

Se recolectaron caparazones de moluscos en la playa "La Bonita", ubicada en el distrito de Nuevo Chimbote, provincia del Santa, región Áncash. Estos serán denominados residuos calcáreos debido a su alto contenido de carbonato de calcio.

Elaboración del diseño de mezcla

Se elaboró un diseño de mezcla con una resistencia a compresión de 210 kg/cm², que establece las proporciones de agregados, cemento y agua necesarias para la fabricación de las probetas de concreto patrón y modificado.

Preparación de residuos calcáreos

Se eliminaron los residuos no calcáreos adheridos a los caparazones mediante limpieza manual. Luego, se lavarán para eliminar impurezas y se dejarán secar completamente. Los caparazones de mayor tamaño serán fragmentados con un martillo antes de ser triturados en un molino de mano, ajustado para simular la granulometría del agregado fino que se pretende reemplazar.

Elaboración de probetas de concreto

Las probetas se fabricaron siguiendo el diseño de mezcla base. Primero se elaborarán las probetas de concreto patrón y luego las probetas con sustituciones del 5%, 10% y 15% de agregado fino por residuos calcáreos.

Ejecución de ensayos

Las probetas fueron sometidos a ensayos para evaluar sus propiedades físicas y mecánicas. Se realizaron ensayos de resistencia a compresión y flexión a los 7, 14 y 28 días. A los 28 días se ejecutarán ensayos de densidad, absorción y porcentaje de vacíos, ya que corresponden al concreto endurecido. Asimismo, se evaluarán la exudación y el asentamiento (slump) en estado fresco.

Redacción del informe de investigación

Finalmente, se elaboro un informe técnico que integrará los procedimientos realizados, los resultados experimentales, el análisis estadístico y las conclusiones obtenidas. Este documento constituirá la presentación formal de los hallazgos de la investigación.

Las fichas se encuentran en el ANEXO 09.

3.9 TÉCNICAS DE ANÁLISIS DE RESULTADOS

Esta investigación empleó técnicas específicas para garantizar un análisis riguroso y detallado de los datos recolectados. En primer lugar, se utilizó un análisis descriptivo con el propósito de proporcionar un resumen de las características principales de los datos obtenidos. Se calcularon medidas de tendencia central, como medias medianas, para las diferentes variables estudiadas, tales como las propiedades físicas

(densidad, absorción, porcentaje de vacíos, exudación y asentamiento). Además, se calcularon medidas de dispersión, como desviaciones estándar y rangos, para entender la variabilidad de los datos. Posteriormente, se realizó un análisis inferencial con el objetivo de determinar si las diferencias observadas en los datos eran estadísticamente significativas. Para ello, se utilizó la prueba ANOVA (Análisis de Varianza), que permitió comparar las medias de las propiedades físicas y mecánicas del concreto con diferentes porcentajes de sustitución de residuos calcáreos (0%, 5%, 10% y 15%). Esta prueba facilitó la identificación de variaciones en las propiedades físicas y mecánicas del concreto con sustitución de agregado fino por residuos calcáreos. Los resultados de documentados en las fichas de observación se ingresaron en hojas de cálculo de Microsoft Excel, para realizar el ANOVA y evaluar la significancia de las diferencias observadas.

Además, se llevó a cabo un análisis comparativo para comparar los resultados de los diferentes grupos experimentales e identificar patrones y tendencias. Se crearon histogramas y diagramas de distribución normal, para visualizar los resultados descriptivos, y tablas compactas de los resultados inferenciales que a su vez facilitaron la interpretación visual de los datos, destacando las tendencias y patrones relevantes. Finalmente, la interpretación de los resultados tuvo como propósito extraer conclusiones basadas en el análisis de datos y relacionarlas con la hipótesis y los objetivos de la investigación.

Se realizó una síntesis de los hallazgos obtenidos del análisis descriptivo, inferencial y comparativo. Asimismo, se evaluó si los datos apoyaban o refutaban la hipótesis planteada, Al sustituir en 10 % en peso de agregado fino por residuos calcáreos influye significativamente una variación positiva en las propiedades mecánicas, mientras que las propiedades físicas no varían significativamente en el concreto de f 'c= 210

kg/cm2. Los resultados del análisis se interpretaron en el contexto de la investigación, relacionando los hallazgos con la hipótesis.

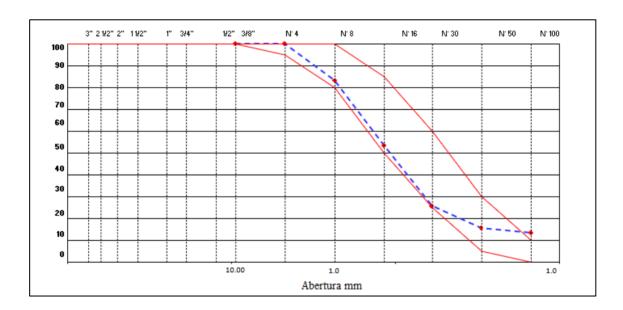
Análisis estadístico de resultados

Los datos obtenidos fueron organizados y procesados mediante hojas de cálculo, conforme a la metodología propuesta por Enrique Pasquel en su obra Tópicos de Tecnología de Concreto. La información será presentada mediante tablas y gráficos para facilitar su interpretación.

El análisis incluirá:

- La aplicación del análisis de varianza (ANOVA) para determinar si existen diferencias significativas en las propiedades físicas entre el concreto patrón y los concretos modificados.
- El uso de la prueba post hoc de Tukey para identificar específicamente entre qué grupos existen diferencias, en caso de obtenerse resultados significativos en el ANOVA.
- La evaluación estadística de las propiedades mecánicas del concreto, conforme a los lineamientos de la norma ACI 214, considerando parámetros de dispersión y control de calidad.

RESULTADOS Y DISCUSIÓN


IV. RESULTADOS Y DISCUCION

4.1 Determinar las propiedades físicas y químicas de los residuos calcáreos; los resultados son los siguientes.

4.1.1 PROPIEDADES FISICAS

Figura 1:

Curva Granulométrico de los Residuos Calcáreos

Se encuentra completamente dentro de los límites normativos, lo que indica que cumple con los requisitos granulométricos para ser utilizado en mezclas de concreto estructural. El porcentaje de material que pasa por el tamiz N° 200 es bajo (~1.9 %), lo cual es adecuado, ya que un contenido excesivo de finos podría afectar la resistencia y durabilidad del concreto.

4.1.2 PROPIEDADES QUIMICAS Tabla 15:

Composición química expresados como óxidos

COMPOSICIÓN QUIMICA	Unidad	LCM	Resultados
Oxido de Calcio, CaO	%	0.001	93.789
Óxido de Hierro, Fe2O2	%	0.001	1.203
Oxido de Silicio, SiO2	%	0.001	0.57
Oxido de Estroncio, SrO	%	0.001	0.459
Oxido de Asufre, SO3	%	0.001	0.021
Oxido de Manganeso, MnO	%	0.001	0.007
Bromo, Br	%	0.001	0.003
Perdida por calcinación	%	0.001	3.948

En la tabla se muestra la composición química expresados como óxidos le los Residuos Calcáreos mediante el ensayo de espectrometría de fluorescencia de rayos X, donde el óxido de Calcio obtuvo un mayor porcentaje con 93.789 %.

 Tabla 16:

 Composición química expresados como elementos

COMPOSICIÓN QUIMICA	Unidad	LCM	Resultados
Calcio, Ca	%	0.001	93.815
Hierro, Fe	%	0.001	1.296
Estroncio, Sr	%	0.001	0.602
Silicio, Si	%	0.001	0.316
Azufre, S	%	0.001	0.011
Manganeso, MnO	%	0.001	0.008
Bromo, Br	%	0.001	0.004
Perdida por calcinación	%	0.001	3.948

En la tabla se muestra la composición química expresados como elementos de los Residuos Calcáreos mediante el ensayo de espectrometría de fluorescencia de rayos X, donde el Calcio,Ca obtuvo un mayor porcentaje con 93.815 %. Fuente: Slab laboratorio de ensayo e investigación.

4.2 Determinar la relación agua / cemento para un concreto de f'c = 210 kg/cm2 y la mezcla modificada al sustituir el 5%, 10% y 15% en peso de agregado fino por residuos calcáreos; los resultados son los siguientes.

4.2.1 RESULTADOS DE LOS ENSAYOS PARA EL DISEÑO DE MEZCLA.

Tabla 17:Resultados de ensayos realizados al agregado grueso

Agregado grueso (piedra de ½)			
Tamaño Máximo Nominal	3/4 "		
Peso Especifico	2760 kg/m3		
Absorción	0.66 %		
Contenido de Humedad	0.19%		
Peso Unitario Suelto	1472 kg/m3		
Peso Unitario Compactado	1645 kg/m3		

Los ensayos realizados al agregado grueso demuestran que cumple con los requisitos establecidos en las normas técnicas (NTP y ASTM). Las propiedades obtenidas reflejan un material de buena calidad, con baja absorción, adecuada densidad y granulometría apropiada. Por tanto, el agregado es apto para ser utilizado en la producción de concreto, asegurando resistencia mecánica, trabajabilidad y durabilidad.

Tabla 18:Resultados de ensayos realizados del agregado fino

Agregado fino (arena gruesa)			
Módulo de Fineza	2.37		
Peso Especifico	2665 kg/m3		
Absorción	0.93 %		
Contenido de Humedad	0.90 %		
Peso Unitario Suelto	1540 kg/m3		
Peso Unitario Compactado	1693 kg/m3		

Las pruebas efectuadas al agregado fino (arena gruesa) evidencian que sus características cumplen con lo exigido por las normas nacionales e internacionales aplicables (ASTM y NTP). El módulo de finura obtenido (2.37) ubica al material en la categoría de arenas de granulometría media a fina. El peso específico registrado (2665 kg/m³) refleja una adecuada calidad mineralógica, mientras que el bajo porcentaje de absorción (0.93%) garantiza estabilidad en la relación agua/cemento y contribuye a mejorar la durabilidad del concreto. Asimismo, el contenido de humedad (0.90%) indica que el material se encuentra muy próximo a la condición de saturado superficialmente seco, lo que minimiza la necesidad de ajustes en el agua de mezclado. Finalmente, los valores de peso unitario suelto (1540 kg/m³) y compactado (1693 kg/m³) se encuentran en rangos aceptables, lo que asegura una buena densidad y compacidad. En conjunto, estos resultados confirman que el agregado fino es adecuado para la producción de concreto de calidad, aportando trabajabilidad, resistencia y durabilidad.

4.2.2 DISEÑO DE MEZCLA

Tabla 19:

Resultado del diseño de mezcla..

Diseño de mezcla (dosificación por peso)				
Concreto f'c 210 kg/cm2				
Cemento	1			
Agregado fino	2.06			
Agregado grueso	2.38			
Agua	0.59			

El diseño de mezcla obtenido para un concreto con resistencia a la compresión de 210 kg/cm² muestra una proporción equilibrada entre los materiales componentes. La relación se expresa en función del peso de cemento, asignado como unidad de referencia. Por cada parte de cemento, se requieren 2.06 partes de agregado fino y 2.38 partes de agregado grueso, lo que evidencia una distribución adecuada entre arena y piedra chancada para asegurar la trabajabilidad y densidad del concreto. Asimismo, la relación agua/cemento calculada es de 0.59, valor que se encuentra dentro del rango recomendado por las normas técnicas para concretos de esta resistencia, lo cual favorece la hidratación del cemento y contribuye al desarrollo de las propiedades mecánicas del material. En conjunto, la dosificación planteada permite obtener un concreto que cumple con los criterios de resistencia, durabilidad y trabajabilidad

4.3 Evaluar la variación de las propiedades físicas y mecánicas del concreto f 'c = 210 kg/cm2 modificado al sustituir el 0%,5%, 10% y 15% en peso de agregado fino por residuos calcáreos; se tienen las siguientes tablas:

4.3.1 PROPIEDADES FÍSICAS

Tabla 20:

Propiedades físicas de probetas con 0%,5%,10% y 15% de Residuos Calcáreos.

Porcentaje de residuos calcáreos	Muestras	Densidad (mg/m3)	Absorción (%)	Porcentaje de vacíos (%)	Slump (cm)	Exudación (%)
	Probeta 01	2.33	1.10	2.90	7.80	2.70
0%	Probeta 02	2.31	1.10	3.30	7.70	2.50
070	Probeta 03	2.28	1.00	2.70	8.50	2.60
	Probeta 04	2.33	1.00	2.90	8.90	2.80
	Probeta 01	2.32	0.90	2.90	7.90	2.50
5 0/	Probeta 02	2.29	1.00	3.10	7.80	2.40
5%	Probeta 03	2.30	1.10	3.00	8.50	2.70
	Probeta 04	2.35	1.00	3.20	8.40	2.50
	Probeta 01	2.35	0.80	3.10	8.00	2.40
100/	Probeta 02	2.30	1.20	3.50	8.50	2.30
10%	Probeta 03	2.32	1.30	3.70	8.70	2.60
	Probeta 04	2.35	1.20	3.20	8.50	2.90
	Probeta 01	2.31	1.10	3.30	7.90	2.80
150/	Probeta 02	2.32	1.10	3.10	7.80	2.60
15%	Probeta 03	2.35	1.00	3.40	7.90	2.50
	Probeta 04	2.30	1.20	3.10	8.00	2.60

Según lo establecido en las normas técnicas, los ensayos realizados en las muestras con diferentes proporciones de residuos calceros evidencian comportamientos que deben considerarse al evaluar sus propiedades. Conforme aumenta el contenido de estos residuos, se observa un incremento en la absorción de agua, lo que refleja una mayor capacidad de retención hídrica y, por ende, un aumento en la porosidad del material. De manera paralela, el (slump), los resultados señalan que una mayor proporción de residuos calceros favorece la trabajabilidad de la mezcla, generando valores más altos de asentamiento y, en consecuencia, un concreto más fluido y fácil de manejar. Por otra parte, la densidad de las mezclas se mantiene prácticamente constante, lo que indica que la adición de este tipo de residuos no produce variaciones significativas en esta propiedad.

Finalmente, la exudación presenta ligeros cambios con el incremento de residuos calceros, lo que puede asociarse a una mayor tendencia del material a liberar agua durante la etapa de curado. En síntesis, los resultados permiten concluir que la incorporación de residuos calceros incide principalmente en parámetros como la absorción, la porosidad y la trabajabilidad de las mezclas, aspectos clave en la caracterización de materiales de construcción bajo las directrices normativas vigentes.

4.3.2 PROPIEDADES MECÁNICAS-RESISTENCIA A LA COMPRESIÓN

- MUESTRA PATRÓN 0% DE RESIDUOS CALCÁREOS

Tabla 21:Resistencia a la compresión de probetas patrón de f'c=210 kg/cm2.

Curado	Probetas	Diámetro	Fuerza	F'c (kg/cm2)
	Probeta 01	153.80 mm	29065	156
7 DIAS	Probeta 02	151.90 mm	29437	163
	Probeta 03	151.90 mm	29758	164
	Probeta 04	153.90 cm	34376	185
14 DIAS	Probeta 05	152.50 cm	34727	190
	Probeta 06	152.90 cm	33934	185
	Probeta 07	153.10 cm	43219	235
28 DIAS	Probeta 08	152.70 cm	42376	232
	Probeta 09	152.40 cm	39304	215

El ensayo de compresión realizado en probetas de concreto con una resistencia de diseño de f'c = 210 kg/cm² muestra el comportamiento del material a lo largo del tiempo de curado. A los 7 días, las probetas alcanzaron valores entre 156 y 165 kg/cm², lo que representa aproximadamente un 74–79 % de la resistencia esperada. Este resultado es

consistente con el desarrollo inicial de resistencia típico en concretos de este tipo. Tras 14 días de curado, se observan resistencias de 184 a 190 kg/cm², equivalentes a un rango del 87–90 % de la resistencia de diseño, evidenciando un crecimiento significativo respecto a la primera semana. Finalmente, a los 28 días, las probetas presentaron valores que oscilaron entre 215 y 235 kg/cm², superando en algunos casos la resistencia proyectada de 210 kg/cm². Esto indica que el concreto no solo alcanzó sino que también sobrepasó la resistencia mínima especificada, garantizando un desempeño estructural adecuado.En términos generales, el comportamiento de las probetas confirma una ganancia progresiva de resistencia conforme avanza el tiempo de curado, validando que el concreto cumple y, en la mayoría de casos, excede los requisitos normativos de diseño.

 Tabla 8:

 Resultados promedios de la resistencia a compresión de probetas patrón.

DIAS	F'c Promedio (kg/cm2)	Porcentajes	Variación
7 DIAS	161	76.66%	-
14 DIAS	186.67	88.88%	12.22%
28 DIAS	227.33	108.25%	19.37%

De acuerdo con lo establecido en la normativa, la resistencia del concreto debe evaluarse a los 28 días de curado, ya que este es el parámetro de referencia para validar el cumplimiento del diseño. Los resultados obtenidos indican que a los 7 y 14 días la mezcla presentó un desarrollo gradual de resistencia dentro de los rangos esperados, mientras que a los 28 días se alcanzó y superó la resistencia de diseño (f'c=210 kg/cm²), con un promedio del 227.33 kg/cm² Esto confirma que el concreto cumple con lo requerido por la NTP (Norma Tecnica Peruana).

- MUESTRA AL 5% DE RESIDUOS CALCÁREOS

Tabla 22:

Resistencia a la compresión de probetas con 5% de Residuos Calcáreos de f'c=210 kg/cm2.

Curado	Probetas	Diámetro	Fuerza	F'c (kg/cm2)
	Probeta 01	153.00 mm	32258	176
7 DIAS	Probeta 02	152.2 mm	31264	172
	Probeta 03	151.9 mm	32197	178
	Probeta 04	150.30 cm	34020	193
14 DIAS	Probeta 05	151.40 cm	33560	188
	Probeta 06	151.80 cm	34890	194
	Probeta 07	151.8 cm	43310	231
28 DIAS	Probeta 08	154.9 cm	44070	244
	Probeta 09	152.2 cm	42890	233

Los ensayos de compresión realizados en probetas con adición del 5 % de residuos calcáreos muestran un comportamiento favorable en la evolución de la resistencia. A los 7 días, las probetas alcanzaron valores de 172 a 178 kg/cm², equivalentes a aproximadamente un 83 % de la resistencia de diseño, lo que evidencia una ganancia temprana adecuada. A los 14 días, los resultados oscilaron entre 188 y 194 kg/cm², representando cerca del 86–90 % de la resistencia proyectada, con una mejora continua respecto a la primera semana. Finalmente, a los 28 días, las probetas alcanzaron resistencias de 231 a 244 kg/cm², superando la resistencia de diseño de 210 kg/cm² y garantizando un margen adicional de seguridad estructural. En conjunto, los datos indican que la incorporación del 5 % de residuos calcáreos no solo mantiene, sino que también potencia el desarrollo de resistencia del concreto, cumpliendo con los parámetros normativos y mostrando un desempeño satisfactorio frente a la mezcla patrón.

Tabla 23:Resultados de probetas con el 5% de Residuos Calcáreos

DIAS	F'c Promedio (kg/cm2)	Porcentajes	Variación
7 DIAS	175.33	83.49%	-
14 DIAS	191.66	91.26%	7.77%
28 DIAS	236	112.38%	21.12%

El concreto con un 5 % de residuos calcáreos mostró un desarrollo progresivo de resistencia. A los 7 días alcanzó cerca del 83 % de la resistencia de diseño, mientras que a los 14 días llegó al 91 %, evidenciando un crecimiento sostenido. Finalmente, a los 28 días la resistencia promedio superó el valor proyectado, alcanzando más del 112 %, lo que confirma que la adición de residuos calcáreos mejora el desempeño mecánico del material y garantiza un comportamiento estructural confiable.

- MUESTRA AL 10% DE RESIDUOS CALCÁREOS

Tabla 24:

Resistencia a la compresión de probetas con 10% de Residuos Calcáreos de f'c=210 kg/cm2.

Curado	Probetas	Diámetro	Fuerza	F'c (kg/cm2)
	Probeta 01	153.6 mm	34165	184
7 DIAS	Probeta 02	151.8 mm	32348	179
	Probeta 03	152.2 mm	33291	183
	Probeta 04	150.3 mm	36022	203
14 DIAS	Probeta 05	151.4 mm	35901	199
	Probeta 06	150.2 mm	34767	196
	Probeta 07	153.1 mm	50015	272
28 DIAS	Probeta 08	152.4 mm	47826	262
	Probeta 09	150.9 mm	48258	270

Los resultados muestran un incremento progresivo de la resistencia del concreto con el tiempo de curado. A los 7 días se alcanzaron valores cercanos al 85 % de la resistencia de diseño, lo que refleja un desarrollo inicial adecuado. A los 14 días, las probetas lograron casi el 95 %, evidenciando una ganancia continua. Finalmente, a los 28 días, varias probetas superaron el valor proyectado, garantizando que la mezcla cumple con lo establecido.

Tabla 25:Resultados de probetas con el 10% de Residuos Calcáreos.

DIAS	F'c Promedio (kg/cm2)	Porcentajes	Variación
7 DIAS	182	86.66 %	
14 DIAS	199.33	94.91 %	8.25%
28 DIAS	268	127.61 %	32.7%

Los resultados evidencian que la resistencia del concreto aumenta de forma constante con el tiempo de curado. En la primera semana alcanzó cerca del 87 % del valor de diseño, a los 14 días llegó a casi el 95 %, y al cumplir los 28 días superó ampliamente la resistencia proyectada con más del 127 %, confirmando un desempeño superior al esperado.

- MUESTRA AL 15% DE RESIDUOS CALCÁREOS

Tabla 26:

Resistencia a la compresión de probetas con 15% de Residuos Calcáreos de f'c=210 kg/cm2.

Curado	Probetas	Diámetro	Fuerza	F'c (kg/cm2)
	Probeta 01	154.3mm	36092	193
7 DIAS	Probeta 02	152.7 mm	35881	196
	Probeta 03	153.3 mm	35359	192
	Probeta 04	150.3 mm	39625	223
14 DIAS	Probeta 05	151.7 mm	38280	212
	Probeta 06	150.5 mm	38873	219
	Probeta 07	152.1 mm	42707	235
28 DIAS	Probeta 08	150.4 mm	43430	244
	Probeta 09	151.6 mm	43209	239

Las probetas con un 15 % de residuos calcáreos mostraron un buen desarrollo de resistencia. En la primera semana alcanzaron alrededor del 92 % de la resistencia de diseño, mientras que a los 14 días superaron el valor proyectado con resultados superiores a los 210 kg/cm². Finalmente, a los 28 días, los valores se mantuvieron por encima de lo especificado, confirmando que la adición de este porcentaje de residuos no perjudica la calidad del concreto y aporta un desempeño estructural confiable.

Tabla 27:

Resultados de probetas con el 15% de Residuos Calcáreos.

DIAS	F'c Promedio (kg/cm2)	Porcentajes	Variación
7 DIAS	193.66	92.21 %	-
14 DIAS	218	103.80 %	11.59%
28 DIAS	239.33	113.96 %	10.16%

Los resultados evidencian que la resistencia del concreto aumenta de forma constante con el tiempo de curado. En la primera semana alcanzó cerca del 93 % del valor de diseño, a los 14 días llegó a casi el 104 %, y al cumplir los 28 días superó ampliamente la resistencia proyectada con más del 113 %, confirmando un desempeño superior al esperado.

- RESULTADOS DEL ENSAYO A COMPRESIÓN CON ÉL % DE MEJOR RESISTENCIA.

Tabla 28:

Resistencia de probetas con 10% de Residuos Calcáreos a los 28 días de curado.

Probetas	Fecha de muestreo	Diámetro promedio (mm)	Altura promedio (mm)	Fecha de Rotura	Fuerza (kgf)	F'c (kg/cm2)
Probeta 01	13/02/2025	151.5	300.5	13/03/2025	48529	269
Probeta 02	13/02/2025	150.2	300.1	13/03/2025	49382	279
Probeta 03	13/02/2025	151.6	300.4	13/03/2025	47786	265
Probeta 04	13/02/2025	152.7	300.4	13/03/2025	48268	264
Probeta 05	13/02/2025	150.4	301.5	13/03/2025	47596	268
Probeta 06	13/02/2025	151.3	301.2	13/03/2025	46511	259
Probeta 07	13/02/2025	150.2	302.5	13/03/2025	48248	272
Probeta 08	13/02/2025	150.8	300.4	13/03/2025	47084	264
Probeta 09	13/02/2025	151.6	301.9	13/03/2025	47656	264
Probeta 10	13/02/2025	150.2	302.4	13/03/2025	47154	266
Probeta 11	13/02/2025	151.7	301.5	13/03/2025	47405	262
Probeta 12	13/02/2025	150.8	300.4	13/03/2025	48820	273
Probeta 13	13/02/2025	151.4	302.5	13/03/2025	48148	267
Probeta 14	13/02/2025	152.2	305.6	13/03/2025	47395	261
Probeta 15	13/02/2025	152.5	304.3	13/03/2025	49262	270
Probeta 16	13/02/2025	152.3	301.2	13/03/2025	49282	271
Probeta 17	13/02/2025	151.8	302.5	13/03/2025	48128	266
Probeta 18	13/02/2025	150.9	301.6	13/03/2025	46843	262
Probeta 19	13/02/2025	151.4	300.6	13/03/2025	48368	269
Probeta 20	13/02/2025	152.4	300.8	13/03/2025	48971	268
Probeta 21	13/02/2025	150.1	300.6	13/03/2025	47706	270
Probeta 22	13/02/2025	150.2	300.4	13/03/2025	46491	262
Probeta 23	13/02/2025	151.8	300.9	13/03/2025	49372	273
Probeta 24	13/02/2025	151.2	300.4	13/03/2025	49041	273
Probeta 25	13/02/2025	150.3	301.4	13/03/2025	47586	268
Probeta 26	13/02/2025	150.4	301.6	13/03/2025	47244	266
Probeta 27	13/02/2025	152.4	301.7	13/03/2025	48188	264
Probeta 28	13/02/2025	152.8	301.6	13/03/2025	48981	267
Probeta 29	13/02/2025	150.2	301.5	13/03/2025	46782	264
Probeta 30	13/02/2025	152.7	301.6	13/03/2025	48589	265

Las probetas con 10 % de residuos calcáreos, ensayadas a los 28 días, alcanzaron resistencias entre 259 y 279 kg/cm², valores que superan ampliamente los 210 kg/cm² establecidos en el diseño. Esto demuestra que este porcentaje de adición favorece el

desempeño del concreto, ofreciendo mayor capacidad resistente y un nivel de seguridad estructural superior al requerido por la norma.

