UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE POSGRADO Programa de Doctorado en Ingeniería Civil

Comportamiento de muros de adobe con aislamiento sísmico empleando shicras bajo carga lateral monotónica

> Tesis para optar el grado de Doctor en Ingeniería Civil

Autor: Mg. Revelo Sánchez, Gerardo Máximo Código ORCID: 0000-0002-7136-1992 DNI. Nº 46513585

Asesor: Dr. Aparicio Roque, Fidel Gregorio Código ORCID: 0000-0003-1405-7588 DNI. Nº 31672306

> Línea de investigación Viviendas antisísmicas

Nuevo Chimbote - PERÚ 2025

CONSTANCIA DE ASESORAMIENTO DE TESIS

Yo, Dr. Fidel Gregorio Aparicio Roque, mediante la presente certifico mi asesoramiento de la Tesis Doctoral titulada: "COMPORTAMIENTO DE MUROS DE ADOBE CON AISLAMIENTO SÍSMICO EMPLEANDO SHICRAS BAJO CARGA LATERAL MONOTÓNICA", por el maestro Gerardo Máximo Revelo Sánchez, para obtener el Grado Académico de Doctor en Ingeniería Civil en la Escuela de Posgrado de la Universidad Nacional del Santa.

Nuevo Chimbote, junio del 2025.

Dr. Fidel Gregorio Aparicio Roque ASESOR CODIGO ORCID: 0000-0003-1405-7588 DNI N° 31672306

CONFORMIDAD DEL JURADO EVALUADOR

"Comportamiento de Muros de Adobe con Aislamiento Sísmico Empleando Shicras Bajo Carga Lateral Monotónica"

TESIS PARA OPTAR EL GRADO DE DOCTOR EN INGENIERÍA CIVIL

Revisado y Aprobado por el Jurado Evaluador:

DR. ATILIO RUBÉN LÓPEZ CARRANZA PRESIDENTE CODIGO ORCID: 0000-0002-3631-2001 DNI N° 32965940

DR. VICTOR ALEJANDRO ASCURRA VALLE SECRETARIO CODIGO ORCID: 0000-0001-5755-5267 DNI N° 17866619

DR. FIDEL GREGORIO APARICIO ROQUE VOCAL CODIGO ORCID. 0000-0003-1405-7588 DNI Nº 31672306

ACTA DE EVALUACIÓN DE SUSTENTACIÓN DE TESIS

A los veintiséis días del mes de junio del año 2025, siendo las <u>12:30</u> horas, en el aula P-01 de la Escuela de Posgrado de la Universidad Nacional del Santa, se reunieron los miembros del Jurado Evaluador, designados mediante Resolución Directoral N° 345-2025-EPG-UNS de fecha 15.03.2025, conformado por los docentes: Dr. Atilio Rubén López Carranza (Presidente), Dr. Víctor Alejandro Ascurra Valle (Secretario) y Dr. Fidel Gregorio Aparicio Roque (Vocal); con la finalidad de evaluar la tesis titulada: "COMPORTAMIENTO DE MUROS DE ADOBE CON AISLAMIENTO SÍSMICO EMPLEANDO SHICRAS BAJO CARGA LATERAL MONOTÓNICA"; presentado por el tesista Gerardo Máximo Revelo Sánchez, egresado del programa de Doctorado en Ingeniería Civil.

Sustentación autorizada mediante Resolución Directoral Nº 551-2025-EPG-UNS de fecha og de junio de 2025.

El presidente del jurado autorizó el inicio del acto académico; producido y concluido el acto de sustentación de tesis, los miembros del jurado procedieron a la evaluación respectiva, haciendo una serie de preguntas y recomendaciones al tesista, quien dio respuestas a las interrogantes y observaciones.

El jurado después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo y con las sugerencias pertinentes, declara la sustentación como APROBARO, asignándole la calificación de DIECIOCHO (18).

Siendo las $\underline{13:30}$ horas del mismo día se da por finalizado el acto académico, firmando la presente acta en señal de conformidad.

Dr. Atilio Rubén López Carranza Presidente

Dr. Víctor Alejandro Ascurra Valle Secretario

Dr. Fidel Gregorio Aparicio Roque Vocal/Asesor

turnitin

Recibo digital

Este recibo confirma quesu trabajo ha sido recibido por Turnitin. A continuación podrá ver la información del recibo con respecto a su entrega.

La primera página de tus entregas se muestra abajo.

Autor de la entrega:	Gerardo Máximo REVELO SÁNCHEZ
Título del ejercicio:	MAESTRIA 2025
Título de la entrega:	TESIS DOCTORADO_FINAL_REVELO.pdf
Nombre del archivo:	TESIS_DOCTORADO_FINAL_REVELO.pdf
Tamaño del archivo:	13.48M
Total páginas:	157
Total de palabras:	50,847
Total de caracteres:	221,428
Fecha de entrega:	07-mar-2025 11:01a.m. (UTC-0500)
Identificador de la entrega:	2608035591

Derechos de autor 2025 Turnitin. Todos los derechos reservados.

TESIS DOCTORADO_FINAL_REVELO.pdf

INFORME DE ORIGINALIDAD

	4% de similitud	13% FUENTES DE INTERNET	3% PUBLICACIONES	5% TRABAJOS DEL ESTUDIANTE
FUENTES	S PRIMARIAS			
1	hdl.hand Fuente de Inter	le.net		3%
2	repositor Fuente de Inter	rio.unc.edu.pe		1%
3	www.lum Fuente de Inter	ne.ufrgs.br		<1%
4	repositor Fuente de Inter	rio.ucv.edu.pe		<1%
5	repositor Fuente de Inter	r <mark>io.unsaac.edu.</mark>	ре	<1%
6	Submitte Trabajo del est	ed to Universida	ad Cesar Vallej	° <1 _%
7	ecometa Fuente de Inter	l.pl		<1%
8	UPC.aWS. Fuente de Inter	openrepository ^{met}	/.com	<1%
9	tesis.usa Fuente de Inter	t.edu.pe		<1%
10	repositor Fuente de Inter	rioacademico.u	pc.edu.pe	<1%
11_	Submitte	ed to uncedu		

Trabajo del estudiante

DEDICATORIA

A Dios, por haberme concedido la fuerza, el conocimiento y la oportunidad de llegar hasta aquí. Te dedico este logro, Señor, como una muestra de gratitud por todas las bendiciones que has derramado en mi vida.

A mi pequeña hija Lanna, mi inspiración, cuya sonrisa me llena de fuerzas cada día. Que este logro sirva como un ejemplo de que, con esfuerzo y dedicación, todo es posible.

A mi esposa, por su constante compañía, quien con su amor y comprensión hizo posible que este sueño se convirtiera en realidad. A mis padres, por estar presentes en mi vida, por sus valores, enseñanzas y apoyo incondicional.

AGRADECIMIENTO

A Universidad Nacional del Santa, por haberme brindado la oportunidad de formarme académica y profesionalmente como Dr. en Ingeniería Civil. A lo largo de estos años, no solo he adquirido conocimientos valiosos, sino también principios y valores que me acompañarán a lo largo de mi vida personal.

Al Asesor Dr. Fidel Aparicio Roque, por su valiosa contribución y orientación en cada etapa de esta investigación. Sus observaciones precisas, su experiencia y su constante apoyo fueron clave para culminar esta tesis.

Al Docente Ing. Fernando Arias Enriquez, por su acompañamiento constante y su disposición a compartir sus conocimientos con generosidad. Su apoyo y sus consejos fueron fundamentales para la ejecución de la investigación.

ÍNDICE

RESU	MEN	X
ABST	RACT	ĸi
I. IN	NTRODUCCIÓN	1
1.1. De	escripción y Formulación del Problema	1
1.2. 0	bjetivos	5
1.2.1.	Objetivo General	5
1.2.2.	Objetivos Específicos	5
1.3. H	ipótesis	6
1.4. Ju	stificación e Importancia	6
1.5. V	ariables de la Investigación	7
1.5.1.	Variable Independiente	7
1.5.2.	Variable Interviniente	7
1.5.3.	Variable Dependiente	7
II. M	IARCO TEÓRICO	8
2.1. A	ntecedentes de la investigación	8
2.1.1.	Internacionales	8
2.1.2.	Nacionales 1	1
2.2. <i>M</i>	larco Conceptual	3
2.2.1.	Sistema de Aislamiento Sísmico 1	3
2.2.2.	Cargas Monotónicas 1	5
2.2.3.	Desplazamiento Lateral 1	5
2.2.4.	Diagrama Esfuerzo - Deformación 1	6
2.2.5.	Módulo de Elasticidad o módulo de Young 1	7
2.2.6.	Módulo de Corte o Módulo de cizalladura 1	7
2.2.7.	Energía de deformación1	9
2.2.8.	Coeficiente de Fricción para el Control de Desplazamiento	0
2.2.9.	Los Núcleos Estructurales Sismo Resistentes en las Construcciones de Caral 2	0
2.2.10.	. Importancia del uso de Shicras	1
2.2.11.	. Unidades de Adobe 2	1
2.2.12.	. Componentes del Adobe 2	2
2.2.13.	. Mecanismo de Colapso Típicos en Muros de Tierra	4
2.2.14.	. Modos de Fallas en Muros de Adobe por Sismo en el Plano	5
2.2.15.	. Muros Experimentales de Adobes con Aislamiento Sísmico de Shicras	7

2.2.16. Ensayo de Carga Lateral Monotónica	
2.2.17. Norma Empleado	29
2.3. Definición de Términos Básicos	29
III. METODOLOGÍA	30
3.1. Metodología de la Investigación	30
3.1.1. Método(s) de la Investigación	30
3.1.2. Diseño Estadístico	30
3.1.3. Población y Muestra	
3.2. Operacionalización de las Variables	33
3.3. Técnicas e Instrumentos de Recolección de Datos	34
3.4. Procedimiento de la Recolección de Datos	35
IV. RESULTADOS Y DISCUSIONES	47
4.1. Resultados	47
4.2. Discusión de Resultados	60
V. CONCLUSIONES Y RECOMENDACIONES	70
5.1. Conclusiones	70
5.2. Recomendaciones	71
VI. REFERENCIAS BIBLIOGRÁFICAS	73
VII. ANEXOS	81

CONTENIDO DE TABLAS

Tabla 1.	Tratamientos y numero de repeticiones para DCA simple
Tabla 2.	Operacionalización de las variables
Tabla 3.	Resultados del cálculo de la Densidad del adobe47
Tabla 4.	Resultados del cálculo de Absorción de agua del adobe
Tabla 5.	Resultados del cálculo de Resistencia a Compresión en cubos de adobe
Tabla 6.	Resultados del cálculo de la Resistencia a la Tracción en adobe
Tabla 7.	Resultados del cálculo de Resistencia a la Tracción del mortero
Tabla 8.	Resultados de Resistencia a la Compresión Axial en prismas de adobe 49
Tabla 9.	Resultados del cálculo de Módulo de Elasticidad (Em) del adobe 50
Tabla 10	Resultados de Resistencia a la Tracción Indirecta en muretes de adobe 50
Tabla 11	Resultados del cálculo de Módulo de Corte (Gm) del adobe
Tabla 12	. Características de los cuatro tratamientos
Tabla 13	. Resultado del ensayo de los tratamientos
Tabla 14	Energía de deformación y coeficiente de fricción muro - cimiento 54
Tabla 15	Análisis de varianza de los datos de carga lateral máxima
Tabla 16	Estadísticos descriptivos para análisis de los datos de carga lateral máxima 56
Tabla 17	Prueba de Duncan para los datos de carga lateral máxima
Tabla 18	Análisis de varianza de los datos de desplazamiento inferior
Tabla 19	. Estadísticos descriptivos para análisis de datos de desplazamiento inferior 57
Tabla 20	. Prueba de Duncan para los datos de desplazamiento inferior
Tabla 21	Análisis de varianza de los datos de desplazamiento superior
Tabla 22	. Estadísticos descriptivos para análisis de datos de desplazamiento superior 59
Tabla 23	. Prueba de Duncan para los datos de desplazamiento superior

CONTENIDO DE FIGURAS

Figura 1. Viviendas de adobe colapsados debido al sismo de 1970 - Huaraz	4
Figura 2.Respuesta sísmica de una edificación	. 14
Figura 3. Técnicas de aislamiento sísmico en la base	. 14
Figura 4 Comportamiento de los materiales sometidos a cargas monotónicas	. 15
Figura 5. Diagrama esfuerzo vs deformación de los materiales	. 16
Figura 6. Diagrama esfuerzo - deformación y módulo de elasticidad	. 17
Figura 7. Deformación por Corte	. 18
Figura 8. Módulo de Tenacidad	. 19
Figura 9. Shicras de junco en los núcleos de cimentación de las pirámides de Caral	. 21
Figura 10. Tipos de falla asociados con fuerzas sísmicas	. 24
Figura 11. Falla agrietamiento diagonal por cortante	. 25
Figura 12. Falla deslizamiento - cortante	. 26
Figura 13. Falla balanceo	. 26
Figura 14. Falla por aplastamiento en pie del muro	. 27
Figura 15. Partes del muro experimental de adobe	. 27
Figura 16. Esquema de ensayo de carga lateral monotónica	. 28
Figura 17. Disposición de las 12 unidades experimentales	. 31
Figura 18. Prueba de Cinta de barro del suelo para la elaboración de los adobes	. 35
Figura 19. Prueba de Presencia de arcilla con el suelo utilizado para los adobes	. 36
Figura 20. Prueba de Control de fisuras con el suelo utilizado para los adobes	. 36
Figura 21. Amasado del adobe y su secado bajo un tendal	. 37
Figura 22. Medida de los lados del adobe y su pesado	. 38
Figura 23. Recipiente con una regla graduada y adobe sumergido en agua	. 38
Figura 24. Muestras de cubos y cilindros de adobe para su ensayo	. 39
Figura 25. Muestras en moldes cilíndricos para ensayo brasileño	. 39
Figura 26. Muestras de pilas con morteros de juntas 1.5 cm	. 40
Figura 27. Muestras de prismas refrentados con yeso	. 40
Figura 28. Elaboración de muretes de adobes	. 41
Figura 29. Sobrecimiento tradicional elaborado con piedra y barro	. 41
Figura 30. Sobrecimiento con piedras de 1" envueltas con shicras	. 42
Figura 31. Sobrecimiento con piedras de 3" envueltas con shicras de cinco en cinco	. 43
Figura 32. Sobrecimiento con piedras de 5" envueltas con shicras de tres en tres	. 43

Figura 33. Muros de adobe con diferentes sobrecimientos (tratamientos)
Figura 34. Muro de adobe con los equipos de medición instalados 44
Figura 35. Muro de adobe instalado con videocámaras
Figura 36. Diagrama de flujo del proceso de investigación
Figura 37. Carga lateral máxima soportado por los muros de adobe
Figura 38. Desplazamiento de los tratamientos a carga lateral máxima
Figura 39. Energía de deformación almacenada en los muros debido a la carga lateral 54
Figura 40. Gráfica de intervalos de confianza de carga lateral máxima
Figura 41. Diagrama de cajas de los datos de carga lateral máxima
Figura 42. Gráfica de intervalos de confianza de desplazamiento inferior del muro 57
Figura 43. Diagrama de cajas de los datos de desplazamiento inferior
Figura 44. Gráfica de intervalos de confianza de desplazamiento superior del muro 59
Figura 45. Diagrama de cajas de los datos de desplazamiento superior
Figura 46. Extracción del suelo para la elaboración de los adobes
Figura 47. Suelo traído de la cantera Matacoto y su zarandeo 142
Figura 48. Toma de muestra de suelo y construcción del tendal 142
Figura 49. Preparación del barro y elaboración del adobe143
Figura 50. Acopio de piedras del rio Santa y elaboración de shicras con piedras 143
Figura 51. Secado de los adobes y trazo de la cimentación para los muros
Figura 52. Construcción de cimiento y colocación de shicras 144
Figura 53. Colocación de la capa intermedia y capa superior del sobrecimiento 144
Figura 54. Construcción de muros y vista de los doce muros concluidos 144
Figura 55. Pintado de los muros de adobe145
Figura 56. Ensayo brasileño y tracción directa de mortero en laboratorio
Figura 57. Ensayo de prismas y muretes en laboratorio 145
Figura 58. Verificación de los equipos en el muro para el ensayo monotónico146
Figura 59. Visualización de las lecturas de desplazamiento y modo de falla del muro 146
Figura 60. Verificación de la bomba por el ingeniero estructurista y equipo de apoyo 146

CONTENIDO DE ECUACIONES

Ecuación 1. Deformación Unitaria	
Ecuación 2. Esfuerzo	16
Ecuación 3. Módulo de Elasticidad	17
Ecuación 4. Módulo de Elasticidad Admisible	17
Ecuación 5. Módulo de Corte	18
Ecuación 6. Deformación Angular	18
Ecuación 7. Módulo de Corte para unidades de albañilería	18
Ecuación 8. Módulo de Corte en relación al Módulo de Poisson	18
Ecuación 9. Densidad de la Energía de Deformación	19
Ecuación 10. Coeficiente de Fricción	20

CONTENIDO DE ANEXOS

Anexo A. Prueba "Cinta de barro"
Anexo B. Prueba "Presencia de arcilla"
Anexo C. Prueba "Control de fisura para le mortero"
Anexo D. Densidad del adobe
Anexo E. Absorción de agua en el adobe
Anexo F. Clasificación SUCS de suelo
Anexo G. Contenido de humedad del suelo
Anexo H. Análisis granulométrico del suelo
Anexo I. Ensayo para límite de consistencia del suelo
Anexo J. Peso específico relativo de solidos del suelo
Anexo K. Ensayo de compresión en cubos de adobe91
Anexo L. Ensayo Brasileño a la tracción92
Anexo M. Ensayo de mortero a la tracción Indirecta
Anexo N. Datos del ensayo de compresión en prismas94
Anexo O. Datos del ensayo de tracción indirecta en muretes
Anexo P. Resultados del ensayo de muros bajo carga lateral
Anexo Q. Resultados de desplazamiento lateral de muros debido a carga monotónica 118
Anexo R. Resultados de esfuerzo de corte y deformación angular de los muros 130
Anexo S. Fotografías del proceso de ejecución de la investigación142

RESUMEN

Debido a los bajos recursos económicos de los pobladores de las zonas rurales y al fácil acceso al suelo como material de construcción, las viviendas se construyen con adobes sin la aplicación de técnicas ni normas de diseño antisísmico, esta situación incrementa la vulnerabilidad frente a los sismos. El objetivo fue evaluar el comportamiento de los muros de adobe con aislamiento sísmico empleando Shicras bajo carga lateral monotónica. La metodología empleada fue un diseño experimental completamente al azar (DCA) con cuatro tratamientos y tres repeticiones por cada uno, los tratamientos fueron T₀: sobrecimiento tradicional (testigo), T₁: sobrecimiento de shicras con piedras de 1", T₂: sobrecimiento de shicras con piedras de 3" y T₃: sobrecimiento de shicras con piedras de 5". Los ensayos se realizaron tanto en campo como en el laboratorio acreditado Mathlab Ingeniería Sismorresistente E.I.R.L. Los resultados fueron una carga lateral máxima promedio de 18.89 kN, 16.60 kN, 13.43 kN y 15.70 kN; un desplazamiento máximo promedio en la base de 0.00 mm, 4.59 mm, 12.68 mm y 6.29 mm; y una energía de deformación media de 94.33 J, 62.20 J, 40.27 J y 60.60 J, para los tratamientos T₀, T₁, T₂ y T₃ respectivamente; así mismo, los modos de falla predominante fueron por deslizamiento (D), agrietamiento diagonal (AD) y aplastamiento en el pie (AP). Se concluye que el tratamiento T₂: muro con sobrecimiento de shicras con piedras de 3" presentaron mejor desempeño sísmico, con un coeficiente de fricción de 0.32 y disipando hasta un 57.31 % de energía de deformación en comparación a los muros tradicionales.

Palabras clave: Aislamiento sísmico empleando shicras, comportamiento sísmico de los muros de adobe, carga lateral.

ABSTRACT

Due to the low economic resources of the inhabitants of rural areas and the easy access to soil as a construction material, houses are built with adobe, without the application of anti-seismic design techniques and standards, which significantly increases their vulnerability to earthquakes. In this context, the present research aimed to evaluate the behaviour of adobe walls with seismic isolation using Shicras under monotonic lateral loading. The methodology used was a completely randomised experimental design (CRD) with four treatments and three replicates each, the treatments were T₀ traditional overburden (control), T₁ overburden of shicras with stones of 1 in diameter, T₂ overburden of shicras with stones of 3 in diameter and T₃ overburden of shicras with stones of 5 in diameter. The tests were carried out in the field and in the laboratory Mathlab Ingeniería Sismorresistente E.I.R.L. The results showed that the walls with treatments T_0 , T_1 , T_2 and T_3 resisted an average maximum lateral load of 18.89 kN, 16.60 kN, 13.43 kN and 15. 70 kN; they presented average maximum displacements at the base of 0.00 mm, 4.59 mm, 12.68 mm and 6.29 mm; they adsorbed a deformation energy of 94.33 J, 62.20 J, 40.27 J and 60.60 J respectively; the predominant failure modes were sliding (D), diagonal cracking (AD) and crushing at the footing (AP). It is concluded that treatment T₂: wall with a shicra overlay with 3 in stones presented better seismic performance, with a friction coefficient of 0.32 and dissipating up to 57.31% of deformation energy compared to traditional walls.

Key words: Seismic isolation using shicras, seismic behavior of adobe walls, lateral loading.

I. INTRODUCCIÓN

1.1. Descripción y Formulación del Problema

1.1.1. Descripción del Problema

Sánchez et al. (2021) afirman que el suelo es uno de los materiales de construcción más antiguos jamás conocidos, con evidencia arqueológica que respalda su uso desde hace miles de años como base para la edificación de las primeras ciudades de la humanidad, este tipo de construcción se encuentra en todos los continentes, con diversas variaciones y técnicas. Por su parte, Blondet et al. (2003) señalan que los adobes son unidades de barro que se secan al sol y tienen su origen en el año 8000 A.C., se utilizan mucho en las regiones más vulnerables a desastres, su uso es tradicional en Latinoamérica, África, parte de India y de Asia, el Medio Oriente y el Sur de Europa. De acuerdo con Gama et al. (2012), el adobe ha sido utilizado durante milenios por los pueblos indígenas de América como material principal en la construcción de viviendas, desde el suroeste de los Estados Unidos hasta Mesoamérica y la región andina de Sudamérica.

Agüero et al. (2015) mencionan que a lo largo de la historia se han construido diversas infraestructuras en todo el mundo incluyendo el Perú, utilizando la tierra como su material principal porque posee múltiples ventajas, como su bajo consumo energético, su capacidad de reciclar y su facilidad de elaboración; además, origina poca contamina y presenta confort térmico, la accesibilidad global a este material de construcción lo convierte en una opción ampliamente utilizada a nivel mundial. Por su parte, el Ministerio de Vivienda, Construcción y Saneamiento (MVCS, 2010) indica que el adobe fue utilizado desde hace mucho tiempo en el Perú principalmente debido a su fácil acceso, además, contribuyó a la creación de espacios que favorecen el medio ambiente, ayudando a disminuir el ruido y las temperaturas externas. Según Morales et al. (s.f.), la mayoría de las viviendas en zonas rurales y algunas urbanas del Perú están construidas con adobe, incluyendo muchas de dos pisos, debido a las limitaciones económicas de sus habitantes.

De acuerdo con Blondet et al. (2003), a nivel mundial el 30% de los habitantes viven en construcciones de tierra y que aproximadamente el 50 % de los habitantes de países en desarrollo residen en viviendas construidas con este material. Por su parte, el Instituto Nacional de Estadística e Informática (INEI, 2017) informa que, en el Perú, el 27.90 % del total de viviendas particulares habitadas (2'148,494 viviendas) están construidas con adobe o tapia; y a nivel departamental, Áncash representa el 6.60 % de estas construcciones, lo que equivale a 141,797 viviendas.

La Asociación Colombiana de Ingeniería Antisísmica (AIS, 2004) señala que, durante los últimos 50 años, se ha comprobado que las viviendas construidas con adobe y tapia apisonada presentan una alta vulnerabilidad frente a los terremotos, en la mayoría de los casos, estas estructuras no resisten las fuerzas sísmicas, lo que resulta en su colapso repentino incluso ante temblores de intensidad moderada; teniendo como resultado numerosas pérdidas humanas, económicas, culturales y patrimoniales. En este contexto, Yamín et al. (2007) identificaron diversos factores que incrementan la vulnerabilidad sísmica de las edificaciones de adobe y tapia apisonada, entre estos factores destacan: irregularidades en la planta y la altura, distribución inadecuada de los muros, pérdida de verticalidad en las paredes, presencia de humedad y filtraciones, conexiones deficientes entre los muros, deterioro o ausencia de revestimientos, uso de materiales incompatibles, entrepisos excesivamente pesados, ausencia de diafragmas, apoyos y anclajes inadecuados en entrepisos y cubiertas, entrepisos excesivamente flexibles, luces demasiado largas y diseños estructurales deficientes. Por su parte, Kuroiwa (2002) define la vulnerabilidad sísmica como el nivel de daño que pueden sufrir las construcciones humanas durante un terremoto. Este grado de daño depende de múltiples factores, entre los cuales se incluyen el diseño de la edificación, la calidad de los materiales empleados y las técnicas de construcción utilizadas.

Blondet et al. (2003) señalan que la falta de resistencia sísmica en la edificación de adobe es debido a la poca capacidad a fuerzas de tracción, esto debido al peso excesivo y su fragilidad, durante terremotos estas estructuras experimentan altos niveles de fuerza sísmica, los cuales no pueden resistir y colapsan violentamente. Desde la posición de Bonett (2003), cuando los esfuerzos de tracción siguen la dirección de las juntas horizontales de mortero, pueden ocurrir dos tipos de agrietamiento: grietas verticales que atraviesan las unidades y grietas que solo afectan a las juntas de mortero; por otro lado, cuando los esfuerzos de tracción son perpendiculares a las juntas de mortero horizontales, los fallos típicamente ocurren por separación entre el mortero y las unidades, así como por tensión en las unidades.

Agüero et al. (2015) argumentan que las construcciones en países ubicados en la zona del Cinturón de Fuego del Pacífico y aquellas que se encuentran en áreas con fallas geológicas enfrentan un elevado nivel de vulnerabilidad ante terremotos. En este contexto, Blondet et al. (2003) destacan que el sismo ocurrido en El Salvador en 2001 provocó daños severos o el colapso de más de 200,000 viviendas de adobe, resultando en la muerte de 1,100 personas atrapadas bajo los escombros de estas construcciones y dejando a más de un millón de personas sin hogar; además, ese mismo año, un terremoto sacudió el sur de Perú,

causando la pérdida de 81 vidas humanas, la destrucción de aproximadamente 25,000 hogares de adobe y daños severos en otras 36,000 viviendas, lo que dejó a más de 220,000 personas sin vivienda.

Blondet et al. (2011) señalan que el 15 de agosto de 2007, un terremoto de magnitud 8.0 en la escala de Richter afectó la costa centro-sur del Perú, causando un impacto significativo en la región de Ica, aproximadamente 600 personas perdieron la vida, y los daños más graves se registraron en viviendas construidas con muros de adobe, la ciudad de Pisco fue la más afectada, ya que alrededor del 80 % de las edificaciones de adobe fueron destruidas, principalmente debido a la falta de reforzamiento sísmico. De manera similar, la Agencia de Cooperación Internacional de Japón (JICA, 2009) informa que, como resultado del sismo en Ica, las construcciones de adobe sufrieron los mayores daños, con un 60.8 % (54,695) de viviendas colapsadas, un 30.3 % (27,287) consideradas inhabitables, un 4.8 % (4,355) requerían reparaciones, y solo un 4.1 % (3,616) no presentaron daños.

MVCS (2010) señala que, en el Perú la técnica constructiva con adobe tiene sus raíces en la época prehispánica, y muchas de estas edificaciones han resistido el paso del tiempo, permaneciendo hasta la actualidad, ejemplos destacados incluyen la Ciudadela de Chan Chan, conocida como "la ciudad de barro más grande de América"; la Ciudadela Sagrada de Caral, considerada "la más antigua de América"; la Fortaleza de Paramonga; y el Complejo de Pachacámac. En esta misma línea, Vega et al. (2006) mencionan que, debido a los movimientos sísmicos ocurridos en el valle La Fortaleza, los habitantes del periodo arcaico tardío del cerro Lampay emplearon las shicras en muros de 2 a 2.5 metros de espesor como elementos constructivos en espacios públicos. Asimismo, Hayashi et al. (2016) indican que el 15 de agosto de 2007 se dio a conocer el hallazgo de las Ruinas de las shicras en el valle de Chancay, las cuales datan de aproximadamente 3000 A.C., estas construcciones, que servían como bases de templos piramidales, utilizaban piedras envueltas en redes hechas de plantas vegetales con el propósito de resistir los sismos.

Como afirma Barbachán et al. (2022), el Perú está ubicado en una zona propenso a terremotos y nuestros antepasados conocedores de este problema aplicaron la técnica de shicras en la base de sus estructuras de importancia para minimizar los efectos, siendo un sistema sismorresistente que libera parte de la energía sísmica para transformarla en una energía cinética. Según Altamirano y Bueno (2011), la técnica de las shicras era usada como disipadores de energía en las estructuras, instaladas dentro de las paredes y bases de los templos, con el objetivo de minimizar los efectos de las vibraciones producidos por las ondas

sísmicas que ocurrían con frecuencia en la costa central y sur del Perú, esta técnica ingeniosa surgió entre 3,000 y 800 A. C.

Según Salazar (2022), el 31 de mayo de 1970, la región de Áncash, en Perú, fue sacudida por uno de los terremotos más severos de su historia, alcanzando una magnitud de 7.9 en la escala de Richter, las viviendas tradicionales, construidas con gruesas paredes de adobe y cubiertas de tejas, no pudieron resistir la intensa fuerza del sismo, colapsando en su mayoría. Como consecuencia de este desastre, Smith (1994) explica que los muros exteriores de las viviendas, al no contar con refuerzos, se desplomaron hacia afuera, atrapando a las personas que intentaban escapar, mientras que las cubiertas pesadas colapsaron hacia el interior, sepultando a aquellos que permanecieron dentro; y en la ciudad de Huaraz, casi un tercio de los habitantes, aproximadamente 10,000 personas, murieron de esta manera.

Figura 1

Nota. Falla de los muros de adobe por tracción y corte. Tomado de Google imágenes.

Clarke (2015) manifiesta que, como consecuencia del terremoto de 1970, aproximadamente 60,000 personas murieron y otras 140,000 resultaron heridas; además, el 80 % de las viviendas en la zona afectada colapsaron o sufrieron daños estructurales de gran magnitud, en la sierra, miles de casas de adobe se derrumbaron, lo que incrementó significativamente el número de víctimas. Por su parte, Lipton (2014) señala que el sismo también provocó una avalancha compuesta por aproximadamente 50 a 100 millones de metros cúbicos de hielo, roca y lodo, que descendió desde los 6,300 m.s.n.m. en tan solo cuatro minutos, arrasando todo a su paso, incluida la ciudad de Yungay, este desastre dejó un saldo de aproximadamente 23,000 víctimas, de las cuales 18,000 se encontraban en la ciudad de Yungay.

1.1.2. Formulación del Problema

Problema General

¿Cómo influye el aislamiento sísmico empleando shicras en el comportamiento de los muros de adobe sometidos a carga lateral monotónica?

Problemas Específicos

¿Cuáles serán las propiedades físicas y mecánicas del adobe tradicional de acuerdo a la Norma E.080 del RNE?

¿Cómo influye el empleo de cuatro tratamientos diferentes en la construcción de muros experimentales, considerando T_0 : muro con sobrecimiento tradicional (testigo), T_1 : muro con sobrecimiento de shicras con piedras de 1", T_2 : muro con sobrecimiento de shicras con piedras de 3" y T_3 : muro con sobrecimiento de shicras con piedras de 5"?

¿Cuál es el desplazamiento lateral máximo y el modo de falla de los tratamientos sometidos a una carga lateral monotónica máxima, según los tratamientos aplicados T₀: muro con sobrecimiento tradicional (testigo), T₁: muro con sobrecimiento de shicras con piedras de 1", T₂: muro con sobrecimiento de shicras con piedras de 3" y T₃: muro con sobrecimiento de shicras con piedras de 5"?

¿Cómo analizar estadísticamente los resultados obtenidos en los tratamientos utilizando el software SPSS Statistics 25, con el propósito de validar los datos y garantizar la fiabilidad y significancia estadística en el desarrollo la investigación?

1.2. Objetivos

1.2.1. Objetivo General

Evaluar el comportamiento de los muros de adobe con aislamiento sísmico empleando Shicras bajo carga lateral monotónica.

1.2.2. Objetivos Específicos

Determinar las propiedades físicas y mecánicas del adobe tradicional de acuerdo a la Norma E.080 del Reglamento Nacional de Edificaciones (RNE).