4.3.3 PROPIEDADES MECÁNICAS-RESISTENCIA A LA FLEXIÓN

- MUESTRA PATRÓN 0% DE RESIDUOS CALCÁREOS

Tabla 29:Resistencia a la flexión de vigas con 0% de Residuos Calcáreos de f'c=210 kg/cm2.

Curado	Probetas	Luz (mm)	Ancho (mm)	Alto (mm)	F'c (kg/cm2)
	Probeta 01	450 mm	154 mm	156 mm	29
7 DIAS	Probeta 02	450 mm	155 mm	154 mm	31
	Probeta 03	450 mm	155 mm	154 mm	31
	Probeta 04	450 mm	156 mm	155 mm	37
14 DIAS	Probeta 05	450 mm	154 mm	156 mm	36
	Probeta 06	450 mm	155 mm	155 mm	37
	Probeta 07	450 mm	153 mm	152 mm	42
28 DIAS	Probeta 08	450 mm	152 mm	151 mm	41
	Probeta 09	450 mm	154 mm	152 mm	41

Las vigas sin incorporación de residuos calcáreos presentaron un aumento gradual en su resistencia a la flexión. En los primeros 7 días, se registraron valores cercanos a 30 kg/cm², mientras que a los 14 días estos ascendieron a alrededor de 36–37 kg/cm². Finalmente, al cumplir los 28 días, la resistencia se estabilizó en 41 kg/cm², lo que confirma un desarrollo progresivo y acorde al proceso normal de curado.

Tabla 30:Resultados promedios de la resistencia a la flexión con el 0% de Residuos Calcáreos.

DIAS	F'c Promedio (kg/cm2)	Porcentajes	Variación
7 DIAS	30.33	105.738%	-
14 DIAS	36.66	127.806%	22.068%
28 DIAS	41.33	144.087%	16.281%

Según lo establecido en el ACI 318-19, el módulo de ruptura equivalente para un concreto de f'c = 210 kg/cm² es de 28.684 kg/cm². Al comparar los resultados experimentales con este valor de referencia, se observa que las resistencias aumentan de manera progresiva en cada etapa de curado, alcanzando a los 28 días un promedio de 41.33 kg/cm² superior al exigido. Esto demuestra que el material cumple con la norma y ofrece un desempeño estructural seguro.

- MUESTRA AL 5 % DE RESIDUOS CALCÁREOS

Tabla 31:

Resistencia a la flexión de vigas con 5% de Residuos Calcáreos de f'c=210 kg/cm2.

Curado	Probetas	Luz (mm)	Ancho (mm)	Alto (mm)	F'c (kg/cm2)
	Probeta 01	450 mm	149 mm	150 mm	33
7 DIAS	Probeta 02	450 mm	149 mm	149 mm	33
	Probeta 03	450 mm	148 mm	150 mm	32
	Probeta 04	450 mm	152 mm	155 mm	42
14 DIAS	Probeta 05	450 mm	151 mm	154 mm	42
	Probeta 06	450 mm	152 mm	155 mm	42
	Probeta 07	450 mm	149 mm	151 mm	47
28 DIAS	Probeta 08	450 mm	150 mm	151 mm	46
	Probeta 09	450 mm	151 mm	150 mm	46

Los valores de resistencia a la flexión obtenidos en vigas elaboradas con un 5% de residuos calcáreos y un diseño de f'c de 210 kg/cm². A los 7 días de curado, los resultados se ubicaron entre 32 y 33 kg/cm², reflejando un desempeño inicial favorable. En el periodo de 14 días, las resistencias aumentaron hasta un rango de 42 a 43 kg/cm², lo cual evidencia una mejora progresiva de las propiedades mecánicas. Finalmente, tras 28 días, los valores registrados oscilaron entre 46 y 47 kg/cm², confirmando un comportamiento resistente más elevado que en las edades anteriores. Estos datos demuestran que la

incorporación del 5% de residuos calcáreos contribuye positivamente a la ganancia de resistencia a medida que avanza el proceso de curado.

Tabla 32:Resultados promedios de la resistencia a la flexión con el 5% de Residuos Calcáreos.

DIAS	F'c Promedio (kg/cm2)	Porcentajes	Variación
7 DIAS	32.66	113.861%	
14 DIAS	42	146.423%	32.562%
28 DIAS	46.33	161.519%	15.096%

Según lo establecido en el ACI 318-19, el módulo de ruptura equivalente para un concreto de f'c = 210 kg/cm² es de 28.684 kg/cm². Al comparar los resultados experimentales con este valor de referencia, se observa que las resistencias aumentan de manera progresiva en cada etapa de curado, alcanzando a los 28 días un promedio de 46.33 kg/cm² superior al exigido. Esto demuestra que el material cumple con la norma y ofrece un desempeño estructural seguro.

- MUESTRA AL 10 % DE RESIDUOS CALCÁREOS

Tabla 33:Resistencia a la flexión de vigas con 10% de Residuos Calcáreos de f'c=210 kg/cm2.

Curado	Probetas	Luz (mm)	Ancho (mm)	Alto (mm)	F'c (kg/cm2)
	Probeta 01	450 mm	151 mm	150 mm	39
7 DIAS	Probeta 02	450 mm	151 mm	150 mm	40
	Probeta 03	450 mm	150 mm	150 mm	39
14 DIAS	Probeta 04	450 mm	149 mm	149 mm	48

	Probeta 05	450 mm	150 mm	150 mm	46
	Probeta 06	450 mm	149 mm	150 mm	46
	Probeta 07	450 mm	150 mm	150 mm	55
28 DIAS	Probeta 08	450 mm	150 mm	149 mm	54
	Probeta 09	450 mm	151 mm	149 mm	53

Los valores de resistencia a la flexión de vigas fabricadas con un 10% de residuos calcáreos, considerando un diseño de f°c = 210 kg/cm². A los 7 días de curado, la resistencia obtenida varió entre 39 y 40 kg/cm², reflejando un comportamiento inicial favorable. A los 14 días, la resistencia aumentó hasta alcanzar 48 kg/cm², lo que indica un progreso en el proceso de endurecimiento. Finalmente, a los 28 días, las resistencias alcanzaron un rango de 53 a 55 kg/cm², consolidando la mayor capacidad estructural del concreto en esta etapa. En general, los resultados confirman que la inclusión del 10% de residuos calcáreos contribuye positivamente al desarrollo de la resistencia a la flexión, siendo más evidente en los 28 días, donde se alcanza el desempeño óptimo del material.

Tabla 34:Resultados promedios de la resistencia a la flexión con el 10% de Residuos Calcáreos.

DIAS	F'c Promedio (kg/cm2)	Porcentajes	Variación
7 DIAS	39.33	137.115 %	-
14 DIAS	46.66	162.660 %	25.545%
28 DIAS	54	188.258 %	25.598%

Según lo establecido en el ACI 318-19, el módulo de ruptura equivalente para un concreto de f'c = 210 kg/cm² es de 28.684 kg/cm². Al comparar los resultados experimentales con este valor de referencia, se observa que las resistencias aumentan de manera progresiva en cada etapa de curado, alcanzando a los 28 días un promedio de 54 kg/cm² superior al

exigido. Esto demuestra que el material cumple con la norma y ofrece un desempeño estructural seguro.

- MUESTRA AL 15 % DE RESIDUOS CALCÁREOS

Tabla 35:

Resistencia a la flexión de vigas con 15% de Residuos Calcáreos de f'c=210 kg/cm2.

Curado	Probetas	Luz (mm)	Ancho (mm)	Alto (mm)	F'c (kg/cm2)
	Probeta 01	450 mm	151 mm	152 mm	37
7 DIAS	Probeta 02	450 mm	150 mm	152 mm	36
	Probeta 03	450 mm	150 mm	153 mm	35
	Probeta 04	450 mm	150 mm	150 mm	40
14 DIAS	Probeta 05	450 mm	149 mm	149 mm	42
	Probeta 06	450 mm	149 mm	150 mm	42
	Probeta 07	450 mm	144 mm	151 mm	46
28 DIAS	Probeta 08	450 mm	149 mm	150 mm	47
	Probeta 09	450 mm	150 mm	150 mm	47

Los valores de resistencia a la flexión en vigas elaboradas con un 15% de reemplazo por residuos calcáreos en un concreto de f'c = 210 kg/cm². A los 7 días de curado, las resistencias se ubicaron entre 35 y 37 kg/cm², reflejando un desempeño inicial intermedio. En la etapa de 14 días, los resultados mejoraron hasta un rango de 40 a 42 kg/cm², lo que evidencia un aumento constante. Finalmente, a los 28 días, se alcanzaron valores de 46 a 47 kg/cm², consolidando el mayor nivel de resistencia en la fase final de ensayo. De esta manera, se aprecia que la adición del 15% de residuos calcáreos genera

un incremento progresivo en la resistencia a la flexión, aunque el crecimiento hacia los 28 días resulta más estable en comparación con otras proporciones evaluadas.

Tabla 36:Resultados promedios de la resistencia a la flexión con el 15% de Residuos Calcáreos.

DIAS	F'c Promedio (kg/cm2)	Porcentajes	Variación
7 DIAS	36	125.506%	
14 DIAS	41.33	144.087%	18.581%
28 DIAS	46.66	162.669%	18.582%

Según lo establecido en el ACI 318-19, el módulo de ruptura equivalente para un concreto de f'c = 210 kg/cm² es de 28.684 kg/cm². Al comparar los resultados experimentales con este valor de referencia, se observa que las resistencias aumentan de manera progresiva en cada etapa de curado, alcanzando a los 28 días un promedio de 46.66 kg/cm² superior al exigido. Esto demuestra que el material cumple con la norma y ofrece un desempeño estructural seguro.

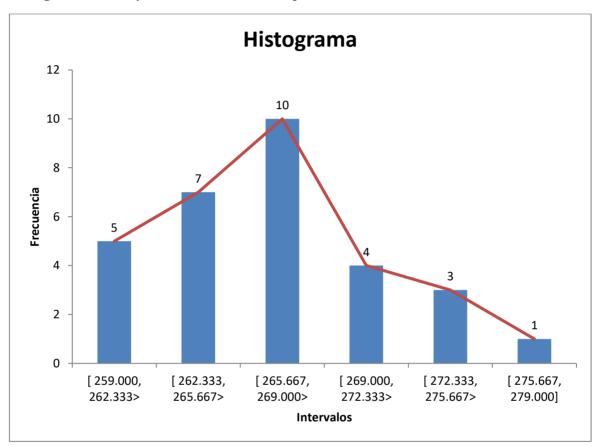
- RESULTADOS DEL ENSAYO A FLEXIÓN CON ÉL % DE MEJOR RESISTENCIA.

Tabla 37:Resultados del ensayo a flexión con el 10% de Residuos Calcáreos

Probetas	Luz (mm)	Ancho (mm)	Altura promedio (mm)	Fecha de Rotura	Fuerza (kgf)	F'c (kg/cm2)
Viga 01	450	150	150	29/03/2025	3860	53
Viga 02	450	149	151	29/03/2025	3980	53.5
Viga 03	450	150	150	29/03/2025	4010	54.1
Viga 04	450	150	150	29/03/2025	4030	55
Viga 05	450	151	151	29/03/2025	3970	53
Viga 06	450	150	151	29/03/2025	3860	52
Viga 07	450	151	150	29/03/2025	3990	53.4

Viga 08	450	149	151	29/03/2025	4020	54.1
Viga 09	450	150	151	29/03/2025	3860	52
Viga 10	450	151	150	29/03/2025	3970	53.5
Viga 11	450	150	150	29/03/2025	4070	56
Viga 12	450	149	151	29/03/2025	3970	54.1
Viga 13	450	150	151	29/03/2025	3860	52
Viga 14	450	151	151	29/03/2025	3940	53
Viga 15	450	150	150	29/03/2025	4060	55
Viga 16	450	150	150	29/03/2025	3980	53.4
Viga 17	450	150	151	29/03/2025	3970	53.4
Viga 18	450	152	149	29/03/2025	4050	54.4
Viga 19	450	151	150	29/03/2025	4020	54.5
Viga 20	450	150	150	29/03/2025	4100	56
Viga 21	450	151	149	29/03/2025	3980	54.5
Viga 22	450	150	150	29/03/2025	4010	55
Viga 23	450	151	151	29/03/2025	3950	53
Viga 24	450	151	150	29/03/2025	3860	53.4
Viga 25	450	151	151	29/03/2025	3940	53
Viga 26	450	150	150	29/03/2025	3870	53
Viga 27	450	151	151	29/03/2025	3920	53.4
Viga 28	450	150	151	29/03/2025	3860	53.4
Viga 29	450	151	149	29/03/2025	3960	54.5
Viga 30	450	151	150	29/03/2025	4070	55

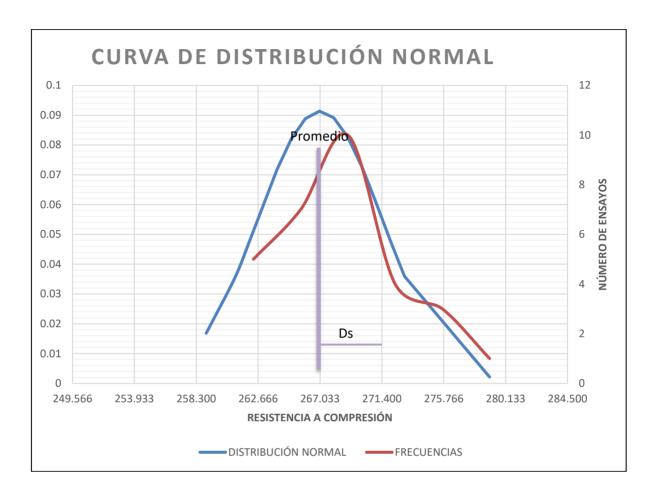
El ensayo de flexión en las 30 vigas evidenció resultados consistentes, con resistencias comprendidas entre 52 y 56 kg/cm², alcanzando un promedio de aproximadamente 54 kg/cm². Estos valores muestran una respuesta uniforme del concreto frente a las cargas aplicadas, sin diferencias notables entre las probetas analizadas. Las ligeras variaciones en las dimensiones de los especímenes no afectaron de manera relevante el comportamiento obtenido, lo que sugiere que tanto el proceso de fabricación como el curado fueron controlados de forma adecuada. En términos generales, el desempeño mecánico de las vigas fue satisfactorio, reflejando una resistencia confiable y homogénea.



4.8 ANÁLISIS ESTADÍSTICO

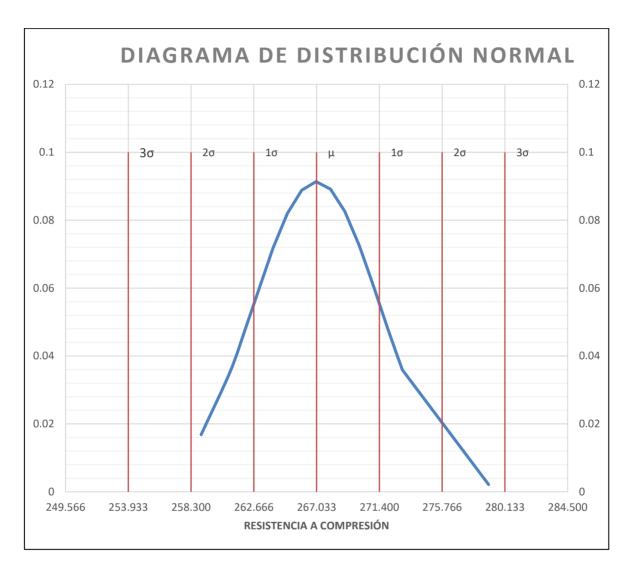
Para interpretar los resultados de los ensayos realizados, se emplean métodos de **estadística descriptiva**, los cuales permiten organizar y comprender los datos obtenidos.

Figura 2: *Histograma de ensayos de resistencia a compresión.*



El histograma muestra la distribución de 30 resultados de ensayos de resistencia a compresión del concreto. Se observa una distribución asimétrica a la derecha, con mayor concentración de resultados entre 262.333 y 269.000 kg/cm², alcanzando una frecuencia máxima de 10 ensayos. Esta tendencia sugiere una producción con buena consistencia, aunque con algunos valores que podrían indicar ligeras variaciones no controladas en la preparación de muestras.

Figura 3:Curva de distribución normal



El diagrama compara la curva teórica de distribución normal con la frecuencia real de los 30 ensayos de resistencia a compresión. Se muestra una desviación estándar (Ds) de 4.367 kg/cm2, valor que, según los criterios de Enrique Pasquel para concreto en laboratorio, corresponde a un control excelente al ser menor a 14.1 kg/cm2. Asimismo, el coeficiente de variación es de 1.365% (relación porcentual de la desviación estándar sobre el promedio), lo que también indica un control excelente al encontrarse por debajo del 2%.

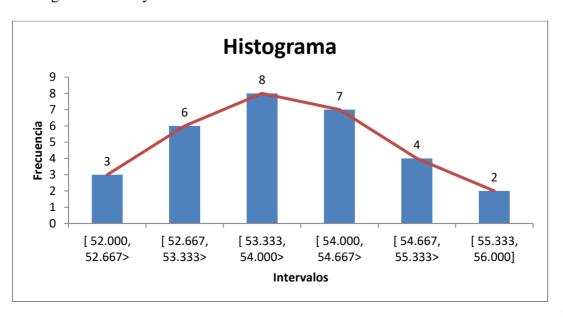
Figura 4:Diagrama de Distribución Normal

Según el diagrama de distribución normal, existe una probabilidad del 99.73% de que la resistencia a compresión del concreto se encuentre entre 253.933 kg/cm² (mínimo esperado) y 280.133 kg/cm² (máximo esperado), considerando un intervalo de ±3 desviaciones estándar alrededor de la media. Esto indica que, incluso en las condiciones menos favorables, la resistencia permanece muy por encima del valor mínimo requerido de 210 kg/cm², lo que demuestra un buen control del proceso de producción del concreto.

Tabla 38:Análisis de varianza -Anova

Análisis de varianza (anova)									
Gru	pos	Cuent a	Suma	Promedio	Varianza				
A	Concreto 0% de sustitució n	3	682	227.333	116.333				
В	Concreto 5% de sustitució n	3	708	236.000	49.000	Criterio: probabilida			
C	Concreto 10% de sustitució	3	804	268.000	28.000	d < 0.05			
D	n Concreto 15% de sustitució	3	718	239.333	20.333				
Origen de las variacion	n Suma de cuadrado s	Grado s de liberta d	Promedio de los cuadrado	F	Probabilid ad	Valor crítico para f			
<i>es</i> Entre	2707 222		<i>s</i> 932.44444	17.456058	0.00071756	4.0661805			
grupos	2797.333	3	4	2	6	51			
Dentro de los grupos	427.333	8	53.416666 7	0.0007176 < 0.05					
Total	3224.667	11	E	xiste diferen	cia significati	va			

El análisis ANOVA revela una diferencia estadísticamente significativa entre los grupos (F = 17.46, *p* = 0.0007), donde el valor de *p* es considerablemente inferior al nivel de significancia estándar ($\alpha = 0.05$). Esto confirma que al menos un porcentaje de sustitución en el concreto (0%, 5%, 10% o 15%) produce resistencias promedio significativamente distintas. Para identificar qué grupos difieren entre sí, por lo que se realizará una prueba post-hoc (Método de Tukey).

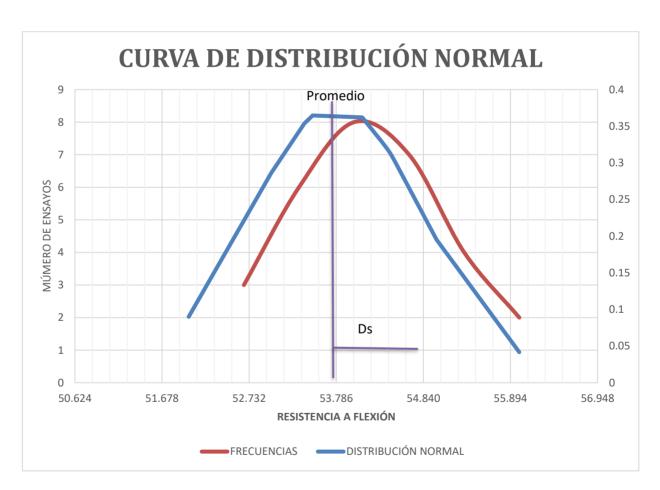

Tabla 39: *Método de Tukey*

	MÉTODO DE TUKEY									
COMPARACIÓN	DIFERENCIA	LÍMITE CRÍTICO (Tα=19.12)	SIGNIFICANCIA							
A - B	8.67	<19.12	NO							
A - C	40.67	>19.12	SI							
A - D	12.00	<19.12	NO							
B - C	32.00	>19.12	SI							
B - D	3.33	<19.12	NO							
C - D	28.67	>19.12	SI							

La comparación clave entre el concreto al 0% (A) y 10% (C) mostró diferencia significativa (40.67>19.12), siendo la única diferencia relevante con el grupo control. Aunque existen otras diferencias significativas entre grupos (B-C=32.00 y C-D=28.67), estas no involucran al grupo base (A). Las comparaciones A-B (8.67) y A-D (12.00) resultaron no significativas (<19.12), confirmando que solo el 10% de sustitución difiere estadísticamente del 0%.

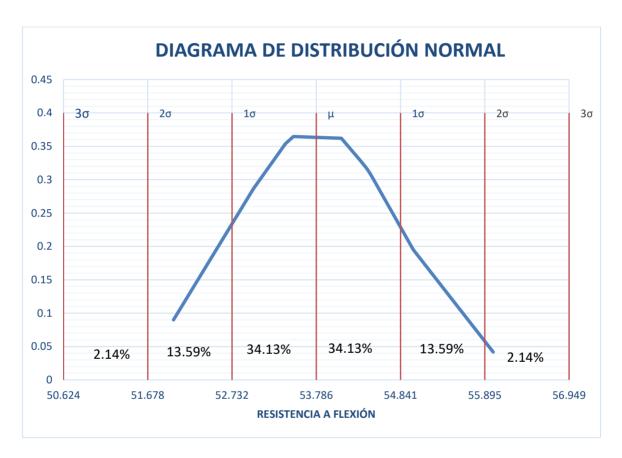
A continuación, se aborda el análisis de la resistencia a flexión

Figura 5:
Histograma de ensayos de resistencia a Flexión.



El histograma muestra la distribución de 30 resultados de ensayos de resistencia a flexión del concreto, expresados en intervalos de aproximadamente 0.667 unidades. La mayor frecuencia (8 ensayos) se encuentra entre 52.000 y 52.667, lo que indica una concentración significativa de datos en este rango. Esta tendencia sugiere una producción con buena consistencia, aunque con algunos valores que podrían indicar ligeras variaciones no controladas en la preparación de muestras.

Figura 6:Curva de Distribución normal


El diagrama compara la curva teórica de distribución normal con la frecuencia real de los 30 ensayos de resistencia a flexión. Se muestra una desviación estándar (Ds) de 1.054 kg/cm2. Asimismo, el coeficiente de variación es de 1.96% (relación porcentual de la

desviación estándar sobre el promedio), si bien es cierto no se detalla estos parámetros para la resistencia a flexión en el libro de Enrique Pasquel, debe de analizarse de forma análoga.

Figura 7:Diagrama de Distribución normal

Según el diagrama de distribución normal, existe una probabilidad del 99.73% de que la resistencia a compresión del concreto se encuentre entre 50.624 kg/cm² (mínimo esperado) y 56.949 kg/cm² (máximo esperado), considerando un intervalo de ±3 desviaciones estándar alrededor de la media. Esto indica que, incluso en las condiciones menos favorables, la resistencia permanece muy por encima del valor mínimo requerido de 28.684 kg/cm² según el reglamento ACI, lo que demuestra un buen control del proceso de producción del concreto.

Tabla 40:Análisis de varianza -Anova

Análsis de varianza (anova)									
	Grupos	Cuenta	Suma	Promedio	Varianza	_			
\mathbf{A}	Concreto 0% de sustitución	3	124	41.333	0.333	Criterio:			
В	Concreto 5% de sustitución	3	139	46.333	0.333	probabilidad			
\mathbf{C}	Concreto 10% de sustitución	3	162	54.000	1.000	< 0.05			
D	Concreto 15% de sustitución	3	140	46.667	0.333				
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para f			
Entre grupos	244.9166667	3	81.63888889	163.2777778	0.000000163048	4.066180551			
Dentro de los grupos	4	8	0.5		0.00000016 < 0.05				
Total	248.9166667	11		Existe difere	ncia significativa				

. El análisis ANOVA revela una diferencia estadísticamente significativa entre los grupos (F = 163.278, *p* = 0.00000016), donde el valor de *p* es considerablemente inferior al nivel de significancia estándar (α = 0.05). Esto confirma que al menos un porcentaje de sustitución en el concreto (0%, 5%, 10% o 15%) produce resistencias promedio significativamente distintas. Para identificar qué grupos difieren entre sí, por lo que se realizará una prueba post-hoc (Método de Tukey).

Tabla 41: *Método de Tukey*

	MÉTODO DE TUKEY								
COMPARACIÓN	DIFERENCIA	LÍMITE CRÍTICO (Tα=1.85)	SIGNIFICANCIA						
A - B	5.00	<1.85	SI						
A - C	12.67	>1.85	SI						
A - D	5.33	<1.85	NO						
B - C	7.67	>1.85	SI						
B - D	0.33	<1.85	NO						
C - D	7.33	>1.85	SI						

La comparación entre el concreto al 0% (A) y 10% (C) mostró la mayor diferencia significativa (12.67>1.85), seguida de A-B (5.00>1.85). Otras diferencias significativas (B-C=7.67; C-D=7.33) no involucran al control (A). Solo B-D resultó no significativa (0.33<1.85), confirmando que el 10% de sustitución (C) es el que más difiere estadísticamente del 0% (A).

A continuación; las propiedades físicas del concreto con 0%,10%,15% de Residuos Calcáreos.

Tabla 42: *Análisis de varianza-Anova-(Densidad)*

Análisis de varianza (anova)								
	Grupos	Cuenta	Suma	Promedio	Varianza			
A	Concreto 0% de sustitución	4	9.25	2.3125	0.00055833	Criterio:		
В	Concreto 5% de sustitución	4	9.26	2.315	0.0007	probabilidad		
C	Concreto 10% de sustitución	4	9.32	2.33	0.0006	< 0.05		
D	Concreto 15% de sustitución	4	9.28	2.32	0.00046667			
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para f		
Entre grupos	0.0007187	3	0.0002396	0.412	0.747	3.490		
Dentro de los grupos	0.0069750	12	0.0005813		0.7472740 > 0	.05		
Total	3224.667	11	Existe diferencia no significativa					

El análisis ANOVA indicó que no existen diferencias significativas en la resistencia entre los distintos porcentajes de sustitución (p=0.747>0.05). Todos los grupos presentaron valores promedio similares, lo que sugiere que la sustitución no afectó significativamente los resultados.

Tabla 43:

Análisis de varianza-Anova-(Absorción)

	Análisis de varianza (anova)								
	Grupos	Cuenta	Suma	Promedio	Varianza				
A	Concreto 0% de sustitución	4	4.2	1.05	0.00333333	Criterio:			
В	Concreto 5% de sustitución	4	4	1	0.00666667	probabilidad			
C	Concreto 10% de sustitución	4	4.5	1.125	0.04916667	< 0.05			
D	Concreto 15% de sustitución	4	4.4	1.1	0.00666667				
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para f			
Entre grupos	0.0368750	3	0.0122917	0.747	0.545	3.490			
Dentro de los grupos	0.1975000	12	0.0164583	0.5447182 > 0.05		05			
Total	3224.667	11	Existe diferencia no significativa						

El análisis ANOVA indicó que no existen diferencias significativas en la resistencia entre los distintos porcentajes de sustitución (p=0.545>0.05). Todos los grupos presentaron valores promedio similares, lo que sugiere que la sustitución no afectó significativamente los resultados.

Tabla 44:

Análisis de varianza-Anova- (Porcentaje de Vacíos)

Análisis de varianza (anova)								
	Grupos	Cuenta	Suma	Promedio	Varianza	_		
A	Concreto 0% de sustitución	4	11.8	2.95	0.06333333	Criterio:		
В	Concreto 5% de sustitución	4	12.2	3.05	0.01666667	probabilidad		
C	Concreto 10% de sustitución	4	13.5	3.375	0.07583333	< 0.05		
D	Concreto 15% de sustitución	4	12.9	3.225	0.0225			
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para f		
Entre grupos	0.4250000	3	0.1416667	3.178	0.063	3.490		
Dentro de los grupos	0.5350000	12	0.0445833		0.0633627 > 0.	05		
Total	3224.667	11	Existe diferencia no significativa			ıtiva		

El análisis ANOVA indicó que no existen diferencias significativas en la resistencia entre los distintos porcentajes de sustitución (p=0.063>0.05). Todos los grupos presentaron valores promedio similares, lo que sugiere que la sustitución no afectó significativamente los resultados.

Tabla 45:

Análisis de varianza-Anova- (slump)

Análisis de varianza (anova)								
	Grupos	Cuenta	Suma	Promedio	Varianza			
A	Concreto 0% de sustitución	4	32.9	8.225	0.32916667			
В	Concreto 5% de sustitución	4	32.6	8.15	0.12333333	Criterio: probabilidad		
C	Concreto 10% de sustitución	4	33.7	8.425	0.08916667	< 0.05		
D	Concreto 15% de sustitución	4	31.6	7.9	0.00666667			
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para f		
Entre grupos	0.5650000	3	0.1883333	1.374	0.298	3.490		
Dentro de los grupos	1.6450000	12	0.1370833		0.2978986 > 0.	05		
Total	3224.667	11	Existe diferencia no significativa					

El análisis ANOVA indicó que no existen diferencias significativas en la resistencia entre los distintos porcentajes de sustitución (p=0.298 > 0.05). Todos los grupos presentaron valores promedio similares, lo que sugiere que la sustitución no afectó significativamente los resultados.

Tabla 46:

Análisis de varianza-Anova- (Exudación)

Análisis de varianza (anova)									
	Grupos	Cuenta	Suma	Promedio	Varianza				
A	Concreto 0% de sustitución	4	10.6	2.65	0.01666667				
В	Concreto 5% de sustitución	4	10.1	2.525	0.01583333	Criterio: probabilidad < 0.05			
C	Concreto 10% de sustitución	4	10.2	2.55	0.07	< 0.03			
D	Concreto 15% de sustitución	4	10.5	2.625	0.01583333				
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para f			
Entre grupos	0.0425000	3	0.0141667	0.479	0.703	3.490			
Dentro de los grupos	0.3550000	12	0.0295833		0.7029466 > 0.	05			
Total	3224.667	11	E	xiste diferen	cia no significa	ntiva			

El análisis ANOVA indicó que no existen diferencias significativas en la resistencia entre los distintos porcentajes de sustitución (p=0.703 > 0.05). Todos los grupos presentaron valores promedio similares, lo que sugiere que la sustitución no afectó significativamente los resultados.

DISCUSIONES

• Los resultados alcanzados en este trabajo de investigación confirman la hipótesis inicial, puesto que se comprobó que la incorporación de residuos de concha de abanico como reemplazo parcial del agregado fino, en una proporción del 10%, genera una mejora considerable en las propiedades mecánicas del concreto, principalmente en lo que respecta a la resistencia a la compresión y a la flexión. De manera complementaria, en las características físicas del material —como la densidad, la absorción, el porcentaje de vacíos, el asentamiento y la exudación— no se observaron variaciones de gran relevancia, lo que garantiza la estabilidad del comportamiento del concreto frente a los parámetros constructivos habituales.

Cuando se comparan estos hallazgos con investigaciones internacionales, se aprecia una notable concordancia. El estudio realizado por El Mendili & Benzaama (2022) demostró que el uso de conchas de vieira en reemplazo parcial del cemento no solo aumenta la resistencia mecánica, sino que también disminuye la conductividad térmica y el impacto ambiental. Aunque en este caso la sustitución se aplicó al agregado fino y no al cemento, el patrón de resultados es semejante: el carbonato de calcio presente en las conchas favorece reacciones de hidratación que fortalecen la matriz del concreto.

De manera similar, Wang et al. (2024) reportaron que sustituir el agregado grueso por conchas de moluscos trituradas, en proporciones de hasta 50%, genera mejoras notables en la resistencia a la flexión y en la microestructura del concreto. Si bien nuestro análisis se centró en el agregado fino y en porcentajes menores, la tendencia es coincidente, lo

que evidencia que las conchas marinas poseen propiedades químicas y físicas capaces de optimizar el desempeño estructural del material.

A nivel nacional, Espinoza Núñez y Vivas Flores (2023) concluyeron que un 25% de concha de abanico triturada produce resultados superiores en resistencia a compresión y tracción, mientras que Velásquez Alarcón (2023) identificó que el 20% es la proporción más favorable. En contraste, en el presente estudio, la mejora más notoria se observó con un 10% de sustitución. Estas diferencias pueden explicarse por variaciones en el tamaño de partícula, la dosificación de materiales o las condiciones de curado, factores que influyen directamente en el comportamiento mecánico del concreto.

De igual manera, la investigación de Domínguez y Flores (2023) resaltó que el uso de conchas de abanico trituradas no solo eleva la resistencia a compresión, sino que además reduce la aparición de fisuras. Este aspecto complementa los resultados obtenidos en el presente estudio, puesto que además de incrementar la resistencia, se sugiere una mejora en la durabilidad de los elementos estructurales.

En investigaciones locales, como la de Ucañán y Mejía (2022), se evidenció que incluso porcentajes bajos (1% y 2.5%) de concha de abanico añadida al agregado grueso generan incrementos en la resistencia a compresión y a flexión en pavimentos rígidos. Este hallazgo respalda la idea de que la incorporación de este tipo de residuos, ya sea en agregado fino o grueso, ejerce un efecto positivo y consistente en las propiedades mecánicas del concreto.

En el plano ambiental, la utilización de conchas de abanico representa una alternativa alineada con los principios de la economía circular, pues convierte un desecho marino en

un insumo útil para la construcción, reduciendo la presión sobre las canteras de agregados y contribuyendo a la sostenibilidad del sector.

• Desde la perspectiva metodológica, es importante subrayar que los porcentajes óptimos de sustitución varían entre estudios (10%, 20%, 25% o 50%), lo que demuestra que factores como la granulometría de las conchas, la calidad del cemento, el diseño de la mezcla y el régimen de curado influyen en los resultados. Esto plantea la necesidad de continuar con ensayos comparativos más amplios para establecer intervalos universales de sustitución que garanticen el mejor desempeño del material.

En este sentido, las divergencias observadas entre estudios previos ponen de manifiesto la necesidad de profundizar en ensayos comparativos más exhaustivos y estandarizados, capaces de integrar distintas condiciones de fabricación y uso. Estos trabajos deberían incluir análisis de desempeño a corto, mediano y largo plazo, evaluaciones de durabilidad frente a ciclos de humedad y temperatura, así como ensayos de resistencia en ambientes con agentes agresivos como sulfatos o cloruros. De esta forma, se podrían establecer rangos de sustitución más universales y confiables, que garanticen la eficacia de este tipo de concretos en diversos contextos constructivos y ambientales.

Desde la perspectiva técnica, el presente estudio demuestra que reemplazar el 10% del agregado fino con concha de abanico triturada incrementa de forma significativa la resistencia mecánica, tanto a la compresión como a la flexión, sin alterar las propiedades físicas esenciales del material. Este resultado asegura que el concreto conserva su manejabilidad, densidad y estabilidad volumétrica, lo que es indispensable para su aplicación en proyectos de ingeniería civil. Además, los valores obtenidos se encuentran

en concordancia con lo reportado por investigaciones nacionales e internacionales, lo que refuerza la consistencia de los hallazgos y otorga validez a su posible aplicación práctica.

- Los resultados experimentales obtenidos en esta investigación acepta la hipótesis planteada, al evidenciar que la sustitución parcial del agregado fino por residuos calcáreos, particularmente en una proporción del 10 %, mejora significativamente las propiedades mecánicas del concreto, especialmente la resistencia a compresión y a flexión; en cuanto a las propiedades físicas del concreto, los resultados demostraron que no se genero una variación significativa; respecto a los valores de densidad, absorción, porcentaje de vacíos, asentamiento y exudación . Este hallazgo está en línea con los estudios de El Mendili & Benzaama (2022) y Wang et al. (2024), quienes reportaron influencia significativa positiva con las conchas marinas como sustitutos. A nivel nacional, Espinoza Núñez, Velásquez Alarcón y Domínguez y Flores también concluyeron que el uso de conchas influye significativamente una variación positiva a la resistencia del concreto, lo cual refuerza la aplicabilidad técnica y ambiental de esta alternativa.
- El análisis químico confirmó una alta concentración de calcio (Ca y CaO > 93%), indicando la presencia dominante de carbonato de calcio. Esto concuerda con El Mendili & Benzaama (2022), quienes reportaron 95% de calcita, y con estudios nacionales como los de Velásquez y Domínguez, donde el contenido calcáreo se relaciona con la mejora de las propiedades mecánicas. Por tanto, los residuos utilizados poseen las condiciones óptimas para su uso en el concreto.

Los resultados experimentales mostraron una mejora significativa en las propiedades mecánicas del concreto al sustituir el 10% en peso del agregado fino por residuos calcáreos, en comparación con la mezcla patron. Esta mejora se atribuye a la naturaleza

química del residuo calacareo. En cuanto a las propiedades físicas (como la absorción, la densidad y el asentamiento), no se observaron variaciones significativas, lo cual indica que la sustitución no afecta negativamente el comportamiento físico del concreto. Por lo tanto, se acepta la hipótesis planteada, ya que se comprobó que la incorporación del 10% de residuos calcáreos influye significativamente de manera positiva en las propiedades mecánicas del concreto f'c = 210 kg/cm², mientras que las propiedades físicas se mantienen sin cambios relevantes.

- En nuestro diseño de mezcla de concreto de 210 kg/cm2 se obtuvo una relación agua-cemento (a/c) de 0.59, uniforme para todas los porcentajes de 0%; 5%; 10% y 15%; es un factor importante para asegurar la calidad y resistencia de la mezcla. A diferencia de antecedentes como los de Espinoza Núñez y Wang et al., donde la relacion de aguacemento fue de 0.7 pero para una resitencia de 175 kg/cm2 ,para los porcentajes 0%; 15%; 25% y 30%; y Velásquez Alarcón en su investigación obtuvo una relacion de agua-cemento de 0.684 en un concreto de 210 kg/cm2 para los porcnetajes de 5%, 10%, 20% y 30%. de también este estudio aporta una base sólida para comparar resultados. Ya que los antecedentes mencionados mejorar significativamente las propiedades mecánicas.Mantener constante la relación agua/cemento garantiza que las variaciones en resistencia se deban únicamente a los residuos calcareos incorporados ; aceptando la hipótesis planteada.
- Las propiedades físicas se mantuvieron estables entre los grupos, sin diferencias significativas (ANOVA p > 0.05), como también concluyeron Domínguez y Wang. En cuanto a las propiedades mecánicas, el 10% de sustitución fue el más efectivo, alcanzando 268 kg/cm² en compresión y 54 kg/cm² en flexión, superando al patrón y mostrando diferencias estadísticamente significativas (p < 0.05). Esto coincide con

Domínguez y Flores (2023) cual resultados fueron los siguientes; con 10%, 20%, 30%, de sustitución resistencia a la compresión de 319.4 kg/cm²; 301.5 kg/cm²; 321.0 kg/cm² respectivamente. Wang et al. (2024) obtuvo mejoras significativas: con 10% de conchas, las resistencias alcanzaron 7.5-14.25 MPa (flexión) y 22-23.4 MPa (compresión); con 30%, 9.75 MPa (flexión) y 22.9 MPa (compresión); y con 50%, 10.5 MPa (flexión) y 23.3 MPa (compresión).

Velásquez Alarcon (2023), 28 días reemplazando 5%, 10%, 20% y 30% se evidenció una resistencia a la compresión de 222.04, 228, 235.88, 223.58 kg/cm2, a la tracción se obtuvo 18.34, 21.36, 23.71 y 20.19 kg/cm2 y a la flexión se obtuvo 67.40, 74.82, 86.88, 73.79 kg/cm2 respectivamente ; donde se evidencia que el 10 y 20 % son mejores resultados que el 5% y 30 %. Espinoza Núñez y Vivas Flores (2023); obtuvo que el25% de concha de abanico presentó los mejores resultados en resistencia a la compresión, alcanzando 128.33 kg/cm² a los 7 días, 163.33 kg/cm² a los 14 días y 192.33 kg/cm² a los 28 días para una resistencia d e 1765 kg/cm2. En conclusión, se acepta la hipótesis planteada, ya que se demuestra que la sustitución del 10 % en peso del agregado fino por residuos calcáreos mejora significativamente las propiedades mecánicas del concreto, sin provocar cambios relevantes en sus propiedades físicas.

CONCLUSIONES Y RECOMENDACIONES

V. CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

- Se determinó que la sustitución en peso del agregado fino por residuos calcáreos en proporciones de 5%, 10% y 15% no genera variaciones significativas en las propiedades físicas del concreto de 210 kg/cm², pero sí produce una variación significativa en sus propiedades mecánicas, particularmente en la resistencia a la compresión.
- Se concluye que para la granulometría de los residuos calcáreos cumplan con el análisis granulométrico del agregado fino (NTP 400.012), la trituración manual de los residuos calcáreos debe aproximarse a la del agregado fino convencional, con el fin de asegurar una adecuada integración en la matriz del concreto y mantener la uniformidad en las propiedades físicas y mecánicas de la mezcla.; respecto a la composición química los residuos calcáreos expresados en óxidos se obtuvo un 93.789 % de óxido de Calcio (CaO) y expresados como elementos cuenta con un 93.815 % de Calcio (Ca); obtenido por el ensayo de espectrometría de fluorescencia de rayos X; cumpliendo con la NTP 334.086 al obtener un contenido de carbonato de Calcio mayor al 70% en masa.
- Se realizo el diseño de mezcla para obtener la dosificación de la mezcla patrón para una resistencia de 210 kg/cm2, obteniendo una relación de agua / cemento de 0.56 y una dosificación en peso: cemento:1, arena 2.06, piedra: 2.38; agua :0.59 para un slump de 3" a 4"; y las dosificaciones de las mezclas modificadas serán las misma, pero sustituyendo 5 %,10%,15 en peso del agregado fino.
- La evaluación de las propiedades físicas y mecánicas del concreto con resistencia
 de diseño de 210 kg/cm², ante la sustitución en peso del agregado fino por residuos

calcáreos en proporciones de 0%, 5%, 10% y 15%, permitió establecer que dicha modificación no genera efectos estadísticamente significativos en las propiedades físicas del concreto, tales como densidad, absorción, porcentaje de vacíos, asentamiento y exudación. En contraste, sí se evidenciaron efectos significativos en las propiedades mecánicas, observándose un incremento en la resistencia a la compresión y a la flexión, con el 10% de sustitución. Estos resultados no solo confirman la viabilidad técnica del uso de residuos calcáreos como sustituto en peso del agregado fino, sino que también contribuyen al fortalecimiento de un sistema de gestión ambiental en la industria de la construcción, promoviendo prácticas sostenibles mediante el aprovechamiento de residuos sólidos provenientes del ámbito marino.

5.2 RECOMENDACIONES

- En cuanto al objetivo general, se recomienda realizar otros ensayos como, el ensayo de permeabilidad; ensayo de resistencia a la tracción y ensayo de absorción por capilaridad.
- Respecto al primer objetivo específico, que se refiere a la caracterización de los residuos calcáreos, se recomienda realizar análisis granulométrico por tamizado para verificar que el material triturado se encuentra dentro del rango típico del agregado fino (pasante del tamiz #4 y retenido en el #200). Para el análisis químico, se sugiere emplear técnicas respecto a la NTP 334.086.
- Con relación al segundo objetivo específico, que busca determinar la relación agua/cemento adecuado para lograr una resistencia de f'c = 210 kg/cm², se recomienda utilizar el método de diseño ACI.
- Por último, para abordar tercer objetivo específico, es importante sistematizar los resultados obtenidos en tablas y gráficos comparativos. Se deben interpretar los cambios

en las propiedades físicas y mecánicas en función del comportamiento del nuevo material. Es recomendable aplicar herramientas de análisis estadístico, como ANOVA y una prueba post hoc para determinar si las diferencias encontradas entre las mezclas son estadísticamente significativas y cuales difieren entre ellas. Esta etapa debe incluir una discusión crítica que relacione los hallazgos con estudios previos y explique las razones técnicas del desempeño observado.

- Realizar estudios; incluyendo diferentes tipos de cemento, aditivos y condiciones
 de curado, con el fin de validar la reproducibilidad de los resultados obtenidos en
 laboratorio
- Asimismo, Investigar el efecto de los residuos calcáreos en otras propiedades del concreto, como la adherencia con el acero de refuerzo, el módulo elástico y la resistencia al impacto, lo cual permitirá un análisis más completo de su comportamiento estructural.

REFERENCIAS BIBLIOGRÁFICAS

VI. BIBLIOGRAFÍA

- Askeland, D. R., Fulay, P. P., & J., W. W. (2017). Ciencia e Ingenieria de materiales.

 México D.F.: Servicios Editoriales 6Ns, S.A. de C.V.
- Bellei, P., Torres, I., Solstad, R., & Flores-Colen, I. (2023). Potential Use of Oyster Shell Waste in the Composition of Construction Composites: A Review.

 Buildings, 13(1546). doi:10.3390/buildings13061546
- Callister, W. D. (1995). *Introducción a la ciencia e ingeniería de los materiales*.

 Barcelona: Reverté.
- Hernández, R. (2014). *Metodología de la Investigación*. México D. F.: McGraw Hill Education.
- Hibbeler, R. C. (2017). *Mecánica de Materiales*. Ciudad de México: Pearson.
- Martínez, W. (22 de Enero de 2016). *conexionesan*. Obtenido de https://www.esan.edu.pe/conexion/actualidad/2016/01/22/evaluacion-proyectostoma-decisiones/
- National Ready Mixed Concrete Association. (s.f.). *concretesupplyco*. Obtenido de concretesupplyco: https://concretesupplyco.com/wp-content/uploads/2017/01/16pes.pdf
- Pasquel, E. (1998). *Tópicos de Tecnología del Concreto*. Lima: Colegio de Ingenieros del Perú.
- Rivva, E. (1992). Tecnología del concreto: diseño de mezclas. Lima: [s.n.].
- Sánchez de Guzmán, D. (2001). *Tecnología del Concreto del Mortero*. Bogotá: BHANDAR EDITORES LTDA.

American Concrete Institute. (2019). Requisitos de reglamento para concreto estructural (ACI 318-19) y comentario. American Concrete Institute.

American Concrete Institute. (1991). ACI 211.1-91: Práctica estándar para seleccionar proporciones de concreto normal, pesado y en masa. American Concrete Institute.

Velásquez Alarcón, G. J. (2023). Evaluación de la resistencia del concreto mediante el uso de las conchas de abanico – Lambayeque 2023. Obtenido de

https://repositorio.uss.edu.pe/handle/20.500.12802/11405

Espinoza Núñez, M. del P., & Vivas Flores, Y. E. (2023). Diseño de concreto simple adicionando residuos de concha de abanico en agregado fino – Piura 2022.

Obtenido de

https://hdl.handle.net/20.500.12692/158510

Bracho, R., & Alvarado, Y. (2003). Caracterización del agregado grueso reciclado proveniente de concreto de desecho. *Revista Técnica de la Facultad de Ingeniería de la Universidad del Zulia, 26*(1), 75–82.

https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0254- 07702003000100007

Dzul, J. A., Herrera, C. L., & Núñez, F. A. (2008). Influencia de la calidad del agregado grueso reciclado en la resistencia del concreto. *Revista Técnica de la Facultad de Ingeniería de la Universidad del Zulia*, 31(3), 270–279.

https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0254-07702008000300002

Vásquez-Fuentes, J. A., Romero-Hernández, J. J., Patiño-Tovar, C., & Ramírez-Bustamante, R. (2024). Efecto del polvo y arena de sílice en el comportamiento

95602024000200046

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

de bloques de concreto. Revista Arbitrada Interdisciplinaria Koinonía, 9(2), 34–49. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1856-

Neville, A. M. (2013). Propiedades de los concretos (5.ª ed.). Pearson Educación.

Kosmatka, S. H., & Wilson, M. L. (2016). *Design and control of concrete mixtures* (16th ed.). Portland Cement Association.

Aïtcin, P. C. (2000). High-Performance Concrete. CRC Press.

Alexander, M., & Mindess, S. (2005). Aggregates in Concrete. Taylor & Francis.

Dobrowolski, J. A. (1998). Concrete Construction Handbook (4th ed.). McGraw-Hill.

Jackson, N., & Dhir, R. K. (1996). Civil Engineering Materials. Macmillan.

Kosmatka, S. H., Kerkhoff, B., & Panarese, W. C. (2002). *Design and Control of Concrete Mixtures* (14th ed.). Portland Cement Association.

Siddique, R., & Kadri, E. H. (2011). Properties of Self-Compacting Concrete Containing Class F Fly Ash. Materials & Design, 32(3), 1501–1507.

Taylor, H. F. W. (1997). Cement Chemistry (2nd ed.). Thomas Telford.

Mindess, S., Young, J. F., & Darwin, D. (2003). *Concrete* (2nd ed.). Prentice Hall.

Mehta, P. K., & Monteiro, P. J. M. (2014). *Concrete: Microstructure, properties, and materials* (4th ed.). McGraw-Hill Education.

Martínez, L., & Pérez, J. (2023). Utilización de fibras de acero reciclado para mejorar el comportamiento estructural del concreto. *Revista Técnica de Ingeniería Civil*,

25(3), 89– 102. Obtenido de

https://ve.scielo.org/scielo.php?pid=S1316-

48212023000300008&script=sci arttext

Cruz-Yusta, M., Martín, M., Morales-Torres, S., & Sánchez-Rodríguez, D. (2013).