Construir los muros experimentales empleando cuatro tratamientos diferentes, que incluyen: T_0 : muro con sobrecimiento tradicional (testigo), T_1 : muro con sobrecimiento de shicras con piedras de 1", T_2 : muro con sobrecimiento de shicras con piedras de 3" y T_3 : muro con sobrecimiento de shicras con piedras de 5".

Determinar el desplazamiento lateral máximo y el modo de falla de los tratamientos T₀: muro con sobrecimiento tradicional (testigo), T₁: muro con sobrecimiento de shicras con piedras de 1", T₂: muro con sobrecimiento de shicras con piedras de 3" y T₃: muro con

sobrecimiento de shicras con piedras de 5", sometidos a una carga lateral monotónica máxima.

Realizar el análisis estadístico de los resultados obtenidos en los tratamientos utilizando el software SPSS Statistics 25, con el propósito de validar los datos y garantizar la fiabilidad y significancia estadística en el desarrollo la investigación.

1.3. Hipótesis

Ho: $T_0 = T_1$, $T_0 = T_2$, $T_0 = T_3$, $T_1 = T_2$, $T_1 = T_3$ y $T_2 = T_3$

Ninguno de los tratamientos empleando Shicras como aislamiento sísmico influye significativamente en el comportamiento de los muros de adobe bajo carga lateral monotónica.

Ha: $T_0 \neq T_1$, $T_0 \neq T_2$, $T_0 \neq T_3$, $T_1 \neq T_2$, $T_1 \neq T_3$ y $T_2 \neq T_3$

Al menos uno de los tratamientos empleando Shicras como aislamiento sísmico influye significativamente en el comportamiento de los muros de adobe bajo carga lateral monotónica.

1.4. Justificación e Importancia

Justificación Teórica

Esta investigación se realizó con el objetivo de contribuir al desarrollo de nuevo conocimiento en la comunidad científica respecto al uso de las shicras como sistemas de aislamiento sísmico en viviendas de adobe, los resultados obtenidos tienen el potencial de materializarse en una propuesta técnica que complemente y enriquezca el cuerpo de conocimientos existentes en el ámbito de la ingeniería. En particular, se ha demostrado que el empleo de las shicras mejora significativamente el desempeño sísmico de los muros de adobe; además, este estudio sienta un precedente valioso para futuras investigaciones en el campo, ampliando las posibilidades de innovación en técnicas de construcción sismoresistentes.

Justificación Metodológica

Se fundamenta por una técnica de aislamiento sísmico utilizados en tiempos muy remotos por los habitantes de la cultura Caral en la cimentación de sus pirámides. Esta investigación busco validar su efectividad como sistema de aislamiento sísmico mediante ensayos en muros experimentales. La metodología empleada se basa en un diseño experimental completamente al azar (DCA), se realizaron ensayos en laboratorio y en campo, donde se evaluaron parámetros clave como el desplazamiento máximo, los modos de falla y energía de deformación frente a cargas laterales. Los equipos utilizados contaron con certificados de calibración, y los ensayos fueron ejecutadas bajo la supervisión de un especialista en ingeniería estructural, asegurando la confiabilidad y precisión de los resultados obtenidos.

Justificación Práctica

La investigación sobre el uso de shicras como técnica de aislamiento sísmico tiene una relevancia práctica significativa, especialmente en regiones de alta sismicidad donde las construcciones de adobe son comunes y vulnerables a los efectos de los sismos. Mediante la validación experimental, se buscó no solo recuperar un conocimiento tradicional, sino también adaptarlo a las necesidades y contextos actuales. Su implementación se traduce en el desarrollo de guías prácticas y normas técnicas para su aplicación en la construcción con tierra, beneficiando particularmente a comunidades rurales y a poblaciones de bajos recursos. Además, al emplear materiales locales como piedras y drizas, esta técnica representa una alternativa práctica, económica y sostenible que puede ser replicada en diversas zonas sísmicas del mundo.

1.5. Variables de la Investigación

1.5.1. Variable Independiente

Aislamiento sísmico empleando shicras

1.5.2. Variable Interviniente

Propiedades físicas y mecánicas del adobe

1.5.3. Variable Dependiente

Comportamiento sísmico de los muros de adobe

II. MARCO TEÓRICO

2.1. Antecedentes de la investigación

2.1.1. Internacionales

Mirabi et al. (2019) publicaron el artículo científico titulado In-plane cyclic performance of adobe walls retrofitted with near-surface-mounted steel rebars. El objetivo fue determinar el rendimiento cíclico de paneles de adobe reforzados cercas a su superficie (NSM) con barras de acero. La metodología consistió en una investigación experimental, en la que se construyeron siete muestras de muros de adobe con dimensiones de $1.02 \text{ m} \times 0.70$ $m \times 0.2 m$. Estas muestras se clasificaron en: muros sin refuerzo (W0.1C y W0.3C), muros reparados con dos barras de refuerzo de acero NSM dispuestas de manera vertical y dos horizontales en cada lado (W0.1R2 y W0.3R2), muros reforzados con dos barras de acero NSM verticales y dos horizontales en cada lado (W0.1S2 y W0.3S2) y muros reforzados con tres barras de acero NSM verticales y tres horizontales en cada lado (W0.1S3); todas las muestras fueron sometidas a cargas cíclicas. Los resultados obtenidos incluyeron una carga máxima de empuje de 19.8 kN, 23.3 kN, 53.5 kN, 58.4 kN, 28.8 kN, 37.9 kN y 52.8 kN; y un desplazamiento máximo de 14.18 mm, 18.14 mm, 20.15 mm, 32.34 mm, 10.43 mm, 13.96 mm y 26.78 mm, correspondientes a las muestras W0.1C, W0.1R2, W0.1S2, W0.1S3, W0.3C, W0.3R2 y W0.3S2, respectivamente. Los modos de falla predominantes observados fueron el agrietamiento diagonal y el aplastamiento en el pie del muro. En conclusión, el refuerzo de barras de acero cerca de la superficie del panel de adobe mejora sustancialmente el rendimiento lateral en términos de capacidad de desplazamiento y disipación de energía.

Reyes et al. (2019) publicaron el artículo científico titulado Seismic experimental assessment of steel and synthetic meshes for retrofitting heritage earthen structures. El objetivo fue evaluar el comportamiento sísmico de paredes de adobe y tierra apisonada reforzadas con mallas de acero y sintéticos. La metodología empleada fue una investigación experimental que incluyó la elaboración de seis muros de adobe y seis muros de tierra apisonada con dimensiones de 2.50 m \times 1.80 m \times 0.40 m. Las muestras de adobe se clasificaron en: (a) tres muros tradicionales (A1-U, A2-U y A3-U) y (b) tres muros reforzados con alambre soldado de acero flexible (A1-R, A2-R y A3-R). Estas muestras fueron sometidas a carga lateral cíclica en el plano, con tres niveles de carga axial vertical (70 kN, 50 kN y 20 kN). Los resultados indicaron un esfuerzo cortante máximo de 43.8 kN, 23.3 kN, 14.2 kN, 45.1 kN, 39.4 kN y 41.6 kN para las muestras A1-U, A2-U, A3-U, A1-R, A2-R y A3-R, respectivamente. En conclusión, las mallas de alambre electrosoldado son

efectivas para mejorar la resistencia al corte en el plano y previenen las fallas locales, además, mejoran la capacidad de deformación y disipación de energía de las paredes

Zhang et al. (2020) publicaron el artículo científico titulado *Experimental study on seismic behaviour of adobe wall reinforced with cold–formed thin–walled steel*. El objetivo fue evaluar el comportamiento sísmico de un muro de adobe reforzado con acero de paredes delgadas conformado en frio. La metodología consistió en una investigación experimental, en la que se construyeron dos muros con dimensiones de 2.0 m × 1.3 m × 0.2 m. Uno de los muros no tenía refuerzo (S1) y el otro fue reforzado con acero de 1 mm de espesor (S2). Ambas muestras fueron sometidas a una carga vertical de 12.64 kN en la parte superior, combinada con inversiones de carga lateral cíclica. Los resultados mostraron que la carga máxima de empuje fue de 16.82 kN y 30.12 kN, mientras que el desplazamiento último alcanzó 5.48 mm y 39.37 mm para las muestras S1 y S2, respectivamente. En conclusión, el reforzamiento con acero de paredes delgadas fue útil para contener y suprimir el desarrollo prematuro de las grietas, además aumentaron la capacidad de carga del muro, en 43.34% para la carga de fisuración y 79.10%, para la carga última.

Meybodian et al. (2020) publicaron el artículo científico titulado Sustainable lateral strengthening of traditional adobe walls using natural reinforcements. El objetivo fue mejorar el desempeño de los muros de adobe bajo carga lateral en el plano utilizando materiales naturales como refuerzo. La metodología consistió en una investigación experimental en la que se construyeron diez muros de adobe con dimensiones de $1.00 \text{ m} \times$ $0.90 \text{ m} \times 0.20 \text{ m}$. Las muestras incluyeron: dos muros sin refuerzo (W1 y W2), cinco muros reforzados con malla de palma en diferentes configuraciones (W3, W4, W5, W6 y W7), un muro reforzado con malla de plástico (W8), un muro reforzado con cuerda de palma (W9) y un muro reforzado con caña (W10). Estas muestras fueron sometidas a esfuerzos combinados de precompresión vertical constante de 0.3 MPa y cargas laterales cíclicas inversas. Los resultados indicaron una carga máxima de empuje de 35.7 kN, 45.5 kN, 41.0 kN, 43.6 kN, 41.7 kN, 49.1 kN, 52.4 kN, 39.4 kN, 51.5 kN y 49.9 kN; así como desplazamientos de 10 mm, 10 mm, 12.5 mm, 10 mm, 10 mm, 12.5 mm, 17.5 mm, 12.5 mm, 17.5 mm y 12.5 mm para las muestras W1, W2, W3, W4, W5, W6, W7, W8, W9 y W10, respectivamente. Los modos de falla observados incluyeron balanceo con aplastamiento en el pie del muro y agrietamiento diagonal. En conclusión, todos los refuerzos naturales tuvieron éxito en mejorar el comportamiento lateral de los muros de adobe; donde la malla de fibra de palma unida externamente mejora significativamente el desempeño a movimientos laterales.

Eslami et al. (2021) publicaron el artículo científico titulado In-plane seismic behavior of NSM strengthened adobe walls: Experimental evaluation of different reinforcements. El objetivo fue evaluar el desempeño sísmico de paredes de adobe usando distintos materiales de refuerzo mediante la técnica de montaje cercano a la superficie La metodología consistió en una investigación experimental en la que se (NSM). construyeron cinco muros de adobe con dimensiones de 0.20 m \times 0.90 m \times 1.20 m. Las muestras incluyeron: un muro sin refuerzo (WC), dos muros reforzados con barras de acero (WS2 y WS3), un muro reforzado con barras de polímero con fibra de vidrio (WG3) y un muro reforzado con caña (WR3). Estos muros fueron sometidos a una tensión de precompresión vertical constante de 0.3 MPa, combinada con inversiones de carga lateral cíclica. Los resultados mostraron cargas máximas de empuje de 32 kN, 48.5 kN, 59.1 kN, 47.9 kN y 40.3 kN; y desplazamientos máximos de 13 mm, 23.2 mm, 32.4 mm, 27.3 mm y 22.2 mm para las muestras WC, WS2, WS3, WG3 y WR3, respectivamente. Los modos de falla observados incluyeron agrietamiento diagonal, balanceo, deslizamiento y aplastamiento en el pie del muro. En conclusión, los resultados confirman que todos los materiales de refuerzos utilizados en la pared de adobe son capaces de mejorar el comportamiento sísmico, donde las paredes reforzadas con barras de acero muestran ser superiores.

Zhang et al. (2022) publicaron el artículo científico titulado Near-surface-mounted retrofitting of adobe walls using different materials: Evaluation of seismic performance. El objetivo fue valuar el desempeño sísmico de pared de adobe utilizando el método de refuerzo montado cerca de la superficie (NSM). La metodología consistió en una investigación experimental en la que se construyeron seis paredes de adobe con dimensiones de $1.90 \text{ m} \times$ $1.20 \text{ m} \times 0.20 \text{ m}$. Las muestras incluyeron: un muro sin refuerzo (W1), dos muros reforzados con tiras de mortero armado (W2 y W3), dos muros contrachapados con bambú (W4 y W5) y un muro reforzado con madera (W6). Estas muestras fueron sometidas a cargas laterales cíclicas. Los resultados mostraron cargas máximas de empuje de 40.41 kN, 62.54 kN, 98.70 kN, 48.12 kN, 61.01 kN y 49.86 kN; y desplazamientos máximos de 10.80 mm, 21.90 mm, 9.92 mm, 22.34 mm, 20 mm y 23.98 mm para las muestras W1, W2, W3, W4, W5 y W6, respectivamente. Los modos de falla observados incluyeron agrietamiento diagonal, deslizamiento, balanceo y aplastamiento en el pie del muro. En conclusión, el uso de técnicas de refuerzo montadas cerca de la superficie puede cambiar el modo de falla de las paredes de adobe, de falla por cortante diagonal a falla por flexión, la pared reforzada con mortero armado ha demostrado mejor comportamiento a cargas laterales.

Eslami et al. (2022) publicaron el artículo científico titulado Sand-coated reeds as an innovative reinforcement for improving the in-plane seismic behavior of adobe walls. El objetivo fue desarrollar un nuevo método de refuerzo interno utilizando cañas recubiertas de arena para mejorar el desempeño lateral cíclico en el plano de los muros de adobe. La metodología consistió en una investigación experimental en la que se construyeron cinco muros de adobe con dimensiones de $1.0 \text{ m} \times 0.9 \text{ m} \times 0.2 \text{ m}$. Las muestras incluyeron: un muro sin refuerzo (WC), un muro reforzado con tres cañas verticales (WV3), un muro reforzado con cinco cañas verticales (WV5), un muro reforzado con cinco cañas verticales y siete horizontales (WV5H) y un muro reforzado con cinco cañas verticales y siete horizontales divididos (WV5HS). Estas muestras fueron sometidas a una combinación de carga vertical constante de 0.3 MPa. Los resultados mostraron cargas máximas de empuje de 31.97 kN, 38.29 kN, 36.63 kN, 40.01 kN y 44.36 kN; y desplazamientos máximos de 11.53 mm, 15.69 mm, 15.21 mm, 18.61 mm y 22.36 mm para las muestras WC, WV3, WV5, WV5H y WV5HS, respectivamente. En conclusión, la combinación de refuerzo vertical y horizontal de caña en el muro de adobe mejoraron el comportamiento a fuerzas laterales en el plano; además, se observó que el refuerzo de caña horizontal partida, son mejores en comparación al uso de secciones enteras.

2.1.2. Nacionales

Fukuyama et al. (2013) publicaron el artículo científico titulado *Shaking Table Test* on Seismic Response Properties of Shicras, Stones Wrapped in Vegetable Fiber Bags. El objetivo fue realizar la prueba de mesa vibratoria para investigar las propiedades de respuesta a terremotos de los cimientos de Shicra del santuario de Caral. La metodología consistió en una investigación experimental básica. Se recrearon cimientos de Shicra envolviendo piedras de 15 a 20 cm de diámetro con bolsas de fibra vegetal, similares a los cimientos originales. Sobre estas bases se colocó un marco de acero con dimensiones de 1.2 m × 1.2 m × 0.10 m, el cual fue fijado a una mesa vibratoria unidimensional. Las shicras fueron amontonadas de manera que imitaran la disposición de las ruinas de Caral. Los resultados mostraron que los cimientos con shicra en la base rodaron durante la vibración como si fueran un aislamiento tipo rodillo, la masa del marco de acero sobre los cimientos no produjo una aceleración superior incluso cuando la aceleración de la mesa vibratoria superó los 300 gal, teniendo como 0.3 de coeficiente de fricción. En conclusión, los cimientos solo de piedra no respondieron a la vibración mientras que los cimientos de shicra si contrarrestaron los movimientos, manteniéndose el coeficiente de fricción de las Shicras incluso después de sacudidas repetidas, lo que indica que las shicras poseen las mismas propiedades estables que el material deslizante.

Fukuyama et al. (2016) publicaron el artículo científico titulado Research on earthquake response reduction properties and its repeatability of the foundation technology used in the sanctuaries dating up to 5,000 years ago. El objetivo fue analizar la importancia de las técnicas antiguas de 3500 a 5000 A.C. para reducir la aceleración de la respuesta sísmica en las antiguas subestructuras con shicras llenas de piedras. La metodología consistió en una investigación experimental aplicada, se elaboraron shicras similares a las encontradas en los restos arqueológicos de Caral, considerando el número de capas apiladas, estas fueron sometidas a ensayos en una mesa vibratoria. Los resultados indicaron que, a medida que aumentaba el nivel de aceleración en la mesa vibratoria, el efecto de reducción de la aceleración en la parte superior de las bases de shicra se hacía más significativo; y al aplicar ondas aleatorias que simulaban ondas sísmicas reales, la aceleración de la respuesta sísmica en la plataforma superior de las shicras fue aproximadamente del 40 % al 80 % de la aceleración registrada en la mesa vibratoria. En conclusión, las pruebas de la mesa vibratoria mostraron un mecanismo en el que las shicras esféricas comenzaban a girar cuando el nivel de aceleración de respuesta sísmica excedió el valor dado, posiblemente lo que permitió lograr reducir los efectos a la aceleración de la respuesta sísmica.

Vargas (2016) publicó la investigación titulada *Estudio de Aislamiento Sísmico de Viviendas Rurales Mediante Sobrecimientos con Shicras* como parte del proyecto MVCS. El objetivo fue desarrollar sobrecimiento que libere mayor energía sísmica mediante el ensayo estático. La metodología consistió en una investigación experimental básica en la que se construyeron doce muros de tierra reforzada: seis con dimensiones de 1.20 m \times 1.20 m \times 0.25 m y otros seis de 0.70 m \times 0.70 m \times 0.25 m; los sobrecimientos tipo shicras se elaboraron utilizando mallas tejidas de drizas, tejido industrial y mallas para cabello con moños, cubiertas por mallas de pescador, envolvieron piedras con diámetros de ³/₄" a 12". Los resultados del ensayo estático mostraron que los sobrecimientos con shicras llenas de piedras chancadas mayores a ³/₄", combinados con una plancha de triplay y una viga collar de madera, presentaron mayor resistencia al desplazamiento lateral, con un coeficiente de fricción de 0.62. En conclusión, el coeficiente de fricción obtenido es un factor crucial para favorecer la liberación de energía sísmica.

Vargas et al. (s.f.) publicaron la investigación titulada *Sobrecimiento de aislamiento sísmico* en el proyecto MVCS-PUCP. El objetivo fue diseñar sobrecimientos de aislamiento sísmico mediante las Shicras rellenas de piedras para viviendas de tapia reforzada. La metodología consistió en una investigación experimental básica, en la que se elaboraron dos modelos de vivienda de tapia reforzada: uno con sobrecimientos de shicras tipo rodillo y otro con sobrecimientos de shicras que permitían rodamiento dirigido. Ambos modelos fueron sometidos a ensayos en una mesa vibratoria. Los resultados indicaron que el primer modelo no pudo liberar la energía sísmica, resultando en fisuras similares a las que ocurren en sobrecimientos de concreto reforzado. En contraste, el segundo modelo logró liberar la energía sísmica, presentando únicamente grietas leves. En conclusión, los sobrecimientos con shicras mostraron la capacidad de reducir hasta un 60 % el pico máximo de aceleración.

Aguilar et al. (2019) publicaron en el artículo científico titulado *Efecto sísmico de aplicación de Shicras en muros de adobe en zonas altoandinas de la provincia de Concepción – Junín*. El objetivo fue determinar la facilidad de liberación de energía sísmica acorde al número de capas apiladas. La metodología consistió en una investigación básica correlacional destinada a analizar la relación entre el uso de shicras y el comportamiento sísmico de los muros de adobe. Durante los ensayos, se aplicaron cargas muertas de 1.1 y 2.2 toneladas. Las shicras fueron evaluadas según el número de capas (1, 2 y 3), considerando su capacidad para reducir la energía sísmica transmitida a la plataforma. Se compararon montículos solo de piedras con aquellos en los que se aplicaron tejidos adecuados. Los resultados mostraron que la técnica de las shicras facilitó la liberación de energía sísmica, con aceleraciones en un rango de 3 a 3.5 m/s² registradas en la mesa de agitación. En conclusión, se determinó que la capacidad de disipación energética ante sismos es mayor en las shicras de dos capas, mostrando una eficiencia superior en comparación con las de una o tres capas.

2.2. Marco Conceptual

2.2.1. Sistema de Aislamiento Sísmico

Un sistema de aislamiento sísmico es cuando en la base de una estructura se colocan dispositivos entre la superestructura y las fundaciones mediante conexiones especialmente diseñadas, reemplazables, y tienen la función de despegar la estructura parcialmente del movimiento del suelo, incrementando la flexibilidad y el período fundamental de la misma en dirección horizontal. Son dispositivos de considerable rigidez en dirección vertical, que al actuar agregan un modo de vibración adicional a la estructura, este último posee un factor de participación significativo y derivas de entrepiso muy reducidas (Tovar, 2008).

Figura 2

Respuesta sísmica de una edificación

Nota. En (a) se observa la respuesta de una estructura convencional ante un sismo, mientras que en (b) se presenta la respuesta de una estructura con aislamiento sísmico en la base. Adaptado de *Utilización de disipadores de energía en edificaciones de baja altura* (p. 11), por Tovar, 2008.

Los aisladores deben tener obligatoriamente el siguiente par de características fundamentales (Eadic, 2019).

- 1. Gran rigidez vertical y elevada flexibilidad horizontal, para poder absorber la mayor parte de las cargas laterales originadas por el sismo.
- 2. La capacidad necesaria para resistir el peso de la estructura.

Las limitaciones para el uso de aislamientos sísmicos son en edificios muy esbeltos y suelos extremadamente blandos (Disipa, 2020).

Entre los dispositivos utilizados para el aislamiento sísmico en la cimentación se tiene con los aisladores de apoyo deslizante, péndulo de fricción y apoyo de elastómeros reforzado (flexibles).

Figura 3

Técnicas de aislamiento sísmico en la base

Nota. Se observa aislamientos en la base de una edificación. Tomado de *Sistema de control de respuesta sísmica en edificaciones* (p. 110), por Oviedo y Duque, 2006.

En relación a los aisladores flexibles, se produce una disminución de la energía al incrementar el tiempo de vibración de la edificación, distanciándola del periodo de vibración natural del suelo. En contraste, los aisladores de fricción disminuyen la energía sísmica a través del deslizamiento entre el edificio y la cimentación (Oviedo y Duque, 2006).

Los apoyos deslizantes funcionan permitiendo que la estructura repose sobre juntas que facilitan el deslizamiento, disipando la energía mediante las fuerzas de fricción que se oponen al movimiento. Al reducir el coeficiente de fricción de los apoyos, también disminuyen las fuerzas generadas durante un sismo. Sin embargo, este sistema carece de una fuerza de restitución intrínseca que permita a la estructura volver a su posición original (Tovar, 2008).

2.2.2. Cargas Monotónicas

La carga monotónica se refiere a la aplicación gradual de cargas en una estructura, la característica principal es que la carga se aplica de forma progresiva y el ensayo no se detiene hasta que el elemento o estructura en estudio falle (Mora et al., 2022).

Figura 4

Comportamiento de los materiales sometidos a cargas monotónicas

Nota. En la figura (a) se observa la curva tiempo vs fuerza, y en (b) se visualiza la curva desplazamiento vs fuerza. Adaptado de Ayala et al. (2021) y Mora, W. (2022), respectivamente.

2.2.3. Desplazamiento Lateral

El movimiento horizontal de un elemento es principalmente causado por la aplicación de una carga externa, en ingeniería sísmica, se le conoce como la deriva experimentada por una estructura cuando es sacudida por un sismo, típicamente, esta deriva se mide en el nodo superior o final de la estructura analizada. El movimiento horizontal de la estructura está determinado por diversos factores, tales como la rigidez matricial, la ductilidad y composición de los materiales, la redundancia estructural y la forma del elemento ensayado (Mora et al., 2022).

2.2.4. Diagrama Esfuerzo - Deformación

El esfuerzo está definido como la carga aplicada de forma perpendicular sobre el área de sección transversal inicial de un elemento; y la deformación viene ser el cambio de la longitud con respecto a la longitud inicial del elemento.

Ecuación 1

Deformación Unitaria

$$\varepsilon = \frac{\Delta L}{L_o} \tag{1}$$

Ecuación 2

Esfuerzo

$$\sigma = \frac{P}{A_0} \tag{2}$$

Donde:

σ: Esfuerzo

ε: Deformación unitaria

P: Carga aplicada

Ao: Área de sección transversal inicial

ΔL: Variación de longitud

Lo: Longitud inicial

El diagrama de esfuerzo-deformación es un esquema gráfico que muestra la relación entre los esfuerzos aplicados a un material y la cantidad de deformación experimentada (Deingenierias.com, 2019). El diagrama se compone de múltiples etapas, que se muestran en la siguiente figura:

Figura 5

Diagrama esfuerzo vs deformación de los materiales

Nota. Se muestra las regiones y zonas característicos de los materiales al ser sometidos a esfuerzos. Tomado de *Análisis estructural en edificaciones modernas*, por *Deingenierias.com* (2019).

2.2.5. Módulo de Elasticidad o módulo de Young

El módulo de elasticidad (E) es una característica propia de cada material que describe la relación, dentro de su zona elástica, entre los incrementos de tensión aplicados ($\Delta \sigma$) y los cambios resultantes en la deformación longitudinal unitaria ($\Delta \varepsilon$) durante un ensayo. Este valor corresponde a la pendiente de la curva tensión-deformación en la región elástica obtenida en la prueba de tracción. Además, el módulo de elasticidad refleja la rigidez del material: a mayor rigidez, mayor será este módulo. (Universitat de Jaume I, 2022).

Figura 6

Diagrama esfuerzo - deformación y módulo de elasticidad

Nota. Se muestra que a partir del diagrama se puede determinar el módulo de elasticidad (E) del material. Adaptado de *Universitat de Jaume I* (2022).

Ecuación 3

Módulo de Elasticidad

$$E_m = \frac{\Delta\sigma}{\Delta\varepsilon} \tag{3}$$

Según la Norma E.080 del RNE el módulo de elasticidad admisible E_m se calcula es igual a:

Ecuación 4

Módulo de Elasticidad Admisible

$$E_m = 0.4E_m \tag{4}$$

2.2.6. Módulo de Corte o Módulo de cizalladura

El módulo de corte (G) se refiere a cómo un material responde ante la aplicación de un esfuerzo cortante, lo que genera una deformación en su estructura. En situaciones donde los esfuerzos aplicados son bajos, las deformaciones resultantes guardan una relación directamente proporcional con estos esfuerzos, de acuerdo con la ley de Hooke. En este contexto, el módulo de corte funciona como la constante de proporcionalidad (Zapata, 2020).

Ecuación 5

Módulo de Corte

$$G_m = \frac{\Delta \tau}{\Delta \gamma} \tag{5}$$

Para calcular G_m se trabaja con la parte más lineal del diagrama Esfuerzo cortante y Deformación angular.

Se puede comprobar que la deformación angular (γ) está dada por la suma de las deformaciones unitarias horizontales y verticales (San Bartolomé et al., 2018).

Ecuación 6

Deformación Angular

$$\gamma = \varepsilon_h + \varepsilon_v \tag{6}$$

Figura 7

Deformación por Corte

Nota. Se observa la deformación que adquiere el murete al ser sometido a compresión diagonal. Adaptado de *Diseño y construcción de estructuras sismorresistentes de albañilería*, por San Bartolomé et al. (2018).

Por otro lado, la Norma E.070 proporciona el módulo de elasticidad E_m y de corte G_m para todo tipo de unidad de albañilería:

Ecuación 7

Módulo de corte para unidades de albañilería

$$G_m = 0.4E_m \tag{7}$$

La ecuación anterior es equivalente al tomar un módulo de Poisson igual a 0.25 para albañilería.

Ecuación 8

Módulo de corte en relación al Módulo de Poisson

$$G_m = \frac{E_m}{2(1+\mu)} \tag{8}$$

Donde:

µ: módulo de Poisson

2.2.7. Energía de deformación

Cuando un material se somete a la acción de una carga externa, dicha carga realiza un trabajo externo que, progresivamente, se transforma en energía interna almacenada en el material. Esta energía, conocida como energía de deformación (U), está directamente asociada a las deformaciones que experimenta el material (Hibbeler, 2017).

En el ámbito de la ingeniería, resulta común y práctico definir la energía de deformación en términos de su magnitud por unidad de volumen del material. Esta medida se conoce como la densidad de energía de deformación y se representa como:

Ecuación 9

Densidad de la Energía de Deformación

$$u = \frac{\Delta U}{\Delta V} \tag{9}$$

Módulo de tenacidad (Ut). Esta magnitud corresponde al área total bajo la curva esfuerzo-deformación, lo que refleja la máxima energía por unidad de volumen que el material es capaz de absorber antes de alcanzar su punto de fractura (Hibbeler, 2017).

Figura 8

Nota. Del gráfico observado, el módulo de tenacidad corresponde al área total bajo la curva. Tomado de *Mecánica de materiales*, por Hibbeler (2017).
2.2.8. Coeficiente de Fricción para el Control de Desplazamiento

Según Shrivastava (2018), las fuerzas resistivas que se experimentan al intentar mover un cuerpo sobre una superficie se denominan fricción. Además, el coeficiente de fricción (μ) se define como la relación entre la fuerza necesaria para mover dos superficies deslizantes una sobre otra y la fuerza que las mantiene unidas. Por otro lado, Liu et al. (2020) destacan que el coeficiente de fricción (μ) es un parámetro estratégico para indicar la energía absorbida, dispersada o emitida por procesos como la deformación, fractura u otros daños en el material. Este parámetro puede definirse de manera sencilla como la relación entre la carga transversal y la carga vertical.

Ecuación 10

Coeficiente de Fricción

$$\mu = \frac{F}{W} \tag{10}$$

Donde

μ: Coeficiente de fricción

w: Peso del cuerpo que se desplaza

F: Fuerza que provoca el movimiento del cuerpo

2.2.9. Los Núcleos Estructurales Sismo Resistentes en las Construcciones de Caral

Los habitantes de Caral desarrollaban las actividades de la agricultura y la pesca, tenían conocimiento sobre el algodón y sabían cómo tejer telas y redes de pesca; además, estaban familiarizados con el uso de los juncos y las totoras. Con el tiempo, comenzaron a utilizar la "cortadera", una especie de mayor resistencia que el junco que era traída de las partes altas. Diseñaron bolsas de malla para facilitar el transporte de objetos, y de esta manera surgieron las Shicras (Asencios, 2009).

Fue muy ingenioso combinar las mallas de fibras, que eran resistentes a la tracción en comparación con los materiales frágiles como los grumos de barro seco y las piedras, que eran números y de fácil acceso. Las piedras envueltas con mallas eran utilizadas para crear los núcleos de las pirámides, ya que eran fáciles de transportar, además, las fibras de las bolsas ayudaban a controlar la tendencia de las piedras a desplomarse o rodar cuando se apilaban unas sobre otras. Las estructuras mencionadas no transferían fuerzas laterales a las estructuras vecinas, como resultado eran capaces de formar montículos de piedras embolsadas que eran estables por sí mismos, estas estructuras tenían núcleos estables que lograban mejorar el comportamiento estructural del relleno, principalmente cuando se enfrentaban a los movimientos sísmicos. Caral es pionero de la tecnología de los gaviones en la actualidad. Se han descubierto Shicras que llegan a pesar desde 15 kgf hasta 2000 kgf (Vargas et al., 2012).

Figura 9

Shicras de junco en los núcleos de cimentación de las pirámides de Caral

Nota. Se observan rellenos con bordes verticales planos y en equilibrio, diseñados para soportar la sobrecarga superior y permitir la ampliación de la zona de shicras. Tomado de *Sismo Resistencia en las entrañas de Caral* (p. 5), por Vargas et al. (2012).

2.2.10. Importancia del uso de Shicras

Según los estudios efectuados, se ha confirmado que el uso de esta técnica ancestral no solo reduce el pico de aceleración sísmica en un 60%, sino que también proporciona protección contra la humedad por capilaridad y reduce significativamente el impacto ambiental en comparación con soluciones convencionales basadas en concreto. Las Shicras son una alternativa sumamente beneficiosa en términos estructurales, económicos y ecológicos frente a otras tecnologías de construcción, este método reemplaza de manera ventajosa el uso de morteros de barro o concreto, los cuales no solo generan un fuerte impacto ambiental, sino que también resultan costosos para las comunidades rurales (Vargas, 2018).