Valorization of seashell by-products as calcium carbonate fillers for ecological building materials. Construction and Building Materials, 49, 84–91. Obtenido de https://doi.org/10.1016/j.conbuildmat.2013.08.017

El Mendili, Y., & Benzaama, M.-H. (2022). Investigation of mechanical and thermal performance of concrete with scallop shells as partial cement replacement:

Alternative binder and life cycle assessment. *Civil Engineering*, *3*(3), 760–778. https://doi.org/10.3390/civileng3030044

Wang, X., Yu, H., Li, F., Nikolayevich, K. S., Yu, H., Nikolaevich, L. S., & Fan, W. (2024). Effect of biological shells aggregate on the mechanical properties and sustainability of concrete. Scientific Reports,

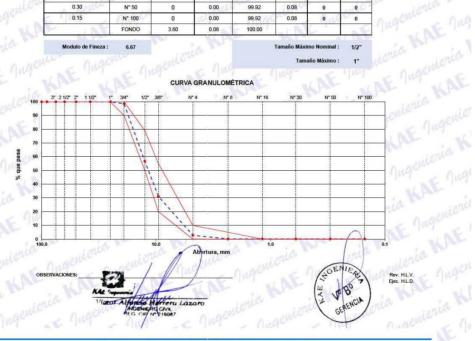
https://doi.org/10.1038/s41598-024-61301-1

VII. **ANEXOS**

mieria NAE Mar

Anexo 01- Ensayo de los agregados

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales


Registro Indecopi Nº 028979-2021/DSD

LIME A MANY FLAME	A . 1212	ALC: N
INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÂNICAS DEL	REGISTRO N°:	TS-IRC-GRA-01
CONCRETO F'C= 210 KG_CM2 - NUEVO CHIMBOTE	PAGINA N°:	01 de 01
CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI	CANTERA:	La Sorpresa
Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	05/12/2024
	CONCRETO F'C= 210 KG CM2 - NUEVO CHIMBOTE CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI	CONCRETO F'C=210 KG_CM2 - NUEVO CHIMBOTE PAGINA N°: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI CANTERA :

ENSAYO DE ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS

eso Inicial Seco (gr)	4259.70	weth	Vancouna or		100000		
eso Lavado y Seco (gr)	4256.10	A MARCH	AGREGADO GE	RUESO ASTM C33	/C33M - 18 -	HUSO #67	
ABERTURA (mm)	TAMIZ	RETENIDO MATERIAL (gr)	RETENIDO PARCIAL %	RETENIDO ACUMULADO %	%PASA	ASTM "LIM. INF."	ASTM "LIM. SUP."
100.00	4"	100	0.00	0.00	100.00	100	100
90.00	3 1/2"	0	0.00	0.00	100.00	100	100
75.00	3"	E .100	0.00	0.00	100.00	100	100
63.00	2 1/2"	100	0.00	0.00	100.00	100	100
50.00	2"	198	0.00	0.00	100.00	100	100
37.50	1 1/2"	as Caller	0.00	0.00	100.00	100	100
25.00	_1_	0	0.00	0.00	100.00	100	100
19.00	3/4"	59.8	1.40	1.40	98.60	90	100
12.50	1/2"	1784.7	41.90	43.30	56.70	50	79
9.50	3/8"	1089.70	25.58	68.88	31.12	20	55
4.75	N° 4	1205.30	28.30	97.18	2.82	0	10
2.36	N* 8	116.60	2.74	99.92	0.08	0	- 5
1.18	N° 16	0.00	0.00	99.92	0.08	0	0
0.60	N* 30	0	0.00	99.92	0.08	0	0
0.30	N° 50	0	0.00	99.92	0.08	0	0
0.15	N° 100	0	0.00	99.92	0.08	0	0
- 15	FONDO	3.60	0.08	100.00	1.76	100	- 60

Modulo de Fineza:

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

10 A 15	CONCRETO F'C= 210 KG_CM2	- Vancille Grander British Stranger	PROPIEDADES FÍSICO-MECÂNICAS DEL TE	REGISTRO N°: PAGINA N°:	TS-IRC-GRA-02 01 de 01
SOLICITA :	CÁRDENAS LAVADO DAM JUN	IIOR - SOTO AGUILA	AR MIGUEL NEFTALI	CANTERA:	La Sorpresa
UBICACIÓN :	Distrito: Nuevo Chimbote - Provi	ncia: Santa - Departa	amento: Ancash	FECHA:	05/12/2024
- 1(114	ENSAYO DE	ANÁLISIS O	GRANULOMÉTRICO DE LOS	AGREGADOS	A 1000
104	ENSAYO DE	ANÁLISIS (GRANULOMÉTRICO DE LOS (ASTM C-136, MTC E204)	AGREGADOS	A 1000
- Awa	ENSAYO DE A	ANÁLISIS (wienia -	neutoriu

ENSAYO DE ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS (ASTM C-136, MTC E204)

Peso Inicial Seco (gr)	1675.50	Durge 1	GREGADO FIN	O ASTM C33/C33N	1 - 18 - AREN	IA GRUESA	
Peso Lavado y Seco (gr)	1626.30	- No. I					
ABERTURA (mm)	TAMIZ	RETENIDO MATERIAL (gr)	RETENIDO PARCIAL %	RETENIDO ACUMULADO %	% PASA	ASTM "LIM. INF."	ASTM "LIM. SUP.
100.00	4"	China Control	0.00	0.00	100.00	100	100
90.00	3 1/2"	- Det	0.00	0.00	100.00	100	100
75.00	3"	ME !	0.00	0.00	100.00	100	100
63.00	2 1/2"		0.00	0.00	100.00	100	100
50.00	2"	il	0.00	0.00	100.00	100	100
37.50	1 1/2"	a O Care	0.00	0.00	100.00	100	100
25.00	1"	- 5	0.00	0.00	100.00	100	100
19.00	3/4"	of the	0.00	0.00	100.00	100	100
12.50	1/2"	P A	0.00	0.00	100.00	100	100
9.50	3/8"	0.00	0.00	0.00	100.00	100	100
4.75	N° 4	17.10	1.02	1.02	98.98	95	100
2.36	N° 8	86.50	5.16	6.18	93.82	80	100
1.18	N° 16	241.10	14.39	20.57	79.43	50	85
0.60	N° 30	448.80	26.79	47.36	52.64	25	60
0.30	N° 50	425.10	25.37	72.73	27.27	5	30
0.15	N° 100	278.10	16.60	89.33	10.67	0	10
0.07	N° 200	129.60	7.74	97.06	2.94		y Design
1 4 80	FONDO	49.20	2.94	92.26		7.1	CO.

Pje. Fátima - Mz. Y´, Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

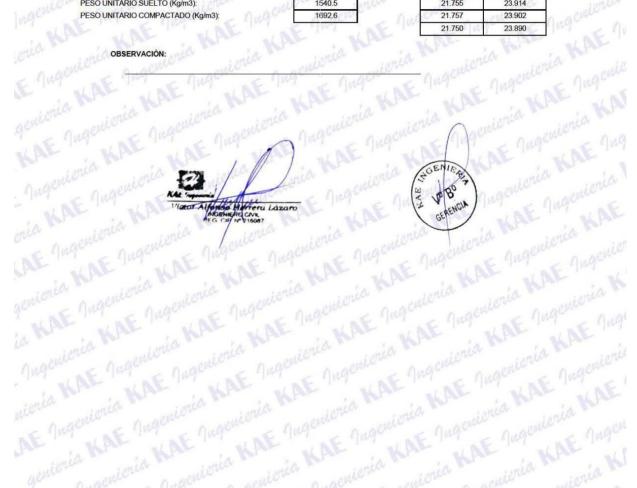
PROYECTO :	INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÂNICAS	REGISTRO N°:	TS-IRC-PU-0
with the	DEL CONCRETO F'C= 210 KG_CM2 - NUEVO CHIMBOTE	PÁGINA N°:	01 de 01
SOLICITA :	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI	A JAC	
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	5/12/2024

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO

A. GRUESO - LA SORPESA	
PESO UNITARIO SUELTO (Kg/m3):	1.4
PESO UNITARIO COMPACTADO (Kg/m3):	atenta

	1317
16.	1472.0
	1645.3

۲	ACTADO	
	SUELTO	COMPACTADO
	20.745	23.197
ń	20.817	23.297
	20.799	23.210


A. FINO - LA SORPRESA

KAE Jugeni PESO UNITARIO SUELTO (Ka/m3):

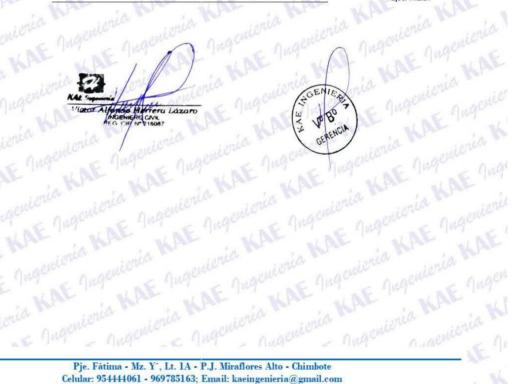
[g/m3]:	1645.3	War with
		Tagent
	1540.5	mia Kra
g/m3):	1692.6	- Ause

20.017	20.201
20.799	23.210
A sale	- 1 UP
SUELTO	COMPACTADO
(10) (10) (10)	The second secon
21.755	23.914
21.757	23.902
04.750	00.000
21.750	23.890
1 10 50	

Jugenierie KAE Jugenierie KAE Jugenierie KAE Jugenierie 1540.5 1692.6 Vacar Alferto Herrera Lazaro
AEG CH Nº 216067 Jugeneria RAE Jugenieria RAE Jugenie

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD


PROYECTO	: INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS	REGISTRO N°:	TS-IRC-PE-01
	DEL CONCRETO F'C= 210 KG_CM2 - NUEVO CHIMBOTE	PAGINA N° :	01 de 01
SOLICITA	: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI	14	
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	5/12/2024

ENSAYO PESO ESPECIFICO Y ABSORCION DEL AGREGADO GRUESO

Información de Muestra

KAE Juganienia KA enioria KAE Jugen Cantera Temp. Agua: Saturación Muestra: Piedra Chancada Peso en el aire de la muestra secada en homo 2489 50 Peso de muestra saturada superficialmente seca en el aire 2505.90 gr. Peso de la muestra en agua 1604 00 Jugenieria KAE Jugenie gr/cm3 P. Especifico Saturado con Superficie Seca 2 778 P. Especifico de Masa 2.760 P. Especifico Aparente 2.811 Rev. H.L.V. Ejec. H.L.D. Absorción 0.66 Jugenieria KAE Jug OBSERVACIÓN :

AE Jagenieria KAE Jugenieria AE Jugenieria KAE Jugenieria KAE Jugenieria KAE genieria KAE Ingenieria KAE Ingenieria KAE Ingenieria

AF

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

				_
PROYECTO	: INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS	REGISTRO N° :	TS-IRC-PE-02	Ć
CLIENTE	DEL CONCRETO F'C= 210 KG CM2 - NUEVO CHIMBOTE - COTO ACCIDENT INCOLETAL TALE - COTO ACCIDENT	PAGINA N° :	01 de 01	P
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	5/12/2024	1
				_

ENSAYO DE GRAVEDAD ESPECIFICA Y ABSORCIÓN DEL AGREGADO FINO

Información de Muestra

Jude	KAE MAGE	Informació	n de Muestra	E Jugo	MAE Jugens Jugen	
Cantera :	La Sorpresa 1	emp. Agua :	23 °C	Saturación :	24 hrs.	
Muestra :	500 gr.	Fiola :	500 cm ³			
		· net	1 100	Kilon	mia Mrs. KAR	
	n el aire de la muestra secada e		and Co	495.40	gr. HORDE MILE	
	e la fiola llena de agua a la mar		on a great and	696.60	gr. general organis	
Peso de	e la fiola con la muestra y el ag	ua	KA	1010.70	gr.	
P. Espe	cifico Saturado con Superficie	Seca	Pesss	2.690	gr/cm3	
P. Espe	cifico de Masa		Pe _m	2.665	gr/cm3	
P. Espe	cifico Aparente		Pea	2.732	gr/cm3	
Absorci	ón		Ab	0.93	%	
OBSER	VACIONES:				Rev. H.L.V.	
	In Maria	S. Land	No. Par	in Roll	Ejec. H.L.D.	
				Jug-	TE IND TE Under	
min		WA TO	mid King	innia /	wid MAR LONGA M	
	MENLE - DEGENERA	1 march		MOENIE	A COUNTY OF THE PARTY OF THE PA	
	P:3% / //			BO NE	2/ 10 - 100	

genieria KAE Jugenieria KAE Jugenieria KA MAE Separated Harrery Lazaro
INGENIERA

Planar Alfondo Harrery Lazaro
INGENIERA

REG CHY Nº V18007 genera Re Jagenioria Rat Late Rat Jagenioria Rat Late Rat Jagenioria Rat Late Rat Jagenioria Rat Late Rat Jagenioria Rat Late AE Jugenieria MAE Jugenieria genieria KAE Jugenioria KAE Jugenieria KAE Jugenieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

PROYECTO:	INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADIES FÍSICO-MECÁNICAS	REGISTRO N°:	TS-IRC-CH-01
14 80	DEL CONCRETO F'C= 210 KG_CM2 - NUEVO CHIMBOTE	PÁGINA N°:	01 de 01
SOLICITA:	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NIEFTALI	LA TO LOUIS	
UBICACIÓN:	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	05/12/2024

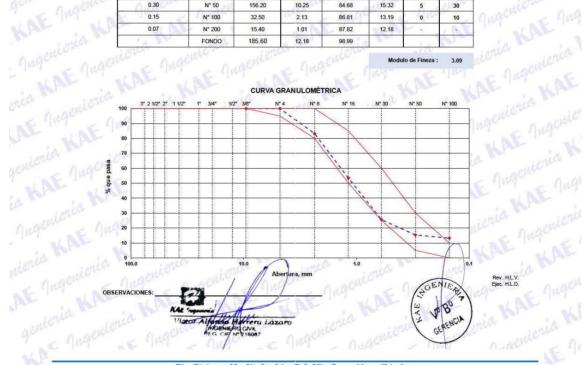
CONTENIDO DE HUMEDAD

		(ASTI	M 4944, ASTM 4959,	ASTM 2216)			
CONTE	NIDO DE H	UMEDAD DE LA MUES	STRA INTEGRAL (AG	REGADO GRUESO - CAN	TERA LA SORPRESA)	and other	Ι.,
N° de Muestra	E II	7 100	2	144 - 5 11	M. S.	949 - 1	210
a Recipiente	N°	2	56	N. D.			
b Peso Recip. + Suelo Húmedo	gr	2478.5	1935.3	ist "			na
c Peso Recip + Suelo Seco	gr	2474	1931.6	Duge Pour	A ACIDIA	N-101 CHICK	0
d Peso Recipiente	gr	84.9	79.6	AL TO			z 19
e Peso del Agua	gr	4.5	3.7		1 1		-
f Peso Suelo Seco	gr	2389.1	1852	mill			100
g Contenido de Humedad	%	0.19	0.20	0.0	Chica	ned Die	0 12
h Humedad Promedio	%			0.19			

2	UNITED COL	NI ENIDO DE	HUMEDAD DE LA M	UESTRA INTEGRAL (A	IGREGADO FINO	- CANTENA EA	and Chi		107000	
UL PE	N° de Muestra	- PM	7 1.5	2	140	E AUD	ALL -	Electron CH		
a		N°	11	4	1					
b		gr	1854.3	1954.3	wip.				201	
c	11111	gr	1854.3	1954.3	(A) (A)					
d	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gr	1039.2	123.8	- nutt					
е		gr	15.1	16.8	N-		-1			
f	Peso Suelo Seco	gr	1730.7	1813.7						
g	Contenido de Humedad	%	0.87	0.93						
h		%	7.2		0.9	90		PLAN		
	BSERVACIONES :	nia *) wenterie	aentenia	When	cenia h				
	peniorus NAE Jugenia Jugenioria	AE renteri	AND COMPANY	Jugenienia Jugenienia Dongenie	Jugen enta Kl	equia 8	genieris			
	APE Jugenies Jugenieria K Jugenieria K APE Jugenieria		Marie La. Resident La. General Com. G. Curl No 16007	Ingenienia Ingenienia Ingenienia Zaro ienia	Jugar oria Kr AE Ju genieria	KAE IN	0 12			

Jugenieria KAE Jugenieria KAE Jugeni ia KAE Jugenieria KAE Jugeni KA = Juganieria KA E Juganieria KA E Juganieria AE Jugenieria KAE Jug E Jugenieria KAE Jugenieria KAE genierus KAE Ingerioria

e. Fátim-


Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

17452	THE PERSON NAMED TO STATE OF THE PERSON NAMED	F1 - 121-	A-10,74
PROYECTO:	INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL	REGISTRO N°:	TS-IRC-GRA-03
11 10	CONCRETO F'C= 210 KG_CM2 - NUEVO CHIMBOTE	PAGINA N°:	01 de 01
SOLICITA :	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI	CANTERA:	14-3
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	05/12/2024

ENSAYO DE ANÁLISIS GRANULOMÉTRICO (ASTM C-136, MTC E204)

Peso Inicial Seco (gr) Peso Lavado y Seco (gr)	1524.30 1338.70	gugen	AGREGA	ADO FINO - RESID	UO CALCAR	EO	E 10
ABERTURA (mm)	TAMIZ	RETENIDO MATERIAL (gr)	RETENIDO PARCIAL %	RETENIDO ACUMULADO %	% PASA	ASTM "LIM. INF."	ASTM "LIM. SUP."
100.00	4" (No.	0.00	0.00	100.00	100	100
90.00	3 1/2"	- 1 ot	0.00	0.00	100.00	100	100
75.00	3"	NE "	0.00	0.00	100.00	100	100
63.00	2 1/2"		0.00	0.00	100.00	100	100
50.00	2"	-i0	0.00	0.00	100.00	100	100
37.50	1 1/2"	1000	0.00	0.00	100.00	100	100
25.00	1"		0.00	0.00	100.00	100	100
19.00	3/4"	OF DEP	0.00	0.00	100.00	100	100
12.50	1/2"	P No.	0.00	0.00	100.00	100	100
9.50	3/8"		0.00	0.00	100.00	100	100
4.75	N° 4		0.00	0.00	100.00	95	100
2.36	N* 8	256.20	16.81	16.81	83.19	80	100
1.18	N° 16	454.20	29.80	46.60	53.40	50	85
0.60	N° 30	424.20	27.83	74.43	25.57	25	60
0.30	N° 50	156.20	10.25	84.68	15.32	5	30
0.15	N° 100	32.50	2.13	86.81	13.19	0	10
0.07	N° 200	15.40	1.01	87.82	12.18		F BUS
14 80	FONDO	185.60	12.18	98.99	1	7.	Part T

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Anexo 02- Diseño de concreto

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES REGISTRO N°: TS-IRC-DM-01 FÍSICO-MECÂNICAS DEL CONCRETO F'C= 210 KG CM2 -PÁGINA Nº: 01 de 01 NUEVO CHIMBOTE

CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI

UBICACIÓN: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

DISEÑO DE MEZCLA DE CONCRETO 210 KG/CM²

Método de Diseño 211 ACI

Procedencia de Agregados

- Ag. Grueso La Sorpresa

- Ag. Fino La Sorpresa

Cemento

Jugenieria KAE Jugenieria KA KAE Jugenia KAE Jugen

05/12/2024

Agua Potable Peso Especifico:

1000 kg/m3

Caracteristicas del Concreto

- Resistencia Especificada 210 kg/cm2 3" a 4" - Asentamiento

Resistencia Requerida (f´cr) - "No hay datos estadisticos"

sistencia Especificada a la Compresión, Mpa	Resistencia Promedio Requerida a la Compresión, Mpa	f'c =	210 kg/cm2
f'c < 21	f'cr = f'c + 7.0	f'cr =	294 kg/cm2
$21 \le f'c \le 35$	f cr = f c + 8.5	fer =	29 MPa
f'c > 35	f'cr = 1.1f'c + 5.0		
Tamaño Máximo No	minal del Agregado Grueso		

KAE Jugenier 2. Selección del Tamaño Máximo Nominal del Agregado Grueso

- 1/5 de la dimensión más angosta entre caras del encofrado.
- 1/3 del espesor de las losas.

3. Datos Obtemidos de los Agregados en Laboratorio

otemidos de los Agregados en	Laboratorio		
Ensayos	Unidad	Ag. Grueso	Ag. Fino
Módulo de Fineza	L WA	TI BL	2.37
Peso Especifico	kg/m3	2760	2665
Absorción	%	0.66	0.93
Contenido de Humedad	%	0.19	0.90
Peso Unistario Suelto	kg/m3	1472	1540
Peso Unitario Compactado	kg/m3	1645	1693

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com naevieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS:	INFLUENCIA DE LOS RESIDUOS CALCÁRE	OS EN PROPIEDADES	REGISTRO N°:	TS-IRC-DM-01
Maria	FÍSICO-MECÁNICAS DEL CONCRETO F'C=	210 KG_CM2 -	PÁGINA Nº:	02 de 03
DOM:	NUEVO CHIMBOTE	with the	wall .	
SOLICITA:	CÁRDENAS LAVADO DAM JUNIOR - SOTO	AGUILAR MIGUEL NEFTA	LINE	
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa -	Departamento: Ancash	FECHA:	5/12/2024
4. Estimad	ción del Contenido de Aire y Agua de	Mezclado	Mrs. 1	ARK
	Incorporación de Aire al Concreto	yell - miles	NO	
	Requerimiento de Agua de Mezclado	Lt/m3	216	
	Porcentaje de Aire al Concreto	%	2.5	

4. Estimación del Contenido de Aire y Agua de Mezclado

Incorporación de Aire al Concreto	TO NAME	NO	ionth
Requerimiento de Agua de Mezclado	Lt/m3	216	NOUS ALACIAN
Porcentaje de Aire al Concreto	%	2.5	The state of the
Nivel de Exposición	. Marie	No Aplica	Kyle Kle
ón de Relacion Agua - Cemento (a/c)			
Con el valor de la resistencia promedio rec agua/cemento para concretos normales; si condiciones severas se utilizará valores pa	el concreto esta so	metido a	AE INGENTAGEN
por durabilidad.			

meria KAE 144 5. Selección de Relacion Agua - Cemento (a/c)

Jugenieria KAE Jugen Con el valor de la resistencia promedio requerida f'cr , obtenemos la relación Jugenieria MAE Jugenieria agua/cemento para concretos normales; si el concreto esta sometido a condiciones severas se utilizará valores para asumir la relación agua/cemento por durabilidad.

f'er =	204	La	cm2

fcr	a/c
250	0.62
294	0.56
300	0.55

a/c	0.56			

6. Contenido de Cemento

por durabilidad	1000					
f'cr =	294 kg/cm2					
AL.	f'cr	a/c	a/c	0.56		
1,000	250	0.62	a/c	0.30		
	294	0.56	107	A30"		
	300	0.55				
lo de Cemen	to				AL	
Cemento =	216 lt/m3	0.56	= 387 kg	#10 ≈ (A 9.º	1 bolsas	
ón <mark>del Con</mark> te	nido de Agreç	gado Grueso	y Agregado Fir	10		
	0	1	0.420 1			

7. Estimación del Contenido de Agregado Grueso y Agregado Fino

nido de Cemento	/ 0.50		007.1	14 041
Cemento = 216 lt/m3	0.56	IN CHELDY	387 kg	≈ 9.1 bolsas
ación del Contenido de Agreg	ado Grueso	y Agre	gado Fino	
Cemento	= ,	0.130	kg	
Volumen de Pasta	₹/mccov	0.371	m3	
Volumen de Agregados	a enter	0.629	m3	weeken or it
Aire Atrapado	7 = 2	0.025		
Agua	Frank	0.216		
b/bo	60× = 1.	0.56		
Peso del Agregado Grueso	A THERE	920.1	kg	Agregado Grueso
Volumen del Agregado Grueso	e han	0.333	m3	53.0%
Peso del Agregado Fino	ELA. V	788.5	kg	Agregado Fino
Volumen del Agregado Fino	Wild Box	0.296	m3	47.0%
o de Mezcla en Estado Seco				
Cemento		386.8	kg	
Agregado Fino Natural		788.5	kg	
Agregado Grueso Natural		920.1	kg	
Agua		216.0	lt	

genieria KAE

KA Tugenioria

	Volumen del Agregado Fino	OLC SEC.	0.296	m3
8. D	iseño de Mezcla en Estado Seco			
10	Cemento		386.8	kg
	Agregado Fino Natural		788.5	kg
	Agregado Grueso Natural		920.1	kg
	Agua		216.0	It
	and the second			
	E THE			
	LANGE WAR TO BE			
	KAE Superiorial Hall	111	100	
	Vigeor Alfonso His	rem Lazam		

Jugenieria KAE Jugenieria KAE Jug

genieria KAE Ingenieria

Pje. Fátima - Mz. Y´, Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com naenieria

AE Jugenieria KAE

KAE Juganieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

FÍSICO-MECÂNICAS DEL CONCRETO F'C= 210 KG_CM2 - PÁGINA NO NUEVO CHIMBOTE LICITA: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI ICACIÓN: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash COrrección del Diseño por el Aporte de Humedad de los Agregados a) Pesos Humedos Corregidos de los Agregados	acuieria *
LICITA: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI ICACIÓN: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash Corrección del Diseño por el Aporte de Humediad de los Agregados	5/12/2024
Corrección del Diseño por el Aporte de Humediad de los Agregados	5/12/2024
Corrección del Diseño por el Aporte de Humedad de los Agregados	5/12/2024
ATTURN AND THE STREET	KAL
Agregado Grueso humedo = 921.8 kg Agregado Fino Humedo = 795.6 kg	
b) Aporte de Agua de los Agregados	
Agregado Grueso = -4.28 It	
Agregado Fino = -0.23 It	

AE Jugenieria KAE Jugenieria 9. Corrección del Diseño por el Aporte de Humedad de los Agregados

Augenieria KAE Ingenieria KA finos Agua Efectiva = 220.5 It

Nota: Los ajustes por humedad se realizan en los agregados finos y gruesos y en el volumen unitario de agua de mezclado.

de Mezcla en Estado Húmedo

Expresión de Proses Jugenieria MAE Jugenieria

10. Diseño de Mezcla en Estado Húmedo

Cemento = 386.8 kg = 1.00 kg Agregado Fino Natural = 795.6 kg = 2.06 kg Agregado Grueso Natural = 921.8 kg = 2.38 kg Agua = 228.0 lt = 0.59 lt	Cemento = 386.8 kg = 1.00 kg Agregado Fino Natural = 795.6 kg = 2.06 kg Agregado Grueso Natural = 921.8 kg = 2.38 kg Agua = 228.0 lt = 0.59 lt	de Mezcla en Estado Húme Expresión de Proporciones en F						
1 : 2.06 : 2.38 : 0.59	entire Dugenie a nemicia a action a contesta a new	Cemento Agregado Fino Natural Agregado Grueso Natural	nie In	795.6 921.8	kg kg	io to	2.06 2.38	kg
	- Expresión de Proporciones en Volumen	1 : 2.06	onle on the	2.3	8		0.59	
Cemento = 1 pie3			57 <u>-</u>	2.00	pie3			
Cemento = 1 pie3 Agregado Fino Natural = 2.00 pie3	Agregado Fino Natural = 2.00 pie3	Agregado Fino Natural						
			= and					

TOTAL PLANSING	- AND DEED	n 06	glill reco	-
- Expresión de Proporciones en	Volumen			
Cemento	LAPS.	1	pie3	
Agregado Fino Natural	10x =	2.00	pie3	
Agregado Grueso Natural	= _ aud/	2.43	pie3	
Agua	1 = ger	25.1	lt/bls	

Ceme Agreç Agreç Agua	gado Fino Natura gado Grueso Na	al tural	- genter	2.00 2.43	pie3 pie3 pie3 lt/bls		
nia Karamia	1 : 1	2.00	cia la	2.43	Mar	25.05	ia KAK jenia
						- Caculo	
AF KAE			1000				

nieria KAE Jugenieria KAE

Pje. Fátima - Mz. Y´, Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Anexo 03- Análisis Ouímico

SISTEMA DE SERVICIOS Y ANÁLISIS QUÍMICOS S.A.C.

INFORME DE ENSAYO IE-2025-1021

1. DATOS DEL CLIENTE

1.1 Cliente : MIGUEL SOTO AGUILAR

1.2 RUC o DNI : 72448008

1.3 Dirección : NUEVO CHIMBOTE-LAS DELICIAS- MZ 34 LT 3

2. DATOS DE LA MUESTRA

2.1 Producto : MUESTRA DE INVESTIGACIÓN

2.2 Muestreado por : CLIENTE (c)

2.3 Número de Muestras : 01

2.4 Fecha de Recepción : 2025-03-11

2.5 Periodo de Ensayo : 2025-03-11 al 2025-03-19

2.6 Fecha de Emisión : 2025-03-20

Fecha y Hora de Muestreo : 2025-03-10 / No Precisa
 N° de cotización : COT-112560-SL25

3. ENSAYO SOLICITADO - METODOLOGÍA UTILIZADA

NSAYO

Ensayo de Fluorescencia de Rayos X Composición Química por (óxidos): SIO2, Al2O3, Fe2O3, CaO, MgO, K2O,

Fluorescencia de Rayos X - FRX

MÉTODO

Na2O, etc

4. RESULTADOS

FR-INF-02 V00

2024-10-09

4.1. DESCRIPCIÓN DE MUESTRA: RESIDUOS CALCAREOS - 10/03/2025 ™ e investigación MUESTRA DE INVESTIGACIÓN ™

Título de tesis: "INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO MECÁNICAS DEL CONCRETO F'C= 210 KG/CM2 - NUEVO CHIMBOTE" (4)

Autores: -Cárdenas Lavado Dam Junior -Soto Aguilar Miguel Neftali (4)

SISTEMA DE SERVICIOS Y ANÁLISIS QUÍMICOS S.A.C.

Calle 22 Urb. Vipol Naranjal Mz E Lt 07, San Martin De Porres Lima-Perú. Cel: 926640042

www.slabperu.com - contacto@slabperu.com

Página 1 de 3

SISTEMA DE SERVICIOS Y ANÁLISIS QUÍMICOS S.A.C.

INFORME DE ENSAYO IE-2025-1021

4.2. RESULTADOS OBTENIDOS DE ENSAYO DE FLUORESCENCIA DE RAYOS X

- Equipo Utilizado: SHIMADZU EDX espectrómetro de fluorescencia de rayos X
- Barrido elemental del Na a U, expresados en óxidos.
- Límite de detección del equipo es 0.001%.

Tabla Nº1: COMPOSICIÓN QUÍMICA EXPRESADOS COMO ÓXIDOS

Código de Laboratorio	Composición química	Unidad	LCM	Resultados
	Óxido de Calcio, CaO	%	0.001	93.789
	Óxido de Hierro, Fe ₂ O ₃	%	0.001	1.203
	Óxido de Silicio, SiO2	%	0.001	0.57
S-1261	Óxido de Estroncio, SrO	%	0.001	0.459
5-1201	Óxido de Azufre, SO ₃	%	0.001	0.021
	Óxido de Manganeso, MnO	%	0.001	0.007
	Bromo, Br	%	0.001	0.003
	Pérdida por calcinación	%	0.001	3.948

Nota 1: Balance de resultados al 100% de óxidos calculados del análisis elemental (del sodio al uranio) por espectrometria de fluorescencia de rayos X. Análisis semicuantitativo en atmósfera de vacío.

Nota 2: Calcinado a 900°C por 1 hora

Tabla N°2: COMPOSICIÓN QUÍMICA EXPRESADOS COMO ELEMENTOS

Código de Laboratorio	Parámetro	Unidad	LCM	Resultados
000000000000000000000000000000000000000	Calcio, Ca	%	0.001	93.815
	Hierro, Fe	%	0.001	1.296
	Estroncio,Sr	%	0.001	0.602
0.4004	Silicio, Si	%	0.001	0,316
S-1261	Azufre, S	%	0.001	0.011
	Manganeso, Mn	%	0.001	0.008
	Bromo, Br	%	0.001	0.004
	Perdida por calcinación	%	0.001	3.948

Nota 1: Balance de resultados al 100% de óxidos calculados del análisis elemental (del sodio al uranio) por espectrometria de fluorescencia de rayos X. Análisis semicuantitativo en atmósfera de vacio. Nota 2: Calcinado a 900°C por 1 hora

SISTEMA DE SERVICIOS Y ANÁLISIS QUÍMICOS S.A.C. Calle 22 Urb. Vipol Naranjal Mz E Lt 07, San Martin De Porres Lima-Perú. Cel: 926640042 www.slabperu.com - contacto@slabperu.com

Página 2 de 3

FR-INF-02 V00

2024-10-09

SISTEMA DE SERVICIOS Y ANÁLISIS QUÍMICOS S.A.C.

INFORME DE ENSAYO IE-2025-1021

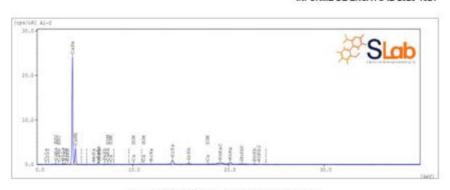


Imagen Nº1: GRÁFICO DE ENERGÍA DE ANÁLISIS

Levenda

LCM: Límite de Cuantificación de Método.

(4 Información suministrada por el cliente.

SLab

- Sin la aprobación del laboratorio Sistema de Senvicios y Análisis Químicos S.A.C. no se debe reproducir el informe de ensayo parcial, excepto cuando se reproduce en su totalidad.
- Los resultados de los ensayos se aplican a la muestra cómo se recibió y no se deben usar como una declaración de conformidad con una especificación o normas de productos de la entidad que lo produce.
- El laboratorio no es responsable de la información que ha sido identificada como suministrada por el cliente.
- Los resultados se relacionan solamente con los items sometidos a ensayo.
- Este laboratorio está acreditado de acuerdo con la norma internacional reconocida ISO / IEC 17025. Esta acreditación demuestra la competencia técnica para un alcance definido y el funcionamiento de un sistema de gestión de calidad de laboratorio.

FIN DE DOCUMENTO

FR-INF-02 V00

2024-10-09

SISTEMA DE SERVICIOS Y ANÁLISIS QUÍMICOS S.A.C.
Calle 22 Urb. Vipol Naranjal Mz E Lt 07, San Martin De Porres Lima-Perú.
Cel: 926640042

www.slabperu.com - contacto@slabperu.com

Página 3 de 3

Anexo 04- Certificado de Acreditación

Anexo 05-Panel fotografico

Imagen N°01: Recolección de residuos calcáreos en la playa "La Bonita"

Imagen N°02: Recolección de residuos calcáreos en la playa "La Bonita"

Imagen N°03: Lavado de residuos calcáreos en la playa "La Bonita"

Imagen N°04: Secado de residuos calcáreos en la playa "La Bonita"

Imagen N°05:

Verificación de los agregados en la Cantera la "Sorpresa"

Imagen N°06: Visita a la Cantera la "Sorpresa"

Imagen N°07:

Tarjeta de la Cantera la "Sorpresa"

Imagen N°08:

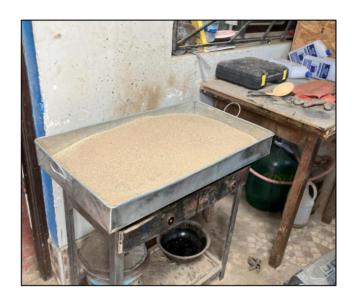

Secado en estufa del agregado fino

Imagen N°09: *Secado en estufa del agregado fino*

Imagen N°10: Ensayo de contenido de humedad

Imagen N°11: *Ensayo de contenido de humedad*

Imagen N°12:Peso de la muestra del agregado fino

Ilustración 11: Ensayo de Contenido de Humedad

Imagen N°13:Peso de la muestra del agregado fino

Imagen N°14:Peso de la muestra del agregado grueso.

Imagen N°15:Cuarteo de los residuos calcáreos para el análisis granulométrico

Imagen N°16: Mezclado del concreto de 210 kg/cm2

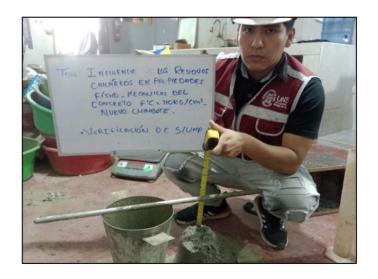


Imagen N°17: *Mezclado del concreto de 210 kg/cm2*

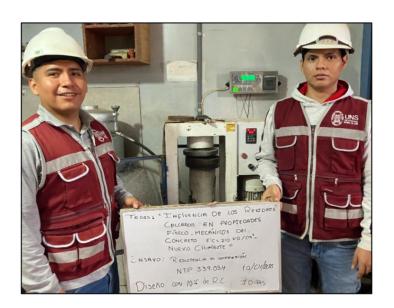
Imagen N°18: *Medición del asentamiento del concreto -SLUMP*

Imagen N°19:

SLUMP del concreto de 210 Kg/cm2

Imagen N°20:

Resistencia a compresión del concreto de 210 Kg/cm2 con 5% de Residuos calcáreos a los 7 días.


Imagen N°21:

Resistencia a compresión del concreto de 210 Kg/cm2 con 5% de Residuos calcáreos a los 14 días

Imagen N°22:

Resistencia a compresión del concreto de 210 Kg/cm2 con 10% de Residuos calcáreos a los 07 días

Imagen N°23:

Resistencia a compresión del concreto de 210 Kg/cm2 con 10% de Residuos calcáreos a los 14 días

Imagen N°24:

Resistencia a compresión del concreto de 210 Kg/cm2 con 10% de Residuos calcáreos a los 28 días

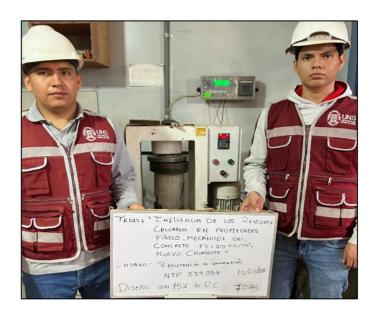


Imagen N°25:

Resistencia a compresión del concreto de 210 Kg/cm2 con 15% de Residuos calcáreos a los 7 días

Imagen N°26:

Resistencia a compresión del concreto de 210 Kg/cm2 con 15% de Residuos calcáreos a los 14 días

Imagen N°27:

Resistencia a compresión del concreto de 210 Kg/cm2 con 15% de Residuos calcáreos a los 28 días.

Imagen N°28:Rotura de las probetas de mejor resistencia (10%)

Imagen N°29:

Mezclado de concreto para la elaboración de vigas de concreto de 210 kg/cm2.

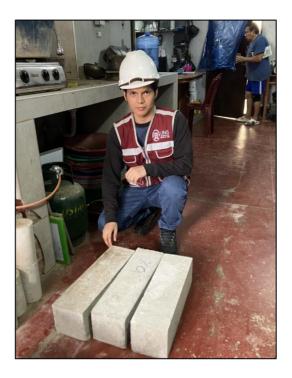
Imagen N°30:

Mezclado de concreto para la elaboración de vigas de concreto de 210 kg/cm2.

Imagen N°31:

Vigas de concreto de 210 kg/cm2 con 0% de Residuos de Calcáreos.

Imagen N°32: Vigas de concreto de 210 kg/cm2 con 10% de Residuos de Calcáreos.



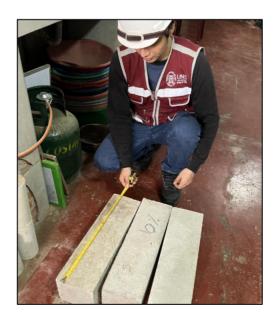


Imagen N°33:

Vigas de concreto de 210 kg/cm2 con 15% de Residuos de Calcáreos.

Imagen N°34: *Medicion de las Vigas de concreto de 210 kg/cm2*

Imagen N°35:

Ensayo de flexion de las vigas de concreto de 210 kg/cm2 con 5% de Residuos de Calcáreos.

Imagen N°36:

Ensayo de flexion de las vigas de concreto de 210 kg/cm2 con 10% de Residuos de Calcáreos.

Imagen N°37:

Ensayo de flexion de las vigas de concreto de 210 kg/cm2 con 15% de Residuos de Calcáreos.

Imagen N°38:

Ensayos físicos en probetas de concreto

Anexo 06- Ensayos de resistencia a compresión y flexión

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

REGISTRO Nº : TS-IRC-RC-01 INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO F'C= 210 KG_CM2 - NUEVO CHIMBOTE PÁGINA Nº: 01 de 01 SOLICITA: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

ENSAYO DE RESISTENCIA A LA COMPRESIÓN

(ASTM - C39, MTC E704, NTP-339-034

33/4			Identificac	ión y Caracte	rísticas de la	Probeta					THE PARTY OF	Ensa	yo de Rotura		
Item	Estructura Vaciada	Fecha de Muestreo	f'c (Kg/cm²)	Diametro promedio (mm)	Altura promedio (mm)	Relación Alt/Diám	Fact. Correc.	Área (mm²)	Fecha de Rotura	Edad (dias)	Lectura (Kgf)	Lectura Corregida (Kgf)	f'ce (Kg/cm²)	%	Tipo de Rotura
01		07/12/2024	210	153.8	310.8	2	1	18583	14/12/2024	7.0	28870	29065	156	74	E Z
02		07/12/2024	210	151.9	306.9	2	1	18110	14/12/2024	7	29240	29437	163	77	E
03		07/12/2024	210	151.9	310.0	2	1	18115	14/12/2024	7	29560	29758	164	78	E
04		07/12/2024	210	153.9	311.5	2	ange	18590	21/12/2024	14	34160	34376	185	88	UF.
05	PATRON	07/12/2024	210	152.5	308.2	2	10	18261	21/12/2024	14	34510	34727	190	91	E
06		07/12/2024	210	152.9	307.1	2	1	18359	21/12/2024	14	33720	33934	185	88	В
07		07/12/2024	210	153.1	306.7	2	5 1	18414	04/01/2025	28	42970	43219	235	112	E
08		07/12/2024	210	152.7	308.8	2	eui	18304	04/01/2025	28	42130	42376	232	110	UEU
09	KAL	07/12/2024	210	152.4	307.7	2	,1	18239	04/01/2025	28	39070	39304	215	103	E

TIPO A: Conos relativamente bien formados en ambas bases, menos de 25 mm de grietas entre capas KAE Jugenieria K

AE Jagenieria K

Jagenieria KAE Jagenieria

nieria KAE Jugenieria KAE genieria KAE Jugenieria reru Lazaro KAE Jagenieria KAE Jagenis

rienia KAE Jugenieria STOENIER Augenieria KAE Jugenieria KAE

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS :	INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO	REGISTRO N° : TS-IRC-RC-02
ioneer	F'C= 210 KG_CM2 - NUEVO CHIMBOTE	PÁGINA Nº: 01 de 01
SOLICITA :	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI	
UBICACIÓN:	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	

ENSAYO DE RESISTENCIA A LA COMPRESIÓN

-	- Edito-	7012		MU		1414	9.5		11014		5 7113	(3/8)		MILL	1
54	A.4810	- 1	Identificac	ión y Caracte	erísticas de la	Probeta		078	JAN.	4.1	THE PARTY OF	Ensa	yo de Rotura		
Item	Estructura Vaciada	Fecha de Muestreo	fc (Kg/cm²)	Diametro promedio (mm)	Altura promedio (mm)	Relación Alt/Diám	Fact. Correc.	Área (mm²)	Fecha de Rotura	Edad (dias)	Lectura (Kgf)	Lectura Corregida (Kgf)	f'ce (Kg/cm²)	%	Tipo de Rotura
01		02/01/2025	210	153.0	281.5	2	1	18376	09/01/2025	7	32050	32258	176	84	B
02		02/01/2025	210	152.2	280.5	2	1	18194	09/01/2025	7	31060	31264	172	82	E
03		02/01/2025	210	151.9	282.3	2	1	18122	09/01/2025	7	31990	32197	178	85	E
04	- Jugen	02/01/2025	210	150.3	300.4	2	(1.1)e	17742	16/01/2025	14	34020	34235	193	92	(D. 9
05	5% DE RESIDUOS CALCAREOS	02/01/2025	210	151.4	301.6	2	1	18003	16/01/2025	14	33560	33773	188	89	É
06		02/01/2025	210	151.8	302.2	2	1	18098	16/01/2025	14	34890	35108	194	92	E
07	KAL	02/01/2025	210	154.9	309.6	2	1	18847	30/01/2025	28	43310	43560	231	110	В
08		02/01/2025	210	152.2	305.9	2	uctul	18194	30/01/2025	28	44070	44323	244	116	UE
09	KAL	02/01/2025	210	153.4	307.4	2	10	18482	30/01/2025	28	42890	43139	233	111	В

Descripción del tipo de rotura

KAE Jagenieria K

AE Jugenieria

mieria KAE Jugenieria KAE Jugenie Jugenieria KAE Jugenieria KAE Angenieria KAE Angenieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

REGISTRO Nº : TS-IRC-RC-03

F'C= 210 KG_CM2 - NUEVO CHIMBOTE

PÁGINA Nº : _ 01 de 01

SOLICITA : CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI

ENSAYO DE RESISTENCIA A LA COMPRESIÓN

1			Identificad	ión y Caracte	erísticas de la	a Probeta						Ensa	yo de Rotura	DO-	
Item	Estructura Vaciada	Fecha de Muestreo	fc (Kg/cm²)	Diametro promedio (mm)	Altura promedio (mm)	Relación Alt/Diám	Fact. Correc.	Área (mm²)	Fecha de Rotura	Edad (dias)	Lectura (Kgf)	Lectura Corregida (Kgf)	f'ce (Kg/cm²)	%	Tipo de Rotura
01		03/01/2025	210	153.6	290.0	2	1	18525	10/01/2025	7	33950	34165	184	88	В
02		03/01/2025	210	151.8	298.6	2	1	18098	10/01/2025	7	32140	32348	179	85	Е
03		03/01/2025	210	152.2	300.2	2	1	18194	10/01/2025	7	33080	33291	183	87	E
04		03/01/2025	210	150.3	300.4	2	01/C	17730	17/01/2025	14	35800	36022	203	97	В
05	10% DE RESIDUOS CALCAREOS	03/01/2025	210	151.4	302.1	2	10	18003	17/01/2025	14	35680	35901	199	95	В
06		03/01/2025	210	150.2	301.9	2	1	17719	17/01/2025	14	34550	34767	196	93	В
07		03/01/2025	210	153.1	307.2	2	1	18417	31/01/2025	28	49740	50015	272	129	В
08		03/01/2025	210	152.4	302.6	2	L.C.L.L	18241	31/01/2025	28	47560	47826	262	125	UE
09	KAL	03/01/2025	210	150.9	303.4	2	10	17884	31/01/2025	28	47990	48258	270	128	В

Descripción del tipo de rotura

TIPO A: Conos relativamente hien formados en ambas bases, menos de 25 mm de grietas entre canas

AE Ingenieria

Jugeniente VAE Angenien meria KAE Jugenieria Jugenieria KAE Jugenieria KAE genieria KAE gagenieria Angenieria KAE Angenieria E Jugenieria KAE Jugi

Jugenieria K

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS :	INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO	REGISTRO N° :	TS-IRC-RC-04
ionear	F'C= 210 KG_CM2 - NUEVO CHIMBOTE	PÁGINA Nº :	01 de 01
SOLICITA :	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI		
UBICACIÓN :	Distrito: Nuevo Chimhote - Provincia: Santa - Departamento: Ancash		

ENSAYO DE RESISTENCIA A LA COMPRESIÓN

	260	2011/W		4157		1.410	up 1		1079		0.0	1379		5-74172-W	
154			Identificac	ión y Caracte	erísticas de la	a Probeta					HALL .	Ensa	yo de Rotura		
Item	Estructura Vaciada	Fecha de Muestreo	fc (Kg/cm²)	Diametro promedio (mm)	Altura promedio (mm)	Relación Alt/Diám	Fact. Correc.	Área (mm²)	Fecha de Rotura	Edad (dias)	Lectura (Kgf)	Lectura Corregida (Kgf)	f'ce (Kg/cm²)	%	Tipo de Rotura
01		06/01/2025	210	154.3	299.2	2	1	18692	13/01/2025	710	35870	36092	193	92	B
02		06/01/2025	210	152.7	291.4	2 2	1	18313	13/01/2025	7	35660	35881	196	93	E
03		06/01/2025	210	153.3	292.5	2	1	18458	13/01/2025	7	35140	35359	192	91	В
04	- Jugeni	06/01/2025	210	150.3	300.4	2	uge	17745	20/01/2025	14	39390	39625	223	106	OD.
05	15% DE RESIDUOS CALCAREOS	06/01/2025	210	151.7	301.2	2	1	18074	20/01/2025	14	38050	38280	212	101	E
06		06/01/2025	210	150.5	302.8	2	1	17789	20/01/2025	14	38640	38873	219	104	E
07	KAL	06/01/2025	210	152.1	308.8	2	1	18165	03/02/2025	28	42460	42707	235	112	В
08		06/01/2025	210	150.4	305.8	2	461H	17766	03/02/2025	28	43180	43430	244	116	(E)
09	KAL	06/01/2025	210	151.6	304.9	2	10 L	18050	03/02/2025	28	42960	43209	239	114	E

Descripción del tipo de rotura

KAE Jagenieria K

AE Jugenieria KAE

mieria KAE Jugemieria KAE Jugemie Jugenieria KAE Jugenieria KAE genieria KAE Jugeniere Augenieria KAE Jugenieri

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

: INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

REGISTRO N° : TS-IRC-RC-05 PÁGINA Nº: 01 de 03

F'C= 210 KG_CM2 - NUEVO CHIMBOTE

SOLICITA: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

ENSAYO DE RESISTENCIA A LA COMPRESIÓN

			Identificad	ción y Caract	erísticas de la	a Probeta						Ensa	yo de Rotura	MILL	
Item	Estructura Vaciada	Fecha de Muestreo	fc (Kg/cm²)	Diametro promedio (mm)	Altura promedio (mm)	Relación Alt/Diám	Fact. Correc.	Área (mm²)	Fecha de Rotura	Edad (días)	Lectura (Kgf)	Lectura Corregida (Kgf)	f'ce (Kg/cm²)	%	Tipo de Rotura
01	AL mid	13/02/2025	210	151.5	301.2	2	1	18015	13/03/2025	28	48260	48529	269	128	E
02		13/02/2025	210	150.2	302.1	2	pie?	17719	13/03/2025	28	49110	49382	279	133	В
03		13/02/2025	210	151.6	301.2	2	1	18050	13/03/2025	28	47520	47786	265	126	E
04		13/02/2025	210	152.7	300.5	2	1	18313	13/03/2025	28	48000	48268	264	126	В
05	10% DE RESIDUOS	13/02/2025	210	150.4	301.4	2	1	17766	13/03/2025	28	47330	47596	268	128	E
06	CALCAREOS	13/02/2025	210	151.3	300.6	2	eni ^A	17979	13/03/2025	28	46250	46511	259	123	D
07		13/02/2025	210	150.2	301.2	2	61	17719	13/03/2025	28	47980	48248	272	130	A
08	ienia	13/02/2025	210	150.8	300.5	2	1	17860	13/03/2025	28	46820	47084	264	126	В
09	agent DE	13/02/2025	210	151.6	300.9	2 1	1	18050	13/03/2025	28	47390	47656	264	126	E
10	enia M	13/02/2025	210	150.2	301.7	2	1	17719	13/03/2025	28	46890	47154	266	127	E

Descripción del tipo de rotura

Corte Conc Cono y Corte Columnar

KAE Jugenieria K

KAE Jugenieria K

mieria KAE Jugenieria K

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO REGISTRO N° : TS-IRC-RC-05 F'C= 210 KG_CM2 - NUEVO CHIMBOTE PÁGINA Nº: 02 de 03

SOLICITA: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTAL UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

ENSAYO DE RESISTENCIA A LA COMPRESIÓN

		: ATTEN	Identificad	ción y Caract	erísticas de la	Probeta	UA .		ionus			Ensa	yo de Rotura	ner U	H
Item	Estructura Vaciada	Fecha de Muestreo	f'c (Kg/cm²)	Diametro promedio (mm)	Altura promedio (mm)	Relación Alt/Diám	Fact. Correc.	Área (mm²)	Fecha de Rotura	Edad (dias)	Lectura (Kgf)	Lectura Corregida (Kgf)	f'ce (Kg/cm²)	%	Tipo de Rotura
11	LAL mia	13/02/2025	210	151.7	302.3	2	1	18074	13/03/2025	28	47140	47405	262	125	D
12	Jugenie - Du	13/02/2025	210	150.8	301.7	2	plan.	17860	13/03/2025	28	48550	48820	273	130	ile.
13	KAL	13/02/2025	210	151.4	300.5	2	1	18003	13/03/2025	28	47880	48148	267	127	В
14	- nugerie	13/02/2025	210	152.2	301.6	2	1	18194	13/03/2025	28	47130	47395	261	124	E
15	10% DE RESIDUOS	13/02/2025	210	152.5	300.8	2	1	18265	13/03/2025	28	48990	49262	270	128	В
16	CALCAREOS	13/02/2025	210	152.3	301.4	2	grap.	18218	13/03/2025	28	49010	49282	271	129	С
17	WAE	13/02/2025	210	151.8	302.6	2	61	18098	13/03/2025	28	47860	48128	266	127	E
18	ienia	13/02/2025	210	150.9	301.3	2	1	17884	13/03/2025	28	46580	46843	262	125	E
19	agent NE	13/02/2025	210	151.4	302.8	200	1	17993	13/03/2025	28	48100	48368	269	128	С
20	enia	13/02/2025	210	152.4	301.6	2	1	18241	13/03/2025	28	48700	48971	268	128	В