2.2.11. Unidades de Adobe

Las unidades de adobe están hechas a partir de suelo arcilloso, combinadas con arena, paja, estiércol u otros materiales, tienen la forma de paralelepípedo y son fabricados a mano utilizando un molde rustico de madera llamado adobera, son compactadas manualmente y dejadas secar al sol, sus dimensiones están diseñadas para poder ser manipuladas con un solo brazo. Se puede decir que los adobes son como ladrillos compuestos principalmente de arcilla, más arena y agua, que se secan al sol. (Arco y Porcu, 2003)

El adobe es un bloque sólido fabricado con tierra sin cocer, al cual se pueden añadir elementos como paja u otros materiales para mejorar su estabilidad frente a factores externos. Cuando se incorporan componentes como asfalto, cemento o cal con el propósito de aumentar su resistencia a la compresión y su estabilidad frente a la humedad, este material se denomina Adobe Estabilizado (MVCS, 2010).

2.2.12. Componentes del Adobe

Suelo. Se trata de una mezcla compuesta por arcilla, limo y arena, que puede incluir también partículas más grandes como grava y piedras. La arcilla se define como las partículas con un diámetro inferior a 0.002 mm; el limo comprende partículas entre 0.002 mm y 0.06 mm; y la arena corresponde a aquellas con un diámetro entre 0.06 mm y 2 mm. Las partículas mayores se clasifican como grava. En esta mezcla, la arcilla funciona como un conglomerante que une las partículas más grandes, mientras que el limo, la arena y otros agregados actúan como relleno. Según cuál de estos tres componentes predomine, el suelo se clasifica como arcilloso, limoso o arenoso (Blanco y Morales, s.f.).

Conforme al Sistema Unificado de Clasificación de Suelos (SUCS), se consideran adecuados los suelos con un contenido de arena que oscile entre el 55 % y el 75 % (retenidos en la malla Nº 200) y un porcentaje de finos que varíe entre el 25 % y el 45 % (limos, arcillas y otras partículas que pasan la malla Nº 200). No obstante, se establece como límite que los suelos no deben contener más del 18 % de arcilla, ya que un mayor porcentaje podría generar cambios volumétricos no deseados en los adobes (Urbano, 2001).

La norma E.080 (2006) establece que el suelo utilizado para la fabricación de adobe debe contener entre un 10 % y 20 % de arcilla, un 15 % y 25 % de limo, y un 55 % y 70 % de arena, evitando el uso de suelos orgánicos. Estos valores pueden modificarse en el caso de producir adobes estabilizados. Según Urbano (2001), la arcilla, por sus propiedades adhesivas y ligantes, actúa como un material cementante que une las partículas de arena, las cuales aportan resistencia al suelo.

Componentes del suelo para el uso en el adobe según la norma E.080 – 2017:

Arcilla. Es el componente fundamental y activo del suelo que, al combinarse con agua, se vuelve plástica, lo que permite su manipulación. Este material actúa como un aglutinante que cohesiona las partículas inertes, formando barro, el cual, al secarse, adquiere una resistencia sólida adecuada para su uso en construcción. Las partículas de arcilla son muy pequeñas, con un tamaño inferior a dos micras (0.002 mm).

Arena fina. Compuesta por partículas de roca con tamaños que varían entre 0.08 mm y 0.50 mm, es un material inerte y estable al contacto con el agua, careciendo de propiedades cohesivas. Similar al limo, puede contribuir a una mayor compacidad del suelo bajo ciertas condiciones.

Arena gruesa. Es un material inerte y estable en contacto con el agua, sin propiedades cohesivas. Está formada por partículas de roca que tienen tamaños entre 0.6 mm y 4.75 mm, según las mallas Nº 30 y Nº 4 de la ASTM. Este tipo de arena constituye la estructura granular que aporta resistencia al barro durante el secado. Además, su incorporación a suelos arcillosos disminuye la cantidad y el grosor de las fisuras que se generan en el proceso de secado, incrementando así la resistencia del barro seco, como lo confirman estudios de laboratorio.

Limo. Es un material inerte y estable al contacto con el agua, sin propiedades cohesivas. Está formado por partículas de roca que tienen tamaños que oscilan entre 0.002 mm y 0.08 mm.

Paja. Es un material que reduce de manera considerable las contracciones que se producen durante el secado al aire de los adobes y mejora su adherencia a otros materiales, lo que refuerza la cohesión con el mortero y los revestimientos, fortaleciendo la albañilería. Los tipos de paja varían según la región e incluyen opciones como paja de arroz, trigo, pasto común, bagazo de caña, ichu, e incluso guano, crines u otros materiales similares. Se recomienda utilizar paja cortada en fragmentos de unos 10 cm, en una proporción de 1 % en peso. Una cantidad excesiva puede dificultar la manipulación del barro y reducir la resistencia de los adobes (Urbano, 2001).

En suelos arcillosos, se recomienda utilizar paja con un largo aproximado de 50 mm, en una proporción de un volumen de paja por cinco de tierra. Esto contribuye al control de fisuras y mejora la resistencia. En el caso del mortero de asentado, si no se dispone de paja, se sugiere el uso de arena gruesa para prevenir el agrietamiento (Norma E.080, 2017).

Agua. El adecuado control del contenido de humedad es crucial para minimizar o prevenir las fisuras que pueden formarse durante el proceso de secado. Es importante emplear únicamente la cantidad mínima de agua necesaria para activar la arcilla, lo que asegura la máxima resistencia de los muros en estado seco. En la fabricación de adobes, el agua utilizada no debe superar el 20 % del peso del material seco (Norma E.080, 2017).

Se calcula que aproximadamente 350 litros de agua son necesarios para la preparación e hidratación completa de un metro cúbico de suelo seco (Urbano, 2001, p. 30).

2.2.13. Mecanismo de Colapso Típicos en Muros de Tierra

De diferentes maneras puede fallar una vivienda de adobe por la acción de un sismo, a continuación, se muestra las fallas típicas.

Figura 10

Tipos de falla y agrietamientos asociados con fuerzas sísmicas

Tipo de falla	Patrón de agrietamiento	Ilustración
Flexión normal al plano de la pared de adobe	Se observan grietas horizontales en la base o a una altura intermedia, así como grietas verticales adicionales. Este fenómeno se observa con frecuencia en paredes de gran longitud.	
Flexión normal al plano de la pared de adobe con fisura vertical en la parte central	El agrietamiento diagonal que se presenta en la parte superior es el mecanismo de falla y fisuración.	ALLAND ALLAND
Flexión normal al plano en las esquinas no confinadas de paredes sueltos o no arriostradas	Presencia de grietas vertical y diagonal.	
Falla por corte en el plano de la pared vinculada a elevados empujes horizontales.	En numerosas ocasiones, estos agrietamientos se relacionan con estructuras de pisos o techos excesivamente pesados, y se incrementan notablemente con las aperturas de las puertas y ventanas en las paredes.	
Falla en la parte superior de las paredes de adobe.	La cubierta colapsa dentro de la vivienda. Presenta una combinación de grietas vertical y diagonal.	
Falla general de la cobertura por deficiencia de un apoyo o por inadecuada estructuración de ella.	Este tipo de falla ocurre con frecuencia en construcciones que tienen techos muy pesadas, que están mal diseñadas estructuralmente o que presentan un alto nivel de deterioro.	
Falla que se presenta por mala conexión de los muros del primer piso con los del segundo.	El segundo piso se vuelve inestable debido a que el entrepiso rompe los muros principales en un patrón casi horizontal. El objeto muestra signos de agrietamiento vertical y diagonal	
Combinación de dos o más mecanismos de falla.	Presencia de grietas verticales, horizontales y diagonales.	Custon Train Halling

Nota. Se observa como las viviendas de adobes presentan diversas fallas. Reproducido de Yamil, et al. (2007).

2.2.14. Modos de Fallas en Muros de Adobe por Sismo en el Plano

El colapso de la mampostería durante un terremoto, ya sea en el plano o fuera de este, depende de múltiples factores, entre ellos la calidad de los materiales empleados, la relación de esbeltez, la masa de la estructura, la vibración inducida y el tamaño de la carga vertical aplicada al elemento estructural (Preciado, 2011).

Agrietamiento Diagonal (AD). La falla por corte diagonal se da cuando la resistencia a tensión de la mampostería es excedida debido a la combinación de esfuerzos cortantes y verticales (Calderón, 2005). El agrietamiento por cortante se manifiesta como una serie de grietas siguiendo la configuración de una escalera a lo largo de las juntas del mortero, teniendo una forma diagonal, estas grietas son causadas por las tensiones de tracción diagonal o los esfuerzos de corte que ocurren dentro del muro (Arencibia, 2011).

Figura 11

Falla agrietamiento diagonal por cortante

Nota. Se muestra el agrietamiento diagonal del muro cuando es sometido a un solo sentido de carga lateral. Reproducido de Arencibia, 2011.

Deslizamiento (D). La falla por deslizamiento y cortante tiene lugar cuando las fuerzas verticales son mínimas y las juntas de mortero no ofrecen una resistencia significativa. Las fallas pueden ocurrir en los pisos superiores, donde la carga en los muros es baja por la cubierta (Calderón, 2005). La aparición de fisuras debidas al deslizamiento ocurre a lo largo de la unión horizontal del mortero como resultado falla de adhesión por corte en la junta (Arencibia, 2011).

Falla deslizamiento - cortante

Nota. Se muestra el deslizamiento del muro en la junta inferior. Reproducido de Arencibia, 2011.

Balanceo (B). Este tipo de falla ocurre cuando la mampostería tiene una alta capacidad de resistencia al esfuerzo cortante, pero las cargas aplicadas producen un momento considerablemente mayor que el esfuerzo cortante (Calderón, 2005). Las grietas suelen presentarse de manera vertical, ubicándose en el canto y la parte central del muro. Este fenómeno es común en muros altos y genera una falla por compresión debido a la flexión en la zona inferior comprimida del muro (Arencibia, 2011).

Figura 13

Falla balanceo

Nota. Se muestra el volteo del muro al aplicar una fuerza lateral. Reproducido de Preciado, 2016.

Aplastamiento en Pie de Muro (AP). La falla genera debido al efecto de puntal que ocurre cuando el cuerpo del muro se separa de los elementos de confinamiento, teniendo como resultados tensiones de compresión significativas en las esquinas del muro, lo cual puede causar la falla por aplastamiento en la zona si la calidad de la mampostería es deficiente (Arencibia, 2011).

Falla por aplastamiento en pie del muro

Nota. Se muestra el aplastamiento de las unidades de albañilería en el pie del muro. Reproducido de Preciado, 2016 y Arencibia, 2011.

2.2.15. Muros Experimentales de Adobes con Aislamiento Sísmico de Shicras

Son muros que tienen las dimensiones de 2.50 m de largo, 2.00 m de alto y 0.40 m de ancho. En la altura no se considera el cimiento y sobrecimiento.

Figura 15

Partes del muro experimental de adobe

Nota. El cimiento, el muro y la carga vertical estática fueron iguales para todos los muros.

Carga muerta vertical. Esta carga representa el peso de la cubierta (peso propio y carga viva) de la vivienda, determinado mediante el metrado de carga.

Mampostería de adobe. Muro construido con unidades de adobe tradicional, elaboradas con barro y paja, y asentadas con mortero de barro compuesto de arcilla y arena.

Las dimensiones de los adobes utilizados son de 40 cm \times 40 cm \times 12 cm y 40 cm \times 20 cm \times 12 cm.

Viga collar. Capa superior del sobrecimiento, elemento estructural de madera de espesor de 0.08 m, cuya función es controlar el asentamiento vertical.

Shicra con piedras de ¹/₂". Capa intermedia del sobrecimiento de espesor de 0.04 a 0.07 m, constituida por piedras de río de ¹/₂" llenadas en shicras, cuya función es controlar el desplazamiento y nivel.

Shicras con piedras. Capa inferior del sobrecimiento, conformado por piedras de río con diámetros uniformes envueltas con shicras, cumple la función de rodar y disipar la energía sísmica.

Cimiento. Concreto ciclópeo 1:10 + 30%P.G. con una profundidad de 0.60 m. y ancho de 0.60 m.

2.2.16. Ensayo de Carga Lateral Monotónica

Las shicras rellenas de piedra utilizadas como núcleos estructurales en las edificaciones de la cultura Caral, han demostrado ser efectivas para atenuar las energías sísmicas. Basándose en esta técnica ancestral, se han incorporado a los muros experimentales diseñados para ser sometidos a carga lateral monotónica, con el propósito de analizar su comportamiento como el desplazamiento, modo de falla, coeficiente de fricción y energía de deformación.

Figura 16

Esquema de ensayo de carga lateral monotónica

Nota. Se visualiza los equipos de medición instalados en el muro experimental ensayo bajo carga monotónica.

Este sistema incluye dos vernieres digitales para medir el desplazamiento horizontal, dos deformímetros de dial para la deformación diagonal, y una gata hidráulica accionada por bombas con manómetro digital. Aplicación de una carga muerta vertical en la parte superior del muro. El elemento de reacción es un sistema capaz de permanecer estático durante el ensayo.

2.2.17. Norma Empleado

Según lo establecido en la Norma E.080 (2017) para el diseño y construcción con tierra reforzada, se llevaron a cabo pruebas de campo, como la cinta de barro, la presencia de arcilla y el control de fisuras, así como ensayos de laboratorio, entre los que se incluyen el análisis granulométrico, el ensayo de compresión en cubos, el ensayo brasileño de tracción, el ensayo de morteros a tracción indirecta, la resistencia de pilas a la compresión y el ensayo de compresión diagonal.

2.3. Definición de Términos Básicos

Aislador, elemento estructural verticalmente rígido y horizontalmente flexible del sistema de aislamiento sísmico, lo que permite soportar deformaciones laterales durante los movimientos sísmicos (Reglamento Nacional de Edificaciones [RNE], Norma E.031).

Desplazamiento Lateral, Deformaciones horizontales de las estructuras debido a la acción de un sismo, las cuales deben ser controlados para evitar problemas en el uso de la estructura y resguardar las vidas humanas en caso de terremotos (Solis,2016).

Modo de Falla, es la fractura que ocurre cuando un objeto o material se rompe debido a una combinación de factores que alteran su resistencia, estabilidad y composición química. Existen diversas causas que pueden provocar fallos, como la corrosión, la fatiga o el desgaste, entre otras posibles causas (Infinitia, 2021).

Shicras, son bolsas fabricadas con fibra de plantas vegetales, como el junco, la totora o la grama. Se llenaban con piedras de río, piedras de cantera, cascajo y basura. Durante al menos 5000 años, los habitantes andinos de la costa central han utilizado esta técnica para construir los cimientos de los edificios (Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica [CONCYTEC], s.f.).

Sismo, es el movimiento abrupto de la Tierra se produce cuando se libera la energía acumulada durante un período prolongado. Por lo general, estos movimientos suelen ser despacio e imperceptibles, sin embargo, en algunos casos, el desplazamiento repentino de una placa contra otra puede liberar una enorme cantidad de energía, ocasionando su ruptura y dando origen de un terremoto (Comisión Nacional de Prevención de Riesgos y Atención de Emergencias de Costa Rica [CNE], 2012).

III. METODOLOGÍA

3.1. Metodología de la Investigación

3.1.1. Método(s) de la Investigación

Enfoque de Investigación:

Cuantitativo. Es un método sistemático y estructurado que utiliza datos numéricos para describir, explicar y predecir fenómenos. Este enfoque se basa en la recolección de datos medibles y su análisis estadístico para responder preguntas de investigación o probar hipótesis previamente planteadas (Hernández et al., 2014).

Tipo de investigación:

Aplicada. Es un tipo de investigación que busca resolver problemas específicos y prácticos, generando conocimientos útiles y aplicables de manera inmediata en contextos reales (Hernández et al., 2014).

Nivel de investigación:

Explicativo. Está dirigido a responder por las causas de los eventos y fenómenos físicos o sociales. Se enfoca en explicar por qué ocurre un fenómeno y en qué condiciones se manifiesta, o por qué se relacionan dos o más variables. Prueba teorías y establece relaciones de causa y efecto entre diferentes variables de estudio (Hernández et al., 2014).

Diseño de investigación:

Experimental. Estado de control, que se lleva a cabo la manipulación intencional de una o más variables de causa (independientes) con el objetivo de analizar los resultados de dicha manipulación en una o más variables de efecto (dependientes) (Hernández et al., 2014). El método experimental es la técnica de investigación más sofisticada y utilizada para recolectar datos y contrastar hipótesis (Ñaupas et al., 2018).

3.1.2. Diseño Estadístico

Diseño Completamente al Azar (DCA) con experimento simple, donde se dispuso de 4 tratamientos (3 con aislamiento sísmico empleando shicras y uno sin aislamiento) con tres repeticiones por cada tratamiento, teniendo en total de 12 unidades experimentales.

Disposición de las 12 unidades experimentales

Nota. Se muestran el orden de construcción de los tratamientos de la investigación.

A continuación, se representa un experimento de un factor de tres tratamientos con

tres repeticiones.

Tabla 1

Tratamientos y numero de repeticiones para DCA simple

Tratamiento	Repeticiones						
	1	2	3				
1	y 11	y 12	y 13				
2	y 21	y 22	y 23				
3	y 31	y 32	y 33				
4	y 41	Y 42	y 43				

Nota. En la tabla se observa cuatro tratamientos con sus tres repeticiones que corresponden a los tratamientos T_0 , T_1 , T_2 y T_3 .

El modelo matemático es:

$$Y_{ij} = \mu + T_i + \varepsilon_{ij} - \begin{bmatrix} i = 1, 2, \dots t \\ j = 1, 2, \dots r \end{bmatrix}$$

Donde:

Y_{ij} = variable de respuesta de la ij-ésima unidad experimental.

 μ = media general de la variable de respuesta.

T_i = efecto del i-ésimo tratamiento (nivel del factor) en la variable dependiente.

 ε_{ij} = error experimental asociado al j-ésimo elemento del i-ésimo tratamiento.

3.1.3. Población y Muestra

Población. Se define como el total de unidades de estudio que cumplen con las características requeridas para formar parte de la muestra. Estas unidades pueden incluir individuos, objetos, grupos, eventos o fenómenos que poseen los atributos necesarios para ser examinados en la investigación (Ñaupas et al., 2018).

Dada esta definición se tuvo como población doce muros de adobe.

Muestra. Es un subgrupo de una población que comparte las mismas características del conjunto completo, lo cual facilita la generalización de los resultados (Ñaupas et al., 2018).

Si la población es reducida y se puede llegar a ella sin limitaciones, entonces es posible tomar como muestra a toda la población (Ccanto, 2010).

El tipo de muestreo no probabilístico. En este caso la selección de la muestra no se basa en la probabilidad, sino en causas vinculadas con las características de la investigación.

Muestreo por conveniencia. El principal criterio que se tiene en cuenta en este muestreo es la intención que se busca en la investigación.

Bajo estas definiciones las muestras fueron doce muros de adobe con cuatro diferentes tratamientos y tres repeticiones.

3.2. Operacionalización de las Variables

Tabla 2

Operacionalización de las variables

Variable	Definición conceptual	Definición operacional	Dimensión	Indicadores	Escala de medición	Técnicas e instrumentos	
Independiente: Aislamiento sísmico empleando Shicras	"El aislamiento sísmico es un sistema que protege la estructura y todos los componentes dentro de la estructura de los efectos destructivos de los terremotos, gracias a dispositivos especiales colocados entre la estructura misma y su cimentación" (Teknolojik Izolator Sistemleri, 2022). "Shicras son bolsas hechas con fibra vegetal que son rellenadas, generalmente, con rocas de diferentes tamaños" (Vargas, 2017).	El aislamiento sísmico empleando shicras buscará minimizar el efecto negativo del sismo interponiendo shicras envueltas con piedras en la base de la estructura tales que puedan absorber la acción del sismo y soportar el peso de la estructura.	Tipo de aislamiento sísmico con shicras	Diámetro de la piedra	Pulg.	Observación, informes técnicos, revisión documentaria, ficha de recolección de datos, equipo para elaboración de shicras.	
Dependiente:		El comportamiento sísmico de muros de adobe se evaluará	Ensayo de carga monotónica	Carga de empuje	kN.		
	"Comportamiento sísmico consiste en el estudio de parámetros generados durante un movimiento sísmico, como lo son las fuerzas y los	simulando el movimiento del sismo, lo cual consiste en aplicar una carga lateral - monotónica para medir los desplazamientos y observar el	Respuesta del muro	Desplazamiento	mm.	Ensayo de carga,	
Comportamiento sísmico de muros de					Agrietamiento diagonal	documentaria, ficha de recolección de datos.	
adobe	desplazamientos" (Oviedo y Duque, 2006, p.106).	modo de falla cuando se genera	Respuesta	Modo de falla	Balanceo	equipo de prueba.	
		el agrietamiento y la discretización de los muros en	del muro		Deslizamiento		
		segmentos más pequeños.			Aplastamiento en pie del muro		
Interviniente:			Propiedades	Densidad	Kg/m ³		
	x · 1 1 0 · 11 1	Las propiedades físicas v	físicas	Absorción de agua	<u>%</u>		
	Las propiedades físicas son aquellas que se pueden	mecánicas del adobe se		Resistencia a la tracción	Kgf/cm ²	Ensayo de carga,	
Propiedades físicas	material, v las propiedades mecánicas son aquellas	evaluarán en laboratorio, para		compresión	Kgf/cm ²	observación, revisión	
y mecánicas del adobe	que afectan a la resistencia mecánica y a su capacidad cuando se les aplica una fuerza.	las cuales se elaborarán las unidades de adobe, prismas, muratas y cubos da mortare a	Propiedades mecánicas	Resistencia a la compresión de prismas	Kgf/cm ²	documentaria, ficha de recolección de datos, equipo de prueba	
	(Infinitia, 2022)	usarse.		Resistencia a la compresión diagonal de muretes	Kgf/cm ²		

3.3. Técnicas e Instrumentos de Recolección de Datos

3.3.1. Técnicas de Recolección de Datos

Observación Directa en Campo. Mediante esta técnica se llevaron a cabo diversas pruebas en campo con la finalidad de tener una evaluación preliminar del suelo. Las pruebas realizadas fueron las siguientes: prueba de cinta de barro, prueba de presencia de arcilla y prueba de control de fisuras.

Observación Directa Experimental. A través de esta técnica, se llevó a cabo la fabricación de los adobes y la construcción de doce muros de adobe, de los cuales nueve fueron con aislamiento sísmico empleando piedras envueltas en shicra (driza N° 5/32) en el sobrecimiento, mientras que los tres restantes utilizaron un sobrecimiento tradicional compuesto de piedras con barro. Tras cumplir los días de secado, los muros fueron sometidos a ensayos de carga lateral monotónica evaluar su comportamiento.

Análisis Documental. Mediante esta técnica se emplearon Normas Técnicas Peruanas, artículos científicos indexadas, informes técnicos, libros y manuales relacionados con temas de fabricación de adobes, pruebas en campo, ensayos en laboratorio y aislamientos sísmicos con shicras.

3.3.2. Instrumentos de Recolección de Datos

Guía de Observación. Fichas que fueron utilizados para anotar datos de la prueba de campo, ensayos físico mecánicos del adobe y ensayo de los muros.

Diario de campo. Se empleo para anotar toda la información necesaria durante la extracción del suelo, fabricación de adobes, construcción y ensayo de los muros.

Bomba de carga - descarga y gato Hidráulico. Este dispositivo sirvió como fuente de carga lateral que se aplicaron a los muros de adobe.

Vernier Digital. Se utilizaron para medir los desplazamientos horizontales en la parte superior e inferior de los muros durante el ensayo; además, se utilizó para medir las grietas y/o fisuras generadas en los muros después del ensayo.

Deformímetro Dial. Estos equipos se emplearon para medir distancias de deformación en los ensayos de compresión de prismas, ensayo de compresión diagonal de muretes y ensayo de muros sometidos a carga lateral monotónica.

Cámara de Video. Se utilizaron teléfonos celulares para grabar las lecturas en los equipos de manómetro, deformímetros diales, vernieres y visualización del modo de falla de los muros durante el ensayo.

Información Documental. Se aplicó la norma E.080 del RNE para realizar las pruebas en campo y los ensayos de laboratorio al suelo utilizado en la fabricación del adobe.

Además, se revisaron los informes técnicos de sobrecimientos con aislamiento sísmico mediante shicras, elaborados por la PUCP, los cuales detallan el procedimiento para la fabricación de este tipo de aislamiento.

Equipos de laboratorio. Se emplearon diversos equipos para la realización de los ensayos correspondientes, los cuales fueron ejecutados bajo la dirección y responsabilidad del personal del laboratorio.

3.4. Procedimiento de la Recolección de Datos

3.4.1. Pruebas en Campo

Prueba Cinta de barro. A partir de la muestra de suelo seleccionada para la fabricación del adobe, se preparó una mezcla con la humedad adecuada para moldear un cilindro de 12 mm de diámetro. Este cilindro fue posteriormente aplanado en forma de cinta manualmente con los dedos hasta alcanzar un espesor de 4 mm y luego se dejó colgar hasta que se rompa. Los resultados de la prueba se muestran en el Anexo A.

Figura 18

Prueba de Cinta de barro del suelo para la elaboración de los adobes

Nota. Se observa la elaboración de la muestra cilíndrica y como se deja colgar la cinta de barro.

Prueba Presencia de arcilla. Con el suelo identificado como adecuado para la fabricación de adobes, se moldearon cuatro pequeñas esferas. La cantidad de agua utilizada fue la mínima necesaria para formar cada esfera en las palmas de las manos, asegurando que mantuvieran su forma sin deformarse significativamente al secarse. Estas esferas se dejaron secar durante 48 horas, evitando que se humedecieran o mojaran. Transcurrido el tiempo de secado, se ejerció presión sobre cada esfera utilizando el pulgar y el índice. La prueba fue realizada por el equipo encargado de la construcción de los muros. Los resultados de esta prueba se encuentran detallados en el Anexo B.

Prueba de Presencia de arcilla con el suelo utilizado para los adobes

Nota. Se observa la elaboración de las esferas de barro y el proceso de la prueba con los dedos del personal quien elaboro el adobe.

Prueba Control de fisuras para el mortero. Se elaboraron especímenes de prueba utilizando dos adobes unidos mediante mortero de barro. Al mortero se le añadió la cantidad de agua necesaria para obtener una mezcla manejable. Durante su preparación, se incrementó gradualmente la proporción de arena gruesa en cada muestra, ajustando también la cantidad de agua requerida. Se inició con una proporción de 1:0 (suelo: arena gruesa) y se continuó sucesivamente con las proporciones 1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 y 1:3. Los especímenes se dejaron secar durante aproximadamente 48 horas, tras lo cual se abrieron en el mismo orden en que fueron elaborados para evaluar la presencia de grietas en el mortero. La proporción óptima correspondió al espécimen que no presentó fisuras visibles. Los resultados de esta prueba están documentados en el Anexo C.

Figura 20

Prueba de Control de fisura con el suelo utilizado para los adobes

Nota. Se observa como el mortero ha presentado fisuras en la muestra 02 con dosificación 1:0.5 (suelo : arena gruesa) después de 48 horas de secado.

3.4.2. Ensayos en Laboratorio

Respecto al Objetivo Especifico 1. Tenemos las siguientes etapas:

Elaboración de adobes. Se realizaron las siguientes actividades:

- Zarandeo el suelo con malla Nº4 con la finalidad de separar las arenas y finos de las gravas.
- 2) Proceso de hidratación (dormido) durante dos días, con la finalidad de activar las partículas de arcilla antes de ser amasada, la cantidad de agua utilizado para preparar el barro fue de 300 litros por un metro cubico de suelo seco.
- Adición de paja de 50 mm de largo aproximadamente, en proporción de 1:5 en volumen de paja y suelo.
- Llenado de barro en la adobera, se humedecieron con agua las paredes internas de las adoberas para que el adobe no se pegue al momento de retirar la adobera. Se elaboraron los adobes en un terreno plano y seco.
- 5) Secado de la unidad de adobe fue lento más de 30 días para luego ser asentados en los muros, para lo cual se construyó un tendal para protegerlo del sol. A partir del tercer día de secado se colocaron los adobes de canto para uniformizar su secado.

Figura 21

Amasado del adobe y su secado bajo un tendal

Nota. Se muestra la elaboración de los adobes tradicionales con adobera de 0.40 m x 0.40 m x 0.12 m, y el tendal con los adobes.

Propiedades físicas. Se realizaron los siguientes ensayos:

 La densidad del adobe. El procedimiento se llevó a cabo cuando los adobes completaron 28 días de secado. Se tomaron tres muestras de adobe, se midieron sus tres lados y posteriormente se pesaron utilizando una balanza eléctrica. Los procedimientos y resultados se muestran en el Anexo D.

Medida de los lados del adobe y su pesado

Nota. Se observa la medición de los lados del adobe y el pesado en una balanza eléctrica con una presión de 0.01 kg.

2) La absorción de agua en el adobe. Se realizó utilizando muestras de adobes con más de 28 días de secado, para lo cual se seleccionaron tres adobes que fueron sumergidos en agua durante 24 horas en un recipiente provisto de una regla graduada. Los procedimientos y resultados se muestran en el Anexo E.

Figura 23

Recipiente con una regla graduada y adobe sumergido en agua

Nota. En la fotografía se observa el recipiente contenido de agua y dispuesto con una regla metálica y el adobe sumergido durante 24 horas.

Propiedades mecánicas. Se realizaron los siguientes ensayos:

 Ensayo de compresión en cubos. Se extrajeron seis muestras de adobe secado durante 28 días, con forma cúbica y lados de 10 cm. Para uniformizar el área de contacto donde se aplicaría la carga, se realizó el refrentado con yeso. Posteriormente, las muestras fueron llevadas al laboratorio. Los resultados de laboratorio se muestran en el Anexo K.

Muestras de cubos y cilindros de adobe para su ensayo

Nota. Se observan las muestras de cubos refrentado con yeso con la finalidad de uniformizar la cara de apoyo donde se aplicaron las cargas.

2) Ensayo brasileño a la tracción. Se prepararon muestras del barro empleado en la fabricación de los adobes, moldeándolas en cilindros de 6" de diámetro y 12" de altura. Las seis muestras se dejaron secar durante un periodo de 28 días antes de ser llevadas al laboratorio. Los resultados de laboratorio se muestran en el Anexo L.

Figura 25

Muestras en moldes cilíndricos para ensayo brasileño

Nota. Se tomaron muestra del barro que se utilizó para elaborar los adobes.

3) Ensayo de mortero a la tracción indirecta. Se elaboraron seis especímenes, cada uno conformado por dos adobes unidos mediante un mortero de barro con una junta horizontal de 1.5 cm de espesor. Las dimensiones de los adobes fueron 20 cm × 12 cm × 30 cm. Tras un período de secado superior a 28 días, los especímenes fueron ensayados en laboratorio. En el Anexo M se muestran los resultados del laboratorio.

Muestras de pilas con mortero de juntas de 1.5 cm

Nota. Se observa especímenes conformado por dos adobes y con junta de barro.

4) Ensayo de compresión en prismas. Se construyeron seis muestras en forma de prismas, cada una conformada por cuatro adobes, las cuales se dejaron secar durante 28 días antes de ser ensayadas en laboratorio. Las dimensiones de los adobes fueron 40 cm × 20 cm × 12 cm. El procesamiento de los datos se muestra en el Anexo N.

Figura 27

Muestras de prismas refrentado con yeso

Nota. Se observa que las caras de asentado se mojaron para el colocado del mortero; también se observa el refrentado con yeso de dos caras del prisma.

5) Ensayo de tracción indirecta en muretes. Se prepararon seis muestras en forma de muretes con dimensiones de 65 cm × 65 cm × 20 cm, las cuales, tras un período de secado superior a 28 días, fueron sometidas a ensayos de compresión diagonal. Los resultados se muestran en el Anexo O.

Elaboración de muretes de adobes

Nota. Se muestra la construcción de los muretes realizada por el mismo personal que participó tanto en la elaboración de los adobes como en la construcción de los muros.

3.4.3. Ensayos experimentales

Respecto al Objetivo Especifico 2. Se construyeron muros experimentales aplicando cuatro tratamientos diferentes. Para el sobrecimiento, se utilizaron piedras envueltas en shicras elaboradas con drizas de 5/32", además de un sobrecimiento tradicional como referencia. El cimiento estuvo compuesto por concreto ciclópeo con una proporción C:H 1:8 más un 30% de piedra grande (PG), y se diseñó con dimensiones de 0.60 m de ancho, 0.60 m de alto y 3.00 m de largo.

Tratamiento T_{θ} *(testigo).* El sobrecimiento tradicional estuvo conformado por piedras con diámetros que varían entre 4" y 10", asentadas con barro. Las dimensiones del sobrecimiento fueron de 0.30 m de altura, 0.40 m de ancho y 2.50 m de largo.

Figura 29

Sobrecimiento tradicional elaborado con piedra y barro

Nota. Se muestra el sobrecimiento del tratamiento T₀ (testigo).

Tratamiento T₁. El sobrecimiento se conformó por tres capas. La capa inferior consistió en piedras redondeadas de río con un diámetro promedio de 1", embolsadas en grupos de 45 dentro de shicras hechas con mallas negras de pescar; estas shicras se colocaron sobre el cimiento con una separación de 5 mm entre sí. La capa intermedia estuvo compuesta por piedras redondeadas de río de $\frac{1}{2}$ ", también embolsadas en mallas negras de pescar con una abertura de 5 mm, presentando un espesor variable entre 0.05 m y 0.08 m. Por último, la capa superior se conformó por una viga collar de madera con un espesor de 0.08 m.