KA - Jugenieria

Las muestras de probetas fueron proporcionadas por el diente

mieria KAE Jugenieria KAE

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

REGISTRO N° : TS-IRC-RC-05

F'C= 210 KG_CM2 - NUEVO CHIMBOTE

PÁGINA Nº: 03 de 03

SOLICITA: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

ENSAYO DE RESISTENCIA A LA COMPRESIÓN (ASTM - C39, MTC E704, NTP-339-034)

	and the same	: order	Identificad	ción y Caract	erísticas de la	a Probeta	CON.		ioner			Ensa	yo de Rotura	net!	N
Item	Estructura Vaciada	Fecha de Muestreo	fc (Kg/cm²)	Diametro promedio (mm)	Altura promedio (mm)	Relación Alt/Diám	Fact. Correc.	Área (mm²)	Fecha de Rotura	Edad (dias)	Lectura (Kgf)	Lectura Corregida (Kgf)	f'ce (Kg/cm²)	%	Tipo de Rotura
21	NAL mid	13/02/2025	210	150.1	301.4	2	1	17695	13/03/2025	28	47440	47706	270	128	В
22	quality of	13/02/2025	210	150.2	300.8	2	dia.	17719	13/03/2025	28	46230	46491	262	125	В
23	KAL	13/02/2025	210	151.8	301.2	2	1	18098	13/03/2025	28	49100	49372	273	130	D
24	- numeric	13/02/2025	210	151.2	302.2	2	1	17955	13/03/2025	28	48770	49041	273	130	E
25	10% DE RESIDUOS	13/02/2025	210	150.3	301.6	2	1	17742	13/03/2025	28	47320	47586	268	128	В
26	CALCAREOS	13/02/2025	210	150.4	300.3	2	grip 0	17766	13/03/2025	28	46980	47244	266	127	В
27	WALLOW	13/02/2025	210	152.4	302.5	2	E1 8	18241	13/03/2025	28	47920	48188	264	126	E
28	. ienia	13/02/2025	210	152.8	301.4	2	1	18337	13/03/2025	28	48710	48981	267	127	E
29	agent DE	13/02/2025	210	150.2	301.2	2	1	17719	13/03/2025	28	46520	46782	264	126	В
30	eria .	13/02/2025	210	152.7	300.3	2	1	18313	13/03/2025	28	48320	48589	265	126	E

Descripción del tipo de rotura

KA = Jugenieria K

mieria KAE Jugenieria KAE

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-01
1 × V	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	WA DAY	War	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	FTALI	10	La cont	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	03/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO

Estructura Vaciada	Luz entre		478 147	Identificación y Características de la Probeta Ensayo de Rotura								
	apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (dias)	Lectura Dial (kgf)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	%	Modulo Rotura Promedio (Mpa)	Observación
	450		156	10/02/2025	7	2330	23777	2.9	29	14	51-5-	Falla dentro del 1/3 medi de la viga
PATRON	450	155	154	10/02/2025	7	2433	24791	3.0	31	15	3.0	Falla dentro del 1/3 medio de la viga
KAL	450 154		154	10/02/2025	7	7 2431 24771		3,1	31	15	N.	Falla dentro del 1/3 medio de la viga
servaciones y/o rec	omendaciones	: 014Å	Chin	0.00	DIE!	V. E. P.	mil	MLS.		je.	2	Rev. H.L.V.
	Las muestras	de vigas fu	ueron real	izadas por el perso	onal tecnic	co de labora	torio.	TO E				Ejec. H.L.D.
		ia					ia					
					00	: MADO			-1	and e		
				4	7	AK						
	KAE	PATRON 450 450 servaciones y/o recomendaciones	PATRON 450 155 450 154 servaciones y/o recomendaciones:	PATRON 450 155 154 450 154 154 servaciones y/o recomendaciones:	PATRON 450 155 154 10/02/2025 450 154 154 10/02/2025 servaciones y/o recomendaciones:	PATRON 450 155 154 10/02/2025 7 450 154 154 10/02/2025 7 servaciones y/o recomendaciones:	PATRON 450 155 154 10/02/2025 7 2433 450 154 154 10/02/2025 7 2431 servaciones y/o recomendaciones:	PATRON 450 155 154 10/02/2025 7 2433 24791 450 154 154 10/02/2025 7 2431 24771	PATRON 450 155 154 10/02/2025 7 2433 24791 3.0 450 154 154 10/02/2025 7 2431 24771 3.1 servaciones y/o recomendaciones:	PATRON 450 155 154 10/02/2025 7 243/3 24791 3.0 31 450 154 154 10/02/2025 7 243/1 24771 3.1 31 servaciones y/o recomendaciones: Las muestras de vigas fueron realizadas por el personal tecnico de laboratorio.	PATRON 450 155 154 10/02/2025 7 2433 24791 3.0 31 15 450 154 154 10/02/2025 7 2431 24771 3.1 31 15 servaciones y/o recomendaciones:	PATRON 450 155 154 10/02/2025 7 2433 24791 3.0 31 15 3.0 450 154 154 10/02/2025 7 2431 24771 3.1 31 15 servaciones y/o recomendaciones: Las muestras de vigas fueron realizadas por el personal tecnico de laboratorio.

KAE Jugenieria KAE Jugenieria

genioria KAE Jugenioria

CAE Jugenieria WAE Ju

agenieria KAE Juganie

Jugeneria RAE Jugenieria RAE Jugenie magentaria MAE Jagentoria MAE Jagent Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Jugenieria KAE Jugeni

Ingenieria KAE Jugenieria KAE Jugeni

Merica RAE Jugenieria RAE RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE Jugenieria RAE R

Victor Alfords Hoffera Lazaro
Machined Civi

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

genteria KAE Jugenieria

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-02
F. W	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	PAGINA N°_	01 de 01		
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	EFTALI	10 10	Ren.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	01/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO (ASTM C-78; MTC E-709)

184	A 10	Identificación y C	an accel ISUC	as ue la Fit	T I	on at the		-0.	CHILD.	Elisa	yo de Rot	Modulo	- HUDO
Item	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (días)	Lectura Dial (kgf)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	*	Rotura Promedio (Mpa)	Observación
01		450	156	155	15/02/2025	14	2980	30175	3.6	37	18	51-0-	Falla dentro del 1/3 medio de la viga
02	PATRON	450	154	156	15/02/2025	14	2886	29250	3.5	36	17	3.6	Falla dentro del 1/3 medio de la viga
03		450	155	155	15/02/2025	14	2984	30215	3.7	37	18	K	Falla dentro del 1/3 medio de la viga

Jugenieria KAE genioria KAE Ingenieria

nieria KAE Juganie

AE Jugenienia KAI

KAE Jugenieria KAE Jugenieria Ingenieria MAE Jugenieria MAE Jugeni Tugenteria RAE Jugenteria RAE Jugent Jugeneria RAE Jugenieria KAE Jugenie

nerea Mar Jagenieria and Judgenionia KAE Judgenionia KAE Judgenionia KAE Judgenionia KAE Judgenionia KAE Judgenionia KAE Judgenionia Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-03
1 K	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	al Br	War	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	FTALI	10 1A	Ren.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	20/01/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO

00		Identificación y C	aracterística	s de la Pro	obeta		W. Car			Ensa	yo de Rot	ura	
Item	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (días)	Lectura Dial (kgf)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	*	Modulo Rotura Promedio (Mpa)	Observación
01		450	153	152	17/02/2025	28	3190	32243	4.1	42	20	61-6	Falla dentro del 1/3 medio de la viga
02	PATRON	450	152	151	17/02/2025	28	3100	31357	4.1	41	20	4.1	Falla dentro del 1/3 medio de la viga
03		450	154	152	17/02/2025	28	3150	31849	4.1	41	20	14	Falla dentro del 1/3 medio de la viga

quaenienia

genieria KAE Jugenieria Jugenieria KAE Ingenieria KAE Jugenieria KAE Jugeni Merica Presenta RAE Jugenieria RAE J Jugenieria Kat Jugeni

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-04
10 8	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	26 32	1/1/2	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	FTALI	10 14	Res.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	04/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO (ASTM C-78: MTC E-709)

-01	le	dentificación y C	aracterística	s de la Pro	obeta		W. Carl			Ensa	yo de Rot	ura	
Item	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (días)	Lectura Dial (kg/l)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	*	Modulo Rotura Promedio (Mpa)	Observación (1)
01	ionia	450	149	150	11/02/2025	7	2340	23875	3.2	33	16	3.2	Falla dentro del 1/3 medio de la viga
02	Patron + 5% de Residuos Calcareos	450	149	149	11/02/2025	7	2310	23580	3.2	33	16	3.2	Falla dentro del 1/3 medio de la viga
03	KAL	450	148	150	11/02/2025	7	2290	23383	3.2	32	15	3.2	Falla dentro del 1/3 medio de la viga

Ingenieria HAE Jugenieria HAE Jugeni Merica Presidente Ingenieria MAE Ing

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

genieria KAE

CENTER

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-05
118	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	al Blan	1/1/20	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	FTALI	10 10	Les.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	03/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO

01	ld	lentificación y C	aracterística	as de la Pro	obeta		MALAT			Ensa	yo de Rot	шга	
Item	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (días)	Lectura Dial (kgif)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	%	Modulo Rotura Promedio (Mpa)	Observación
01	ionia	450	152	155	17/02/2025	14	3300	33325	4.1	42	20	4.1	Falla dentro del 1/3 medio de la viga
02	Patron + 5% de Residuos Calcareos	450	151	154	17/02/2025	14	3250	32833	4.1	42	20	4.1	Falla dentro del 1/3 medio de la viga
03	KAL	450	152	155	17/02/2025	14	337'0	34015	4.2	43	20	4.2	Falla dentro del 1/3 medio de la viga
	Observaciones y/o reco			ueron real	lizadas por el perso	onal tecni	co de labora	itorio.	TO E				Rev: H.L.V. Ejec. H.L.D.
			ia V					ia s			Fall or	iente	a Minia
						44	VALE				1		
				ia	1 //		la se			(6	ENIE		mid Min

KAE Jugenieria KAE Jugenieria

genioria KAE Ingenioria

Jugenieria KAE 1

enioria KAE Juganie

KAE Jugenieria KAI

Jugenieria Kat Jugeni magentonia KAE Jagentonia KAE Jagent Jugenieria KAE Jugeni Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Ingenieria MAE Jugenieria MAE Jugeni

Tugentoria HAE Jugentoria HAE Jugent

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-06
14 8	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	at the	14/20	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	EFTALI	10 10	Lo.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	30/01/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO

-010	ld	lentificación y C	aracterística	s de la Pro	obeta		The Carl			Ensa	yo de Rote	ıra	
Item	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (días)	Lectura Dial (kg/f)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	%	Modulo Rotura Promedio (Mpa)	Observación
01		450	149	150	27/02/2025	28	3380	34113	4.6	47	22	4.6	Falla dentro del 1/3 medio de la viga
02 F	Patron + 5% de Residuos Calcareos	450	150	151	27/02/2025	28	3410	34408	4.5	46	22	4.5	Falla dentro del 1/3 medio de la viga
03		450	151	150	27/02/2025	28	3360	33916	4.5	46	22	4.5	Falla dentro del 1/3 medio de la viga

Jugenieria KAE Ju

genioria KAE Jugenieria Jugenieria KAE Ingenieria HAE Jugenieria HAE Jugeni genieria KAE Ingenieria KAE Ingenieria KAE Ingenieria more Ingenioria RAE I

quaenienia

KAK Juganieria KAK renioria KAE Juganie gagenieria KAE KAE Jugenieria KAI GENIER

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-07
1 K	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	W Chr	1/20	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	EFTALI	10 10	Re.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	06/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO (ASTM C-78; MTC E-709)

001	le le	dentificación y C	aracterística	as de la Pro	obeta		Mr.Car		Will Street	Ensa	yo de Rot	ига	1072
Item	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (días)	Lectura Dial (kg/f)	Carga Måxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	%	Modulo Rotura Promedio (Mpa)	Observación
01	inia	450	151	150	13/02/2025	7	2820	28600	3.8	39	18	3.8	Falla dentro del 1/3 medi de la viga
02	Patron + 10% de Residuos Calcareos	450	151	150	13/02/2025	7	2940	29782	3.9	40	19	3.9	Falla dentro del 1/3 medi de la viga
03	Kar	450	150	150	13/02/2025	7	2810	28502	3.8	39	18	3.8	Falla dentro del 1/3 medi de la viga
13	Observaciones y/o reco	omendaciones	. out	grid	0.00	N.C.	ale T	autic	ned &	n n01	de	4	Rev. HLV.
		Las muestras	de vigas fi	ueron real	izadas por el perso	onal tecni	co de labora	itorio.	TOE!				Ejec. H.L.D.
								ia m					
					LAK						1	BE	
					1	0 }				E		1	ania so

genieria KAE Jugante

HOENIER

genioria KAE Ingenieria KAE Jugenieria KAE Jugenieria Jugenieria KAE Ingenieria MAE Jugenieria MAE Jugeni Tugenteria RAE Jugenteria RAE Jugent Jugeneria MAE Jugenieria MAE Jugenie

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-08
	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	1 B	WIN	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	FTALI	10 10	Re.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	05/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO

	Çiri.	ientificación y C	ar accerts tic.	as ue la Fic	Deta		17.86		with the	Erisa	yo de Rota		100000
ltem	Estru <mark>ct</mark> ura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (días)	Lectura Dial (kgil)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	O.	Modulo Rotura Promedio (Mpa)	Observación
01	ioned	450	149	149	19/02/2025	14	3410	34408	4.7	48	23	4.7	Falla dentro del 1/3 medio de la viga
02	Patron + 10% de Residuos Calcareos	450	150	150	19/02/2025	14	332!0	33522	4.5	46	22	4.5	Falla dentro del 1/3 medio de la viga
03	KAL	450	149	150	19/02/2025	14	3300	33325	4.5	46	22	4.5	Falla dentro del 1/3 medio de la viga

Rev. Ejec. Jugenieria KAE Jugenieria KAE Jugenieria

genieria KAE Juganie

KAE Jugenieria KAI

Jugenieria KAE Jugeni rena maria Mar Jugenieria Mar Jugeni Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Ingenieria MAE Jugenieria MAE Jugeni

Merica Pre Jugenieria RAE Jugenieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-09
1 × V	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	al Br	1/ 1/2	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	EFTALI	10 10	Lo.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	31/01/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO

Item		denuncación y C	aracterística	s de la Pro	beta		The Cart			Ensa	yo de Rota	ıra	
- 2	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (días)	Lectura Dial (kg/l)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	*	Modulo Rotura Promedio (Mpa)	Observación
01	wients.	450	150	150	28/02/2025	28	4010	40315	5.4	55	26	5.4	Falla dentro del 1/3 medio de la viga
02	Patron + 10% de Residuos Calcareos	450	150	149	28/02/2025	28	392:0	39429	5.3	54	26	5.3	Falla dentro del 1/3 medio de la viga
03	Kar	450	151	149	28/02/2025	28	387'0	38936	5.2	53	25	5.2	Falla dentro del 1/3 medio de la viga
			- nu	ia l	Jai M		AE			HOE	IE AL	AE	ioria KAE
				44 0			UL-7			KAE	67	100	

Jugenieria KAE 1

Ingenieria KAE Jugenieria KAE Jugeni Merica Tragentorica RAE Jugentorica RAE Jugent Jugentoria KAE Jugent

genieria KAE Juganie KAE Jugenieria KAI

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-10
1, 8	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	21 B	16 18	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	EFTALI	10 14	Re.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	07/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO

Estructura Vaciada Estructur	Estructura Vaciada Estruct	Estructura Vaciada	0.00	United Id	lentificación y C	aracterística	as de la Pro	obeta		A PLANT		and Di	Ensa	yo de Rot	ıra 💮 💮	10112
Patron + 15% de Residuos Calcareos 450 150 152 14/02/2025 7 2690 27321 3.5 36 17 3.5 Falla dentro del 1/3 medio de la viga 3 450 150 153 14/02/2025 7 2650 26927 3.5 35 17 3.5 Falla dentro del 1/3 medio de la viga 3 Observaciones y/o recomendaciones:	02 Patron + 15% de Residuos Calcareos 450 150 152 14/02/2025 7 2690 27321 3.5 36 17 3.5 Falla dentro del 1/3 medio de la viga 03 450 150 153 14/02/2025 7 2690 26927 3.5 35 17 3.5 Falla dentro del 1/3 medio de la viga 05 150 150 153 14/02/2025 7 2690 26927 3.5 35 17 3.5 Falla dentro del 1/3 medio de la viga 05 150 150 150 150 150 150 150 150 150	Patron + 15% de Residuos Calcareos 450 150 152 14/02/2025 7 2650 27321 3.5 36 17 3.5 Falla dentro del 1/3 medio de la viga 3 450 150 153 14/02/2025 7 2650 26927 3.5 35 17 3.5 Falla dentro del 1/3 medio de la viga 3 Observaciones y/o recomendaciones:	Item	Estructura Vaciada				Fecha de Rotura		Dial	Máxima	Rotura		**************************************	Rotura Promedio	Observación
02 Residuos Calcareos 450 150 152 14/02/2025 7 2650 26927 3.5 36 17 3.5 de la viga 03 450 150 153 14/02/2025 7 2650 26927 3.5 35 17 3.5 Falla dentro del 1/3 medio de la viga Observaciones y/o recomendaciones:	02 Residuos Calcareos 450 150 152 14/02/2025 7 2650 26927 3.5 36 17 3.5 de la viga 03 450 150 153 14/02/2025 7 2650 26927 3.5 35 17 3.5 Falla dentro del 1/3 medio de la viga Observaciones y/o recomendaciones:	Residuos Calcareos 450 150 152 14/02/2025 7 2650 26927 3.5 36 17 3.5 de la viga 03 450 150 153 14/02/2025 7 2650 26927 3.5 35 17 3.5 Falla dentro del 1/3 medio de la viga Observaciones y/o recomendaciones:	01	ionia	450	151	152	14/02/2025	7	2740	27813	3.6	37	17	3.6	
03 450 150 153 14/02/2025 7 2650 26927 3.5 35 17 3.5 de la viga Observaciones y/o recomendaciones:	03 430 130 130 130 14/02/2025 / 2650 2692/ 3.5 35 1/ 3.5 de la viga Observaciones y/o recomendaciones:	03 450 150 153 14102/2025 7 2650 26927 3.5 35 17 3.5 de la viga Observaciones y/o recomendaciones:	02		450	150	152	14/02/2025	7	2690	27321	3.5	36	17	3.5	
Nev. H.L.V.	Rev. H.L.V.	Rev. H.L.V.	03	Kar	450	150	153	14/02/2025	7	2650	26927	3.5	35	17	3.5	
	mienta acuteria quienta amiuria mienta mienta	wienia Jugenienia Jugenienia Jugenienia Jugenienia Jugenienia		Observaciones y/o reco			ueron real	izadas por el perso	onal tecnic	co de labora	itorio.	ME!				

Juganienia KAE

MENIEN

KAE Jugenioria KAE Jugenioria

genioria KAE Ingenieria

Jenieria KAE Jugenieria KAE Jugenieria KAE

genieria KAE Juganie

KAE Jugenieria KAI

Jugeneria Rat Jugenieria Kat Jugenie Ingenieria MAE Jugenieria MAE Jugeni Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Ingenieria MAE Jugenieria MAE Jugeni

Merica Presenta RAE Jugenieria RAE J

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-11
TA V	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	W. C. C.	The Part	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	EFTALI	10 10	Res.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	08/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO (ASTM C-78; MTC E-709)

00	ld ld	lentificación y C	aracterística	as de la Pro	obeta		ILPA.			Ensa	yo de Rot	ıra	
Item	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (días)	Lectura Dial (kgf)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	**************************************	Modulo Rotura Promedio (Mpa)	Observación ()
01		450	150	150	22/02/2025	14	2940	29782	4.0	40	19	4.0	Falla dentro del 1/3 medio de la viga
02	Patron + 15% de Residuos Calcareos	450	149	149	22/02/2025	14	302!0	30569	4.2	42	20	4.2	Falla dentro del 1/3 medio de la viga
03		450	149	150	22/02/2025	14	3050	30864	4.1	42	20	4.1	Falla dentro del 1/3 medio de la viga

Jugenieria KAE Jugenieria

Jagenieria KAE genioria KAE Ingenieria

egenieria KAE Juganie

ia KAE Jugenieria KAI

GENIEN

Jugenteria RAE Jugent manufacture ingenieria MAE Jugenieria MAE Jugenieri Jugenieria KAE Jugeni Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Ingenieria MAE Jugenieria MAE Jugeni

Tugenteria MAE Jugenteria MAE Jugent

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-12
1 × W	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	al Br	War	PAGINA N°	01 de 01
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	FTALI	10 1A	Ren	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	25/01/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO

Estructura Vaciada Cura mem apoyos (mm) Cura mem apoyos (mm) Fecha de Rotura Fecha de Rotura	Estructura Vaciada		Jan Id	lentificación y C	aracterística	as de la Pro	beta		The state of		and Coll	Ensa	yo de Rota	ıra	101120
Patron + 15% de Residuos Calcareos 450 149 150 22/02/2025 28 3400 34310 4.6 47 22 4.6 Falla dentro del 1/3 medio de la viga 450 150 150 22/02/2025 28 3450 34802 4.6 47 23 4.6 Falla dentro del 1/3 medio de la viga Observaciones y/o recomendaciones:	02 Patron + 15% de Residuos Calcareos 450 149 150 22/02/2025 28 3400 34310 4.6 47 22 4.6 Falla dentro del 1/3 medio de la viga 03 450 150 150 22/02/2025 28 3450 34802 4.6 47 23 4.6 Falla dentro del 1/3 medio de la viga 05 05 cervaciones y/o recomendaciones:	ltem	Estructura Vaciada				Fecha de Rotura		Dial	Máxima	Rotura		0,4°	Rotura Promedio	Observación
2 Residuos Calcareos 450 149 150 22/02/2025 28 3400 34310 4.6 47 22 4.6 de la viga 3 450 150 150 22/02/2025 28 3450 34802 4.6 47 23 4.6 Falla dentro del 1/3 medio de la viga Observaciones y/o recomendaciones:	02 Residuos Calcareos 450 149 150 22/02/2025 28 3400 34310 4.6 47 22 4.6 de la viga 03 450 150 150 22/02/2025 28 3450 34802 4.6 47 23 4.6 Falla dentro del 1/3 medio de la viga Observaciones y/o recomendaciones:	01	- ionia	450	149	151	22/02/2025	28	3390	34211	4.5	46	22	4.5	
Observaciones y/o recomendaciones:	Observaciones y/o recomendaciones:	02		450	149	150	22/02/2025	28	3400	34310	4.6	47	22	4.6	
New PLLY:	Rev. n.l.v.	03	Kar	450	150	150	22/02/2025	28	3450	34802	4.6	47	23	4.6	
	mieria inia inia inia	N	Observaciones y/o reco			ueron real	izadas por el perso	onal tecnio	co de labora	itorio.	TAKE !	Juger	NE.	1009	
The Juden E Juden E Juden E Juden E Juden							, ale	1					190	5	

Jugenieria KAE

genieria KAE Jugenieria

genieria KAE Juganie

Jugenieria Kat Jugeni Ingenieria MAE Jagenieria MAE Jageni Jugenieria KAE Jugeni Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Jugenieria MAE Jugeni

Ingenieria KAE Jugenieria KAE Jugeni

Merica Presenta RAE Jugenieria RAE J

Jugenieria KAE

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS "INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDADES FÍSICO - MECANICOS DEL CONCRETO REGISTRO Nº TS-IRC-RF-13 F'c 210 Kg/cm2 - NUEVO CHIMBOTE' PAGINA N° 01 de 03 SOLICITA CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI UBICACIÓN Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash RESISTENCIA FECHA MOLDEO 13/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO (ASTM C-78; MTC E-709)

ni	United to	lentificación y C	aracterística	as de la Pro	obeta		MILLER		1112	Ensa	yo de Rot	ura	10112
Item	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (dias)	Lectura Dial (kg/f)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	C.	Modulo Rotura Promedio (Mpa)	Observación (1)
01	ionia	450	150	150	13/03/2025	28	3880	39000	5.2	53.0	25	5.2	Falla dentro del 1/3 medio de la viga
02	ugen c	450	149	151	13/03/2025	28	3940	39626	5.2	53.5	25	5.2	Falla dentro del 1/3 medio de la viga
03	KAR	450	150	150	13/03/2025	28	3960	39822	5.3	54.1	26	5.3	Falla dentro del 1/3 medio de la viga
04	- Jugens	450	150	150	13/03/2025	28	4030	40450	5.4	55.0	26	5.4	Falla dentro del 1/3 medio de la viga
05	Patron + 10% de	450	151	151	13/03/2025	28	3960	39800	5.2	53.0	25	5.2	Falla dentro del 1/3 medio de la viga
06	Residuos Calcareos	450	150	151	13/03/2025	28	3860	38750	5.1	52.0	25	5.1	Falla dentro del 1/3 medio de la viga
07	KAE !	450	151	150	13/03/2025	28	3930	39527	5.2	53.4	25	5.2	Falla dentro del 1/3 medio de la viga
08	ieria	450	149	151	13/03/2025	28	3980	40019	5.3	54.1	26	5.3	Falla dentro del 1/3 medio de la viga
09	year DE	450	150	151	13/03/2025	28	3850	38740	5.1	52.0	25	5.1	Falla dentro del 1/3 medio de la viga
10	ned to	450	151	150	13/03/2025	28	3940	39626	5.2	53.5	25	5.2	Falla dentro del 1/3 medio de la viga

AE Jugenieria KAE Jugenieria

Jugania KAE Victor Alfertia Harrery Lazaro
Ingenied Civi.
REG CH Nº 15007 Ingenieria NAE Jugenieria NAE Jugenieria NAE Jugenieria NAE Jugenieria genieria KAE Jugenieria KAE Jugenieria Ingenieria KAE Ingenieria KAE Ingenieria - Jugenieria KAE Jugenieria KAE Jugenieria

CENTER

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-13
1 V	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	AL END	MAN	PAGINA N°	02 de 03
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NE	FTALI	10 14	Ro.	
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	15/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO

00	U. N	dentificación y C	aracterístic	as de la Pro	obeta		Who		THE PARTY OF	Ensa	yo de Rot	ига	3092
Item	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (dias)	Lectura Dial (kgif)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	*	Modulo Rotura Promedio (Mpa)	Observación
11		450	150	150	15/03/2025	28	4100	41201	5.5	56.0	27	5.5	Falla dentro del 1/3 medio de la viga
12		450	149	151	15/03/2025	28	3980	40019	5.3	54.1	26	5.3	Falla dentro del 1/3 medio de la viga
13		450	150	151	15/03/2025	28	3850	38740	5.1	52.0	25	5.1	Falla dentro del 1/3 medio de la viga
14		450	151	151	15/03/2025	28	3950	39730	5.2	53.0	25	5,2	Falla dentro del 1/3 medio de la viga
15	Patron + 10% de	450	150	150	15/03/2025	28	4030	40480	5.4	55.0	26	5.4	Falla dentro del 1/3 medio de la viga
16	Residuos Calcareos	450	150	150	15/03/2025	28	3910	39300	5.2	53.4	25	5.2	Falla dentro del 1/3 medio de la viga
17		450	150	151	15/03/2025	28	3960	39822	5.2	53.4	25	5.2	Falla dentro del 1/3 medio de la viga
18		450	152	149	15/03/2025	28	3980	40019	5.3	54.4	26	5.3	Falla dentro del 1/3 medio de la viga
19		450	151	150	15/03/2025	28	4010	40325	5.3	54.5	26	5.3	Falla dentro del 1/3 medio de la viga
20		450	150	150	15/03/2025	28	4100	41201	5.5	56.0	27	5.5	Falla dentro del 1/3 medio de la viga

Las muestras de vigas fue

Jugenieria KAE

genieria KAE Ingenieria Jugenieria KAE Jugeni Vicear Alfondo Morreru Lazaro Indianiera Com. Reg Cirl Nº 118087 genieria NAE Jugenioria NAE Jugenieria NAE AE Jugenieria KAE Jugenieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

TESIS	"INFLUENCIA DE LOS RESIDUOS CALCAREOS EN PROPIEDAD	ES FÍSICO - MECANICO	OS DEL CONCRETO	REGISTRO N°	TS-IRC-RF-13
1 N	F'c 210 Kg/cm2 - NUEVO CHIMBOTE"	at the	War	PAGINA N°	03 de 03
SOLICITA	CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI				
UBICACIÓN	Distrito: Chimbote - Provincia: Santa - Derpartamento: Ancash	RESISTENCIA	f'c = 210 kg/cm2	FECHA MOLDEO	17/02/2025

FLEXIÓN DEL CONCRETO EN VIGAS SIMPLEMENTE APOYADAS CON CARGAS A LOS TERCIOS DEL TRAMO (ASTM C-78; MTC E-709)

01	Id.	lentificación y C	aracterístic	as de la Pro	obeta		MELLAT			Ensa	yo de Rot	ura	
tem	Estructura Vaciada	Luz entre apoyos (mm)	Ancho (mm)	Alto (mm)	Fecha de Rotura	Edad (dias)	Lectura Dial (kg/l)	Carga Máxima (N)	Módulo de Rotura (MPa)	f'c (kg/cm2)	e K	Modulo Rotura Promedio (Mpa)	Observación
21	ionia	450	151	149	17/03/2025	28	3960	39822	5.3	54.5	26	5.3	Falla dentro del 1/3 medio de la viga
22	ugen = 1	450	150	150	17/03/2025	28	4030	40470	5.4	55.0	26	5.4	Falla dentro del 1/3 medio de la viga
23	KAR	450	151	151	17/03/2025	28	3960	39800	5.2	53.0	25	5.2	Falla dentro del 1/3 medio de la viga
24	- Jugens	450	151	150	17/03/2025	28	3930	39527	5.2	53.4	25	5.2	Falla dentro del 1/3 medio de la viga
25	Patron + 10% de	450	151	151	17/03/2025	28	3960	39750	5.2	53.0	25	5.2	Falla dentro del 1/3 medio de la viga
26	Residuos Calcareos	450	150	150	17/03/2025	28	3880	39015	5.2	53.0	25	5.2	Falla dentro del 1/3 medio de la viga
27	KAE	450	151	151	17/03/2025	28	3990	40100	5.2	53.4	25	5.2	Falla dentro del 1/3 medio de la viga
28	ienia	450	150	151	17/03/2025	28	3960	39822	5.2	53.4	25	5.2	Falla dentro del 1/3 medio de la viga
29	MA DE	450	151	149	17/03/2025	28	3960	39822	5.3	54.5	26	5.3	Falla dentro del 1/3 medio de la viga
30	nid To	450	151	150	17/03/2025	28	4050	40708	5.4	55.0	26	5.4	Falla dentro del 1/3 medio de la viga

Jugania KAE

Jugenieria KAE

vieria KAE Jugenie

NAE Jugenieria NAE Jugenieria KAE Jugeni Augenieria MAE Jugenieria MAE Jugeni genieria KAE Ingenioria KAE Ingenieria KAE The Juganiania KAE Juganiania KAE Juganiania nieria KAE Ingenieria AE Jugenieria KAE Jugeninta

Anexo 07- Ensayos físicos de las probetas

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

KAE Ingeniería

Registro Indecopi Nº 028979-2021/DSD

SIS : INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO REGISTRO Nº ; TS-IRC-DAP-01

F'C= 210 KG_CM2 - NUEVO CHIMBOTE PÁGINA N°: 01 de 01

SOLICITA: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

METADO DE ENSAYO PARA DETERMINAR LA DENSIDAD, ABSORCION Y PORCENTAJE DE VACIOS EN CONCRETO ENDURECIDO (NTP 339.187)

INFORMACION DE LA MUESTRA A ENSAYAR

Muestra : Patrón

Calculos do Ensavos

A : Masa de la muestra seca al horno

- B : Masa de la muestra saturada superficialmente seca, despues de la inmersión
- C : Masa de la muestra superficialmente seca, despues de la inmersión y ebullición
- D: Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición

Absoción despues de la inmersión
Densidad Seca

(B-A)/A) X 100 (A/(C-D))p Densidad Aparente

Volumen de Poros Permeables (Vacios)

ρ: Densidad de agua

g₁: Densidad seca

g₂: Densidad aparente

(A/(A-D))p (C-A)/(C-D) X 100

Ensavos Realizados

10000	Α	Masa de la muestra seca al horno	12447	gr.
M	В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12578	gr.
e	С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12602	gr.
s	D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7269	gr.
t	ρ	Densidad de agua	1	mg/m3
a	g ₁	Densidad seca	2.33	mg/m ³
	92	Densidad aparente	2.40	mg/m3
N°	-	Absoción despues de la inmersión	40 1.1	%
01	- 1	Volumen de Poros Permeables (Vacios)	2.9	%
10.		The state of the s	25	100
М	A	Masa de la muestra seca al horno	12198	gr.
200	В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12334	gr.
e	С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12375	gr.
s	D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7088	gr.
t / 0	ρ	Densidad de agua	8 1157	mg/m3

e	C	Iwasa de la muestra supericialmente seca, después de la inmersion y edullición	12375	gr.
s	D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7088	gr.
t 8	ρ	Densidad de agua	1154	mg/m3
a	g ₁	Densidad seca	2.31	mg/m ³
	g ₂	Densidad aparente	2.39	mg/m3
N°	STAGE	Absoción despues de la inmersión	1.1	%
02	-	Volumen de Poros Permeables (Vacios)	3.3	%

100	A	Masa de la muestra seca al horno	12337	gr.
1	В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12458	gr.
	С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12483	gr.
	D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7064	gr.
JA 0 1/4	ρ	Densidad de agua	1000	mg/m3
47	g ₁	Densidad seca	2.28	mg/m ³
. 1	g ₂	Densidad aparente	2.34	mg/m3
A. C.	7	Absoción despues de la inmersión	1.0	%
1	-	Volumen de Poros Permeables (Vacios)	2.7	%

и	Α	Masa de la muestra seca al horno	12488 gr.
	В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12614 gr.
	С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12642 gr.
	D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7291 gr.
	ρ	Densidad de agua	1 mg/m
12/15	91	Densidad seca	2.33 mg/m
10	g ₂	Densidad aparente	2.40 mg/m
N°	-	Absoción despues de la inmersión	1.0 %
4	N. 10-	Volumen de Poros Permeables (Vacios)	2.9 %

Viceat Alfonso Harrera Lázaro

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com n.aevieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

KAE Ingeniería

Registro Indecopi Nº 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

REGISTRO N°: TS-IRC-EXU-01

F'C= 210 KG_CM2 - NUEVO CHIMBOTE

01 de 01 PÁGINA Nº :

CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI SOLICITA :

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

EXUDACIÓN DEL CONCRETO (NTP 339.077)

INFORMACION DE LA MUESTRA A ENSAYAR

Método: Muestra Consolidada por Varillado Muestra: Patrón

Calculos de Ensavos

V₁: Volumen de agua exudada durante el intervalo de tiempo

A: Area Expuesta del concreto

M : Masa total de la tanda

w : Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)

S: Masa de la muestra

D : Volumen de agua en la tanda

Volumne de Agua de Exudación

 $V = V_1 / A$

Masa de Agua en la muestra de Ensayo

C = (w/M) x S Exudación

Exudación % = (D / C)x 100

Ensayos Realizados

V ₁ Volumen de agua exudada durante el intervalo de tiempo	94 ml
A Area Expuesta del concreto	506.7 cm ²
M Masa total de la tanda	61 kg
w Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	39 It
S Masa de la muestra	5.4 gr
D Volumen de agua en la tanda	6 It
V Volumne de Agua de Exudación	0.2 ml/cm ²
C Masa de Agua en la muestra de Ensayo	3452 ml
Exudación	2.7 %
- THE DARW - DUDGE A MERCE - A	william a more
V ₁ Volumen de aqua exudada durante el intervalo de tiempo	99 ml
A Area Expuesta del concreto	506.7 cm ²
M Masa total de la tanda	61 kg
w Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	40 It
S Masa de la muestra	6 gr
D Volumen de agua en la tanda	6 1 It 1 100
V Volumne de Agua de Exudación	0.2 ml/cm ²
C Masa de Agua en la muestra de Ensayo	3934 ml
Exudación	2.5 %
a will a sold	ie mile
V ₁ Volumen de agua exudada durante el intervalo de tiempo	93 ml
A Area Expuesta del concreto	506.7 cm ²
M Masa total de la tanda	62 kg
w Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	36 It
	6.2 gr
S Masa de la muestra	
S Masa de la muestra D Volumen de agua en la tanda	gr gr
ACC	7 gr
D Volumen de agua en la tanda	5
D Volumen de agua en la tanda Volumen de Agua de Exudación	0.2 ml/cm ²
D Volumen de agua en la tanda V Volumne de Agua de Exudación C Masa de Agua en la muestra de Ensayo	0.2 ml/cm ² 3600 ml
D Volumen de agua en la tanda V Volumne de Agua de Exudación C Masa de Agua en la muestra de Ensayo	0.2 ml/cm ² 3600 ml
D Volumen de agua en la tanda V Volumne de Agua de Exudación C Masa de Agua en la muestra de Ensayo Exudación	0.2 ml/cm ² 3600 ml 2.6 %

A M	Area Expuesta del concreto Masa total de la tanda	- K	506.7 67	cm² kg	
w	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)		39	lt lt	
S	Masa de la muestra		5.8	gr	
D	Volumen de agua en la tanda		5	kg	
V	Volumne de Agua de Exudación	0109	0.2	ml/cm ²	
С	Masa de Agua en la muestra de Ensayo	ENIE	3376	ml	
	Exudación	7	2.8	%	
K	W W W	Bo	1	in a	1
and the	Total Alfonso Herrery Lazaro	VI CIA	- will		
C.	INGENIERIC CIVIL	GERENCIA	1.00		

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

REGISTRO Nº: TS-IRC-DAP-02

F'C= 210 KG_CM2 - NUEVO CHIMBOTE

01 de 01 PÁGINA Nº :

CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI SOLICITA :

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

METADO DE ENSAYO PARA DETERMINAR LA DENSIDAD, ABSORCION Y PORCENTAJE DE VACIOS EN CONCRETO ENDURECIDO (NTP 339.187)

INFORMACION DE LA MUESTRA A ENSAYAR

Muestra: PATRON + 5% DE RESIDUOS CALCAREOS

g₁: Densidad seca g₂: Densidad aparente

B: Masa de la muestra saturada superficialmente seca, despues de la inmersión C: Masa de la muestra superficialmente seca, despues de la inmersión y ebullición

ρ: Densidad de agua

D: Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición

(B-A)/A) X 100 Absoción despues de la inmersión (A/(C-D))ρ

Densidad Aparente Volumen de Poros Permeables (Vacios) (A/(A-D))p (C-A)/(C-D) X 100

Ensayos Realizado

A	Masa de la muestra seca al horno	13424	gr.
В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	13550	gr.
C	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	13600	gr.
D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7799	gr.
ρ	Densidad de agua	1	mg/m3
g ₁	Densidad seca	2.32	mg/m ³
g	Densidad aparente	2.39	mg/m3
4.4	Absoción despues de la inmersión	0.9	%
_	Volumen de Poros Permeables (Vacios)	2.9	%
A B	The same of the sa	21	. I KA!
A	Masa de la muestra seca al horno	12188	gr.
В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12304	gr.
С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12345	gr.
D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7088	gr.
ρ	Densidad de agua	· 8 (154)	mg/m3
g ₁	Densidad seca	2.29	mg/m ³
g ₂	Densidad aparente	2.39	mg/m3
ggsq	Absoción despues de la inmersión	1.0	%
	Volumen de Poros Permeables (Vacios)	3.1	%
- 0	THOM DIED A VOICE OF THE PARTY	- 1	11014
A	Masa de la muestra seca al horno	12327	gr.
В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12458	gr.
С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12483	gr.
D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7064	gr.
ρ	Densidad de agua	1050	mg/m3
g ₁	Densidad seca	2.30	mg/m ³
g ₂	Densidad aparente	2.34	mg/m3
L 12	Absoción despues de la inmersión	1.1	%
-	Volumen de Poros Permeables (Vacios)	3.0	%
	1012 - 1012 1012 101 101 101	10170	- 1
A	Masa de la muestra seca al horno	12470	gr.
В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12600	gr.
C	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12642 7291	gr.
	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición		gr.
ρ	Densidad de agua	1	mg/m3
91		2.35	mg/m ³
92		2.41	mg/m3
1	Absoción despues de la inmersión	1.0	%
	Volumen de Poros Permeables (Vacios)	3.2	%

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

F'C= 210 KG_CM2 - NUEVO CHIMBOTE

SOLICITA : CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

REGISTRO N°: TS-IRC-EXU-02

PÁGINA Nº :

01 de 01

EXUDACIÓN DEL CONCRETO (NTP 339.077)

INFORMACION DE LA MUESTRA A ENSAYAR

Muestra : Patrón Método: Muestra Consolidada por Varillado

 $\mathbf{V_1}$: Volumen de agua exudada durante el intervalo de tiempo

A: Area Expuesta del concreto

M: Masa total de la tanda

w: Aqua de mezclado neta (cantidad de aqua total menos el aqua absovida por los agregados)

S : Masa de la muestra

D: Volumen de agua en la tanda

Volumne de Agua de Exudación

 $V = V_1 / A$

Masa de Agua en la muestra de Ensavo

 $C = (w/M) \times S$ Exudación

Exudación % = (D / C)x 100

V ₁ Volumen de agua exudada durante el intervalo de tiempo	94 ml
A Area Expuesta del concreto	506.7 cm ²
M Masa total de la tanda	61 kg
w Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	39 It
S Masa de la muestra	6 gr
D Volumen de agua en la tanda	6 It
V Volumne de Agua de Exudación	0.2 ml/cm ²
C Masa de Agua en la muestra de Ensayo	3836 ml
Exudación	2.5 %
- had - haden - haden - h	men a rever
V ₁ Volumen de agua exudada durante el intervalo de tiempo	99 ml
A Area Expuesta del concreto	506.7 cm ²
M Masa total de la tanda	61 kg
w Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	40 It
S Masa de la muestra	6.3 gr
D Volumen de agua en la tanda	6 It
V Volumne de Agua de Exudación	0.2 ml/cm ²
C Masa de Agua en la muestra de Ensayo	4131 ml
Exudación	2.4 %
and a selection and a selectio	il nedle
V ₁ Volumen de aqua exudada durante el intervalo de tiempo	93 ml
A Area Expuesta del concreto	506.7 cm ²
M Masa total de la tanda	62 kg
w Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	36 It
S Masa de la muestra	6 gr
D Volumen de agua en la tanda	gr gr
V Volumne de Agua de Exudación	0.2 ml/cm ²
C Masa de Agua en la muestra de Ensayo	3484 ml
Exudación	2.7 %
ippo into ione into	new in
V ₁ Volumen de aqua exudada durante el intervalo de tiempo	96 ml
A Area Evolueeta del concreto	506.7

Δ	Volumen de agua exudada durante el intervalo de tiempo Area Expuesta del concreto	96 506.7	ml ml
M	Masa total de la tanda	67	cm²
2000			kg
W	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	39	lt .
S	Masa de la muestra	6.5	gr
D	Volumen de agua en la tanda	5	kg
V	Volumne de Agua de Exudación	0.2	ml/cm ²
С	Majsa de Agua en la muestra de Ensayo	3784	ml
-	Exudación	2.5	%
	Z MB		100
16	A CHICA	/	
	Viceor Alfondo Inferera Lazaro	11016	
	PEG CIP N° D18087		

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

KAE Ingenieria

Registro Indecopi Nº 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÂNICAS DEL CONCRETO REGISTRO N° : TS-IRC-DAP-03 F'C= 210 KG_CM2 - NUEVO CHIMBOTE 01 de 01 PÁGINA Nº :

CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI SOLICITA :

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

METADO DE ENSAYO PARA DETERMINAR LA DENSIDAD, ABSORCION Y PORCENTAJE DE VACIOS EN CONCRETO ENDURECIDO (NTP 339.187)

INFORMACION DE LA MUESTRA A ENSAYAR

Muestra: PATRON + 10% DE RESIDUOS CALCAREOS

Calculos de Ensayos

B: Masa de la muestra saturada superficialmente seca, despues de la inmersión

C : Masa de la muestra superficialmente seca, despues de la inmersión y ebullición

Absoción despues de la inmersión Densidad Seca

(B-A)/A) X 100 (A/(C-D))p

Densidad Aparente

(A/(A-D))p (C-A)/(C-D) X 100

g₁: Densidad seca

g₂: Densidad aparente

ρ: Densidad de agua

Volumen de Poros Permeables (Vacios)

Α	Masa de la muestra seca al horno	12610	gr.
В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12705	gr.
С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12774	gr.
D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7417	gr.
ρ	Densidad de agua	1	mg/m3
g ₁	Densidad seca	2.35	mg/m ³
92	Densidad aparente	2.43	mg/m3
-	Absoción despues de la inmersión	0.8	%
1	Volumen de Poros Permeables (Vacios)	3.1	%
1 136	A LANGE TO	1	4 m
Α	Masa de la muestra seca al horno	12380	gr.
В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12528	gr.
С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12553	gr.
D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7202	gr.
ρ	Densidad de agua	- 114	mg/m3
g ₁	Densidad seca	2.30	mg/m ³
g ₂	Densidad aparente	2.39	mg/m3
Craz.	Absoción despues de la inmersión	1.2	%
	Volumen de Poros Permeables (Vacios)	3.5	%
n.	ADD A ADDO A ADDO A ADDO	A	1000
Α	Masa de la muestra seca al horno	12584	gr.
В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12751	gr.
С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12786	gr.
D /	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7360	gr.
ρ	Densidad de agua	1450	mg/m3
g ₁	Densidad seca	2.32	mg/m ³
g ₂	Densidad aparente	2.41	mg/m3
	Absoción despues de la inmersión	1.3	%
-	Volumen de Poros Permeables (Vacios)	3.7	%
Α	Masa de la muestra seca al horno	12310	gr.
В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12452	gr.
C	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12478	gr.
D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7256	gr.
ρ	Densidad de agua	1	mg/m3
g ₁	Densidad seca	2.36	mg/m ³
g ₂	Densidad aparente	2.44	mg/m3
92	Abassián despues de la immercián	1.2	%
-	Volumen de Poros Permeables (Vacios)	3.2	%
NION	Volumen de Poros Permeables (Vacios)	CAL MERIL	nia 1

Pje. Fátima - Mz. Y´, Lt. 1A - P.J. Miraflores Alto - Chimbote

Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

n.aevieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi N° 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

F'C= 210 KG_CM2 - NUEVO CHIMBOTE

ITA : CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

EXUDACIÓN DEL CONCRETO (NTP 339.077)

INFORMACION DE LA MUESTRA A ENSAYAR

Muestra: PATRON + 10% DE RESIDUOS CALCAREOS Método: Muestra Consolidada por Varillado

Calculos de Ensavos

V₁: Volumen de agua exudada durante el intervalo de tiempo

A : Area Expuesta del concreto

M : Masa total de la tanda

w : Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)

S : Masa de la muestra

D : Volumen de agua en la tanda

Volumne de Agua de Exudación

REGISTRO N°: TS-IRC-EXU-03

01 de 01

 $V = V_1 / A$

Masa de Agua en la muestra de Ensayo

C = (w/M) x S Exudación

Exudación % = (D / C)x 100

Ensayos Realizados

V ₁	Volumen de agua exudada durante el intervalo de tiempo	96 ml
A	Area Expuesta del concreto	506.7 cm ²
М	Masa total de la tanda	61 kg
w	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	41 It
S	Masa de la muestra	6 gr
D	Volumen de agua en la tanda	6 lt
٧	Volumne de Agua de Exudación	0.2 ml/cm ²
С	Masa de Agua en la muestra de Ensayo	4033 ml
102	Exudación	2.4 %
	- TOP AND AND AND AND AND	000
V ₁	Volumen de agua exudada durante el intervalo de tiempo	97 ml
A	Area Expuesta del concreto	506.7 cm ²
M	Masa total de la tanda	61 kg
w	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	42 It
S	Masa de la muestra	6.2 gr
D	Volumen de agua en la tanda	6 It
V	Volumne de Agua de Exudación	
C	Masa de Agua en la muestra de Ensayo	0.2 ml/cm ² 4269 ml
TOWN	Exudación	2.3 %
	Extuación	2.5 /6
0	well and a well and	A MARKET
V ₁	Volumen de agua exudada durante el intervalo de tiempo	108 ml
A	Area Expuesta del concreto	506.7 cm ²
М	Masa total de la tanda	62 kg
W	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	39 It
S	Masa de la muestra	6.5 gr
D	Volumen de agua en la tanda	7 gr
V	Volumne de Agua de Exudación	0.2 ml/cm ²
С	Masa de Agua en la muestra de Ensayo	4089 ml
-	Exudación	2.6 %
	into into	Un Line
V ₁	Volumen de agua exudada durante el intervalo de tiempo	95 ml
A	Area Expuesta del concreto	506.7 cm ²
M	Masa total de la tanda	67 kg
w	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	42 It
S	Masa de la muestra	5.2 gr
D	Volumen de agua en la tanda	5 kg
V	Volumne de Agua de Exudación	0.2 ml/cm ²
C	Majsa de Agua en la muestra de Ensayo	3260 ml
_	Exudación	2.9 %
y i A	Macon Alfondo Historera Lazaro Macon Alfondo Corn. REG City Nº 15607	agenieniaae

Pje. Fátima - Mz. Y´, Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

KAE Ingenieria

SOLICITA :

Registro Indecopi Nº 028979-2021/DSD

REGISTRO N° : TS-IRC-DAP-04 INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

F'C= 210 KG_CM2 - NUEVO CHIMBOTE CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

01 de 01 PÁGINA Nº :

METADO DE ENSAYO PARA DETERMINAR LA DENSIDAD. ABSORCION Y PORCENTAJE DE VACIOS EN CONCRETO ENDURECIDO (NTP 339.187)

INFORMACION DE LA MUESTRA A ENSAYAR

Muestra: PATRON + 15% DE RESIDUOS CALCAREOS

Calculos de Ensayos

A: Masa de la muestra seca al horno

B: Masa de la muestra saturada superficialmente seca, despues de la inmersión

C : Masa de la muestra superficialmente seca, despues de la inmersión y ebullición

D: Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición

g₁: Densidad seca

g₂: Densidad aparente ρ: Densidad de agua

Absoción despues de la inmersión **Densidad Seca**

(B-A)/A) X 100 (A/(C-D))o

Volumen de Poros Permeables (Vacios)

(A/(A-D))ρ (C-A)/(C-D) X 100

		Ensayos Realizados		
1.4	10	The state of the s		N. C.
1200	Α	Masa de la muestra seca al horno	12595	gr.
	В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12728	gr.
-	C	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12770	gr.
AVE	D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7335	gr.
179	ρ	Densidad de agua	1	mg/m3
	g ₁	Densidad seca	2.31	mg/m ³
	g ₂	Densidad aparente	2.39	mg/m3
014	-	Absoción despues de la inmersión		%
	- 1	Volumen de Poros Permeables (Vacios)	3.3	%
10.1	181	AL THE SECOND	- 6-	4 1027
4	Α	Masa de la muestra seca al horno	12380	gr.
2	В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12515	gr.
	С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12553	gr.
	D	Masa sumergida aparente de la muestra suspendida en aqua, despues de la inmesión y ebullición	7202	gr.
100	ρ	Densidad de agua	114	mg/m3
	g ₁	Densidad seca	2.32	mg/m ³
a I°	g ₂	Densidad aparente	2.39	mg/m3
	(10)	Absoción despues de la inmersión	1.1	%
		Volumen de Poros Permeables (Vacios)	3.1	%
	0.	ALIE A ALIEN A METER A LINE		1010
18-	Α	Masa de la muestra seca al horno	12600	gr.
	В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12724	gr.
	С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12786	gr.
	D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7390	gr.
10	ρ	Densidad de agua	1,150	mg/m3
	g ₁	Densidad seca	2.35	mg/m ³
	g ₂	Densidad aparente	2.42	mg/m3
10	-	Absoción despues de la inmersión	1.0	%
	-	Volumen de Poros Permeables (Vacios)	3.4	%
7		1000 1000 1000 1000 1000 1000 1000	(OV	10
	Α	Masa de la muestra seca al horno	12310	gr.
e i	В	Masa de la muestra saturada superficialmente seca, despues de la inmersión	12452	gr.
	С	Masa de la muestra superficialmente seca, despues de la inmersión y ebullición	12478	gr.
	D	Masa sumergida aparente de la muestra suspendida en agua, despues de la inmesión y ebullición	7115	gr.
- 2	ρ	Densidad de agua	1	mg/m3
199	g ₁	Densidad seca	2.30	mg/m ³
100	g ₂	Densidad aparente	2.37	mg/m3
,	-	Absoción despues de la inmersión Volumen de Poros Permeables (Vacios)	1.2	%
		Volumen de Poros Permeables (Vacios)	3.1	%