Figura 30

Sobrecimiento con piedras de 1" envueltas con shicras

Nota. Se observa piedras de 1" rellenadas en malla de pecar, y las tres capas que conforman el sobrecimiento del tratamiento T_1 .

*Tratamiento T*₂. El sobrecimiento se construyó en tres capas. La capa inferior estuvo conformada por piedras redondeadas de río con un diámetro promedio de 3", embolsadas en grupos de cinco dentro de shicras (mallas) elaboradas con drizas de 5/32", las cuales se colocaron sobre el cimiento con una separación de 5 mm entre sí. La capa intermedia se compuso de piedras redondeadas de río de $\frac{1}{2}$ ", embolsadas en mallas negras de pescar con aberturas de 5 mm, y con un espesor que varió entre 0.05 m y 0.08 m. Finalmente, la capa superior consistió en una viga collar de madera con un espesor de 0.08 m.

Sobrecimiento con piedras de 3" envueltas con shicras de cinco en cinco

Nota. Se observa piedras de 3" rellenadas en shicras, y las tres capas que conforman el sobrecimiento del tratamiento T_2 .

*Tratamiento T*₃. Este sobrecimiento estuvo compuesto por tres capas. La capa inferior consistió en piedras redondeadas de río con un diámetro promedio de 5", embolsadas en grupos de tres dentro de shicras (mallas) elaboradas con drizas de 5/32"; estas shicras rellenas con piedras se dispusieron sobre el cimiento con una separación de 5 mm entre sí. La capa intermedia estuvo formada por piedras redondeadas de río de ½", embolsadas en mallas negras de pescador con una abertura de 5 mm, con un espesor variable entre 0.05 m y 0.08 m. Finalmente, la capa superior se constituyó por una viga collar de madera de 0.08 m de espesor.

Figura 32

Sobrecimiento con piedras de 5" envueltas con shicras de tres en tres

Nota. Se observa piedras de 5" rellenadas en shicras, y las tres capas que conforman el sobrecimiento del tratamiento T_3 .

Respecto al Objetivo Especifico 3. Una vez completada la construcción, los muros fueron pintados y se dejaron secar durante más de 28 días. Posteriormente, se colocaron sobre ellos sacos de arena con un peso total de 500 kg como carga vertical estática, preparándolos para los ensayos de carga lateral monotónica. Durante el ensayo se registraron la carga lateral, los desplazamientos, las deformaciones y se observó detalladamente el modo de falla de los muros.

Figura 33

Muros de adobe con diferentes sobrecimientos (tratamientos)

Nota. Se observa los doce muros culminados que corresponden a cuatro tratamientos con tres repeticiones cada uno.

Se utilizaron dos vernieres digitales con una precisión de 0.01 mm para medir el desplazamiento lateral, colocándose uno en la parte superior y otro en la parte inferior del muro. Además, se instalaron dos deformímetros de dial con una precisión de 0.001" para registrar la deformación angular en las zonas de tracción y compresión.

Figura 34

Muro de adobe con los equipos de medición instalados

Nota. Se observa el tratamiento T₂ con los equipos instalados para el ensayo.

Se instalaron seis videocámaras en posiciones estratégicas para registrar las lecturas de cada dispositivo de medición y capturar una vista general del ensayo de los muros. Esto permitió documentar y analizar de manera detallada el modo de falla observado durante los ensayos.

Figura 35

Muro de adobe instalado con videocámaras

Nota. Se observa el modo de falla del tratamiento T₂ después del ensayo.

Respecto al Objetivo Especifico 4. Se realizó el análisis estadístico de los resultados obtenidos para cada tratamiento utilizando el software SPSS Statistics 25. En este análisis, se empleó la prueba estadística ANOVA para contrastar la hipótesis planteada, seguida de la prueba post hoc de Duncan, con el objetivo de identificar si existían diferencias significativas entre las medias de los distintos tratamientos.

Diagrama de flujo del proceso de investigación

IV. RESULTADOS Y DISCUSIONES

4.1. Resultados

Respecto al objetivo específico 1

Las propiedades físicas y mecánicas del adobe fueron determinadas conforme a lo establecido en la Norma E.080 del Reglamento Nacional de Edificaciones (RNE). Los ensayos se llevaron a cabo en el laboratorio geotécnico y de ensayo de materiales MATHLAB Ingeniería Sismorresistente E.I.R.L., Ubicado en la ciudad de Huaraz – Ancash. Se obtuvieron los siguientes resultados.

Tabla 3

Muestra	Din	nensiones (c	m)	Masa	Densidad
	Alto	Ancho	Largo	(Kg)	(Kg/m^3)
M-01	11.90	40.10	40.20	34.65	1806.28
M-02	12.10	40.20	39.80	33.95	1753.66
M-03	12.00	39.90	40.10	34.35	1789.07
		Densidad p	1783.01		

Resultados del cálculo de la Densidad del adobe

Nota. Las dimensiones del adobe se determinaron mediante la prueba de Variación Dimensional, siguiendo el procedimiento descrito en la NTP 399.613:2017.

Tabla 4

Resultados del cálculo de Absorción de agua del adobe

Muestra	Din	nensiones	(cm)	Volumen de adobe	Volumen de agua absorbido	Absorción		
	Alto	Ancho	Largo	(cm ³)	(lt)	(%)		
M-01	11.90	40.10	40.20	19183.04	2.51	13.10		
M-02	12.10	40.20	39.80	19359.52	3.02	15.58		
M-03	12.00	39.90	40.10	19199.88	2.51	13.09		
			% Absc	% Absorción promedio del adobe (% Abs):				

Nota. Las dimensiones del adobe y la absorción se determinaron de acuerdo al procedimiento indicado en la NTP 399.613:2017.

Muestra	Dimensiones (cm)			Área	Carga Máxima	f″b	f′b
	Alto	Ancho	Largo	(cm^2)	(Kg)	(Kg/cm^2)	(MPa)
M-01	10.13	10.15	10.17	103.23	2129.87	20.63	2.02
M-02	9.86	10.07	9.96	100.30	2082.85	20.77	2.04
M-03	10.07	9.93	10.02	99.50	1800.55	18.10	1.78
M-04	9.94	9.83	9.95	97.81	1976.18	20.20	1.98
M-05	9.79	9.96	10.16	101.19	1649.77	16.30	1.60
M-06	10.11	10.18	9.99	101.70	1716.84	16.88	1.66
Resister	ncia proi	nedio de	las cuatr	o mejores n	nuestras (f'b):	19.93	1.95
				Desviación	Estándar (S):	1.98	0.19
			Coefici	ente de vari	ación (CV%):	10.53	10.53
		Esfu	ierzo adn	nisible a cor	npresión (fb):	7.97	0.78

Resultados del cálculo de Resistencia a Compresión en cubos de adobe

Nota. Las dimensiones del adobe se determinaron mediante la prueba de Variación Dimensional conforme a la NTP 399.613:2017, y el ensayo de compresión se realizó de acuerdo con lo establecido en la Norma E.080 (2017) del RNE. Para el cálculo del esfuerzo admisible, se consideró un coeficiente de seguridad de 2.5, tal como lo especifica la Norma E.080.

Tabla 6

Tabla 5

Resultados del cálculo de la Resistencia a la Tracción en adobe

M (Dimensi	ones (cm)	Carga Máxima	f′t	f′t
Muestra	Alto	Diámetro	(Kg)	(Kg/cm ²)	(MPa)
M-01	29.83	14.93	815.73	1.17	0.11
M-02	29.94	14.85	1607.71	2.30	0.23
M-03	29.76	14.82	1844.09	2.66	0.26
M-04	29.86	14.91	1973.33	2.82	0.28
M-05	29.73	14.96	2084.57	2.98	0.29
M-06	29.81	14.89	1547.62	2.22	0.22
Resistencia	promedio de	e las cuatro mej	ores muestras (f't):	2.69	0.26
		Desvi	ación Estándar (S):	0.65	0.06
		Coeficiente de	e variación (CV%):	27.74	27.74
		Esfuerzo admis	sible a tracción (ft):	1.08	0.11

Nota. El ensayo brasileño se realizó siguiendo las directrices establecidas en la Norma E.080 del Reglamento Nacional de Edificaciones (RNE, 2017). Para determinar el esfuerzo admisible, se utilizó un coeficiente de seguridad de 2.5, tal como lo estipula dicha normativa.

Muestra	Dim	Dimensiones (cm)			Carga Máxima	Resistencia Tracción	Resistencia Tracción
	Alto	Ancho	Largo	(cm^2)	(Kg)	(Kg/cm^2)	(MPa)
M-01	12.00	19.90	30.10	598.99	310.66	0.26	0.025
M-02	11.80	20.10	29.80	598.98	221.70	0.19	0.019
M-03	11.90	19.80	29.90	592.02	264.83	0.22	0.022
M-04	12.10	20.00	30.20	604.00	177.65	0.15	0.015
M-05	12.10	20.10	30.10	605.01	205.16	0.17	0.017
M-06	12.10	19.90	30.00	597.00	245.68	0.21	0.021
Resistenc	ia prom	edio de la	as cuatro	mejores mu	estras (f'tm):	0.22	0.022
				Desviación	Estándar (S):	0.04	0.004
		19.49	19.49				
Esfuer	zo admis	sible del 1	mortero	a tracción in	directa (ftm):	0.09	0.009

Resultados del cálculo de Resistencia a la Tracción del mortero

Nota. El ensayo de resistencia a la tracción del mortero se realizó de acuerdo con lo estipulado en la Norma E.080 del Reglamento Nacional de Edificaciones (RNE, 2017). Para el cálculo del esfuerzo admisible, se aplicó un coeficiente de seguridad de 2.5, conforme a lo establecido en dicha norma.

Tabla 8

Tabla 7

Resultados de Resistencia a la Compresión Axial en prismas de adobe

Muestra	Dimensiones Prom. (cm)			Área	Carga Máxima	ſ'n	f′m
111005010	Alto	Ancho	Largo	(cm^2)	(Kg)	(Kg/cm ²)	(MPa)
M-01	54.20	20.20	40.10	810.02	7249.12	8.95	0.878
M-02	53.60	19.80	39.80	788.04	8496.74	10.78	1.057
M-03	53.90	19.80	40.00	792.00	7743.86	9.78	0.959
M-04	54.10	20.30	40.30	818.09	7464.22	9.12	0.894
M-05	53.70	20.10	39.70	797.97	9271.12	11.62	1.140
M-06	54.30	19.70	39.90	786.03	8217.10	10.45	1.025
Resisten	cia pron	nedio de	las cuatro	o mejores m	uestras (fm):	10.66	1.045
	Desviación Estándar (S):						0.101
			Coeficie	ente de varia	ación (CV%):	10.16	10.16
		Esfuer	zo de co	mpresión ad	lmisible (fm):	4.26	0.418

Nota. El ensayo de resistencia a la compresión axial de prismas se llevó a cabo siguiendo los procedimientos establecidos en la NTP 399.605:2018 y la Norma E.080 del Reglamento Nacional de Edificaciones (RNE, 2017). Para determinar el esfuerzo admisible, se utilizó un coeficiente de seguridad de 2.5, conforme a lo establecido en dicha norma.

Muestra	Long Inicial	gitud l (mm)	Área	Carga Máxima	σ máx	E máx	Em	Em
	Li	Ld	(cm^2)	(Kg)	(Kg/cm ²)	(mm/mm)	(Kg/cm ²)	(MPa)
M-01	338	344	810.02	7249.12	8.95	0.0065	1529.25	149.97
M-02	346	322	788.04	8496.74	10.78	0.0044	2607.59	255.72
M-03	325	364	792.00	7743.86	9.78	0.0068	1900.94	186.42
M-04	342	336	818.09	7464.22	9.12	0.0063	1744.64	171.09
M-05	336	343	797.97	9271.12	11.62	0.0046	3175.74	311.43
M-06	328	334	786.03	8217.10	10.45	0.0058	2214.64	217.18
Módulo	de elasti	cidad pr	omedio d	e las cuatro	mejores mu	iestras (Em):	2474.73	242.69
					Desviación 1	Estándar (S):	610.73	59.89
		С	oeficiente	e de variaci	ón (CV%):		27.82	27.82

Resultados del cálculo de Módulo de Elasticidad (Em) del adobe

Nota. El módulo de elasticidad del adobe se calculó a partir de la gráfica esfuerzo-deformación obtenida durante el ensayo de compresión axial en prismas. Este valor se define como la pendiente de la recta correspondiente a la zona elástica de la gráfica.

Tabla 10

Tabla 9

Muestra	Dimensiones Prom. (cm)			Área de corte	Carga Máxima	v′ _m	v′m
	Alto	Ancho	Largo	(cm^2)	(Kg)	(Kg/cm ²)	(MPa)
M-01	68.20	20.30	67.50	1947.90	516.26	0.27	0.026
M-02	67.90	20.10	68.20	1934.37	623.81	0.32	0.031
M-03	67.10	19.90	66.30	1877.16	451.73	0.24	0.024
M-04	66.50	19.80	68.10	1884.63	688.34	0.37	0.036
M-05	67.60	20.20	67.80	1934.00	559.28	0.29	0.028
M-06	68.70	20.00	66.90	1917.84	645.32	0.34	0.033
Resisten	cia pron	nedio de l	las cuatro	o mejores m	uestras (v'_m) :	0.33	0.032
				Desviación	Estándar (S):	0.05	0.005
			Coefici	ente de varia	ación (CV%):	15.62	15.62
			Esfuerz	o admisible	de corte (v _m):	0.13	0.013

Resultados de Resistencia a la Tracción Indirecta en muretes de adobe

Nota. El ensayo de resistencia a la tracción indirecta en muretes se realizó de acuerdo con los procedimientos especificados en la NTP 399.621:2015 y la Norma Técnica de Edificación E.080 (2017) del RNE. Para determinar el esfuerzo admisible, se utilizó un coeficiente de seguridad de 2.5, siguiendo lo establecido en la Norma E.080.

Longitud Área de Carga τ máx Υ máx Gm Gm (mm) corte Máxima Muestra Lv Lh (cm^2) (Kg) (Kg/cm^2) (mm/mm) (Kg/cm^2) (MPa) M-01 374 396 1947.90 516.26 0.265 0.002 779.51 76.444 385 390 1934.37 623.81 0.322 0.003 968.12 94.940 M-02 M-03 392 384 1877.16 451.73 0.241 0.002 716.20 70.235 371 1310.10 M-04 397 1884.63 688.34 0.365 0.002 128.477 889.79 M-05 390 384 1934.00 559.28 0.289 0.005 87.259 0.002 1081.55 M-06 379 385 1917.84 645.32 0.336 106.064 Módulo de corte promedio de las cuatro mejores muestras (Gm): 1062.39 104.185 21.229 Desviación Estándar (S): 216.48 Coeficiente de variación (CV%): 22.61 22.61

Resultados del cálculo de Módulo de Corte (Gm) del adobe

Nota. El módulo de corte del adobe se determinó a partir de la gráfica esfuerzo cortante-deformación angular obtenida durante el ensayo de tracción indirecta en muretes. Este módulo se define como la pendiente de la recta correspondiente a la zona elástica de la gráfica.

Respecto al objetivo específico 2

Se llevó la construcción de los muros experimentales empleando cuatro tratamientos diferentes, los cuales se detallan en la siguiente tabla.

Tabla 12

Tabla 11

Troto		Tipo de	С	apas del sobrecimie	ento	Dime	Dimensiones (m)		
miento	Muro	sobre- cimiento	Inferior	Intermedia	Superior	Largo	Ancho	Alto	
	1					2.50	0.40	0.35	
T_0	2	Tradicional	Piedras d	e 5" a 15" asentado	s con barro	2.50	0.40	0.35	
	3			2.50	0.40	0.35			
	4		Shicras	Piedras de 1/2"	Viga	2.50	0.40	0.17	
T_1	5	Shicras con piedras de	rellenas con 45	embolsadas en malla de pescar,	collar de madera de	2.50	0.40	0.17	
6	1"	piedras de 1"	con un espesor de 5 a 8 cm	8 cm de espesor	2.50	0.40	0.17		
	7		Shicras	Piedras de 1/2"	Viga	2.50	0.40	0.22	
T_2	8	Shicras con piedras de	rellenas con 5	embolsadas en malla de pescar,	collar de madera de	2.50	0.40	0.22	
	9	3"	piedras de 3"	con un espesor de 5 a 8 cm	8 cm de espesor	2.50	0.40	0.22	
	10		Shicras	Piedras de 1/2"	Viga	2.50	0.40	0.27	
T ₃	11	Shicras con piedras de	rellenas con 3	embolsadas en malla de pescar,	collar de madera de	2.50	0.40	0.27	
	12	5"	piedras de 5"	con un espesor de 5 a 8 cm	8 cm de espesor	2.50	0.40	0.27	

Características de los cuatro tratamientos

Nota. Las piedras fueron seleccionadas con diámetros uniformes provenientes de la cantera Matacoto -Yungay, situada en el margen del río Santa. Las shicras se confeccionaron utilizando drizas de 5/32" de grosor.

Respecto a los objetivos específicos 3

Se determinó el desplazamiento lateral máximo y el modo de falla de los tratamientos bajo la acción de una carga lateral máxima.

Tabla 13

Tratamiento	Muro	Carga lateral máxima –	Desplazami	ento a carga		
			lateral máxima		M. 1. 1. C.11.	
			Inferior	Superior	- Modo de Talla	
		(kN)	(mm)	(mm)		
T ₀	M1	18.22	0.00	3.59	AD - AP	
	M2	19.32	0.00	4.12	AD - AP	
	M3	<u>19.14</u>	0.00	<u>3.18</u>	D - AD - AP	
	Prom.	18.89	0.00	3.63		
T_1	M4	16.13	5.15	8.98	D - AD - AP	
	M5	17.17	4.07	8.11	D - AD - AP	
	M6	<u>16.50</u>	<u>4.54</u>	<u>8.43</u>	D - AD - AP	
	Prom.	16.60	4.59	8.51		
T ₂	M7	13.43	12.83	15.99	D - AD - AP	
	M8	13.92	12.12	15.24	D - AD - AP	
	M9	<u>12.94</u>	<u>13.09</u>	<u>16.32</u>	AD - AP	
	Prom.	13.43	12.68	15.85		
T ₃	M10	16.01	5.97	10.01	AD - AP	
	M11	15.33	6.68	10.78	AD - AP	
	M12	<u>15.76</u>	6.22	10.37	D - AD - AP	
	Prom.	15.70	6.29	10.39		

Resultados del ensayo de los tratamientos

Nota. Los valores de desplazamiento máximo corresponden a la carga lateral máxima soportada por el muro de adobe.

Figura 37

Nota. En la figura se observa que los muros con sobrecimiento tradicional soportaron mayor carga lateral.

Desplazamiento de los tratamientos a carga lateral máxima

Nota. Se presentan los valores de los desplazamientos horizontales registrados en la parte superior e inferior de los muros como resultado de la aplicación de la carga lateral máxima.

La carga lateral externa generó energía de deformación, la cual se almacenó internamente en todo el volumen del muro. Además, se determinó el coeficiente de fricción entre el muro y el cimiento mediante el ensayo de deslizamiento directo.

Tabla 14

Tratamiento	Muro	Carga máxima F (kN)	Variación carga F (%)	Energía de deformación U (J)	Variación de U (%)	Coeficiente de fricción µ
	M1	18.22	0.00	85.40	0.00	ND
T_0	M2	19.32	0.00	103 20	0.00	ND
10	M3	19.14	0.00	94.40	0.00	ND
	Prom.	18.89	$\frac{0.00}{0.00}$	94.33	$\frac{0.00}{0.00}$	ND
	M4	16.13	14.61	55.40	41.27	0.38
T_1	M5	17.17	9.09	69.00	26.86	0.41
	M6	16.50	12.66	62.20	34.06	0.39
	Prom.	16.60	12.12	62.20	34.06	0.39
	M7	13.43	28.89	39.80	57.81	0.32
T_2	M8	13.92	26.29	44.00	53.36	0.33
	M9	12.94	31.49	<u>37.00</u>	<u>60.78</u>	0.31
	Prom.	13.43	28.89	40.27	57.31	0.32
	M10	16.01	15.26	70.00	25.80	0.38
T_3	M11	15.33	18.83	54.00	42.76	0.36
	M12	<u>15.76</u>	<u>16.55</u>	<u>57.80</u>	38.73	<u>0.37</u>
	Prom.	15.70	16.88	60.60	35.76	0.37

Energía de deformación y coeficiente de fricción muro - cimiento

Nota. Los valores de variación de la carga (F) y de la energía de deformación (U) se calcularon con respecto al promedio del tratamiento T_0 (testigo). ND: No determinado.

Figura 39

Nota. En la figura se observa que los muros con sobrecimiento de shicras y piedras de 3" almacenaron una menor cantidad de energía de deformación debido a la carga lateral. Los valores de la energía de deformación (módulo de tenacidad) fueron calculados a partir de la gráfica esfuerzo cortante vs deformación angular.

Respecto al objetivo específico 4

Se realizó el análisis estadístico de los resultados obtenidos en los tratamientos utilizando el software SPSS Statistics 25. Se llevó a cabo el análisis de varianza (ANOVA) para contrastar la hipótesis, complementado con la prueba post hoc de Duncan para identificar diferencias significativas entre los tratamientos.

Tabla 15

Fuente de variación (FV)	Grado de libertad (GL)	Suma de cuadrados (SC)	Cuadrados medios (CM)	Valor de F calculado	Valor de F tabular	Pr (>F)
Tratamientos	3	45.987	15.329	62.286	4.066	6.88E-06
Residuos	8	1.969	0.246			
Total	11	47.956				

Análisis de varianza de los datos de carga lateral máxima

Nota. El ANOVA se ha realizado con el programa SPSS Statistics 25 para contrastar la hipótesis y el F tabular se ha obtenido de la tabla de F Fisher para una significancia $\alpha = 0.05$ con grados de libertad de 3 y 8.

Figura 40

Gráfica de intervalos de confianza de carga lateral máxima

Nota. En la figura cada punto representa una media de cada tratamiento. Cada intervalo es un intervalo de confianza de 95 % de la media de un tratamiento. Las barras de error se han tomado del programa SPSS Statistics 25.
Tabla 16

16.16

	P		0	
Medía	Desviación	94 CV	D ²	
general	estándar	70 U V	Λ	

0.496

Estadísticos descriptivos del ANOVA de carga lateral máxima

3.07

Nota. En la tabla se muestra el % del coeficiente de variabilidad (CV) y el coeficiente de determinación (\mathbb{R}^2) de los datos de carga lateral máxima de todos los tratamientos.

0.959

Tabla 17

Prueba de Duncan para los datos de carga lateral máxima

Tratamiento	Media	Grupo	Sig.
T_0	18.89	а	1.000
T_1	16.60	b	0.057
T ₃	15.70	b	0.057
T_2	13.43	с	1.000

Nota. La prueba se ha realizado para un nivel de significancia $\alpha = 0.05$ con el programa SPSS Statistics 25 para identificar si existe diferencia significativa entre tratamientos.

Figura 41

Diagrama de cajas de los datos de carga lateral máxima

Nota. En la figura se observa que las cajas son achatadas por lo tanto los datos de los tratamientos están concentrados (no dispersos). La posición de la mediana indica que la distribución es asimétrica para los tratamientos T_0 , T_1 , y T_3 ; y para el tratamiento T_2 es simétrica. La longitud de los bigotes nos muestra que existe variabilidad de los datos. Los Boxplot se han tomado del programa SPSS Statistics 25.

Tabla 18

Fuente de variación	Grado de libertad	Suma de cuadrados	Cuadrados medios	Valor de F calculado	Valor de F tabular	Pr (>F)
(FV)	(GL)	(SC)	(CM)			
Tratamientos	3	247.965	82.655	489.782	4.066	2.11E-09
Residuos	8	1.350	0.169			
Total	11	249.315				

Análisis de varianza de los datos de desplazamiento inferior

Nota. El ANOVA se ha realizado con el programa SPSS Statistics 25 para contrastar la hipótesis y el F tabular se ha obtenido de la tabla de F Fisher para una significancia $\alpha = 0.05$ con grados de libertad de 3 y 8.

Figura 42

Gráfica de intervalos de confianza de desplazamiento inferior del muro

Nota. En la figura cada punto representa una media de cada tratamiento. Cada intervalo es un intervalo de confianza de 95 % de la media de un tratamiento. Las barras de error se han tomado del programa SPSS Statistics 25.

Tabla 19

Estadísticos descriptivos del ANOVA de desplazamiento inferior

Medía general	Desviación estándar	% CV	R ²
5.89	0.411	6.98	0.995

Nota. En la tabla se muestra el % del coeficiente de variabilidad (CV) y el coeficiente de determinación (\mathbb{R}^2) de los datos de carga lateral máxima de todos los tratamientos.

Tabla 20

		<i></i>	<i>sp</i> •••=••••••
Tratamiento	Media	Grupo	Sig.
T_2	12.68	а	1.000
T_3	6.29	b	1.000
T_1	4.59	с	1.000
T_0	0.00	d	1.000

Prueba de Duncan para los datos de desplazamiento inferior

Nota. La prueba se ha realizado para un nivel de significancia $\alpha = 0.05$ con el programa SPSS Statistics 25 para identificar si existe diferencia significativa entre tratamientos.

Figura 43

Diagrama de cajas de los datos de desplazamiento inferior

Nota. En la figura se observa que las cajas son achatadas por lo tanto los datos de los tratamientos están concentrados (no dispersos). La posición de la mediana indica que la distribución es asimétrica para los tratamientos T_2 , y T_3 ; y para el tratamiento T_1 es simétrica. La longitud de los bigotes nos muestra que existe variabilidad de los datos. Los Boxplot se han tomado del programa SPSS Statistics 25.

Tabla 21

Fuente de Grado de Suma de Cuadrados Valor de F Valor de F variación libertad cuadrados medios Pr(>F)calculado tabular (FV) (GL) (SC) (CM)4.066 Tratamientos 3 229.552 76.517 351.616 1.31E-09 Residuos 8 1.741 0.218 Total 11 231.293

Análisis de varianza de los datos de desplazamiento superior

Nota. El ANOVA se ha realizado con el programa SPSS Statistics 25 para contrastar la hipótesis y el F tabular se ha obtenido de la tabla de F Fisher para una significancia $\alpha = 0.05$ con grados de libertad de 3 y 8.

Figura 44

Gráfica de intervalos de confianza de desplazamiento superior del muro

Nota. En la figura cada punto representa una media de cada tratamiento. Cada intervalo es un intervalo de confianza de 95 % de la media de un tratamiento. Las barras de error se han tomado del programa SPSS Statistics 25.

Tabla 22

Estadísticos descriptivos del ANOVA de desplazamiento superior

Medía general	Desviación estándar	% CV	R ²
9.59	0.467	4.87	0.992

Nota. En la tabla se muestra el % del coeficiente de variabilidad (CV) y el coeficiente de determinación (\mathbb{R}^2) de los datos de carga lateral máxima de todos los tratamientos.

Tabla 23

Prueba de Duncan para los datos de desplazamiento o superior

Tratamiento	Media	Grupo	Sig.
T_2	15.85	а	1.000
T_3	10.39	b	1.000
T_1	8.51	с	1.000
T_0	3.63	d	1.000

Nota. La prueba se ha realizado para un nivel de significancia de $\alpha = 0.05$ con el programa SPSS Statistics 25 para identificar si existe diferencia significativa entre tratamientos.

Figura 45

Diagrama de cajas de los datos de desplazamiento superior

Nota. En la figura se observa que las cajas son achatadas por lo tanto los datos de los tratamientos están concentrados (no dispersos). La posición de la mediana indica que la distribución es asimétrica para los tratamientos T_1 , y T_2 ; y para el tratamiento T_0 y T_3 es simétrica. La longitud de los bigotes nos muestra que existe variabilidad de los datos. Los Boxplot se han tomado del programa SPSS Statistics 25.

4.2. Discusión de Resultados

Respecto al objetivo específico 1

De los resultados de las propiedades físicas y mecánicas del adobe se tiene lo siguiente:

Densidad del adobe (pa)

Escalante y Piñeiros (2022) en su investigación encontraron una densidad seca promedio de 1558 kg/m³ para los adobes; así mismo, Aguilar et al. (2015) reportaron una densidad promedio de 1750 kg/m³ para los adobes, con valores máximos y mínimos de 1941 kg/m³ y 1664 kg/m³, respectivamente. Por su parte, la Norma E.020 del RNE establece un peso unitario de 1600 kg/m³ para la albañilería de adobe.

El valor de densidad del adobe obtenido fue de 1783.01 kg/m³ como se muestra en la Tabla 3, se encuentra por encima de los valores típicos reportados en diversas investigaciones previas sobre material de construcción de tierra.

Porcentaje de absorción de agua (%Abs)

Ramírez (2021) reporta que la absorción de agua del adobe tradicional es de 32.05%; por otro lado, Gama et al. (2012) encontraron que el rango de absorción de agua varía entre 10.63 % a 29.30 % para los adobes elaborados artesanalmente en la época prehispánica.

En comparación con estos estudios, el valor de absorción de agua del 13.92% obtenido en la investigación como se muestra en la Tabla 4, indica que el adobe presenta una porosidad moderada, ubicándolo dentro de un rango adecuado y representativo para adobes tradicionales de buena calidad estructural.

Resistencia a compresión del adobe (f'b)

Feijoo et al. (2023) en su investigación, demostraron que la resistencia a compresión del adobe tradicional es de 1.41 MPa; por su parte, Caballero et al. (2010) reportaron una resistencia de 0.61 MPa. En contraste, la norma E.080 establece que la resistencia última a compresión debe ser como mínimo 10.20 kg/cm² (1.0 MPa).

El valor de la resistencia a la compresión de 19.93 kg/cm² (1.95 MPa) como se muestra en la Tabla 5 es consistente con los resultados de investigaciones actuales, este valor es superior a lo indicado por la Norma Peruana y es comparable con los resultados obtenidos en estudios recientes, lo que indica una buena calidad de material de construcción.

Resistencia a tracción indirecta del adobe (f'_t)

La investigación realizada por Sasui et al. (2018) muestra que la resistencia promedio a la tracción del adobe determinada mediante el ensayo brasileño es de 0.25 MPa; también, los hallazgos de Reátegui et al. (2017) indican que la resistencia a la tracción del adobe tradicional es de 0.71 kg/cm². La norma E.080 establece que la resistencia ultima a la tracción debe ser 0.81 kg/cm² (aproximadamente 0.08MPa).

El valor de la resistencia a la tracción de 2.69 kg/cm² (0.26MPa) que se presenta en la Tabla 6 indica que se trata de un adobe de buena calidad en términos de capacidad para resistir esfuerzos de tracción. Este resultado no solo supera los valores reportados en las investigaciones citadas, sino que también excede el valor mínimo establecido por la norma peruana, reafirmando su buen desempeño mecánico.

Resistencia a la Tracción del mortero (f'tm)

La norma E.080 del Reglamento Nacional de Edificaciones de Perú regula los lineamientos para el uso de materiales tradicionales, como el adobe y los morteros de barro en la construcción. Según esta normativa, la resistencia última a tracción del mortero de barro es 0.12 kg/cm² (0.012 MPa). Sin embargo, los resultados según la Tabla 7 muestran

que la resistencia del mortero alcanza los 0.22 kg/cm² (0.022 MPa), superando lo especificado por la norma.

Resistencia a la Compresión Axial en prismas de adobe (f'm)

Ukwizagira y Mbereyaho (2023) en su investigación determinaron que la resistencia a la compresión de prismas de adobe es de 1.04 MPa; por su parte, Catalán et al. (2019) hallaron una resistencia promedio de 1.23 MPa; así mismo, Sasui et al. (2018) reportaron una resistencia promedio a la compresión de 1.51 MPa. En contraste, la Norma E.080 del RNE establece que la resistencia última a la compresión de prismas de adobe debe ser de al menos 6.12 kg/cm² (0.60 MPa).

El resultado obtenido de 10.66 kg/cm² (1.05 MPa) en el ensayo de compresión axial de prismas de adobe como se muestra en la Tabla 8, se encuentra dentro del rango observado en investigaciones previas sobre adobes tradicionales y y supera el valor mínimo establecido por la Norma E.080 del RNE.

Módulo de elasticidad del adobe (E_m)

El módulo de elasticidad del adobe fue analizado por Catalán et al. (2019), quienes reportaron un valor promedio de 240.94 MPa para el adobe tradicional. Posteriormente, Forero (2022) determinó el Em para el adobe igual a 125 MPa. El valor de 2474.73 kg/ cm² (242.69 MPa) obtenido en esta investigación como se evidencia en la Tabla 9 se encuentra por encima de los valores previamente citados, reflejando una rigidez superior.