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

KAE Ingeniería

Registro Indecopi Nº 028979-2021/DSD

INFLUENCIA DE LOS RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

REGISTRO Nº : TS-IRC-EXU-04

F'C= 210 KG_CM2 - NUEVO CHIMBOTE

PÁGINA Nº :

01 de 01

SOLICITA: CÁRDENAS LAVADO DAM JUNIOR - SOTO AGUILAR MIGUEL NEFTALI

UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

EXUDACIÓN DEL CONCRETO

(NTP 339.077) INFORMACION DE LA MUESTRA A ENSAYAR

Muestra: PATRON + 15% DE RESIDUOS CALCAREOS

Método: Muestra Consolidada por Varillado

Calculos de Ensayos

V₁: Volumen de agua exudada durante el intervalo de tiempo

Volumne de Agua de Exudación

 $V = V_1 / A$

A: Area Expuesta del concreto M : Masa total de la tanda

Masa de Agua en la muestra de Ensayo

w : Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)

 $C = (w/M) \times S$ Exudación

S : Masa de la muestra D : Volumen de agua en la tanda

Exudación % = (D / C)x 100

	V ₁	Volumen de agua exudada durante el intervalo de tiempo	97	ml
1	A	Area Expuesta del concreto	506.7	cm ²
120	М	Masa total de la tanda	61	kg
-	w	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	41	lt
	S	5.2	gr	
B	D	Masa de la muestra Volumen de agua en la tanda	6	It
N.	٧	Volumne de Agua de Exudación	0.2	ml/cm
•	С	Masa de Agua en la muestra de Ensayo	3495	ml
1 .000	UD-	Exudación	2.8	%
her.		- Total District Dist	Wall	A 11
	V ₁	Volumen de agua exudada durante el intervalo de tiempo	95	ml
	Α	Area Expuesta del concreto	506.7	cm ²
DV	М	Masa total de la tanda	61	kg
	w	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	42	: // ft
0	S	Masa de la muestra	5.4	gr
8	D	Volumen de agua en la tanda	6	It
	٧	Volumne de Agua de Exudación	0.2	ml/cm
2	С	Masa de Agua en la muestra de Ensayo	3718	ml
de	Mr.	Exudación	2.6	%
	- V ₁	Volumen de agua exudada durante el intervalo de tiempo	100	ml
	A	Area Expuesta del concreto	506.7	cm ²
r	М	Masa total de la tanda	62	kg
[W	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	39	lt .
1	S	Masa de la muestra	6.3	gr
W	D	Volumen de agua en la tanda	0.0147	gr
. 1	٧	Volumne de Agua de Exudación	0.2	ml/cm
° 1	С	Masa de Agua en la muestra de Ensayo	3963	ml
A.	-	Exudación	2.5	%
1000	V ₁	Volumen de agua exudada durante el intervalo de tiempo	92	ml
6	Α	Area Expuesta del concreto	506.7	cm ²
1	M	Masa total de la tanda	67	kg
Ī	w	Agua de mezclado neta (cantidad de agua total menos el agua absovida por los agregados)	42	lt
1.0	S	Masa de la muestra	5.6	gr
10	D	Volumen de agua en la tanya	5	kg
	٧	/ Volumne de Agua de Exudación	0.2	ml/cm
	С		3510	ml
1	-	Masa de Agua en la muestra de Ensayo Exudación	2.6	%
-	K	& Samuel A		-

Anexo 08- Análisis Estadístico

ANÁLISIS ESTADÍSTICO: RESISTENCIA A COMPRESIÓN

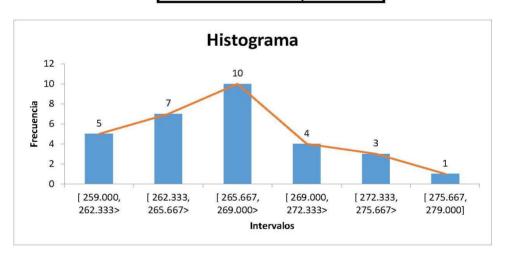
I. ESTADÍSTICA DESCRIPTIVA

1.1. RESUMEN DE DATOS

 MEDIA: 267.033
 RANGO: 20.000

 MEDIANA: 266.500
 MÍNIMO: 259.000

 MODA: 264.000
 MÁXIMO: 279.000

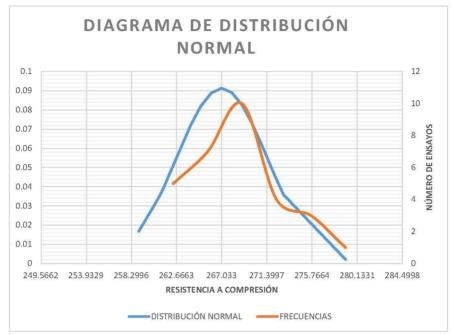

 DESVIACIÓN ESTÁNDAR: 4.367
 MUESTRAS: 30

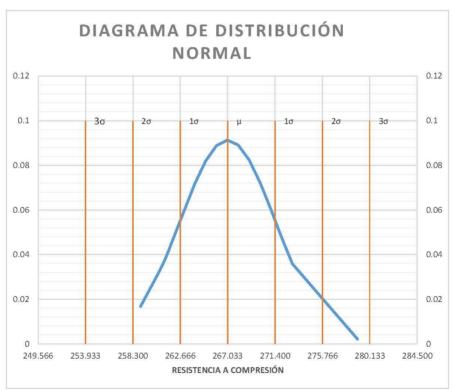
 VARIANZA DE LA MUESTRA: 19.068
 K: 6

 COEFICIENTE DE ASIMETRÍA: 0.588
 AMPLITUD: 3.333

1.2. TABLA DE FRECUENCIAS

INTER	INTERVALOS		
[259.000	262.333 >	5	
[262.333	265.667 >	7	
[265.667	269.000 >	10	
[269.000	272.333 >	4	
[272.333	275.667 >	3	
[275.667	279.000]	1	




1.3. DISTRIBUCIÓN NORMAL

INTER	VALOS	Ν(μ, σ)	PROBABILIDAD DE OCURRENCIA		
253.9329	258.2996	0.0214			
258.2996	262.6663	0.1359		95.45%	
262.6663	267.033	0.3413	CO 270/		00.730/
267.033	271.3997	0.3414	68.27%		99.73%
271.3997	275.7664	0.1359			
275.7664	280.1331	0.0214			
			1σ	2σ	3σ

II. ESTADÍSTICA INFERENCIAL

2.1. ANÁLISIS DE VARIANZA (ANOVA)

Α	В	C	D
CONCRETO 0% DE SUSTITUCIÓN	CONCRETO 5% DE SUSTITUCIÓN	CONCRETO 10% DE SUSTITUCIÓN	CONCRETO 15% DE SUSTITUCIÓN
42	47	55	46
41	46	54	47
41	46	53	47

Grupos	Cuenta	Suma	Promedio	Varianza
Α	3	682	227.333	116.333
В	3	708	236.000	49.000
C	3	804	268,000	28,000
D	3	718	239,333	20.333

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilid ad	Valor crítico para F
Entre grupos	2797.333	3	932.444444	17.45605824	0.0007176	4.06618055
Dentro de los gr	427.333	8	53.41666667			
Total	3224.667	11				

0.000717566 < 0.05

Existe diferencia significativa

2.2 MÉTODO DE TUKEY

$$k=4$$
 $T\alpha=19.12$ $N-k=8$ $CME=53.417$ $ni=3$ $q\alpha(k,N-k)=4.53$

				2%			72			
$\alpha = 0.05$	2	3	4	5	6	7	8	9	10	11
m			0.000	DANIE ADMIN						
2	6.08	8.33	9.80	10.88	11.73	12.43	13.03	13.54	13.99	14.
3	4.50	5.91	6.82	7.50	8.04	8.48	8.85	9.18	9.46	9.7
4	3.93	5.04	5.76	6.29	6.71	7.05	7.35	7.60	7.83	8.0
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99	7.1
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49	6.6
7	7.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16	6.3
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92	6.0
9	3.20	3.90	4.41	4.76	5.02	5.24	5.43	5.59	5.74	5.8
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60	5.7

COMPARACIÓN	DIFERENCIA	LÍMITE CRÍTICO (Tα=19.12)	SIGNIFICANCIA
A - B	8.67	<19.12	NO
A - C	40.67	>19.12	SI
A - D	12	<19.12	NO
B-C	32	>19.12	SI
B - D	3.33	<19.12	NO
C - D	28.67	>19.12	SI

ANÁLISIS ESTADÍSTICO: RESISTENCIA A FLEXIÓN

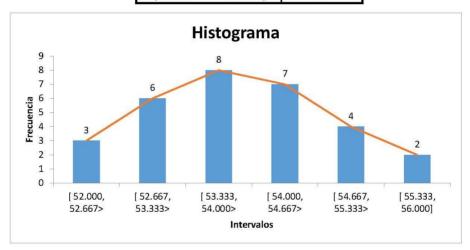
I. ESTADÍSTICA DESCRIPTIVA

1.1. RESUMEN DE DATOS

 MEDIA: 53.787
 RANGO: 4.000

 MEDIANA: 53.450
 MÍNIMO: 52.000

 MODA: 53.000
 MÁXIMO: 56.000

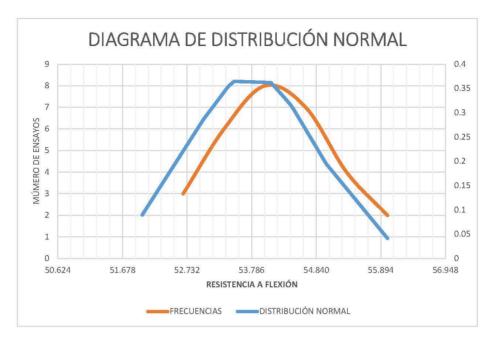

 DESVIACIÓN ESTÁNDAR: 1.054
 MUESTRAS: 30

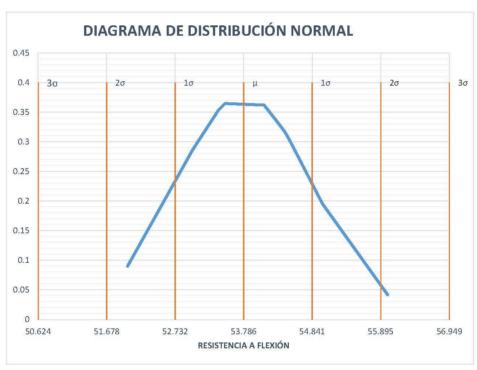
 VARIANZA DE LA MUESTRA: 1.112
 K: 6

 COEFICIENTE DE ASIMETRÍA: 0.310
 AMPLITUD: 0.667

1.2. TABLA DE FRECUENCIAS

INTER	INTERVALOS		
[52.000	52.667 >	3	
[52.667	53.333 >	6	
[53.333	54.000 >	8	
[54.000	54.667 >	7	
[54.667	55.333 >	4	
[55.333	56.000]	2	




1.3. DISTRIBUCIÓN NORMAL

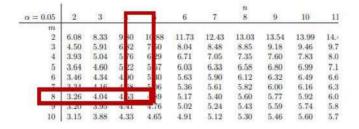
INTER	VALOS	Ν(μ, σ)	PROBABILIDAD DE OCURRENCIA		RENCIA
50.624	51.678	0.0214			
51.678	52.732	0.1359			99.73%
52.732	53.787	0.3413	68.27%	95.45%	
53.787	54.841	0.3413	08.27%		
54.841	55.895	0.1359			
55.895	56.950	0.0214	1 1		1
			1σ	2σ	3σ

II. ESTADÍSTICA INFERENCIAL

2.1. ANÁLISIS DE VARIANZA (ANOVA)

А	В	С	D
CONCRETO 0% DE SUSTITUCIÓN	CONCRETO 5% DE SUSTITUCIÓN	CONCRETO 10% DE SUSTITUCIÓN	CONCRETO 15% DE SUSTITUCIÓN
42	47	55	46
41	46	54	47
41	46	53	47

Grupos	Cuenta	Suma	Promedio	Varianza
А	3	124	41.333	0.333
В	3	139	46.333	0.333
C	3	162	54.000	1.000
D	3	1 40	46.667	0.333


Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilid ad	Valor crítico para F
Entre grupos	244.917	3	81.63888889	163.2777778	1.63E-07	4.06618055
Dentro de los gr	4.000	8	0.5			
Total	248.91667	11				

1.63048E-07 < 0.05

Existe diferencia significativa

2.2 MÉTODO DE TUKEY

k = 4 $T\alpha = 1.85$ N - k = 8 CME = 0.5 ni = 3 $q\alpha(k, N - k) = 4.53$

COMPARACIÓN	DIFERENCIA	LÍMITE CRÍTICO (Tα=1.85)	SIGNIFICANCIA
A - B	5	<1.85	SI
A - C	12.67	>1.85	SI
A - D	5.33	< 1.85	NO
B-C	7.67	>1.85	SI
B - D	0.33	< 1.85	NO
C - D	7.33	>1.85	SI

ANÁLISIS ESTADÍSTICO: ANÁLISIS DE VARIANZA (ANOVA)

Se utilizará el analisis de varianza para evaluar los resultados de los ensayos de propiedades físicas **I. DENSIDAD**

DENSIDAD (mg/m3)						
CONCRETO 0% CONCRETO 5% CONCRETO 10% CONC						
2.33	2.32	2.35	2.31			
2.31	2.29	2.30	2.32			
2.28	2.30	2.32	2.35			
2.33	2.35	2.36	2.30			

Grupos	Cuenta	Suma	Promedio	Varianza
CONCRETO 0%	4	9.25	2.3125	0.00055833
CONCRETO 5%	4	9.26	2.315	0.0007
CONCRETO 10%	4	9.32	2.33	0.0006
CONCRETO 15%	4	9.28	2.32	0.00046667

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	0.00071875	19	0.000239583	0.41218638	0.74727396	3.4902948
Dentro de los grupos	0.006975	12	0.00058125			
Total	0.00769375	15	j			

0.74727396 > 0.05 No existe diferencia significativa

II. ABSORCIÓN

ABSORCIÓN (%)						
CONCRETO 0%	CONCRETO 5%	CONCRETO 10%	CONCRETO 15%			
1.10	0.90	0.80	1.10			
1.10	1.00	1.20	1.10			
1.00	1.10	1.30	1.00			
1.00	1.00	1.20	1.20			

Grupos	Cuenta	Suma	Promedio	Varianza
CONCRETO 0%	4	4.2	1.05	0.00333333
CONCRETO 5%	4	4	1	0.00666667
CONCRETO 10%	4	4.5	1.125	0.04916667
CONCRETO 15%	4	4.4	1.1	0.00666667

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	0.036875	3	0.012291667	0.746835443	0.54471821	3.4902948
Dentro de los grupos	0.1975	12	0.016458333			
Total	0.234375	15				

0.544718212 > 0.05 No existe diferencia significativa

III. PORCENTAJE DE VACÍOS

PORCENTAJE DE VACÍOS (%)						
CONCRETO 0%	CONCRETO 5%	CONCRETO 10%	CONCRETO 15%			
2.90	2.90	3.10	3.30			
3.30	3.10	3.50	3.10			
2.70	3.00	3.70	3.40			
2.90	3.20	3.20	3.10			

Grupos	Cuenta	Suma	Promedio	Varianza
CONCRETO 0%	4	11.8	2.95	0.06333333
CONCRETO 5%	4	12.2	3.05	0.01666667
CONCRETO 10%	4	13.5	3.375	0.07583333
CONCRETO 15%	4	12.9	3.225	0.0225

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	0.425	3	0.141666667	3.177570093	0.06336272	3.4902948
Dentro de los grupos	0.535	12	0.044583333			
Total	0.96	15				

0.063362722 > 0.05 No existe diferencia significativa

IV. SLUMP

SLUMP (cm)					
CONCRETO 0%	CONCRETO 5%	CONCRETO 10%	CONCRETO 15%		
7.80	7.90	8.00	7.90		
7.70	7.80	8.50	7.80		
8.50	8.50	8.70	7.90		
8.90	8.40	8.50	8.00		

Grupos	Cuenta	Suma	Promedio	Varianza
CONCRETO 0%	4	32.9	8.225	0.32916667
CONCRETO 5%	4	32.6	8.15	0.12333333
CONCRETO 10%	4	33.7	8.425	0.08916667
CONCRETO 15%	4	31.6	7.9	0.00666667

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	0.565	3	0.188333333	1.373860182	0.29789858	3.4902948
Dentro de los grupos	1.645	12	0.137083333			
Total	2.21	15	c			

0.297898577 > 0.05 No existe diferencia significativa

V. EXUDACIÓN

EXUDACIÓN (%)					
CONCRETO 0%	CONCRETO 5%	CONCRETO 10%	CONCRETO 15%		
2.70	2.50	2.40	2.80		
2.50	2.40	2.30	2.60		
2.60	2.70	2.60	2.50		
2.80	2.50	2.90	2.60		

Grupos	Cuenta	Suma	Promedio	Varianza
CONCRETO 0%	4	10.6	2.65	0.01666667
CONCRETO 5%	4	10.1	2.525	0.01583333
CONCRETO 10%	4	10.2	2.55	0.07
CONCRETO 15%	4	10.5	2.625	0.01583333

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	0.0425	3	0.014166667	0.478873239	0.7029466	3.4902948
Dentro de los grupos	0.355	12	0.029583333			
Total	0.3975	15	j,			_

0.702946603 > 0.05 No existe diferencia significativa

Anexo 09- Certificado de calibracion

PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACIÓN Nº LFP-338-2025

Página 1 de 2

Expediente : 137-2025 Fecha de emisión : 2025-03-11

1. Solicitante : KAE INGENIERIA S.A.C.

Dirección : PJ. FATIMA MZA. Y1 LOTE. 01A P.J. MIRAFLORES ALTO

CHIMBOTE - SANTA - ANCASH

2. Descripción del Equipo : MÁQUINA DE ENSAYO UNIAXIAL

Marca de Prensa : NO INDICA
Modelo de Prensa : NO INDICA
Serie de Prensa : NO INDICA
Capacidad de Prensa : 120 t

Marca de indicador : NO INDICA
Modelo de Indicador : NO INDICA
Serie de Indicador : NO INDICA

Marca de Transductor : ZEMIC

Modelo de Transductor : YB15

Serie de Transductor : 4432

Bomba Hidráulica : ELÉCTRICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precision S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

Lugar y fecha de Calibración
 PJ. FATIMA MZA. Y1 LOTE. 01A P.J. MIRAFLORES ALTO - CHIMBOTE - SANTA - ANCASH
 8 de marzo de 2025

4. Método de Calibración

La Calibración se realizo de acuerdo a la norma ASTM E4

5. Trazabilidad

Truzabiliodo						
INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD			
CELDA DE CARGA	AEP TRANSDUCERS	INC LE 247	SISTEMA			
INDICADOR	AEP TRANSDUCERS	INF-LE 217	INTERNACIONAL			

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	27,8	27,8
Humedad %	64	64

7. Observaciones

Los resultados se muestran en la siguiente página del presente documento.

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

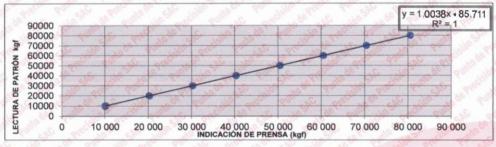
CERTIFICADO DE CALIBRACIÓN Nº LFP-338-2025

Página : 2 de 2

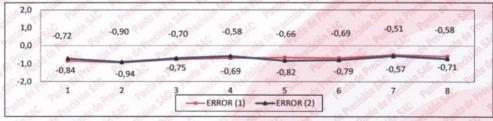
SISTEMA DIGITAL "A" kgf	SERIES DE VERIFICACIÓN (kgf)				PROMEDIO	ERROR	RPTBLD
	SERIE 1	SERIE 2	ERROR (1)	ERROR (2) %	"B" kgf	Ep %	Rp %
10000	10084	10072	-0,84	-0,72	10078	-0,77	0,12
20000	20188	20180	-0,94	-0,90	20184	-0,91	0,04
30000	30226	30210	-0,75	-0,70	30218	-0,72	0,05
40000	40276	40233	-0,69	-0,58	40255	-0,63	0,11
50000	50330	50410	-0,66	-0,82	50370	-0,73	-0,16
60000	60411	60472	-0.69	-0,79	60442	-0,73	-0,10
70000	70354	70398	-0,51	-0,57	70376	-0,53	-0,06
80000	80465	80571	-0,58	-0.71	80518	-0.64	-0.13

NOTAS SOBRE LA CALIBRACIÓN

- Ep y Rp son el Error Porcentual y la Repetibilidad definidos en la citada Norma: Ep= ((A-B) / B)* 100 Rp = Error(2) Error(1)
- La norma exige que Ep y Rp no excedan el 1,0 % $R^2 = 1$
- 3.- Coeficiente Correlación :


Ecuación de ajuste

: y = 1,0038x + 85,711


x : Lectura de la pantalla

y: Fuerza promedio (kgf)

GRÁFICO Nº 1

GRÁFICO DE ERRORES

FIN DEL DOCUMENTO

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Anexo 10- Fichas de recolección de datos

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por: Bach. Cárdenas Lavado, Dam Junior Bach. Soto Aguilar, Miguel Neftali Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-

MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: RESISTENCIA A COMPRESIÓN

NORMA: ASTM C39 / NTP 339.034

DATOS:

SUSTITUCIÓN:

FECHA DE MOLDEADO:

FECHA DE CURADO:

EDAD DE LA MUESTRA:

DIÁMETRO DEL CILIDRO (CM):

ALTURA DEL CILINDRO (CM):

RESISTENCIA (KGF):

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por: Bach. Cárdenas Lavado, Dam Junior Bach. Soto Aguilar, Miguel Neftali Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: RESISTENCIA A FLEXIÓN NORMA: ASTM C293 / NTP 339.079
DATOS:
SUSTITUCIÓN:
FECHA DE MOLDEADO:
FECHA DE CURADO:
EDAD DE LA MUESTRA:
ANCHO DE LA VIGA (CM):
LARGO DE VIGA (CM):
ALTO DE VIGA (CM):

RESISTENCIA (KGF):

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por: Bach. Cárdenas Lavado, Dam Junior

Bach. Soto Aguilar, Miguel Neftali

Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-

MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: DENSIDAD, ABSORCIÓN Y PORCENTAJE DE VACÍOS

NORMA: ASTM C642 / NTP 339.187

DATOS:

SUSTITUCIÓN:

MASA SECA:

MASA SATURADA DESPUÉS DE LA INMERSIÓN:

MASA SATURADA DESPUES DE LA EBULLICIÓN EN AGUA:

MASA APARENTE SUMERGIDA:

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por: Bach. Cárdenas Lavado, Dam Junior

Bach. Soto Aguilar, Miguel Neftali

Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-

MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: ASENTAMIENTO (SLUMP) NORMA: ASTM C143 / NTP 339.035

DATOS:

SUSTITUCIÓN:

ASENTAMIENTO:

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por: Bach. Cárdenas Lavado, Dam Junior Bach. Soto Aguilar, Miguel Neftali Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: EXUDACIÓN DEL CONCRETO NORMA: ASTM C232 / NTP 339.077 DATOS: SUSTITUCIÓN: MASA DE MUESTRA (kg): DIÁMETRO DEL CILINDRO (cm): TIEMPO (min): VOLUMEN (ml): TIEMPO (min): VOLUMEN (ml):

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por:

Bach. Cárdenas Lavado, Dam Junior

Bach. Soto Aguilar, Miguel Neftali

Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: GRANULOMETRÍA DE AGREGADOS

NORMA: ASTM C136 / NTP 400.012

DATOS:

Tamiz (mm)	Retenido (g)	% Retenido Parcial	% Retenido Acumulad o	% Pasa Acumul
75				
37.5				
19				
9.5				
4.75				
2.36				
1.18				
0.6				
0.3				
0.15				
0.075				·
TOTAL				

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por:

Bach. Cárdenas Lavado, Dam Junior

Bach. Soto Aguilar, Miguel Neftali

Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: DENSIDAD Y VACÍOS EN AGREGADO GRUESO

NORMA: ASTM C29 / NTP 400.017

DATOS:

Masa del recipiente vacío (M_0):

Masa del recipiente con el agregado

(M₁):

y agua (si se determina la densidad húmeda) (M_2):

Volumen del recipiente (V):

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por:

Bach. Cárdenas Lavado, Dam Junior

Bach. Soto Aguilar, Miguel Neftali

Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-

MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: CONTENIDO DE HUMEDAD NORMA: ASTM C566 / NTP 339.185

DATOS:

MASA DE LA MUESTRA HUMEDA:

MASA DE LA MUESTAR SECA:

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por:

Bach. Cárdenas Lavado, Dam Junior

Bach. Soto Aguilar, Miguel Neftali

Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: ABSORCIÓN Y DENSIDAD EN AGREGADO GRUESO

NORMA: ASTM C127 / NTP 400.021

DATOS:

Masa de la muestra seca (A):

Masa de la muestra saturada superficialmente seca (B):

Masa de la muestra en agua (C):

Volumen de la muestra (V):

UNIVERSIDAD NACIONAL DEL SANTA

Elaborado por:

Bach. Cárdenas Lavado, Dam Junior

Bach. Soto Aguilar, Miguel Neftali

Fecha:

Proyecto: "INFLUENCIA DE RESIDUOS CALCÁREOS EN PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO DE 210 KG/CM2 - NUEVO CHIMBOTE"

ENSAYO: ABSORCIÓN Y DENSIDAD EN AGREGADO FINO

NORMA: ASTM C128 / NTP 400.022

DATOS:

Masa de la muestra seca (A):

Masa de la muestra saturada

Masa de la muestra en agua (C):

Volumen de la muestra (V):