Resistencia a la tracción indirecta en muretes de adobe (v'm)

Forero (2022) indica que la resistencia a la tracción indirecta de los muretes de adobe es de 0.022 MPa; por otro lado, Catalán et al. (2019) reportan una resistencia promedio de 0.11 MPa. Según la norma E.080 la resistencia última de estos muretes debe ser de al menos 0.025 MPa (0.25 kg/cm²) cuando se someten a ensayos de compresión diagonal o tracción indirecta.

De acuerdo con los resultados obtenidos en la Tabla 10, la resistencia última a la tracción indirecta es de 0.33 kg/cm² (0.032 MPa). Este valor no solo se encuentra dentro del rango mencionado anteriormente, sino que también supera lo establecido por la norma E.080.

Módulo de Corte del adobe (G_m)

Catalán et al. (2019) determinaron las propiedades mecánicas de la mampostería de adobe mediante ensayos de laboratorio, obteniendo un módulo de rigidez al corte promedio de 60.22 MPa. Por su parte, Forero (2022) reportó un valor de 43 MPa para el mismo módulo. Según la norma E.070 del Reglamento Nacional de Edificaciones (RNE), el módulo

de corte para cualquier tipo de unidad de albañilería se calcula como el 0.4 del módulo de elasticidad (E'm), resultando en un valor de 989.89 kg/cm² (97.08 MPa) para nuestra investigación. Los resultados de esta investigación en la Tabla 11 muestran un módulo de corte de 1062.39 kg/cm² (104.19 MPa), el cual supera los valores reportados por los estudios mencionados y lo establecido en la norma E.070 del RNE.

Respecto al objetivo específico 2

Del resultado de los muros experimentales para los diferentes tratamientos considerados en la investigación, se desprende las siguientes discusiones.

La norma E.080 del Reglamento Nacional de Edificaciones (RNE) establece que los cimientos deben tener una profundidad mínima de 0.60 m a partir del terreno natural y un ancho mínimo de 0.60 m, que deben ser construidos con piedra grande tipo pirca compactada o con concreto ciclópeo. En la presente investigación, todos los cimientos cumplieron con estas especificaciones como se muestra en la Tabla 12, teniendo una profundidad y un ancho de 0.60 m, los cimientos del tratamiento T_0 (testigo) fueron construidos con piedra grande tipo pirca asentados con barro, mientras que los tratamientos T_1 , T_2 y T_3 se construyeron con concreto ciclópeo.

La norma E.080 establece que el sobrecimiento debe tener una altura mínima de 0.30 m y un ancho mínimo de 0.40 m. Los resultados de la investigación demuestran que se ha cumplido con el ancho mínimo establecido; sin embargo, la altura presentó variaciones debido a la forma del sobrecimiento propuesto en cada tratamiento.

La norma E.080 establece que, para garantizar la calidad, preparación, forma y dimensiones del adobe, deben realizarse pruebas de campo conforme a los Anexos N° 1, 2 y 4; estas pruebas permiten determinar la presencia de arcilla en el suelo destinado a la elaboración del adobe y su uso para mortero. Además, la norma específica que la altura del adobe debe estar entre 0.08 m y 0.12 m; los lados de un bloque cuadrado no deben exceder los 0.40 m, y en el caso de bloques rectangulares el largo debe ser igual al doble del ancho. En esta investigación se realizaron las pruebas de campo indicadas, cuyos resultados confirmaron que el suelo era apto para la fabricación de adobe y su uso para mortero. También se llevó a cabo un análisis granulométrico y la clasificación de suelos según el sistema SUCS, determinando que el suelo correspondía a una arena arcillosa (SC). Finalmente, las dimensiones de las unidades de adobe fabricadas fueron de 0.40 m x 0.40 m x 0.12 m, cumpliendo con las especificaciones establecidas por la norma E.080.

Respecto a los objetivos específicos 3

De los resultados de desplazamiento lateral máximo y el modo de falla de los tratamientos bajo la acción de una carga lateral máxima se tiene lo siguiente:

Carga lateral máxima.

Numerosos autores han llevado a cabo investigaciones sobre los muros de adobe con el objetivo de evaluar su resistencia frente a fuerzas laterales debido a los sismos. A continuación, se presentan los resultados obtenidos:

Mirabi et al. (2019) realizaron un estudio exhaustivo sobre el comportamiento de muros de adobe reforzados, encontrando que la carga máxima de empuje alcanzó los 58.4 kN en un panel de adobe reforzado con tres barras de acero dispuestas verticalmente y tres horizontalmente en cada lado.

Zhang et al. (2020) en su investigación, determinaron que la carga máxima de empuje alcanzó los 30.12 kN en un muro reforzado con acero de paredes delgadas conformado en frío.

Meybodian et al. (2020) analizaron el comportamiento de muros reforzados con palma, obteniendo una carga máxima de empuje de 52.4 kN.

Eslami et al. (2021) evaluaron la resistencia a carga lateral de empuje en muros reforzados, obteniendo una carga lateral máxima de 59.1 kN en aquellos reforzados con tres barras de acero de 8 mm de diámetro.

Zhang et al. (2022) en su investigación, determinaron una carga máxima de empuje de 98.70 kN en muros de adobe reforzados con vigas de mortero armado dispuestas en forma diagonal en la parte central y con todos sus lados confinados.

Eslami et al. (2022) realizaron ensayos en muros de adobe reforzados para evaluar su resistencia, obteniendo una carga máxima de empuje de 44.36 kN en un muro reforzado con cinco cañas verticales y siete cañas horizontales partidas.

Los resultados de esta investigación según la Tabla 13 muestran que las cargas laterales máximas promedio para los muros con sobrecimientos tradicionales (T_0) alcanzaron los 18.89 kN; en caso, de los muros con aislamiento sísmico utilizando shicras con piedras de 1" (T_1), shicras con piedras de 3" (T_2) y shicras con piedras de 5" (T_3) obtuvieron los valores de 16.60 kN, 13.43 kN y 15.70 kN respectivamente. Todos estos resultados son menores en comparación con las investigaciones citadas previamente, ya que los autores han centrado sus estudios en reforzar los muros de adobe con el objetivo de incrementar su rigidez horizontal frente a fuerzas externas. En cambio, la presente

investigación se enfocó en lograr que los muros tengan la capacidad de desplazarse horizontalmente.

Desplazamiento horizontal a carga máxima

Diversas investigaciones sobre el desplazamiento horizontal en muros de adobe reforzados sometidos a cargas laterales han reportado los siguientes resultados:

Mirabi et al. (2019) en su investigación, determinaron que al someter un muro de adobe reforzado con tres barras de acero dispuestas verticalmente y tres horizontalmente en cada lado a una carga lateral, este presentó un desplazamiento lateral de 32.34 mm.

Zhang et al. (2020) al ensayar un muro reforzado con acero de paredes delgadas conformado en frío, determinaron un desplazamiento último de 39.37 mm.

Meybodian et al. (2020) determinaron que, bajo la acción de una carga lateral, los muros reforzados con palma presentaron un desplazamiento lateral de 17.5 mm.

Eslami et al. (2021) evaluaron muros reforzados con tres barras de acero de 8 mm de diámetro sometidos a carga lateral, obteniendo como resultado un desplazamiento lateral de 32.4 mm.

En la presente investigación según la Tabla 13, los tratamientos T₀, T₁, T₂ y T₃ alcanzaron un desplazamiento promedio en la parte inferior del muro de 0.00 mm, 4.59 mm, 12.68 mm y 6.29 mm, respectivamente, mientras que en la parte superior del muro registraron desplazamientos de 3.63 mm, 8.51 mm, 15.85 mm y 10.39 mm, respectivamente. Estos valores son menores en comparación con las investigaciones previamente descritas, debido a que, los muros se desplazaron horizontalmente sin llegar a deformarse significativamente.

Modo de falla

Diversos autores, en sus investigaciones sobre ensayos de muros reforzados, han identificado los siguientes modos de falla:

Mirabi et al. (2019), en su investigación sobre muros de adobe reforzados, identificaron modo de falla caracterizado por el balanceo del muro, acompañado de aplastamiento en su base y deslizamiento en la segunda hilada.

Meybodian et al. (2020) observaron en su ensayo de muros de adobe reforzados, modo de falla por balanceo acompañado de aplastamiento en la base del muro y la formación de grietas diagonales.

Eslami et al. (2021) en su ensayo de muros reforzados, identificaron modo de falla caracterizado por balanceo, acompañado de aplastamiento y deslizamiento en la base de la pared.

Zhang et al. (2022) observo modo de falla de balanceo con aplastamiento en el pie del muro y agrietamiento diagonal durante el ensayo del muro reforzado.

Eslami et al. (2022) durante su ensayo de muro reforzado presento modo de falla por balanceo con aplastamiento en pie del muro y línea de deslizamiento en la segunda junta.

En esta investigación según la Tabla13, los tratamientos ensayados presentaron tres modos de falla. El primero fue por deslizamiento (D) en la segunda hilada superior, observado en siete muros (M3, M4, M5, M6, M7, M8 y M12). El segundo correspondió al agrietamiento diagonal (AD) a lo largo de las juntas, presente en los doce muros evaluados. Finalmente, el tercer modo fue por aplastamiento en el pie del muro (AP), que se originó a partir de la mitad del muro y fue característico en los doce muros analizados. Como se puede apreciar, los modos de falla por agrietamiento diagonal y aplastamiento son consistentes con los resultados reportados por los diversos autores mencionados anteriormente, destacando como diferencia la aparición del modo de falla por deslizamiento en la parte superior.

Energía de deformación de los muros (U)

La energía de deformación (módulo de tenacidad) de los tratamientos se ha calculado a partir de la gráfica esfuerzo de corte – deformación angular. El área bajo la curva de la gráfica representa la densidad de la energía de deformación, y al multiplicarla por el volumen del muro se obtiene la energía de deformación total generada por la carga externa. Los resultados según la Tabla 14 mostraron que los muros del tratamiento T_0 alcanzaron una energía de deformación promedio de 94.33 J, mientras que los muros del tratamiento T_1 , T_2 y T_3 presentaron valores promedios de 62.20 J, 47.27 J y de 60.60 J, respectivamente. Se observo que los muros del tratamiento T_2 demostraron una mejor capacidad para disipar la energía almacenada.

La variación de la energía de deformación promedio de los tratamientos con aislamiento sísmico (T_1 , T_2 y T_3) respecto al tratamiento sin aislamiento (T_0) fue de 34.06 %, 57.31 % y 35.76 %, respectivamente. Se observa que los muros del tratamiento T_2 presentaron la mejor capacidad de disipación de energía, con una reducción de 57,31 % respecto a los muros con sobrecimientos tradicionales.

Coeficiente de fricción (µ)

Esta investigación permitió identificar el tipo de sobrecimiento que ofrece menor resistencia al desplazamiento entre muro y cimiento. El coeficiente de fricción es una característica clave, ya que influye directamente en la capacidad del sistema para disipar la energía sísmica. Vargas (2016) en su investigación sobre aislamiento sísmico de viviendas rurales mediante sobrecimientos con shicras, determinó un coeficiente de fricción de 0.62 para sobrecimiento compuesto por una lámina de triplay debajo de la viga collar de madera y shicras rellenas con piedras chancadas de 3/4"; y un coeficiente de fricción de 0.13 para sobrecimiento conformado solo por piedras de 10 a 12" sin shicras y una lámina de triplay debajo de la viga collar de madera.

Los resultados de la presente investigación según la Tabla 14 han demostrado que los muros del tratamiento T_1 , T_2 y T_3 tuvieron un coeficiente de fricción promedio de 0.39, 0.32 y 0.37, respectivamente. Según estos valores, los muros del tratamiento T_2 solo han requerido el 32% de su peso en fuerza para desplazarse sobre la cimentación.

Respecto al objetivo específico 4

Hipótesis general planteada:

Ho: $T_0 = T_1$, $T_0 = T_2$, $T_0 = T_3$, $T_1 = T_2$, $T_1 = T_3$ y $T_2 = T_3$

Ninguno de los tratamientos empleando shicras como aislamiento sísmico influye significativamente en el comportamiento de los muros de adobe bajo carga lateral monotónica.

Ha: $T_0 \neq T_1$, $T_0 \neq T_2$, $T_0 \neq T_3$, $T_1 \neq T_2$, $T_1 \neq T_3$ y $T_2 \neq T_3$

Al menos uno de los tratamientos empleando shicras como aislamiento sísmico influye significativamente en el comportamiento de los muros de adobe bajo carga lateral monotónica.

Regla de decisión para contrastar la hipótesis:

- Rechazar **Ho**. Si Valor de $F_{cal} \ge F_{tab}$ y p < 0.05
- No Rechazar **Ho**. Si Valor de $F_{cal} < F_{tab}$ y p > 0.05

Del resultado de carga lateral máxima

Ho: Los valores de la carga lateral máxima media de cuatro tratamientos diferentes son iguales.

Ha: Al menos un valor de la carga lateral máxima media de cuatro tratamientos diferentes no es igual.

Según la Tabla 15 del análisis de varianza de los resultados de *carga lateral máxima* aplicado en los tratamientos se tiene:

 $F_{cal} = 62.29 > F_{tab} = 4.066$

Estos resultados indican que existe diferencia significativa entre las medias de los valores de carga lateral máxima de los distintos tratamientos. En consecuencia, **se rechaza la hipótesis nula** y se concluye que algunos de los tratamientos tienen medias diferentes.

En la Tabla 16 se muestra un coeficiente de variación (CV) de 3.07 % lo que indica que la variabilidad alrededor de la media es muy baja, lo que implica que las observaciones no difieren mucho entre sí. que los resultados son muy consistentes y altamente confiables. Se puede concluir que el experimento tiene un alto grado de precisión y un buen control de las fuentes de error.

Se ha determinado un coeficiente de determinación (R^2) igual a 0.959 como se evidencia en la Tabla 16 lo que significa que las diferencias entre los tratamientos explican casi toda la variabilidad en el comportamiento de los muros.

Según la Tabla 17 con la prueba de Duncan se evidenció que el tratamiento T_0 presenta una diferencia significativa respecto a los tratamientos T_1 , T_2 y T_3 . Por otro lado, los tratamientos T_1 y T_3 no muestran diferencias significativas entre sí, mientras que el tratamiento T_2 presenta diferencias significativas con los tratamientos T_0 , T_1 y T_3 .

Del resultado del desplazamiento inferior del muro a carga lateral máxima

- Ho: Los valores de desplazamiento inferior media de cuatro tratamientos diferentes son iguales.
- **Ha:** Al menos un valor del desplazamiento inferior media de cuatro tratamientos diferentes no es igual.

Según la tabla 18 del análisis de varianza de los resultados del *desplazamiento inferior* de los tratamientos se tiene:

$$F_{cal} = 489.78 > F_{tab} = 4.066$$

 $p = 2.11E-09 < \alpha = 0.05$

Estos resultados indican que existe diferencia significativa entre las medias de los valores de desplazamiento inferior de los distintos tratamientos. En consecuencia, se rechaza la hipótesis nula y se concluye que algunos de los tratamientos tienen medias diferentes.

En la Tabla 19 se muestra un coeficiente de variación (CV) de 6.98 % lo que indica que la variabilidad alrededor de la media es muy baja, lo que implica que las observaciones no difieren mucho entre sí. que los resultados son muy consistentes y altamente confiables. Se puede concluir que el experimento tiene un alto grado de precisión y un buen control de las fuentes de error. Se ha determinado un coeficiente de determinación (R^2) igual a 0.995 como se evidencia en la Tabla 19 lo que significa que las diferencias entre los tratamientos explican casi toda la variabilidad en el comportamiento de los muros.

Según la Tabla 20 con la prueba de Duncan reveló una diferencia significativa entre todos los grupos de tratamiento, confirmando que los resultados varían de manera notable entre ellos.

Del resultado del desplazamiento superior del muro a carga lateral máxima

- Ho: Los valores de desplazamiento superior media de cuatro tratamientos diferentes son iguales.
- Ha: Al menos un valor del desplazamiento superior media de cuatro tratamientos diferentes no es igual.

Según la tabla 21 del análisis de varianza de los resultados del *desplazamiento superior* de los muros se tiene:

$$F_{cal} = 351.62 > F_{tab} = 4.066$$

 $p = 1.31E-09 < \alpha = 0.05$

Estos resultados indican que existe diferencia significativa entre las medias de los valores de desplazamiento superior de los distintos tratamientos. En consecuencia, se rechaza la hipótesis nula y se concluye que algunos de los tratamientos tienen medias diferentes.

En la Tabla 22 se muestra un coeficiente de variación (CV) de 4.87 % lo que indica que la variabilidad alrededor de la media es muy baja, lo que implica que las observaciones no difieren mucho entre sí. que los resultados son muy consistentes y altamente confiables. Se puede concluir que el experimento tiene un alto grado de precisión y un buen control de las fuentes de error.

Se ha determinado un coeficiente de determinación (R^2) igual a 0.992 como se evidencia en la Tabla 22 lo que significa que las diferencias entre los tratamientos explican casi toda la variabilidad en el comportamiento de los muros.

Según la Tabla 23 con la prueba de Duncan reveló una diferencia significativa entre todos los grupos de tratamiento, confirmando que los resultados varían de manera notable entre ellos.

V. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

Respecto al objetivo general

Se concluye que la aplicación de la técnica ancestral de shicras como aislamiento sísmico mejora el comportamiento estructural de los muros de adobe frente a cargas laterales. El empleo de shicras con piedras de 3" correspondiente al tratamiento T_2 han demostrado ser las más efectivas para incrementar la flexibilidad horizontal, permitiendo un desplazamiento promedio en la parte inferior del muro de hasta 12.68 mm, con un coeficiente de fricción de 0.32 y logrando disipar la energía aplicada en un 57.31%. Esta solución, además de ser eficiente, aprovecha recursos locales, lo que la convierte en una alternativa viable, sostenible y accesible para mejorar la seguridad de viviendas en zonas sísmicas.

Respecto al objetivo específico 1

Se concluye que los valores determinados de las propiedades físicas y mecánicas del adobe tradicional superaron los límites mínimos establecidos por la Norma E.080 del Reglamento Nacional de Edificaciones, así como los resultados de otros autores. Esto garantizó que el material empleado fue adecuado para la fabricación de los adobes y la construcción de muros.

Respecto al objetivo específico 2

Se concluye que la construcción de los muros experimentales, correspondientes a los tratamientos propuestos T₀: muro con sobrecimiento tradicional (testigo), T₁: muro con sobrecimiento de shicras con piedras de 1", T₂: muro con sobrecimiento de shicras con piedras de 3" y T₃: muro con sobrecimiento de shicras con piedras de 5", han permitido evaluar su comportamiento ante fuerza lateral y comprobar una base técnica sólida sobre el uso de shicras como disipadores de energía sísmica.

Respecto al objetivo específico 3

Se concluye que los tratamientos T₀, T₁, T₂, y T₃ alcanzaron una carga lateral máxima promedio de 18.89 kN, 16.60 kN, 13.43 kN y 15.70 kN, respectivamente; con un desplazamiento promedio en la parte inferior del muro de 0.00 mm, 4.59 mm, 12.68 mm y 6.29 mm, y un coeficiente de fricción promedio de ND, 0.39, 0.32 y 0.37. La disipación media de la energía de deformación fue de 0.00 %, 34.06 %, 57.31 % y 35.76 %, respectivamente. Los modos de falla observados en los tratamientos T₀ y T₃ fueron por agrietamiento diagonal (AD) y aplastamiento en pie de muro (AP); mientras que los tratamientos T_1 y T_2 presentaron deslizamiento (D), agrietamiento diagonal (AD) y aplastamiento en pie de muro (AP).

Respecto al objetivo específico 4

Se concluye que el análisis de varianza demostró estadísticamente la existencia de diferencias significativas entre las medias de la carga lateral máxima según los tratamientos. Además, la prueba de Duncan permitió confirmar que los tratamientos T_0 y T_2 presentan diferencias significativas respecto a los demás, mientras que los tratamientos T_1 y T_3 no muestran diferencias significativas entre sí.

Se concluye que el análisis de varianza confirma estadísticamente la existencia de diferencias significativas entre las medias del desplazamiento inferior del muro a carga lateral máxima según los tratamientos. En consecuencia, se rechaza la hipótesis nula, demostrando que el uso de shicras como aislamiento sísmico influye en el comportamiento de los muros de adobe. Asimismo, la prueba de Duncan evidencia que todos los tratamientos presentan diferencias significativas entre sí.

Se concluye que el análisis de varianza confirma estadísticamente la existencia de diferencias significativas entre las medias del desplazamiento superior del muro a carga lateral máxima según los tratamientos. En consecuencia, se rechaza la hipótesis nula, demostrando que el uso de shicras como aislamiento sísmico influye en el comportamiento de los muros de adobe. Asimismo, la prueba de Duncan evidencia que todos los tratamientos presentan diferencias significativas entre sí.

5.2. Recomendaciones

Se recomienda realizar ensayos dinámicos en muros de adobe con aislamiento sísmico empleando shicras, sometiéndolos a cargas cíclicas. Esto permitirá conocer la reducción de la aceleración sísmica transmitida, la capacidad de deformación, la capacidad de corte y la rigidez del muro, para obtener un análisis más completo de su desempeño estructural frente a eventos sísmicos.

Se recomienda evaluar el comportamiento de los muros de adobe con sobrecimientos de shicras rellenas con piedras de 2" y 4" sometidos a cargas laterales. Este análisis permitirá identificar con mayor precisión el tratamiento que optimiza la disipación de energía, proporcionando información valiosa para mejorar la eficiencia y seguridad de las estructuras frente a cargas dinámicas.

Se recomienda investigar el comportamiento de los muros de adobe con aislamiento sísmico mediante el uso de shicras en viviendas de dos pisos. Este estudio permitirá evaluar la rigidez vertical de las shicras y su capacidad de disipación de energía, proporcionando datos clave para optimizar el diseño estructural y mejorar la resistencia sísmica de edificaciones de adobe de mayor altura.

Se recomienda llevar a cabo investigaciones sobre morteros de barro estabilizado con yeso y cemento, para el asentado de unidades de adobe. Este aporte contribuirá a mejorar la resistencia de los muros frente a cargas laterales y reducirá la probabilidad de fallas en las juntas, optimizando así el desempeño estructural y la durabilidad de las edificaciones de adobe.

Se recomienda evaluar el comportamiento de muros de ladrillo con aislamiento tipo shicras en edificaciones de albañilería confinada. Este análisis permitirá determinar su flexibilidad horizontal y su capacidad de disipación de energía sísmica, proporcionando información valiosa para el diseño sismorresistente de edificaciones.

VI. REFERENCIAS BIBLIOGRÁFICAS

- Agencia de Cooperación Internacional de Japón. (2009). Estudio de Reconstrucción con viviendas sismorresistentes en la república del Perú [Informe Final].
- Agüero, J., Cerón, J., Gonzales, J. & Méndez, M. (2015, 9-13 de noviembre). Análisis estructural de dos muros de adobe con diferentes sistemas de aparejo [Seminario]. Seminario Iberoamericano de Arquitectura y Construcción con Tierra, Ecuador. https://dialnet.unirioja.es/descarga/articulo/6085978.pdf
- Aguilar, L., Guzmán, L. & Sauñi, C. (2019). Efecto sísmico de aplicación de Shicras en muros de adobe en zonas altoandinas de la provincia de Concepción – Junín. Redacción científica y académica. https://acortar.link/tzGnXO
- Aguilar, R., Saucedo, C., Montesinos, M., Ramírez, E., Morales, R. & Uceda, S. (2015, 9-13 de noviembre). *Caracterización mecánica de las unidades de adobe del Complejo Arqueológico Huaca de la Luna mediante ensayos de ultrasonido* [Seminario]. 15°
 Simposio Iberoamericano de Arquitectura y Construcción con Tierra, Cuenca, Ecuador. https://dialnet.unirioja.es/servlet/articulo?codigo=6085977
- Altamirano, A. J. & Bueno, A. (2011). El Ayni y la Minka: dos formas colectivas de trabajo de las sociedades pre-Chavín. Investigaciones Sociales, 15(27), 43-75. http://dx.doi.org/10.15381/is.v15i27.7659
- Asencios, R. G. (2009). Investigaciones de las shicras en el sitio precerámico de cerro Lampay [Tesis, Universidad Nacional Mayor de San Marcos]. Repositorio Institucional. https://hdl.handle.net/20.500.12672/3366
- Asociación Colombiana de Ingeniería Antisísmica. (2004). *Manual para la rehabilitación de viviendas construidas de adobe y tapia pisada*. Presidencia de la República Red de Solidaridad Social. https://www.preventionweb.net/files/5208_ManualRehabilitacionAdobeyTapiaAIS m.pdf
- Ayala, D., Chicaiza, C., Hernández, L., Vélastegui, G. & Baquero, R. (2021). Comparación del comportamiento entre conectores de corte angulares de diferentes espesores bajo cargas monotónicas y cíclicas. *Artículo de investigación*, 22(2), 3-22. https://doi.org/10.13140/RG.2.2.18659.27684
- Barbachán, E. A., Barbachán, M. A., Cáceres, J. J., Ruiz, C. N., & Casas, E. R. (2022). Soluciones tecnológicas ancestrales y su aplicación en tiempos actuales. *Universidad* y Sociedad, 14(S1), 476-486. https://rus.ucf.edu.cu/index.php/rus/article/view/2658

- Blanco, M. C. & Morales, P. P. (s.f.). Sistema Constructivo Adobe/Tapial. Ficha Técnica. https://www.galicia.asfes.org/wp-content/uploads/2016/09/04-Ficha-Tecnica-Adobe-Tapial.pdf
- Blondet, M., Vargas, J., Tarque, N. & Iwaki, C. (2011). Construcción sismorresistente en tierra: la gran experiencia contemporánea de la Pontificia Universidad Católica del Perú. *Informes de la Construcción*, 63(523), 41-50. https://doi.org/10.3989/ic.10.017
- Blondet, M., García, G., & Brzet, S. (2003). Construcciones de adobe resistentes a terremotos: Tutor. Editorial Marjorie Greene, EERI. https://www.worldhousing.net/wp-content/uploads/2011/06/Adobe_Tutorial_Spanish_Blondet.pdf
- Bonett, R. L. (2003). Vulnerabilidad y riegos sísmicos de edificios. Aplicación a entornos urbanos en zonas de amenaza de alta y moderada [Tesis de doctorado, Universidad Politécnica de Cataluña]. Repositorio institucional. https://upcommons.upc.edu/handle/2117/93542
- Caballero, M., Silva, L. & Montes, J. (2010, 22-24 de setiembre). Resistencia mecánica del adobe compactado incrementada por bagazo de agave [Congreso]. Memorias del XVI Congreso Internacional Anual de la SOMIM, Nuevo León, México. https://somim.org.mx/memorias/memorias2010/A3/A3_221.pdf?utm_source=chatg pt.com
- Calderón, A. D. (2005). *Modelación inelástica de mampostería confinada ante carga lateral* [Tesis, Universidad de los Andes de Bogotá]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/22704/u270997.pdf?sequ ence=1
- Catalán, Q., Moreno, J., Galván, A. & Arroyo, R. (2019). Obtención de las propiedades mecánicas de la mampostería de adobe mediante ensayes de laboratorio. *Multidisciplinary Scientific Journal, 29*(2019), 1-13. https://doi.org/10.15174/au.2019.1861
- Ccanto M. G. (2010). Metodología de la Investigación Científica en Ingeniería Civil.
- Clarke, N. (2015). Revolutionizing the Tragic City: Rebuilding Chimbote, Peru, after the 1970 Earthquake [Revolucionando la ciudad trágica: reconstruyendo Chimbote, Perú, después del terremoto de 1970]. Journal of Urban History, 41(1), 93-115. https://doi.org/10.1177/0096144214552392
- Comisión Nacional de Prevención de Riesgos y Atención de Emergencias de Costa Rica. (2012). *Deslizamientos, Inundaciones y Sismos*. Recomendaciones y consejos.

https://www.cne.go.cr/reduccion_riesgo/informacion_educativa/recomentaciones_c onsejos/sismo.aspx

- Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica. (s.f.). *Shicras*. Descubriendo juntos la tecnología Andina. https://clubescyt.concytec.gob.pe/shicra/
- Deingenieria.com. (2019, 24 de julio). *Diagrama esfuerzo deformación*. https://deingenierias.com/el-acero/diagrama-esfuerzo-deformacion/
- Disipa. (2020). Aislamiento sísmico. Área técnica. http://www.disipaing.com/area-tecnica/
- Eadic. (2019, 28 de agosto). *Rol del aislamiento de base en las estructuras*. Estructuras, materiales y geotecnia, gestión y financiación de empresas y proyectos. https://eadic.com/blog/entrada/rol-del-aislamiento-de-base-en-las-estructuras/
- Escalante, D. & Piñeiros, J. (2022). Caracterización física y mecánica del adobe del Centro Histórico de Quito sometido a envejecimiento acelerado. *InfoANALÍTICA*, 10(2), 81https://doi.org/10.26807/ia.v10i2.226
- Eslami, A., Zahedi, A. & Mirabi, H. (2021). In-plane seismic behavior of NSM strengthened adobe walls: Experimental evaluation of different reinforcements [Comportamiento sísmico en el plano de muros de adobe reforzados con cerca de su superficie: evaluación experimental de diferentes refuerzos]. *Engineering Structures, 246*, 113016. https://doi.org/10.1016/j.engstruct.2021.113016
- Eslami, A., Mirabi, H. & Ronaghb, H. (2022). Sand-coated reeds as an innovative reinforcement for improving the in-plane seismic behavior of adobe walls [Carrizos recubiertos de arena como refuerzo innovador para mejorar el comportamiento sísmico en el plano de muros de adobe]. *Construction and Building Materials, 326*, 126882. https://doi.org/10.1016/j.conbuildmat.2022.126882
- Feijoo, E., Feijoo, B. & Nuñez, L. (2023). Caracterización de la resistencia a compresión del adobe tradicional con adición de zeolita. *Athenea Journal*, 4(14), 45-52. https://doi.org/10.47460/athenea.v4i14.67
- Forero, J. (2022). Caracterización mecánica de muretes de adobe reforzados con esterilla de Guadua [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio UNAL.

https://repositorio.unal.edu.co/bitstream/handle/unal/81498/1121886785.2022.pdf? sequence=3&isAllowed=y

Fukuyama, H., Fujisawa, M., Abe, A., Kabeyasawa, T., Shirane, Z., Saito, T. & Aguilar, Z.(2013). Shaking Table Test on Seismic Response Properties of "Shicras," StonesWrapped in Vegetable Fiber Bags [Prueba de mesa vibratoria sobre las propiedades

de respuesta sísmica de las "shicras", piedras envueltas en bolsas de fibra vegetal]. *Journal of Disaster Research*, 8(3), 526-533. https://doi.org/10.20965/jdr.2013.p0526

- Fukuyama, H., Fujisawa, M., Abe, A., Kabeyasawa, T. & Shirane Z. (2016). Research on earthquake response reduction properties and its repeatability of the foundation technology used in the sanctuaries dating up to 5,000 years ago [Investigación sobre las propiedades de reducción de la respuesta a terremotos y su repetibilidad de la tecnología de cimentación utilizada en los santuarios que datan de hace 5.000 años]. *Journal of Japan Association for Earthquake Engineering, 16*(11), 11-25. https://doi.org/10.5610/jaee.16.11 11
- Gama, J., Tamara, C., Pi-Puig, T., Alcalá, R., Cabadas H., Jasso, C., Díaz, J., Sánchez, S., López, F. & Vilanova, A. (2012). Arquitectura de tierra: el adobe como material de construcción en la época prehispánica. *Boletín de la Sociedad Geológica Mexicana*, 64(2), 177-178.
- Hernández, S. R., Fernández, C. C. & Batista, L. P. (2014). Metodología de la investigación científica (6^a ed.). Mc Graw Hill.
- Hayashi, Y., Suzuki, Y., Sato, S. & Tsukahara, K. (2016). Disaster Resilience Learned from the 2007 Earthquake in Peru [Resiliencia ante desastres aprendida durante el terremoto de 2007 en Perú]. *Disaster Resilient Cities* (1ra ed., pp. 41-50). Editorial Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-809862-2.00006-1

Hibbeler, R. C. (2017). Mecánica de Materiales. (9ª ed.). Pearson Educación de México.

- Instituto Nacional de Estadística e Informática. (2017). Perú: Perfil Sociodemográfico. *Informe Nacional Censo 2017.* https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib153 9/libro.pdf
- Infinitia (2021, 29 de diciembre). Fallos y modos de fallo en materiales. https://onx.la/43407
- Kuroiwa, J. (2002). Reducción de desastres Viviendo en armonía con la naturaleza. (1ª ed.). Programa de las Naciones Unidas para el Desarrollo (PNUD), Lima. https://iris.paho.org/handle/10665.2/3297
- Lipton, J. K. (2014). Lasting Legacies: Conservation and Communities at Huascaran National Park, Peru [Legados duraderos: conservación y comunidades en el Parque Nacional Huascarán, Perú]. Society & Natural Resources: An International Journal, 27(8), 820-833. http://dx.doi.org/10.1080/08941920.2014.905888

- Liu, J., Zeng, Q. & Xu, S. (2020). The state-of-art in characterizing the micro/nano-structure and mechanical properties of cement-based materials via scratch test [El estado del arte en la caracterización de la micro/nano-estructura y las propiedades mecánicas de los materiales a base de cemento mediante ensayos de rayado]. *Construction and Building Materials, 254, 119255.* https://doi.org/10.1016/j.conbuildmat.2020.119255
- López, B. E. & Gonzales, R. B. (2014). Diseño y análisis de experimentos (2ª ed.).Universidad San Carlo de Guatemala.
- Meybodian, H., Eslami, A. & Morshed, R. (2020). Sustainable lateral strengthening of traditional adobe walls using natural reinforcements [Fortalecimiento lateral sostenible de muros tradicionales de adobe mediante refuerzos naturales]. *Construction and Building Materials, 260,* 119892. https://doi.org/10.1016/j.conbuildmat.2020.119892
- Mirabi, H., Morshed, R. & Eslami, A. (2019). In-plane cyclic performance of adobe walls retrofitted with near-surface-mounted steel rebars [Rendimiento cíclico en el plano de muros de adobe reforzados cerca de su superficie con barras de acero]. *Engineering Structures, 194*, 106-119. https://doi.org/10.1016/j.engstruct.2019.05.049
- Ministerio de Vivienda, Construcción y Saneamiento. (2010). Edificaciones antisísmicas de adobe. *Manual de Construcción*.
- Mora, C. W. (2022). Determinación del desplazamiento lateral en muros tendinosos, ante cargas laterales, monotónicas y cíclicas [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio Institucional. https://repositorio.unal.edu.co/handle/unal/83329
- Morales, R., Sánchez, A., Torres, R. y Morales, O. (s.f.). Estudio de construcciones de adobe de dos pisos. Universidad Nacional de Ingeniería. https://www.eird.org/estrategias/pdf/spa/doc12965/doc12965.htm
- Naupas, P., Valdivia, D., Palacios, V. & Romero, D. (2018). Metodología de la investigación cuantitativa – cualitativa y redacción de la tesis (5ª ed.). Ediciones de la U.
- Oviedo, J. y Duque, M. (2006). Sistema de control de respuesta en edificaciones. *Revista EIA*, 3(6), 105-120. https://revistas.eia.edu.co/index.php/reveia/article/view/163
- Preciado, A., Rodriguez, O., Gutierrez, N. & Leal, O. (2016, 19 de setiembre). Ingeniería estructural sensibilizada ante riesgos naturales aplicada a la protección del patrimonio histórico [Ponencia]. 1er Congreso Internacional sobre Sustentabilidad

en los Hábitats, Guadalajara, México. https://www.researchgate.net/publication/311487102

- Preciado, A. (2011). Seismic vulnerability reduction of historical masonry towers by external prestressing devices [Tesis de Doctorado, Technical University of Braunschweig]. Germany and University of Florence.
- Quispe, J. & Rondón, S. (2012). Propuesta integral de reforzamiento para edificaciones de adobe. aplicación al caso de un local escolar de adobe en la provincia de Yauyos [Tesis, Pontificia Universidad Católica del Perú]. Repositorio Institucional. https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/1492
- Ramírez, O. (2021). Mejoramiento de las propiedades físico mecánicas del suelo con incorporación de asfalto para elaborar adobes. *Revista de Investigación Científica UNTRM: Ciencias Naturales e Ingeniería, 4*(3),15-19. https://doi.org/10.25127/ucni.v4i3.802
- Reátegui, S., Matto, E., Arestegui, D., Torres, L. & Mariano, S. (2017). Caracterización física mecánica de los adobes usados en las viviendas de las zonas urbano marginales de la ciudad de Huánuco, Perú. *Investigación Valdizana, 11*(3), 145-152. https://www.redalyc.org/articulo.oa?id=586077208002
- Reglamento Nacional de Edificaciones. (2022). Norma E.031 de Aislamiento sísmico (16 ed.). Megabyte.
- Reglamento Nacional de Edificaciones. (2022). Norma E.080 de Diseño y construcción con tierra reforzada (16 ed.). Megabyte.
- Reyes, J., Smith-Pardo, J., Yamin, L., Galvis, F., Angel, C., Sandoval, J. & Gonzales, C. (2019). Seismic experimental assessment of steel and synthetic meshes for retrofitting heritage earthen structures [Evaluación experimental sísmica de mallas de acero y sintéticas para la rehabilitación de estructuras de tierra Patrimoniales]. *Engineering Structures, 198,* 109477. https://doi.org/10.1016/j.engstruct.2019.109477
- Salazar, J. A. (2022). Huaraz a 52 años del terremoto de 1970: lecciones no aprendidas. Enfermedades y Desastres Sociales, 14(1), 1-23. http://dx.doi.org/10.21142/des-1401-2022-0006
- Sánchez, C., Alonso, E. M., & López, M. C. (2021). Vulnerabilidad sísmica y la pérdida de la vivienda de adobe en Jojutla, Morelos, México, tras los sismos de 2017. *Viviendas y Comunidades Sustentables*, (10), 9-29. https://doi.org/10.32870/rvcs.v2i10.162

- San Bartolomé, A., Quiun, D. y Silva, W. (2018). Diseño y construcción de estructuras sismorresistentes de albañilería. (2ª ed.). Fondo editorial Pontificia Universidad Católica.
- Sasui, S., Jinwuth, W. & Hengrasmee, S. (2018). Investigating the Effects of Straw & Rice Husk on the Compressive Strength & Tensile Strength of Adobe Brick [Investigación de los efectos de la paja y la cáscara de arroz en el Resistencia a la compresión y resistencia a la tracción del ladrillo de adobe]. *Journal of Sustainable Construction Materials and Technologies, 3*(3). http://dx.doi.org/10.29187/jscmt.2018.27
- Shrivastava, A. (2018). 3 Plastic Properties and Testing [Propiedades y pruebas de los plásticos]. Introduction to Plastics Engineering, 49-110. https://doi.org/10.1016/B978-0-323-39500-7.00003-4
- Smith, A. O. (1994). Perú, 31 de mayo, 1970: Quinientos años de desastre. Desastres y Sociedad, 2(2), 1-15. Red de Estudios Sociales en Prevención de Desastres en América Latina.
- Solís, F.M. (2016). Evaluación de los desplazamientos laterales ante eventos sísmicos en las edificaciones de la ciudad de Juliaca [Tesis, Universidad Andina Néstor Cáceres Velásquez]. Repositorio Institucional. http://repositorio.uancv.edu.pe/handle/UANCV/731
- Teknolojik Izolator Sistemleri. (2022). Aislamiento sísmico. https://www.tis.com.tr/es/aislamiento-sismico/
- Tovar, N. C. (2008). Utilización de disipadores de energía en edificaciones de baja altura [Tesis de doctorado, Universidad Central de Venezuela]. Repositorio institucional. http://saber.ucv.ve/handle/10872/21770
- Ukwizagira, G. & Mbereyaho, L. (2023). Strength assessment of improved adobe brick using natural stabilizers [Evaluación de resistencia de ladrillos de adobe mejorados utilizando estabilizadores naturales]. Mediterraneam Journal of Basic and Applied Sciencie (MJBAS), 7(1), 14-26. https://doi.org/10.46382/MJBAS.2023.7102
- Universitat de Jaume I. (2022, 30 de agosto). *Módulo de Elasticidad*. Mecapedia. https://www.mecapedia.uji.es/pages/modulo_de_elasticidad.html
- Urbano, T. S. (2001). Buena Tierra: Apuntes para el Diseño Construcción con Adobe. (1a ed.). CIDAP. https://cidap.org.pe/publicaciones-2/
- Vargas, N. J. (2016). Estudio de Aislamiento Sísmico de Viviendas Rurales Mediante Sobrecimientos con Shicras. Ministerio de Vivienda Construcción y Saneamiento.

- Vargas, J., Iwaqui, C. & Rubiños, A. (2012, 25 de abril). Sismo resistencia en las entrañas de Caral [Ponencia]. XI Conferencia Internacional sobre el Estudio y Conservación del Patrimonio Arquitectónico de Tierra, Lima, Perú. https://silo.tips/download/sismo-resistencia-en-las-entraas-de-caral
- Vargas, N., Velásquez, J., Sosa, C. & Montoya J. (s.f.). Proyecto MVCS PUCP. Sobrecimientos de aislamiento sísmico. Pontificia Universidad la Católica del Perú.
- Vargas, N. J. (2017, 21 de agosto). Shicras: antigua técnica de la civilización Caral ayuda a construir viviendas antisísmicas. Pontificia Universidad Católica del Perú. https://puntoedu.pucp.edu.pe/noticia/shicras-antigua-tecnica-de-la-civilizacioncaral-ayuda-a-construir-viviendas-antisismicas/
- Vargas, N. J. (2018, 6 de julio). Proponen construir viviendas con "Shicras" de Caral. Plataforma digital Única del Estado Peruano. https://www.gob.pe/institucion/caral/noticias/109824-proponen-construirviviendas-con-shicras-de-caral
- Vega, R., Centeno, S. & Lafosse (2006). Construction, labor organization, and feasting during the Late Archaic Period in the Central Andes [Construcción, organización laboral y banquetes durante el Arcaico Tardío en los Andes Centrales Investigaciones]. Journal of Anthropological Archaeology, 26(2007), 150-171. https://doi.org/10.1016/j.jaa.2006.07.002
- Yamín, L., Phillips, C., Reyes, J. & Ruiz, D. (2007), Estudios de vulnerabilidad sísmica, rehabilitación y refuerzo de casas en adobe y tapia pisada. *Revista Apuntes*, 20(2), 286-303.
- Zapata, F. (2020, 22 de abril). ¿Qué es módulo de corte, rigidez o cizalladura? Fidefer. https://www.lifeder.com/modulo-de-corte/
- Zhang, L., Zhou, T., Zhang, Z., Tan, W., & Liang, Z. (2022). Near-surface-mounted retrofitting of adobe walls using different materials: Evaluation of seismic performance [Reforzamiento cercano a la superficie de muros de adobe utilizando diferentes materiales: Evaluación del desempeño sísmico]. *Structures, 54*(137), 1149-1163. https://doi.org/10.1016/j.istruc.2023.05.137
- Zhang, J., Pang, S., Gao, J., Deng, E., Wang, H. & Zhao, J. (2020). Experimental study on seismic behaviour of adobe wall reinforced with cold–formed thin–walled Steel [Estudio experimental sobre el comportamiento sísmico de un muro de adobe reforzado con acero de paredes delgadas conformado en frío]. *Thin-Walled Structures, 147,* 106493. https://doi.org/10.1016/j.tws.2019.106493

VII. ANEXOS

Anexo A

Prueba "Cinta de barro"

Ficha de Observación Nº 01							
Nombre de la pr	ueba:	Cinta de barro					
Tesis:	"Comportamiento de carga lateral monotóni	muros de adobe d ca"	con aislamiento sísm	ico empelando shicras bajo			
Lugar: Responsable:	Huarascucho Gerardo Máximo Revo	elo Sánchez					
Muestra:	Suelo		Cantera:	Matacoto			
Fecha de Inicio:	08/06/2024		Fecha de Termino:	08/06/2024			
Hora de Inicio:	11:46 a. m.		Hora de Termino:	12:02 p. m.			
Procedimiento:	A partir de la mu fabricación del adobe adecuada para molde Este cilindro fue pos manualmente con los d y luego se dejó colg longitud a que se romp						
	Resul	ltados					
N° Muestras	Long. Inicial (cm)	Espesor (cm)	Long. Rotura (cm)				
M-01	25.80	0.40	14.50				
M-02	27.10	0.40	15.80				
M-03	30.10 0.40 17.60						
M-04	26.40 0.40 16.20						
<i>Nota</i> . La NTP E.080 (2017) menciona que si la cinta de barro alcanza entre 20 cm y 25 cm de longitud el suelo es muy arcilloso, y si se corta menor o igual a 10 cm tiene poca arcilla. Los resultados muestran que la cinta de barro se rompieron dentro del intervalo de 10 a 20 cm, lo cual se concluye que el suelo tiene la cantidad adecuada de arcilla.							

Anexo B

Prueba "Presencia de arcilla"

	Fi	cha de Observa	ción N° 02					
Nombre de la pr	Nombre de la prueba: Presencia de arcilla							
Tesis:	"Comportamiento de carga lateral monotóni	muros de adobe c ca"	on aislamiento sísm	ico empelando shicras bajo				
Lugar:	Huarascucho							
Responsable:	Gerardo Máximo Revo	elo Sánchez						
Muestra:	Suelo		Cantera:	Matacoto				
Fecha de Inicio:	08/06/2024		Fecha de Termino:	10/06/2024				
Hora de Inicio:	12:10 p. m.		Hora de Termino:	13:14:00 p. m.				
Procedimiento:	Con el suelo considerado apropiado para la fabricación de adobes, se elaboraron cuatro bolitas. Se utilizó la cantidad mínima de agua necesaria para darles forma en las palmas de las manos, evitando que se deformaran de manera significativa al secarse. Luego, se dejaron secar durante 48 horas, asegurando que permanecieran libres de humedad o contacto con el agua. Después de completar el proceso de secado, cada bolita fue presionada con firmeza entre el pulgar u al dada índiae							
	Resul	tados						
N° Muestras	Diam. Inicial (cm)	Diam. final (cm)	Se rompio (si/no)					
M-01	2.56	2.32	No					
M-02	3.15	3.15 3.01 No						
M-03	2.89 2.66 No							
M-04	3.37	3.14	No					
<i>Nota.</i> La NTP E.080 (2017) indica que durante la prueba ninguna de las bolitas no se rompan, no se quiebren o no se agrieten, dicha suelo puede utilizarse para la fabricación de los adobes. Durante la prueba ningunas de las bolitas se rompieron ni se agrietaron, por lo que el suelo puede ser utilizado para adobes.								

Anexo C

		Ficha de	Observación	N° 03			
Nombre de la pr	ueba:	Control de fisur	a para el morte	ro			
Tesis:	"Comportamiento de muros de adobe con aislamiento sísmico empelando shicras bajo carga lateral monotónica"						
Lugar:	Huarascucho						
Responsable:	Gerardo Máximo I	Revelo Sánchez					
Muestra:	Suelo			Cantera:	Matacoto		
Fecha de Inicio:	18/06/2024			Fecha de Termino:	20/06/2024		
Hora de Inicio:	10:23 a.m.			Hora de Termino:	10:35 a.m.		
Procedimiento:	Se prepararon especimenes de prueba utilizando dos adobes unidos con mortero de barro. Al mortero de prueba se le agrego la cantidad de agua necesaria para una mezcla trabajable. Durante la preparación del mortero de asentado se fue aumentando la cantidad de arena gruesa en cada muestra con la cantidad de agua necesaria, se empezó por una proporción 1:0 (suelo : arena gruesa), luego de forma sucesiva se procedió con las proporciones 1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 y 1:3. Se dejo secarlos alrededor de 48 horas, luego fueron abiertos los especímenes en el orden de su elaboración para observar las grietas en el mortero.						
		Resultados					
N° Muestras	Dimensión del adobe (cm)	Dosificación (S:A)	Espesor de junta (cm)	Observación			
M-01	40x40x12	1:0	1.50	Con fisuras			
M-02	40x40x12	1:0.5	1.50	Con fisuras	al destroyed		
M-03	40x40x12	1:1	1.50	Sin fisuras	M-07		
M-04	40x40x12	1:1.5	1.50	Sin fisuras			
M-05	40x40x12	1:2	1.50	Sin fisuras	Y LINE LA		
M-06	40x40x12	1:2.5	1.50	Sin fisuras			
M-07	40x40x12	1:3	1.50	Sin fisuras	A management		
<i>Nota.</i> La NTP I corresponde al cosificación 1:1	M-0/ 40x40x12 1:3 1.50 Sin fisuras Nota. La NTP E.080 (2017) indica que el mortero de barro para albañilería de adobe es la dosificación que corresponde al espécimen que no presente fisuras visibles, para nuestro corresponde a la muestra M-03 con dosificación 1:1						

Prueba "Control de fisura para le mortero"

Anexo D

		F	icha de Ob	servación N	√° 04		
Nombre de la pr	ueba:	Densidad del	adobe				
Tesis:	"Comportamiento de muros de adobe con aislamiento sísmico empelando shicras bajo carga lateral monotónica"						
Lugar:	Huarascucho						
Responsable:	Gerardo Máx	imo Revelo S	ánchez				
Muestra:	Suelo				Cantera:	Matacoto	
Fecha de Inicio:	16/08/2024				Fecha de Termino:	16/08/2024	
Hora de Inicio:	9:45 a.m.				Hora de Termino:	11:25 a. m.	
Procedimiento:	Se tomaron tres muestras de adobes con 30 días de secado, se realizo la : medida de largo, ancho y alto. Posteriormente se procedio a pesar cada adobe en una balanza eléctrica.						
	1	Resu	iltados	1	-		
Nº Muestras	Dimen	sión promedi	o (cm)	Masa (ka)	Donsided (kg/m ³)	123 m 123 m 123 m 123 m 0 - 10 m 123 m 0 - 10 m 123 m	
iv iviue stras	Largo	Ancho	Alto	Masa (Kg)	Densidad (kg/m)		
M-01	40.20	40.10	11.90	34.65	1806.28		
M-02	39.80	40.20	12.10	33.95	1753.66	Mar INTE	
M-03	40.10	40.10 39.90 12.00 34.35 1789.07					
Densidad Promedio (kg/m ³) 1783.01						Lassie Lit	
Nota. Según la elaborados tiener	NTP E.020 d n una densidad	e cargas, nos de 1783.01 k	s indica que sg/m ³ siendo	el peso unit mayor a lo in	tario del adobe es ndicado en la norma	de 1600 kg/m ³ , los adobes	

Anexo E

Absorción de agua en el adobe

Ficha de Observación Nº 05							
Nombre de la pr	ueba:	Absorción de	e agua en	el adobe			
Tesis: "Comportamiento de muros de adobe con aislamiento sísmico empelando shicras bajo carga lateral monotónica"							
Lugar:	Huarascu	icho					
Responsable:	Gerardo	Máximo Revo	elo Sánch	ez			
Muestra:	Suelo				Cantera:		Matacoto
Facha da Inicia.	16/08/20	24			Facha da Tar	mina	10/08/2024
recha de micio:	10/08/20	24			recha de Ter		19/08/2024
Hora de Inicio:	12:15 p.	m.			Hora de Tern	nino:	16:53:00 p. m.
Se tomaron tres muestras de adobes con 30 días de secado, se sumerge el adobe en agua durante 24 horas en un recipiente que dispone con una regla metalica graduada, se anoto el nivel de agua en el recipiente antes del ensayo, posteriormente se anota el nivel de agua al instante que se sumerge el adobe, luego se anota el nivel de agua en diferentes intervalos de tiempo has completar las 24 horas. Se repite todos los pasos para todas las muestras							
Dimensión del recipiente	Alto (cm)	Diámetro (cm)		Área (cm ²)	Volum	en (lt)	
recipiente	35	80	80		175	.93	
Dimensión del	Largo	Ancho (cm) Alto (cm) Volumon (cm ³)		APTE A			
adobe (cm)	(cm)				volumen (em)		ALSENT
M-01	40.20	40.1	0	11.90	19183.04		
M-02	39.80	40.2	0	12.10	19359.52		The start of the
M-03	40.10	39.90		12.00	1919	9.88	
			Resultad	los			1 Stand
Tiempo	Niv	vel de agua (o	em)	Volumen (lt)	Volumen (lt)	Volumen (lt)	
P -	M-01	M-02	M-03	M-01	M-02	M-03	
0 min	25.1	20.0	19.9	126.17	100.53	100.03	P PROVIDE
5 min	25.0	19.9	19.8	125.66	100.03	99.53	Bar Park
10 min	25.0	19.9	19.8	125.66	100.03	99.53	
20 min	24.9	19.8	19.7	125.16	99.53	99.02	
30 min	24.9	19.7	19.7	125.16	99.02	99.02	
	24.8	19.6	19.6	124.66	98.52	98.52	
∠ nr	24.8	19.6	19.0	124.00	98.52	98.52	" lateric \
12 hr	24.7	19.3	19.3	124.10	90.02	90.02	16 and
24 hr	24.0	19.4	19.4	123.03	97.52	97.52	BIE LA
Diferencia	0.5	0.6	0.5	2.51	3.02	2.51	Red Let
% de Absorción	13.10	15 58	13.09	1	2.02	2.01	
/ 0 40 / 10501 01011	0	/ de Absorci	ón nrome	dio		13.02	
Nota Sala - 1	izada -1	nonvo de -1		ranta 211	danda 1 = - 1	has torm:	n dasmaranadas1
<i>Nota.</i> Se ha realizado el ensayo de absorción durante 24 horas, donde los adobes terminaron desmoronados en el agua. Los adobes tienen una absorción de agua de 13.92 %							

Clasificación SUCS de suelo

INFORME Nº S-IGG-MATHLAB-2024

SOLICITA	: GERARDO MAXIMO REVELO SANCHEZ
PROYECTO	: "COMPORTAMIENTO DE MUROS DE ADOBE CON AISLAMIENTO SISMICO EMPLEANDO SHICRAS BAJO CARGA LATERAL MONOTONICA".
FECHA	: 15 de junio del 2024

CLASIFICACION SUCS Y RESUMEN DE ENSAYOS DE LABORATORIO (NTP 339.134 - 199 (revisada el 2019))

Nota:

- Los resultados de los ensayos obtenidos corresponden a la muestra ubicada en campo por el cliente
 - Los datos del solicitante, proyecto, procedencia e identificacion fueron proporcionados e Indicados por el cliente
 - La interpretacion y uso de los resultados es responsabilidad del cliente.

Equipos Utilizados:

- BALANZA 620gr. – CERTIFICADO DE CALIBRACIÓN: CA-LM-043-2024 - BALANZA 6000gr. – CERTIFICADO DE CALIBRACIÓN: CA-LM-045-2024 - BALANZA 30000gr. – CERTIFICADO DE CALIBRACIÓN: CA-LM-044-2024 - HORNO ELECTRICO – CERTIFICADO DE CALIBRACIÓN: CA-LT-012-2024 - COPA CASA GRANDE – CERTIFICADO DE CALIBRACIÓN: CA-LT-0254-2024

Dirección: Pje. Santa Anita Lt. 18 S/N Bar. Villón Bajo Ref. Última Cuadra Av. Mariscal T. Luzuriaga Sucursal: Av. Chacra Cerro 137D - Comas - Lima - Lima Celular: 941 534 134 / Correo: rubenmathlab@gmail.com

Anexo G

Contenido de humedad del suelo

CONTENIDO DE HUMEDAD (NTP 339.127 - 1998 (revisada el 2019))

PROFUNDIDAD : -.- m FECHA : 15 de junio del 2024

SOLICITA : GERARDO MAXIMO REVELO SANCHEZ PROYECTO : "COMPORTAMENTO DE MUROS DE ADOBE CON AISLAMIENTO SISMICO EMPLEANDO SHICRAS BAJO CARGA LATERAL MONOTONICA"

CALICATA : C-01	
MUESTRA Mab .01	

CALICATA	: C-01	
MUESTRA	: Mab .01	1
PROFUNDIDAD (m)	: m	
FRASCO Nº	1	2
(1) Pfr + P.S.H. (gr)	226.05	229.07
(2) Pfr+ P.S.S. (gr)	213.59	216.55
(3) Pagua (gr) (1) - (2)	12.46	12.52
(4) Pfr (gr)	34.21	34.26
(5) P.S.S. (gr) (2) - (4)	179.38	182.29
(6) C. Humedad (3) / (5)	6.95	6.87
CONTENIDO DE HUMEDAD PROME	6.91	%

Nota: Pfr = Peso del frasco

P.S.H. = Peso del suelo humedo P.S.S. = Peso del suelo seco

Pagua = Peso del agua CONTENIDO DE HUMEDAD NATURAL

Nota: - Los resultados

Irección: Pje. Santa Anita Lt. 18 S/N Bar. Villón Bajo Ref. Última Cuadra Av. Mariscal T. Luzuriaga Sucursal: Av. Chacra Cerro 137D - Comas - Lima - Lima Celular: 941 534 134 / Correo: rubenmathlab@gmail.com

Anexo H

Análisis granulométrico del suelo

ANÁLISIS GRANULOMETRICO POR TAMIZADO (NTP 339.128 - 1999 (Revisada el 2019))

SOLICITA GERARDO MAXIMO REVELO SANCHEZ

PROYECTO . "COMPORTAMENTO DE MUROS DE ADOBE CON AISLAMIENTO SISMICO EMPLEANDO SHICRAS BAJO CARGA LATERAL MONOTONICA".

MUESTRA	. Mab .01				FECHA	15 de junio del 2024	4
ESO INICIAL ESO LAVAD	. SECO : O SECO :	7274.00 7199.65	grs		% QUE PASA M/ % RETENIDO M.	ALLA No 200 : ALLA 3° :	35.3
ESO DE FRA	CCION :	213.76	grs	Carrier Control			
Tamices ASTM	Abertura (mm)	Peso Retenido (grs)	% Retenido Parcial	% Retenido Acumulado	% Acumulado Que Pasa	Resumen de % que para Nº 3 % que para 2º 4	dates 100.0 99.8
3"	76.200	0.00	0.00	0.00	100.00	15 gat pair N°200	35.3
2*	50.800	0.00	0.00	0.00	100.00		
1 %*	38.100	0.00	0.00	0.00	100.00		
1*	25.400	0.00	0.00	0.00	100.00	LL	25.2
3/4°	19.050	0.00	0.00	0.00	100.00	L.P.	15.3
3/8"	9.525	0.00	0.00	0.00	100.00	LP.	9.85
No 4	4.760	13.00	0.18	0.18	99.82		
No 8	2.380	15.91	7.43	7.61	92.39	D10	
No 10	2.000	4.29	2.00	9.61	90.39	D30	
No 16	1.190	19.87	9.28	18.89	81.11	D50	
Nº 20	0.840	13.45	6.28	25.17	74.83	D60	
No 30	0.590	14.95	6.98	32.15	67.85		
No 40	0.425	13.89	6.49	38.64	61.36	cu	
No 50	0.297	14.09	6.58	45.22	54.78	~	
No 60	0.260	8.24	3.85	49.07	50.93	C	
No 100	0.149	18.33	8.56	57.63	42.37		
No 140	0.105	9.54	4.45	62.08	37.92	w (%)	6.91
No 200	0.074	5.55	2.59	64.67	35.33	GRAVA (%)	0.18
> No 200	0.000	1.30	0.61	65.28	34.72	ARENA (%)	64.4
TOTAL		74 35	1.02			FINOS (%)	35.3
	GRAVA			ARENA		FINOS	7

100 90 80 70 % Acumulado que Pusa 60 50 40 30 20 10 - 0 0.01 10.00 0.10 100.00 1.00 Aberiura (mm)

Los resultados de los ensavos obtenidos corresponden a la muestra ubicada en campo por el cliente

9001 GERTI

RTIFICA

Dirección: Pje. Santa Anita Lt. 18 S/N Bar. Villón Bajo Ref. Última Cuadra Av. Mariscal T. Luzuriaga Sucursal: Av. Chacra Cerro 137D - Comas - Lima - Lima Celular: 941 534 134 / Correo: rubenmathlab@gmail.com

Anexo I

Ensayo para límite de consistencia del suelo

ENSAYD PARA LIMITES DE CONSISTENCIA

DETERMINACIÓN DEL LÍMITE LÍQUIDO Y LÍMITE PLÁSTICO (NTP 339.129 -1999 (revisada el 2019)) SOLICITA : GERARDO MAXIMO REVELO SANCHEZ

PROYECTO : "COMPORTAMIENTO DE MUROS DE ADOBE CON AISLAMIENTO SISMICO EMPLEANDO SHICRAS BAJO CARGA LATERAL MONOTONICA".

CALICATA : C-01 MUESTRA : Mab .01	PROFUNDIDAD : m FECHA : 15 de junio del 2024								
Ensayo			LÌN	IITE	dimininini dimininini		LİI	WITE	
Datos		LIQUIDO				PLÀSTICO			
(1) Pfr + P.S.H. (gr)	31.74	30.86	32.09	33.69	26.87	27.00	28.78	29.64	
(2) Pfr+ P.S.S. (gr)	29 62	28.81	30.13	31.18	26.06	26.21	27.98	28.79	
(3) Pagua (gr)	(1) - (2)	2.12	2.05	1.96	2.51	0.81	0.79	0.80	0.85
(4) Pfr (gr)	and the second	21.76	20.88	22.02	20.44	20.89	21.00	22.84	23.14
(5) P.S.S. (gr)	(2) - (4)	7.86	7.93	8.11	10.74	5.17	5.21	5.14	5.65
(6) C. Humedad (%)	(3) / (5)	26.97	25.85	24.17	23.37	15.67	15.16	15,56	15.04
N. De golpes	14	24	35	39	1	2	3	4	

Pfr = Peso del frasco P.S.H. = Peso del suelo humedo P.S.S. = Peso del suelo seco Nota: Pagua = Peso del agua

RESUMEN DE RESULTADOS Limite Liquido (L.L.) Limite Plastico (L.P.)

ERTIFICA

Dirección: Pje. Santa Anita Lt. 18 S/N Bar. Villón Bajo Ref. Última Cuadra Av. Mariscal T. Luzuriaga Sucursal: Av. Chacra Cerro 137D - Comas - Lima - Lima Celular: 941 534 134 / Correo: rubenmathlab@gmail.com

Anexo J

Peso específico relativo de solidos del suelo

PESD ESPECIFICD RELATIVD DE SOLIDOS (Ss) (NTP 339.131 - 1999 (revisada el 2019))

SOLICITA GERARDO MAXIMO REVELO SANCHEZ PROYECTO "COMPORTAMIENTO DE MUROS DE ADOBE CON AISLAMIENTO SISMICO EMPLEANDO SHICRAS BAJO CARGA LATERAL MONOTONICA"

CALICATA : C-01	PROFUNDIDAD : m FECHA : 15 de junio del 2024				
MUESTRA : Mab .01					
CALICATA	C-01				
MUESTRA	Mab.01				
PROFUNDIDAD (m)	: m				
MUESTRA	M-1	M-2	M-3		
(1) Peso del Suelo Seco (gr)	140.56	140.22	140.68		
(2) Peso del frasco Vol + P del agua (gr)	686.70	686.70	686.70		
(3) Peso del trasco + Peso Suelo Seco + P de agua (gr)	772.12	771.84	771.90		
(4) Peso Específico Relativo de Sólidos	2.55	2.55	2.54		
PESO ESPECIFICO PROMEDIO		2.54			

PESO ESPECIFICO RELATIVO DE SOLIDOS (Ss)

- Los resultados de los ensayos obtenidos corresponden a la muestra ubicada en campo por el cliente

Nota

Dirección: Pje. Santa Anita Lt. 18 S/N Bar. Villón Bajo Ref. Ultima Cuadra Av. Mariscal T. Luzuriaga Sucursal: Av. Chacra Cerro 137D - Comas - Lima - Lima Celular: 941 534 134 / Correo: rubenmathlab@gmail.com

Anexo K

Ensayo de compresión en cubos de adobe

PRUEBA A LA RESISTENCIA DE COMPRESION DE ADOBE

SOLICITA TESIS

: "COMPORTAMIENTO DE MUROS DE ADOBE CON AISLAMIENTO SISMICO EMPLEANDO SHICRAS BAJO CARGA LATERAL MONOTONICA".

: GERARDO MAXIMO REVELO SANCHEZ

FECHA : 17 de agosto del 2024

Adobe Nº	DIMENSIONES (cms.) L. / A. /H.		DIMENSIONES (cms.) Area Total L. / A. /H. (cm ²) (cm ²) (cm ²)		AREA NETA (cm ²)	CARGA (Kg.)	RESISTENCIA COMPRENSION (Kg/cm ²)	x - x	
M-01 : Cubo	10.00	10.00	10.00	100.00	0.00	100.00	2,129.87	21.30	2
M-02 : Cubo	10.00	10.00	10.00	100.00	0.00	100.00	2,082.85	20.83	2
M-03 : Cubo	10.00	10.00	10.00	100.00	0.00	100.00	1,800.55	18.01	-1
M-04 : Cubo	10.00	10.00	10.00	100.00	0.00	100.00	1,976.18	19.76	1
M-05 : Cubo	10.00	10.00	10.00	100.00	0.00	100.00	1,649.77	16.50	-2
M-06 : Cubo	10.00	10.00	10.00	100.00	0.00	100.00	1,716.84	17.17	-2
	n			1	Re	sistencia	Promedio =	19	Ka/cm ²

NOTA

9001 CEA

- Las unidades de adobe fueron traidas al laboratorio por el solicitante.

- La interpretacion y uso de los resultados es responsabilidad del cliente

Anexo L

Ensayo Brasileño a la tracción

INFORME N° TD-DO2-MATHLAB-2024 ENSAYD DE RESISTENCIA A TRACCION SIMPLE DEL ADOBE POR COMPRESION DIAMETRAL DE UNA PROBETA CILINDRICA

SOLICITA : GERARDO MAXIMO REVELO SANCHEZ

: "COMPORTAMIENTO DE MUROS DE ADOBE CON AISLAMIENTO SISMICO TESIS EMPLEANDO SHICRAS BAJO CARGA LATERAL MONOTONICA".

Diametro: 15.00 cm.

	BRIQUETA DE ADOBE	FE	FECHA			ΡΙ (π)	LONGITUD (I)	carga (P)	Resistencia a la Traccion Indirecta
N	DESCRIPCION	MOLDEO	ROTURA	DIAS	(cm)		(cm)	(kgf)	(kg/cm ²)
1	M-01: CILINDRO TRACCION	16/07/2024	13/08/2024	28	15.00	3.1416	30.00	815.7	1.15
2	M-02: CILINDRO TRACCION	16/07/2024	13/08/2024	28	15.00	3.1416	30.00	1,607.7	2.27
3	M-03: CILINDRO TRACCION	17/07/2024	14/08/2024	28	15.00	3.1416	30.00	1,844.1	2.61
4	M-04: CILINDRO TRACCION	17/07/2024	14/08/2024	28	15.00	3.1416	30.00	1,973.3	2.79
5	M-05: CILINDRO TRACCION	18/07/2024	15/08/2024	28	15.00	3.1416	30.00	2,084.6	2.95
6	M-06: CILINDRO TRACCION	18/07/2024	15/08/2024	28	15.00	3.1416	30.00	1,547.6	2.19
		and the second se	Re	sisten	ia Promedio	de las cua	tro meiores m	lestras =	2 66

OBSERVACIONES:

- Las muestras de adobe fueron traidos por el Solicitante para sus respectivas pruebas

- La interpretacion de los resultados sera responsabilidad del solicitante

EQUIPO UTILIZADO:

Dirección: Pje. Santa Anita Lt. 18 S/N Bar. Villón Bajo Ref. Última Cuadra Av. Mariscal T. Luzuriaga Sucursal: Av. Chacra Cerro 137D - Comas - Lima - Lima Celular: 941 534 134 / Correo: rubenmathlab@gmail.com

Anexo M

Ensayo de mortero a la tracción Indirecta

irección: Pje. Santa Anita Lt. 18 S/N Bar. Villón Bajo Ref. Última Cuadra Av. Mariscal T. Luzuriaga Sucursal: Av. Charac Cerro 1370 - Comas - Lima - Lima Celular: 941 534 134 / Correo: rubenmathlab@gmail.com

Anexo N

Datos del ensayo de compresión en prismas

Muestra	ı:			M-01			Li (mm):	338.00
Fecha d	e fabric	ación del ac	lobe:	01/07/20)24		Ld (mm):	344.00
Fecha d	e fabric	ación de pri	isma:	28/08/20	024		$\acute{A}rea (cm^2)$:	810.02
Fecha d	e ensayo	D:		08/10/20)24		Altura (cm):	54.20
Tiempo	total de	secado:		99			$f'm (kg/cm^2)$:	8.95
Tipo de	falla:			Vertical			$Em (kg/cm^2):$	1529.25
Т	Р	F	di	dd	σ	8i	8d	٤prom
(seg)	(Psi)	(kg)	(mm)	(mm)	(kg/cm^2)	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
12	9	193.60	0.00	0.00	0.24	0.0000	0.0000	0.0000
18	10	215.11	0.09	0.07	0.27	0.0003	0.0002	0.0002
24	16	344.17	0.12	0.17	0.42	0.0004	0.0005	0.0004
30	24	516.26	0.22	0.28	0.64	0.0007	0.0008	0.0007
36	35	752.88	0.31	0.39	0.93	0.0009	0.0011	0.0010
42	48	1032.52	0.38	0.44	1.27	0.0011	0.0013	0.0012
48	55	1183.09	0.45	0.53	1.46	0.0013	0.0015	0.0014
54	68	1462.73	0.54	0.61	1.81	0.0016	0.0018	0.0017
60	77	1656.33	0.66	0.75	2.04	0.0020	0.0022	0.0021
66	101	2172.58	0.77	0.87	2.68	0.0023	0.0025	0.0024
72	129	2774.88	0.89	0.99	3.43	0.0026	0.0029	0.0028
78	157	3377.18	1.01	1.17	4.17	0.0030	0.0034	0.0032
84	177	3807.40	1.24	1.31	4.70	0.0037	0.0038	0.0037
90	225	4839.91	1.46	1.38	5.98	0.0043	0.0040	0.0042
96	253	5442.21	1.62	1.56	6.72	0.0048	0.0045	0.0047
102	275	5915.45	1.71	1.84	7.30	0.0051	0.0053	0.0052
108	314	6754.37	1.95	2.09	8.34	0.0058	0.0061	0.0059
114	337	7249.12	2.16	2.27	8.95	0.0064	0.0066	0.0065
120	314	6754.37	2.33	2.46	8.34	0.0069	0.0072	0.0070
126	266	5721.85	2.46	2.58	7.06	0.0073	0.0075	0.0074
132	216	4646.32	2.80	2.79	5.74	0.0083	0.0081	0.0082
138	187	4022.51	2.96	2.90	4.97	0.0088	0.0084	0.0086
b 10.00	0 <u> </u>		1	1		1	F	F

Muestra	a:			M-02			Li (mm):	346.00
Fecha d	e fabrica	ción del ad	obe:	02/07/20)24		Ld (mm):	322.00
Fecha d	e fabrica	ción de pris	sma:	28/08/20)24		Área (cm ²):	788.04
Fecha d	e ensayc):		08/10/20)24		Altura (cm):	53.60
Tiempo	total de	secado:		98			$f'm (kg/cm^2)$:	10.78
Tipo de	falla:			Vertical			$Em (kg/cm^2)$:	2607.59
T	р	F	ďi	Ьb	~	ei	ed	Sprom
(227)	(D _a :)	(l.a)	(mm)	(mm)		(((mm/mm)
(seg)	(PSI)	(Kg)	(mm)	(mm)	(kg/cm ²)	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
12	10	215.11	0.00	0.00	0.27	0.0000	0.0000	0.0000
18	19	408.70	0.00	0.00	0.52	0.0000	0.0000	0.0000
24	26	559.28	0.08	0.00	0.71	0.0002	0.0000	0.0001
30	40	860.43	0.13	0.06	1.09	0.0004	0.0002	0.0003
36	54	1161.58	0.18	0.11	1.47	0.0005	0.0003	0.0004
42	75	1613.30	0.23	0.18	2.05	0.0007	0.0006	0.0006
48	92	1978.99	0.29	0.25	2.51	0.0008	0.0008	0.0008
54	113	2430.71	0.34	0.39	3.08	0.0010	0.0012	0.0011
60	134	2882.44	0.41	0.46	3.66	0.0012	0.0014	0.0013
66	166	3570.78	0.47	0.52	4.53	0.0014	0.0016	0.0015
72	183	3936.46	0.56	0.63	5.00	0.0016	0.0020	0.0018
78	203	4366.68	0.60	0.71	5.54	0.0017	0.0022	0.0020
84	248	5334.66	0.71	0.84	6.77	0.0021	0.0026	0.0023
90	275	5915.45	0.83	0.95	7.51	0.0024	0.0030	0.0027
96	316	6797.39	0.99	1.16	8.63	0.0029	0.0036	0.0032
102	342	7356.67	1.17	1.29	9.34	0.0034	0.0040	0.0037
108	360	7743.86	1.30	1.36	9.83	0.0037	0.0042	0.0040
114	395	8496.74	1.41	1.52	10.78	0.0041	0.0047	0.0044
120	360	7743.86	1.52	1.66	9.83	0.0044	0.0052	0.0048
126	271	5829.41	1.73	1.93	7.40	0.0050	0.0060	0.0055

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 Deformación (mm/mm) - ε_{prom}

1

Μ	luestra	ı:			M-03			Li (mm):	325.00
Fe	echa de	e fabrica	ación del ado	obe:	03/07/20)24		Ld (mm):	364.00
Fe	echa de	e fabrica	ación de pris	sma:	28/08/20)24		$Área(cm^2)$:	792.00
Fe	echa de	e ensayc):		08/10/20)24		Altura (cm):	53.90
Ti	iempo	total de	secado:		97			$fm(kg/cm^2)$:	9.78
Ti	ipo de	falla:			Vertical			$Em (kg/cm^2)$:	1900.94
_		~		л.					
	Т	Р	F	di	dd	σ	εi	εd	Eprom
(seg)	(Psi)	(kg)	(mm)	(mm)	(kg/cm^2)	(mm/mm)	(mm/mm)	(mm/mm)
	0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
	6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
	12	6	129.06	0.00	0.00	0.16	0.0000	0.0000	0.0000
	18	11	236.62	0.05	0.00	0.30	0.0002	0.0000	0.0001
	24	14	301.15	0.12	0.06	0.38	0.0004	0.0002	0.0003
	30	18	387.19	0.19	0.21	0.49	0.0006	0.0006	0.0006
	36	24	516.26	0.27	0.32	0.65	0.0008	0.0009	0.0009
	42	32	688.34	0.37	0.44	0.87	0.0011	0.0012	0.0012
	48	41	881.94	0.49	0.53	1.11	0.0015	0.0015	0.0015
	54	59	1269.13	0.51	0.62	1.60	0.0016	0.0017	0.0016
	60	73	1570.28	0.55	0.73	1.98	0.0017	0.0020	0.0018
	66	93	2000.50	0.67	0.85	2.53	0.0021	0.0023	0.0022
	72	118	2538.27	0.80	0.93	3.20	0.0025	0.0026	0.0025
	78	145	3119.06	0.86	1.17	3.94	0.0026	0.0032	0.0029
	84	181	3893.44	0.97	1.26	4.92	0.0030	0.0035	0.0032
	90	225	4839.91	1.24	1.37	6.11	0.0038	0.0038	0.0038
	96	261	5614.30	1.42	1.51	7.09	0.0044	0.0041	0.0043
	102	283	6087.54	1.51	1.72	7.69	0.0046	0.0047	0.0047
	108	315	6775.88	1.64	1.94	8.56	0.0050	0.0053	0.0052
	114	338	7270.63	1.96	2.26	9.18	0.0060	0.0062	0.0061
	120	360	7743.86	2.31	2.37	9.78	0.0071	0.0065	0.0068
	126	314	6754.37	2.43	2.76	8.53	0.0075	0.0076	0.0075
	132	237	5098.04	2.68	2.95	6.44	0.0082	0.0081	0.0082
	138	197	4237.61	2.84	3.01	5.35	0.0087	0.0083	0.0085
ь	12.00 -						7	In	IF
²) -			i I	i I	i I	I I		l r	ſ
5	10.00 -						-		
Kg/	8 00		 	~	- \		_	★	
,E	8.00 -		1	100	1	N			
esic	6.00 -		!	(-		
npr			1			•			
cou	4.00 -			-i	· -i				
20	2.00 -		1						

Muestra	a:			M-04			Li (mm):	342.00
Fecha d	e fabric	ación del ac	lobe:	05/07/20	024		Ld (mm):	336.00
Fecha d	e fabric	ación de pr	isma:	28/08/20)24		$\text{Área}(\text{cm}^2)$:	818.09
Fecha d	e ensayo	o:		09/10/20	024		Altura (cm):	54.10
Tiempo	total de	secado:		95			$fm(kg/cm^2)$:	9.12
Tipo de	falla:			Vertical			$Em (kg/cm^2)$:	1744.64
<u>т</u>	P	F	d:	ЬЬ	<i>a</i>	c:		Carom
1	1 (Dai)	r (l.a)	ui (u u (اع ()	در (سربی (سربی)	Eprom
(seg)	(PSI)	(Kg)	(mm)	(mm)	(kg/cm^{-})	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
12	11	236.62	0.00	0.00	0.29	0.0000	0.0000	0.0000
18	16	344.17	0.03	0.05	0.42	0.0001	0.0001	0.0001
24	27	580.79	0.12	0.09	0.71	0.0004	0.0003	0.0003
30	34	731.36	0.22	0.26	0.89	0.0006	0.0008	0.0007
36	43	924.96	0.27	0.31	1.13	0.0008	0.0009	0.0009
42	52	1118.56	0.32	0.39	1.37	0.0009	0.0012	0.0010
48	62	1333.67	0.42	0.50	1.63	0.0012	0.0015	0.0014
54	87	1871.43	0.56	0.62	2.29	0.0016	0.0018	0.0017
60	94	2022.01	0.72	0.67	2.47	0.0021	0.0020	0.0020
66	112	2409.20	0.84	0.75	2.94	0.0025	0.0022	0.0023
72	156	3355.67	0.91	0.94	4.10	0.0027	0.0028	0.0027
78	207	4452.72	1.09	1.19	5.44	0.0032	0.0035	0.0034
84	241	5184.09	1.29	1.36	6.34	0.0038	0.0040	0.0039
90	274	5893.94	1.45	1.54	7.20	0.0042	0.0046	0.0044
96	297	6388.69	1.66	1.72	7.81	0.0049	0.0051	0.0050
102	319	6861.92	1.84	1.95	8.39	0.0054	0.0058	0.0056
108	347	7464.22	2.06	2.18	9.12	0.0060	0.0065	0.0063
114	327	7034.01	2.21	2.28	8.60	0.0065	0.0068	0.0066
120	288	6195.09	2.36	2.34	7.57	0.0069	0.0070	0.0069
126	248	5334.66	2.47	2.52	6.52	0.0072	0.0075	0.0074
132	210	4517.25	2.69	2.73	5.52	0.0079	0.0081	0.0080
138	163	3506.25	2.81	2.99	4.29	0.0082	0.0089	0.0086
b 10.00			1			1	F	F
9.00		· ·	- +			-		

0.0000

0.0010

0.0020

Deformación (mm/mm) - ϵ_{prom}

0.0030

0.0040

0.0050

Muestra	ı:			M-05			Li (mm):	336.00
Fecha d	e fabrica	ación del ad	obe:	06/07/20)24		Ld (mm):	343.00
Fecha d	e fabrica	ación de pris	sma:	28/08/20)24		Área (cm ²):	797.97
Fecha d	e ensavo):		09/10/20)24		Altura (cm):	53.70
Tiempo	total de	secado:		94			$f'm(kg/cm^2)$	11.62
Tipo de falla:				Vertical			$Fm (kg/cm^2)$:	3175.74
	_		ъ.	•				
Т	Р	F	di	dd	σ	8i	εd	Eprom
(seg)	(Psi)	(kg)	(mm)	(mm)	(kg/cm ²)	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
12	12	258.13	0.00	0.00	0.32	0.0000	0.0000	0.0000
18	21	451.73	0.09	0.07	0.57	0.0003	0.0002	0.0002
24	28	602.30	0.15	0.12	0.75	0.0004	0.0003	0.0004
30	40	860.43	0.24	0.21	1.08	0.0007	0.0006	0.0007
36	73	1570.28	0.33	0.32	1.97	0.0010	0.0009	0.0010
42	106	2280.14	0.41	0.50	2.86	0.0012	0.0015	0.0013
48	142	3054.52	0.51	0.62	3.83	0.0015	0.0018	0.0017
54	184	3957.97	0.59	0.74	4.96	0.0018	0.0022	0.0020
60	245	5270.13	0.67	0.84	6.60	0.0020	0.0024	0.0022
66	267	5743.36	0.76	0.98	7.20	0.0023	0.0029	0.0026
72	316	6797.39	0.85	1.06	8.52	0.0025	0.0031	0.0028
78	342	7356.67	0.94	1.16	9.22	0.0028	0.0034	0.0031
84	384	8260.12	1.13	1.27	10.35	0.0034	0.0037	0.0035
90	403	8668.82	1.26	1.35	10.86	0.0038	0.0039	0.0038
96	419	9013.00	1.41	1.49	11.29	0.0042	0.0043	0.0043
102	431	9271.12	1.50	1.63	11.62	0.0045	0.0048	0.0046
108	395	8496.74	1.89	1.78	10.65	0.0056	0.0052	0.0054
114	357	7679.33	2.08	1.83	9.62	0.0062	0.0053	0.0058
120	329	7077.03	2.24	1.92	8.87	0.0067	0.0056	0.0061
126	274	5893.94	2.49	2.06	7.39	0.0074	0.0060	0.0067

Muestra	1:			M-06			Li (mm):	328.00
Fecha d	e fabrica	ación del ado	obe:	08/07/20	024		Ld (mm):	334.00
Fecha d	e fabrica	ación de pris	sma:	28/08/20)24		Área (cm ²):	786.03
Fecha d	e ensayc):		09/10/20)24		Altura (cm):	54.30
Tiempo	total de	secado:		93			$fm(kg/cm^2)$	10.45
Tipo de	falla:			Vertical			$Em (kg/cm^2)$:	2214.64
	~		1.	1.				
Т	Р	F	di	dd	σ	8i	8d	Eprom
(seg)	(Psi)	(kg)	(mm)	(mm)	(kg/cm ²)	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
12	11	236.62	0.00	0.00	0.30	0.0000	0.0000	0.0000
18	14	301.15	0.00	0.05	0.38	0.0000	0.0001	0.0001
24	16	344.17	0.08	0.11	0.44	0.0002	0.0003	0.0003
30	19	408.70	0.19	0.26	0.52	0.0006	0.0008	0.0007
36	27	580.79	0.29	0.35	0.74	0.0009	0.0010	0.0010
42	36	774.39	0.36	0.40	0.99	0.0011	0.0012	0.0011
48	53	1140.07	0.41	0.47	1.45	0.0013	0.0014	0.0013
54	63	1355.18	0.47	0.56	1.72	0.0014	0.0017	0.0016
60	80	1720.86	0.56	0.65	2.19	0.0017	0.0019	0.0018
66	104	2237.12	0.65	0.74	2.85	0.0020	0.0022	0.0021
72	127	2731.86	0.78	0.86	3.48	0.0024	0.0026	0.0025
78	167	3592.29	0.92	0.97	4.57	0.0028	0.0029	0.0029
84	211	4538.76	1.06	1.13	5.77	0.0032	0.0034	0.0033
90	256	5506.75	1.16	1.34	7.01	0.0035	0.0040	0.0038
96	289	6216.60	1.32	1.49	7.91	0.0040	0.0045	0.0042
102	332	7141.56	1.51	1.63	9.09	0.0046	0.0049	0.0047
108	351	7550.27	1.63	1.79	9.61	0.0050	0.0054	0.0052
114	382	8217.10	1.86	1.95	10.45	0.0057	0.0058	0.0058
120	347	7464.22	1.99	2.12	9.50	0.0061	0.0063	0.0062
126	280	6023.00	2.27	2.20	7.66	0.0069	0.0066	0.0068
132	237	5098.04	2.41	2.38	6.49	0.0073	0.0071	0.0072
138	195	4194.59	2.51	2.43	5.34	0.0077	0.0073	0.0075

0.0000

0.0010

0.0020

Deformación (mm/mm) - ε_{prom}

0.0030

0.0040

0.0050

Anexo O

Datos del ensayo de tracción indirecta en muretes

Muestr	a:			M-01		Lv (1	nm):	374.00
Fecha d	le fabrica	ción del ad	obe:	01/07/20)24	Lh (1	mm):	396.00
Fecha d	le fabrica	ción de mu	rete:	28/08/20)24	Área	a corte (cm ²):	1947.90
Fecha d	le ensayo):		09/10/20)24	Larg	o (cm):	67.50
Tiempo	total de	secado:		100		Alto	68.20	
Tipo de	falla:			Escalona	da	Espe	esor (cm):	20.30
ft (kg/c	m^2):			0.27		Gm	(kg/cm^2) :	779.51
T	Р	F	dv	dh	τ	٤v	Eh	Ŷ
(seg)	(Psi)	(kg)	(mm)	(mm)	(kg/cm^2)	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
3	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
9	6	129.06	0.00	0.00	0.07	0.0000	0.0000	0.0000
12	8	172.09	0.02	0.00	0.09	0.0001	0.0000	0.0001
15	11	236.62	0.03	0.00	0.12	0.0001	0.0000	0.0001
18	14	301.15	0.05	0.00	0.15	0.0001	0.0000	0.0001
21	18	387.19	0.07	0.00	0.20	0.0002	0.0000	0.0002
24	21	451.73	0.09	0.00	0.23	0.0002	0.0000	0.0002
27	23	494.75	0.10	0.23	0.25	0.0003	0.0006	0.0008
30	25	537.77	0.13	0.71	0.28	0.0003	0.0018	0.0021
33	18	387.19	0.22	1.95	0.20	0.0006	0.0049	0.0055
36	14	301.15	0.23	3.46	0.15	0.0006	0.0087	0.0094
39	13	279.64	0.28	4.68	0.14	0.0007	0.0118	0.0126
42	10	215.11	0.30	5.43	0.11	0.0008	0.0137	0.0145
45	5	107.55	0.31	8.64	0.06	0.0008	0.0218	0.0226
н 030 -			_	I P	P			

Ν	luestr	a:			M-02		Lv (1	nm):	385.00
F	echa c	de fabrica	ación del ad	obe:	03/07/20)24	Lh (1	nm):	390.00
F	echa c	de fabrica	ación de mu	rete:	28/08/20)24	Área	corte (cm^2) .	1934.37
F	echa d	de ensavo):		09/10/20)24	Larg	o (cm):	68.20
т	iemno	n total de	secado:		98		Alto	(cm):	67.90
т	ino de	s follo	seeddo.		Mixta		Espe	(om):	20.10
ר ה	100 uc	$2^{1}a_{1}a_{1}a_{2}$			0.22		С	$(1 - \sqrt{2})$	068 12
<u> </u>	t (kg/c	cm):			0.32		Gm	(kg/cm):	908.12
	Т	Р	F	dv	dh	τ	٤v	Eh	Y
	(seg)	(Psi)	(kg)	(mm)	(mm)	(kg/cm^2)	(mm/mm)	(mm/mm)	(mm/mm)
	0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
	3	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
	6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
	9	3	64.53	0.00	0.00	0.03	0.0000	0.0000	0.0000
	12	5	107.55	0.01	0.00	0.06	0.0000	0.0000	0.0000
	15	11	236.62	0.02	0.00	0.12	0.0001	0.0000	0.0001
	18	14	301.15	0.05	0.00	0.16	0.0001	0.0000	0.0001
	21	16	344.17	0.05	0.00	0.18	0.0001	0.0000	0.0001
	24	21	451.73	0.07	0.00	0.23	0.0002	0.0000	0.0002
	27	23	494.75	0.10	0.00	0.26	0.0003	0.0000	0.0003
	30	25	537.77	0.11	0.00	0.28	0.0003	0.0000	0.0003
	33	27	580.79	0.19	0.02	0.30	0.0005	0.0001	0.0005
	36	29	623.81	0.24	0.78	0.32	0.0006	0.0020	0.0026
	39	17	365.68	0.31	4.68	0.19	0.0008	0.0120	0.0128
	42	12	258.13	0.38	6.71	0.13	0.0010	0.0172	0.0182
	45	8	172.09	0.42	9.64	0.09	0.0011	0.0247	0.0258
ч	0.35 -	1	1 1	Г	1	1	1	P	P
ج	0.20 -	\frown		 					
<u>ک</u>	0.50	F]		i				∕×↓	+
Ж Ж	0.25 -	*	/		<u> </u>			\wedge	
£	0.20 -		`	$\frac{1}{1}$	 		2		F
20	0.45	t	, , , , , , , , , , , , , , , , , , ,			i			
erz(0.15 -	I						_ ∫dh _ ∖	dv
sfu	0.10 -		 	+					
ш	0.05	 	 	i				dv	
	0.00	†		1					E
	0.00	•		0.015	0.020	0.025 0.0		\searrow	
	0.0	00 0.0	Deformaci	ón angula	0.020 r (mm/mm	0.025 0.0 1) - Υ	J3(>>		
						,			em +
Ч	0.30			1	1	1	7.3		the second second
(-				1					4-11
ۍ اک	0.25 -		y = 968.1	2x + 0.0492	[19		110 THE	
₹	0.20 -		R ² =	0.9283		-L	T-		
Ð	0.20			····					
8	0.15 -				- L				
erzc				ŧ.	I I	1			A ANA
sfut	0.10 -	شقد			-	- 			A A
ئن	0.05	· · · ·		 	 -			× * /6	A. A.
	5.05	•		1	1			1001/	N/AII
	0.00 -		1	i	i	1		- MA	
	0.0	000 0	.0001 0.0	001 0.	0002 0	.0002 0.00	003	1 AA	
			Deformaci	on angulai	· (mm/mm) - Y			

Muestra	a:			M-03		Lv (1	nm):	392.00
Fecha d	le fabrica	ción del ad	obe:	04/07/20)24	Lh(mm):	384.00
Fecha d	le fabrica	ción de mu	rete:	28/08/20)24	Área	$a \operatorname{corte}(\operatorname{cm}^2)$:	1877.16
Fecha d	le ensayo	:		09/10/20)24	Larg	66.30	
Tiempo	total de	secado:		97		Alto	(cm):	67.10
Tipo de	falla:			Mixta		Espe	esor (cm):	19.90
f't (kg/c	2):			0.24		Gm	(kg/cm^2) :	716.20
Т	Р	F	dv	dh	τ	٤v	Eh	Ŷ
(seg)	(Psi)	(kg)	(mm)	(mm)	(kg/cm^2)	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
3	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
9	3	64.53	0.01	0.00	0.03	0.0000	0.0000	0.0000
12	5	107.55	0.01	0.00	0.06	0.0000	0.0000	0.0000
15	10	215.11	0.04	0.00	0.11	0.0001	0.0000	0.0001
18	12	258.13	0.04	0.00	0.14	0.0001	0.0000	0.0001
21	14	301.15	0.06	0.00	0.16	0.0002	0.0000	0.0002
24	19	408.70	0.08	0.01	0.22	0.0002	0.0000	0.0002
27	20	430.21	0.12	0.32	0.23	0.0003	0.0008	0.0011
30	21	451.73	0.18	0.71	0.24	0.0005	0.0018	0.0023
33	14	301.15	0.22	2.12	0.16	0.0006	0.0055	0.0061
36	10	215.11	0.23	3.35	0.11	0.0006	0.0087	0.0093
39	7	150.58	0.28	4.29	0.08	0.0007	0.0112	0.0119
42	6	129.06	0.30	4.89	0.07	0.0008	0.0127	0.0135
42 6 129.06 0.30 45 5 107.55 0.31				5.47	0.06	0.0008	0.0142	0.0150

Muestra Fecha d	a: le fabrica	nción del ad	ohe	M-04)24	Lv(r	371.00	
Fechad	le fabrica	ción de mu	rete	28/08/20)24	Áraa	aorta (am ²)	1884 63
Fechad	e ensavo	······································	1010.	09/10/20)24	Alea Laro	correction (cm):	68 10
Tiempo	total de	v. secado:		96	/21		(cm):	66 50
Tipo de	falla	secado.		Fecalona	da	Espesor (cm):		19.80
	1a11a.			0.27	ua	Espe	$\frac{301}{2}$	1210 10
TT (Kg/C	em):			0.57		Gm (kg/cm):	1310.10
Т	Р	F	dv	dh	τ	٤v	Eh	Ŷ
(seg)	(Psi)	(kg)	(mm)	(mm)	(kg/cm^2)	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
3	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
9	4	86.04	0.01	0.00	0.05	0.0000	0.0000	0.0000
12	7	150.58	0.01	0.00	0.08	0.0000	0.0000	0.0000
15	11	236.62	0.02	0.00	0.13	0.0001	0.0000	0.0001
18	15	322.66	0.03	0.00	0.17	0.0001	0.0000	0.0001
21	18	387.19	0.04	0.00	0.21	0.0001	0.0000	0.0001
24	21	451.73	0.05	0.00	0.24	0.0001	0.0000	0.0001
27	24	516.26	0.06	0.00	0.27	0.0001	0.0000	0.0001
30	28	602.30	0.06	0.00	0.32	0.0002	0.0000	0.0002
33	29	623.81	0.08	0.00	0.33	0.0002	0.0000	0.0002
36	31	666.83	0.11	0.00	0.35	0.0003	0.0000	0.0003
39	32	688.34	0.13	0.81	0.37	0.0004	0.0020	0.0024
42	21	451.73	0.42	2.67	0.24	0.0011	0.0067	0.0079
45	14	301.15	0.57	3.8/	0.16	0.0015	0.0097	0.0113
۲ ^{0.40}			1		1]	P	P
ε 0.35 -			$ \frac{1}{1}$ $ -$	^I		-	<u></u>	
3 0.30	-					/	×¥	_
E 0.25	• i			<u> </u>		~ ~ /	/	
			l.				T 🔪	F
0 0.20 -	L							
G 0.15	[i			dh	dv
5 0.10 -							du	
0.05								
0.00								
0.0	0.0 0.0	0.004	0.006	0.008	0.010 0.0	01 📉		×1×1×1×1×
		Deformaci	ión angula	r (mm/mm	i) - Y	~/ >>		
								1 em 1
6 0.35 T			1	1	. •			
e 0.30 -	y=	1,310.10x +	0.07					
ر ا در ا		$R^2 = 0.78$						
<u>ع</u> 0.25				 	 			
<u></u> 0.20			• • -					
8 0.15			\$			~	V V	12 100
ne	_ • • [•]	•••	Ý	I.				
5 0.10			⊢ · · ·	-	-		NA C	
0.05								

0.0003

0.05

0.0000

0.0001

001 0.0001 0.0002 0.0002 Deformación angular (mm/mm) - Υ

103

					16.07		- ·	``		
М	luestr	a:			M-05		Lv (r	nm):	390.00	
Fe	echa d	le fabrica	ción del ad	obe:	06/07/20)24	Lh (r	nm):	384.00	
Fe	echa d	le fabrica	ción de mu	rete:	28/08/20)24	Área	corte (cm^2):	1934.00	
Fe	echa d	le ensayo	:		09/10/20)24	Larg	o (cm):	67.80	
Ti	iempo	o total de	secado:		95		Alto	(cm):	67.60	
Ti	ipo de	falla:			Mixta		Espe	sor (cm):	20.20	
ft	t (kg/c	cm^2):			0.29		Gm (kg/cm^2):	889.79	
	т	D	Б	d.	վե	-	0	oh	Y	
(1	r (D. ')	r (L)	uv	un	1 	εν	En (
(seg)	(P\$1)	(Kg)	(mm)	(mm)	(kg/cm ²)	(mm/mm)	(mm/mm)	(mm/mm)	
	0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	
	3	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	
	6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	
	9	5	64.5 <i>3</i>	0.00	0.00	0.03	0.0000	0.0000	0.0000	
	12	5	107.55	0.01	0.00	0.06	0.0000	0.0000	0.0000	
	15	11	236.62	0.02	0.00	0.12	0.0001	0.0000	0.0001	
	18	13	2/9.64	0.05	0.00	0.14	0.0001	0.0000	0.0001	
	21	19	408.70	0.06	0.00	0.21	0.0002	0.0000	0.0002	
	24	21	451./3	0.07	0.02	0.23	0.0002	0.0001	0.0002	
	27	22	4/3.24	0.10	0.12	0.24	0.0003	0.0003	0.0006	
	30	24	516.26	0.11	0.82	0.27	0.0003	0.0021	0.0024	
	33	26	559.28	0.19	1.81	0.29	0.0005	0.004 /	0.0052	
	36	19	408.70	0.24	2.94	0.21	0.0006	0.0077	0.0083	
	39	15	322.66	0.31	3.49	0.17	0.0008	0.0091	0.0099	
	42	10	215.11	0.38	4.68	0.11	0.0010	0.0122	0.0132	
	45	6	129.06	0.42	5.77	0.07	0.0011	0.0150	0.0161	
ų	0.35 J			Т			1	P	P	
(_L	0.20			 	 					
,cr	0.30				T 			×	_ + _	
(Kg	0.25 -				<u>_</u>			\land		
f	0.20 -	•	<u> </u>	-	ا <u>ا</u> ـ ـ ـ ـ ـ ـ ـ ـ ـ				F	
2										
erzo	0.15 -	1						_ ∐dh _ ∖	dv	
sfue	0.10 -							. /	'	
ш	0.05				+	`		dv		
	0.05			I I	1					
	0.00	•					1	\searrow		
	0.0	000	0.005 Defermedi	0.010 ón angula	0.0 	15 0.0	D2C 🔊			
			Derormaci	on angula	(11111)/11111	ij - 1			em	
ч	0.25 -									
- (-			l I	- 		<u>,</u>				
ŝ	0.20		y = 889.7	9x + 0.044			01		-	
Kg	0.20		R ² =	0.9771	مستنفعهم					
Ē	0.15			· · · · ·					15	
S	0.10			5	1		10		A A	
0Z	0.10			F 			A		A March	
fue				, 			1	A du	12	
ES	0.05	<u> </u>		 			5	CA /		
				1						
	0.00		1							
	0.00	000 0.	.0001 0.0	001 0.	0002 0	.0002 0.00	003			
	Deformación angular (mm/mm) - Υ									

Muestr	a:			M-06		Lv(r	nm):	379.00
Fechad	le fabrica	ción del ad	obe:	08/07/20)24	Lh (1	nm):	385.00
Fechad	le fabrica	ción de mu	rete:	28/08/20)24	Áreo	corte (cm^2) :	1917 84
Fechad	le ensavo		1010.	09/10/20)24	Larg	o (cm)	66.90
Tiempo	total de	secado:		93	21	Alto	(cm)	68 70
Tipo de	falla	secado.		Feedona	da	Espe	(cm):	20.00
fipo de	$\frac{2}{2}$			0.24	ua	Espe	$(1 - \sqrt{2})$	1081 55
TT (Kg/C	2m):			0.54		Gm (kg/cm):	1081.55
Т	Р	F	dv	dh	τ	٤v	Eh	Y
(seg)	(Psi)	(kg)	(mm)	(mm)	(kg/cm^2)	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
3	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
6	0	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000
9	3	64.53	0.01	0.00	0.03	0.0000	0.0000	0.0000
12	5	107.55	0.02	0.00	0.06	0.0001	0.0000	0.0001
15	7	150.58	0.03	0.00	0.08	0.0001	0.0000	0.0001
18	10	215.11	0.04	0.00	0.11	0.0001	0.0000	0.0001
21	14	301.15	0.05	0.00	0.16	0.0001	0.0000	0.0001
24	18	387.19	0.06	0.00	0.20	0.0002	0.0000	0.0002
27	21	451.73	0.07	0.00	0.24	0.0002	0.0000	0.0002
30	23	494.75	0.08	0.00	0.26	0.0002	0.0000	0.0002
33	25	537.77	0.10	0.00	0.28	0.0003	0.0000	0.0003
36	28	602.30	0.12	0.02	0.31	0.0003	0.0001	0.0004
39	30	645.32	0.15	0.69	0.34	0.0004	0.0018	0.0022
42	12	258.13	0.38	3.64	0.13	0.0010	0.0095	0.0105
45	8	1/2.09	0.42	4.98	0.09	0.0011	0.0129	0.0140
ب 0.40 -	1]	P	P
~ 0.35		<u>i</u> <u>i</u>		$\frac{1}{1}\frac{1}{1}$	·	-		
) 0.30 -			<u>-</u>		·		\checkmark	_
× a 0.25 -	i			i i ++		2		
10 0.20 -	•	 ++		 - + +	· + ·			F
0.15 -					·		dh 🔪	dv
ong 0.10 -			¹ T					> [
0.05		$\frac{1}{1}\frac{1}{1}$	$ \frac{1}{1}$ $ -$	$\frac{1}{1}\frac{1}{1}$	·			
0.00								
0.0	000 0.002	0.004 0.00 Deformaci	06 0.008 ión angula	0.010 0.0	12 0.014 0.0	D1(🚿		
		Beronnau	ion angula		·, ·			em
۲ ^{0.30} ۲		1	,			1. 30.	- Inter and the	
(n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· 	 	i L	i •			
5 0.25		v = 1.081	$55x + 0.0^{\circ}$	1¦	\$			×Leni
<u>ع</u> 0.20		R ²	= 0.82		4			
to 0 15		 _ L		• • • • • • • • • • • • • • • • • • •				NEW TO A
2. 0.13				1			AYA.	
9 0.10			[-		2		EA
ٽن 0.05 -			2		 			C 100

0.0003

0.00

0.0000

0.0001

001 0.0001 0.0002 0.0002 Deformación angular (mm/mm) - Υ

Anexo P

Ficha de Resultado Nº 01					
Muro	N° 01	Sobre	ecimiento:	Tradicional	
Tesist	a:	Gerardo Máximo Revelo Sánchez			
Título	:	"comportamiento de muros de adobe co shicras bajo carga lateral monotónica"	n aislamie	nto sísmico empleando	
Espec	ialista:	Mag. Ing. Fernando Miguel Arias Manriqu	ie		
Ubica	ción:	Huarascucho - Yungay - Yungay - Ancash			
Fecha	:	16/09/2024			
Hora	de incio:	8:15 a.m. Hora finaliz	ación:	9:30 a.m.	
N°		Indicador	Und.	Valor	
1	Carga later	ral máxima	kN	18.22	
2	Desplazam	iento superior a carga máxima	mm	3.59	
3	Desplazam	iento inferior a carga máxima	mm	0.00	
4	Deformaci	ón unitaria a carga máxima (tracción)	mm/mm	0.0025	
5	Deformaci	ón unitaria a carga máxima (compresión)	mm/mm	0.0010	
6	Deformaci	ón angular	mm/mm	0.0035	
7	Modo de fa	alla	AD - AP		
				PACASMAN DAMAGENS (DAMAGEN)	

Dogultadog	1.1	010 0 0110	10	1000 11000	hain	oanaa	latonal
resultatos	uei	ensavo	ue	muros	Duio	carga	iaierai

Nota. Durante el ensayo, el muro presentó dos modos de falla: inicialmente se observó un agrietamiento diagonal (AD) en la parte superior, propagado a lo largo de las juntas, seguido de grietas verticales en la parte inferior debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 8.90 mm, mientras que la grieta vertical alcanzó un máximo de 20.45 mm.

Ficha de Resultado Nº 02				
Muro Nº 02	Sobrecimiento: Tradicional			
Tesista:	Gerardo Máximo Revelo Sánchez			
Título:	Título: "comportamiento de muros de adobe con aislamiento sísmico emplea shicras bajo carga lateral monotónica"			
Especialista:	Mag. Ing. Fernando Miguel Arias Manriqu	ie		
Ubicación:	Huarascucho - Yungay - Yungay - Ancash			
Fecha:	16/09/2024			
Hora de incio:	9:40 a.m. Hora finaliz	Hora finalización: 10:55 a.m.		
N°	Indicador	Und.	Valor	

14	Inucauor	Unu.	v alui
1	Carga lateral máxima	kN	19.32
2	Desplazamiento superior a carga máxima	mm	4.12
3	Desplazamiento inferior a carga máxima	mm	0.00
4	Deformación unitaria a carga máxima (tracción)	mm/mm	0.0030
5	Deformación unitaria a carga máxima (compresión)	mm/mm	0.0013
6	Deformación angular	mm/mm	0.0043
7	Modo de falla		AD - AP

Nota. Durante el ensayo, el muro presentó dos modos de falla: inicialmente, se observó un agrietamiento diagonal (AD) en la parte superior a lo largo de las juntas, seguido de grietas verticales en la parte inferior debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 8.03 mm, mientras que la de la grieta vertical alcanzó 22.34 mm.

Ficha de Resultado Nº 03					
Muro	N° 03 Sobr	ecimiento:	Tradicional		
Tesist	a: Gerardo Máximo Revelo Sánchez				
Título	: "comportamiento de muros de adobe co shicras bajo carga lateral monotónica"	on aislamie	nto sísmico empleando		
Espec	ialista: Mag. Ing. Fernando Miguel Arias Manriq	ue			
Ubica	ción: Huarascucho - Yungay - Yungay - Ancash	l			
Fecha	: 16/09/2024				
Hora	de incio: 11:00 a.m. Hora finali:	zación:	12:23 p.m.		
N°	Indicador	Und.	Valor		
1	Carga lateral máxima	kN	19.14		
2	Desplazamiento superior a carga máxima	mm	3.18		
3	Desplazamiento inferior a carga máxima	mm	0.00		
4	Deformación unitaria a carga máxima (tracción)	mm/mm	0.0028		
5	Deformación unitaria a carga máxima (compresión)	mm/mm	0.0012		
6	Deformación angular	mm/mm	0.0040		
7	Modo de falla	D - AD - AP			
7 Modo de falla D - AD - AP					

Nota. Durante el ensayo, el muro presentó tres modos de falla: inicialmente falló por deslizamiento (D) en la segunda fila horizontal superior, seguido de un agrietamiento diagonal (AD) que afectó tanto las juntas como los adobes. Finalmente, se observaron grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 6.99 mm, mientras que la de la grieta vertical alcanzó 20.64 mm.

	Ficha de Resultado Nº 04				
Muro	N° 04	Sobra	Sobrecimiento: Shicras con pie de 1"		
Tesist	ta:	Gerardo Máximo Revelo Sánchez			
Título	:	"comportamiento de muros de adobe co shicras bajo carga lateral monotónica"	n aislamie	nto sísmico empleando	
Espec	ialista:	Mag. Ing. Fernando Miguel Arias Manriqu	ıe		
Ubica	ción:	Huarascucho - Yungay - Yungay - Ancash			
Fecha	.:	16/09/2024			
Hora	de incio:	1:40 p.m. Hora finaliz	ación:	3:08 p.m.	
N°	Indicador		Und.	Valor	
1	Carga late	ral máxima	kN	16.13	
2	Desplazan	niento superior a carga máxima	mm	8.98	
3	Desplazan	niento inferior a carga máxima	mm	5.15	
4	Deformaci	ión unitaria a carga máxima (tracción)	mm/mm	0.0020	
5	Deformaci	ión unitaria a carga máxima (compresión)	mm/mm	0.0007	
6	Deformaci	ión angular	mm/mm	0.0027	
7	Modo de f	falla	D - AD - AP		

Nota. Durante el ensayo, el muro presentó tres modos de falla: inicialmente, falló por deslizamiento (D) en la segunda fila horizontal superior; posteriormente, se produjo un agrietamiento diagonal (AD) a lo largo de las juntas, y finalmente, aparecieron grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 6.80 mm, mientras que la de la grieta vertical alcanzó 22.54 mm.

	Ficha de Resultado Nº 05					
Muro	N° 05	Sob	recimiento:	Shicras con piedras de 1"		
Tesist	ta:	Gerardo Máximo Revelo Sánchez				
Título	:	"comportamiento de muros de adobe c shicras bajo carga lateral monotónica"	on aislamie	nto sísmico empleando		
Espec	ialista:	Mag. Ing. Fernando Miguel Arias Manrie	que			
Ubica	ción:	Huarascucho - Yungay - Yungay - Ancas	h			
Fecha	:	14/09/2024				
Hora	de incio:	8:25 a.m. Hora final	ización:	12:18 p.m.		
N°		Indicador	Und.	Valor		
1	Carga later	al máxima	kN	17.17		
2	Desplazam	iento superior a carga máxima	mm	8.11		
3	Desplazam	iento inferior a carga máxima	mm	4.07		
4	Deformaci	ón unitaria a carga máxima (tracción)	mm/mm	0.0023		
5	Deformaci	ón unitaria a carga máxima (compresión)	mm/mm	0.0008		
6	Deformaci	ón angular	mm/mm	0.0031		
7	Modo de fa	alla		D - AD - AP		

Nota. Durante el ensayo, el muro presentó tres modos de falla: primero, falló por deslizamiento (D) en la segunda fila horizontal superior; luego se produjo un agrietamiento diagonal (AD) a lo largo de las juntas, y, finalmente, aparecieron grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 7.97 mm, mientras que la de la grieta vertical alcanzó 22.48 mm.

Ficha de Resultado Nº 06					
Muro	N° 06	Sobr	ecimiento:	Shicras con piedras de 1''	
Tesist	ta:	Gerardo Máximo Revelo Sánchez			
Título	:	"comportamiento de muros de adobe co shicras bajo carga lateral monotónica"	on aislamier	nto sísmico empleando	
Espec	ialista:	Mag. Ing. Fernando Miguel Arias Manriqu	ıe		
Ubica	ción:	Huarascucho - Yungay - Yungay - Ancash			
Fecha	•	14/09/2024			
Hora	de incio:	1:45 p.m. Hora finaliz	zación:	3:10 p.m.	
N°		Indicador	Und.	Valor	
1	Carga later	ral máxima	kN	16.50	
2	Desplazam	iento superior a carga máxima	mm	8.43	
3	Desplazam	iento inferior a carga máxima	mm	4.54	
4	Deformaci	ón unitaria a carga máxima (tracción)	mm/mm	0.0021	
5	Deformaci	ón unitaria a carga máxima (compresión)	mm/mm	0.0009	
6	Deformaci	ón angular	mm/mm	0.0030	
7	Modo de fa	alla		D - AD - AP	
	Modo de falla D-AD-AP				

Nota. Durante el ensayo, el muro presentó tres modos de falla: primero, se produjo un deslizamiento (D) en la segunda fila horizontal superior del muro; posteriormente, se observó un agrietamiento diagonal (AD) a lo largo de las juntas, y, finalmente, aparecieron grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 5.63 mm, mientras que la de la grieta vertical alcanzó 19.31 mm.

	Ficha de Resultado Nº 07					
Muro	N° 07	Sobr	ecimiento:	Shicras con piedras de 3"		
Tesist	ta:	Gerardo Máximo Revelo Sánchez				
Título):	"comportamiento de muros de adobe co shicras bajo carga lateral monotónica"	n aislamiei	nto sísmico empleando		
Espec	ialista:	Mag. Ing. Fernando Miguel Arias Manriqu	ıe			
Ubica	ción:	Huarascucho - Yungay - Yungay - Ancash				
Fecha	:	14/09/2024				
Hora	de incio:	3:32 p.m. Hora finaliz	ación:	5:38 p.m.		
N°		Indicador	Und.	Valor		
1	Carga late	ral máxima	kN	13.43		
2	Desplazan	niento superior a carga máxima	mm	15.99		
3	Desplazan	niento inferior a carga máxima	mm	12.83		
4	Deformaci	ión unitaria a carga máxima (tracción)	mm/mm	0.0017		
5	Deformaci	ión unitaria a carga máxima (compresión)	mm/mm	0.0006		
6	Deformaci	ión angular	mm/mm	0.0023		
7	Modo de f	falla		D - AD - AP		
	7 Modo de falla D - AD - AP					

Nota. Durante el ensayo, el muro presentó tres modos de falla: inicialmente, falló por deslizamiento (D) en la segunda fila horizontal superior del muro; luego, se observó un agrietamiento diagonal (AD) a lo largo de las juntas, y, finalmente, se presentaron grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 6.72 mm, mientras que la de la grieta vertical alcanzó 26.59 mm.

Ficha de Resultado Nº 08						
Muro	N° 08	Sobr	ecimiento:	Shicras con piedras de 3''		
Tesist	a:	Gerardo Máximo Revelo Sánchez				
Título	:	"comportamiento de muros de adobe co shicras bajo carga lateral monotónica"	on aislamier	nto sísmico empleando		
Espec	ialista:	Mag. Ing. Fernando Miguel Arias Manriqu	ue			
Ubica	ción:	Huarascucho - Yungay - Yungay - Ancash				
Fecha	•	15/09/2024				
Hora	de incio:	8:15 a.m. Hora finaliz	zación:	9:50 a.m.		
N°		Indicador	Und.	Valor		
1	Carga latera	al máxima	kN	13.92		
2	Desplazami	ento superior a carga máxima	mm	15.24		
3	Desplazami	ento inferior a carga máxima	mm	12.12		
4	Deformació	on unitaria a carga máxima (tracción)	mm/mm	0.0018		
5	Deformació	on unitaria a carga máxima (compresión)	mm/mm	0.0006		
6	Deformació	on angular	mm/mm	0.0024		
7	Modo de fa	lla		D - AD - AP		
	Modo de faila D-AD-AP					

Nota. Durante el ensayo, el muro presentó tres modos de falla: inicialmente, se produjo un deslizamiento (D) en la segunda fila horizontal superior del muro; posteriormente, se observó un agrietamiento diagonal (AD) a lo largo de las juntas, y, finalmente, aparecieron grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 6.82 mm, mientras que la de la grieta vertical alcanzó 24.71 mm.

Ficha de Resultado N° 09					
Muro	N° 09	Sob	recimiento:	Shicras con piedras de 3''	
Tesist	ta:	Gerardo Máximo Revelo Sánchez			
Título):	"comportamiento de muros de adobe c shicras bajo carga lateral monotónica"	on aislamie	nto sísmico empleando	
Espec	ialista:	Mag. Ing. Fernando Miguel Arias Manriq	lne		
Ubica	ción:	Huarascucho - Yungay - Yungay - Ancasl	h		
Fecha	:	15/09/2024			
Hora	de incio:	10:35 a.m. Hora finali	zación:	12:12 p.m.	
N°		Indicador	Und.	Valor	
1	Carga late	ral máxima	kN	12.94	
2	Desplazan	niento superior a carga máxima	mm	16.32	
3	Desplazan	niento inferior a carga máxima	mm	13.09	
4	Deformaci	ión unitaria a carga máxima (tracción)	mm/mm	0.0016	
5	Deformaci	ión unitaria a carga máxima (compresión)	mm/mm	0.0005	
6	Deformaci	ión angular	mm/mm	0.0021	
7	Modo de falla AD - AP			AD - AP	
AD-AP					

Nota. Durante el ensayo, el muro presentó dos modos de falla: inicialmente, se observó un agrietamiento diagonal (AD) en la parte superior a lo largo de las juntas, seguido de grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 5.75 mm, mientras que la de la grieta vertical alcanzó 24.97 mm.

		Ficha de Resultad	lo Nº 1	0	
Muro	N° 10		Sobre	ecimiento:	Shicras con piedras de 5"
Tesist	ta: Ge	erardo Máximo Revelo Sánchez			
Título	: "co shi	omportamiento de muros de ad cras bajo carga lateral monotóni	obe co ca"	n aislamier	nto sísmico empleando
Espec	ialista: Ma	ag. Ing. Fernando Miguel Arias N	/lanriqu	e	
Ubica	ción: Hu	arascucho - Yungay - Yungay - A	Ancash		
Fecha	: 15	/09/2024			
Hora	de incio: 1:5	50 p.m. Hora	finaliz	ación:	3:28 p.m.
N°		Indicador		Und.	Valor
1	Carga lateral r	náxima		kN	16.01
2	Desplazamient	o superior a carga máxima		mm	10.01
3	Desplazamient	o inferior a carga máxima		mm	5.97
4	Deformación u	mitaria a carga máxima (tracción	l)	mm/mm	0.0024
5	Deformación u	initaria a carga máxima (compres	sión)	mm/mm	0.0009
6	Deformación a	ngular		mm/mm	0.0033
7	Modo de falla				AD - AP

Nota. Durante el ensayo, el muro presentó dos modos de falla: primero, se observó un agrietamiento diagonal (AD) en la parte superior a lo largo de las juntas, seguido de la aparición de grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 6.42 mm, mientras que la de la grieta vertical alcanzó 17.79 mm.

	Ficha de Resultado Nº	11	
Muro	N° 11 Sobr	ecimiento:	Shicras con piedras de 5''
Tesist	a: Gerardo Máximo Revelo Sánchez		
Título	: "comportamiento de muros de adobe co	on aislamiei	nto sísmico empleando
	shicras bajo carga lateral monotónica"		
Espec	ialista: Mag. Ing. Fernando Miguel Arias Manriq	ue	
Ubica	ción: Huarascucho - Yungay - Yungay - Ancash		
Fecha	: 15/09/2024		
Hora	de incio: 3:40 p.m. Hora finaliz	zación:	4:55 p.m.
N°	Indicador	Und.	Valor
1	Carga lateral máxima	kN	15.33
2	Desplazamiento superior a carga máxima	mm	10.78
3	Desplazamiento inferior a carga máxima	mm	6.68
4	Deformación unitaria a carga máxima (tracción)	mm/mm	0.0020
5	Deformación unitaria a carga máxima (compresión)	mm/mm	0.0007
6	Deformación angular	mm/mm	0.0027
7	Modo de falla		AD - AP

Nota. Durante el ensayo, el muro presentó dos modos de falla: inicialmente, se observó un agrietamiento diagonal (AD) en la parte superior a lo largo de las juntas, seguido de la aparición de grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 6.72 mm, mientras que la de la grieta vertical alcanzó 19.76 mm.

		Ficha de Resultado Nº 1	12	
Muro	Nº 12	Sobr	ecimiento:	Shicras con piedras de 5"
Tesist	ta:	Gerardo Máximo Revelo Sánchez		
Título):	"comportamiento de muros de adobe co shicras bajo carga lateral monotónica"	n aislamiei	nto sísmico empleando
Espec	vialista:	Mag. Ing. Fernando Miguel Arias Manriqu	ıe	
Ubica	ción:	Huarascucho - Yungay - Yungay - Ancash		
Fecha	:	16/09/2024		
Hora	de incio:	3:27 p.m. Hora finaliz	ación:	4:42 p.m.
N°		Indicador	Und.	Valor
1	Carga later	ral máxima	kN	15.76
2	Desplazan	niento superior a carga máxima	mm	10.37
3	Desplazan	niento inferior a carga máxima	mm	6.22
4	Deformaci	ón unitaria a carga máxima (tracción)	mm/mm	0.0021
5	Deformaci	ón unitaria a carga máxima (compresión)	mm/mm	0.0007
6	Deformaci	ón angular	mm/mm	0.0028
7	Modo de f	àlla		D - AD - AP

Nota. Durante el ensayo, el muro presentó tres modos de falla: primero, se produjo un deslizamiento (D) en la segunda fila horizontal superior del muro; posteriormente, se observó un agrietamiento diagonal (AD) a lo largo de las juntas, y, finalmente, se presentaron grietas verticales en la parte inferior del muro debido al aplastamiento (AP). La abertura máxima de la grieta horizontal fue de 6.25 mm, mientras que la de la grieta vertical alcanzó 23.68 mm.

Anexo Q

Resultados de desplazamiento lateral de muros debido a carga monotónica

Muro:	M-01	Largo (m): 2.50	
Fecha de fabricación del adobe:	01/07/2024	Altura (m): 2.00	
Fecha de fabricación de muro:	01/08/2024	Espesor (m): 0.40	
Fecha de ensayo:	16/09/2024	Carga muerta vertical (Ton): 0.50	
Tiempo total de secado:	77		

Fecha de fabricación de muro: $02/07/2024$ Altara (m): 2.00 Fecha de fabricación de muro: $01/08/2024$ Carga muerta vertical (Ton): 0.50 Tiempo presión Fuera Desplazamiento Interral Interior Superior (seg) (Psi) (kN) (mm) (mm) 0 0 0.00 0.00 0.00 3 21 1.03 0.00 0.00 6 39 1.90 0.00 0.00 15 64 3.13 0.00 0.00 24 93 4.54 0.00 0.00 30 113 5.52 0.00 0.00 33 122 5.96 0.00 0.00 33 122 7.42 0.00 0.00 34 187 9.13 0.00 0.00 45 177 8.64 0.00 0.00 45 177 8.64 0.00 0.02 57 219 10.86 0.00 0.23 6 25.81 0.25	Muro:				M-02	Largo (m): 2.50
Feecha de fabricación de muro: $01/08/2024$ Espesor (m): 0.40 Feecha de ensayo: Tícmpo total de secado: 76 Tiempo total de secado: 76 Tiempo total de secado: 76 Tiempo total de secado: Técha de mayo: Técha de nesayo: (seg) (Psi) (kN) (mm) (mm) 0 0 0.00 0.00 0.00 3 21 1.03 0.00 0.00 12 52 2.54 0.00 0.00 12 52 2.54 0.00 0.00 12 86 4.20 0.00 0.00 0.00 13 13 5.52 0.00 0.00 0.00 0.00 33 122 5.96 0.00 0.00 0.00 0.00 0.00 48 187 9.13 0.00	Fecha de	fabricació	on del adol	be:	02/07/202	24 Altura (m): 2.00
$ \begin{array}{c} \mbox{Trempo total de neasyoi:} 16/09/2024 \\ \hline \mbox{Tempo total de secado:} 76 \\ \hline \mbox{Tempo total de secado:} $	Fecha de	fabricació	on de murc).	01/08/202	24 Espesor (m): 0.40
Tempo tailed excade: Tempo tailed excade:	Fecha de	ensavo:			16/09/202	24 Carga muerta vertical (Ton): 0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tiempo t	total de seu	andar		76	Curga maeria vertical (101). 0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nempo		cado.		10	-
lateral (seg)lateral laterallateral inferiormm (mm) (mm)000.000.003211.030.000.006391.900.000.009462.250.000.0012522.540.000.0018783.810.000.0021864.200.000.0021864.200.000.0021864.200.000.0021864.200.000.00331225.960.000.00331225.960.000.00446.840.000.00451778.640.00511989.670.005420810.160.005420810.160.005420810.160.005420810.160.005420810.160.005420810.160.005721915.850.005722615.580.00783041.497529615.580.007529615.587830215.959034518.86843231.18647.7929335719.32901818.53105169<	Tiempo	Presión	Fuerza	Desplaz	amiento	-
(seg) (F*i) (IKN) (Imm) (Imm) 0 0 0.00 0.00 0.00 3 21 1.03 0.00 0.00 6 39 1.90 0.00 0.00 9 46 2.25 0.00 0.00 12 52 2.54 0.00 0.00 21 86 4.20 0.00 0.00 27 102 4.98 0.00 0.00 30 113 5.52 0.00 0.00 30 113 5.52 0.00 0.00 31 122 5.96 0.00 0.00 33 122 5.96 0.00 0.00 48 187 9.13 0.00 0.00 44 139 9.67 0.00 0.00 51 198 9.67 0.00 0.23 66 258 1.3.25 0.00 1.27 7	-	lateral	lateral	Inferior	Superior	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(seg)	(Psi)	(kN)	(mm)	(mm)	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0.00	0.00	0.00	
$ \begin{array}{c} 0 & 39 & 1.90 & 0.00 & 0.00 \\ 9 & 46 & 2.25 & 0.00 & 0.00 \\ 12 & 52 & 2.54 & 0.00 & 0.00 \\ 13 & 52 & 2.54 & 0.00 & 0.00 \\ 14 & 88 & 4.20 & 0.00 & 0.00 \\ 21 & 86 & 4.20 & 0.00 & 0.00 \\ 21 & 86 & 4.20 & 0.00 & 0.00 \\ 24 & 93 & 4.54 & 0.00 & 0.00 \\ 27 & 102 & 4.98 & 0.00 & 0.00 \\ 33 & 113 & 5.52 & 0.00 & 0.00 \\ 36 & 140 & 6.84 & 0.00 & 0.00 \\ 42 & 169 & 8.25 & 0.00 & 0.00 \\ 42 & 169 & 8.25 & 0.00 & 0.00 \\ 43 & 187 & 9.13 & 0.00 & 0.00 \\ 44 & 169 & 8.25 & 0.00 & 0.00 \\ 45 & 177 & 8.64 & 0.00 & 0.00 \\ 45 & 177 & 8.64 & 0.00 & 0.00 \\ 51 & 198 & 9.67 & 0.00 & 0.02 \\ 57 & 219 & 10.86 & 0.00 & 0.01 \\ 51 & 198 & 9.67 & 0.00 & 0.02 \\ 57 & 219 & 10.86 & 0.00 & 0.01 \\ 56 & 266 & 13.74 & 0.00 & 0.32 \\ 66 & 258 & 13.25 & 0.00 & 0.51 \\ 69 & 266 & 13.74 & 0.00 & 0.32 \\ 66 & 258 & 13.25 & 0.00 & 0.51 \\ 69 & 266 & 13.74 & 0.00 & 0.83 \\ 77 & 2.87 & 15.03 & 0.00 & 1.127 \\ 81 & 314 & 16.68 & 0.00 & 1.127 \\ 81 & 314 & 16.68 & 0.00 & 1.127 \\ 81 & 314 & 16.68 & 0.00 & 3.89 \\ 93 & 357 & 19.32 & 0.00 & 4.12 \\ 96 & 195 & 9.39 & 0.88 & 5.93 \\ 93 & 357 & 19.32 & 0.00 & 4.12 \\ 96 & 195 & 9.39 & 0.88 & 5.93 \\ 93 & 357 & 19.32 & 0.00 & 4.12 \\ 96 & 195 & 9.39 & 0.88 & 5.93 \\ 93 & 357 & 19.32 & 0.00 & 4.12 \\ 96 & 195 & 9.39 & 0.88 & 5.93 \\ 93 & 357 & 19.32 & 0.00 & 4.12 \\ 96 & 195 & 9.39 & 0.88 & 5.93 \\ 93 & 357 & 19.32 & 0.00 & 4.12 \\ 96 & 195 & 9.39 & 0.88 & 5.93 \\ 99 & 181 & 8.53 & 1.18 & 6.49 \\ 102 & 173 & 8.04 & 1.49 & 8.83 \\ 105 & 169 & 7.79 & 2 & 9.35 \\ 108 & 164 & 7.49 & 3.15 & 10.67 \\ 111 & 154 & 6.87 & 5.89 & 13.37 \\ 114 & 154 & 6.87 & 5.89 & 13.37 \\ 114 & 154 & 6.87 & 5.89 & 13.37 \\ 114 & 154 & 6.87 & 5.89 & 13.37 \\ 114 & 154 & 6.87 & 5.89 & 13.37 \\ 115 & 156 & 115 & 10 & 115 & 10 & 115 & 10 & 115 & 10 & 115 & 10 & 115 & 10 & 115 & 10 & 115 & 10 & 115 & 115 & 115 & 10 & 115 & $	3	21	1.03	0.00	0.00	Desplazamiento lateral inferior
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	39	1.90	0.00	0.00	25.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	46	2.25	0.00	0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	52	2.54	0.00	0.00	20.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	04 70	3.13 2.01	0.00	0.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10	5.01 4.20	0.00	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	02	4.20	0.00	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	95	4.54	0.00	0.00	
33 122 5.96 0.00 0.00 33 122 5.96 0.00 0.00 34 140 6.84 0.00 0.00 42 169 8.25 0.00 0.00 45 177 8.64 0.00 0.00 48 187 9.13 0.00 0.00 51 198 9.67 0.00 0.00 54 208 10.16 0.00 0.23 63 247 12.58 0.00 0.23 63 247 12.58 0.00 0.32 64 25.90 0.00 1.05 72 287 15.03 0.00 1.27 81 314 16.68 0.00 1.26 78 302 15.95 0.00 1.27 81 314 16.68 0.00 3.01 90 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 102 17.3 8.04	30	102	4.90 5.52	0.00	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	122	5.96	0.00	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	140	6.84	0.00	0.00	5.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	152	7 42	0.00	0.00	Ensayo monotónico
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	169	8.2.5	0.00	0.00	0.00
48 187 9.13 0.00 0.00 $Desplazamiento (mm)$ 51 198 9.67 0.00 0.00 0.00 54 208 10.16 0.00 0.02 57 219 10.86 0.00 0.11 60 231 11.59 0.00 0.23 63 247 12.58 0.00 0.23 63 247 12.58 0.00 0.23 66 258 13.25 0.00 0.51 69 266 13.74 0.00 0.83 72 287 15.03 0.00 1.05 78 302 15.95 0.00 1.27 81 314 16.68 0.00 1.86 84 323 17.24 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 102 17.3 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	45	177	8.64	0.00	0.00	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	187	9.13	0.00	0.00	Desplazamiento (mm)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	198	9.67	0.00	0.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	208	10.16	0.00	0.02	
60 231 11.59 0.00 0.23 63 247 12.58 0.00 0.32 66 258 13.25 0.00 0.51 69 266 13.74 0.00 0.83 72 287 15.03 0.00 0.91 75 296 15.58 0.00 1.27 81 314 16.68 0.00 1.86 84 323 17.24 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	57	219	10.86	0.00	0.11	Desplazamiento lateral superior
63 247 12.58 0.00 0.32 66 258 13.25 0.00 0.51 69 266 13.74 0.00 0.83 72 287 15.03 0.00 0.91 75 296 15.58 0.00 1.05 78 302 15.95 0.00 1.27 81 314 16.68 0.00 1.86 84 323 17.24 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	60	231	11.59	0.00	0.23	
66 258 13.25 0.00 0.51 69 266 13.74 0.00 0.83 72 287 15.03 0.00 0.91 75 296 15.58 0.00 1.05 78 302 15.95 0.00 1.27 81 314 16.68 0.00 1.86 84 323 17.24 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	63	247	12.58	0.00	0.32	25.00
69 266 13.74 0.00 0.83 72 287 15.03 0.00 0.91 75 296 15.58 0.00 1.05 78 302 15.95 0.00 1.27 81 314 16.68 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	66	258	13.25	0.00	0.51	
72 287 15.03 0.00 0.91 75 296 15.58 0.00 1.05 78 302 15.95 0.00 1.27 81 314 16.68 0.00 1.86 84 323 17.24 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 99 181 8.53 1.18 6.49 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	69	266	13.74	0.00	0.83	20.00
75 296 15.58 0.00 1.05 78 302 15.95 0.00 1.27 81 314 16.68 0.00 1.86 84 323 17.24 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 99 181 8.53 1.18 6.49 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	72	287	15.03	0.00	0.91	
78 302 15.95 0.00 1.27 81 314 16.68 0.00 1.86 84 323 17.24 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 99 181 8.53 1.18 6.49 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	75	296	15.58	0.00	1.05	
81 314 16.68 0.00 1.86 84 323 17.24 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 99 181 8.53 1.18 6.49 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	78	302	15.95	0.00	1.27	
84 323 17.24 0.00 2.16 87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 99 181 8.53 1.18 6.49 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	81	314	16.68	0.00	1.86	
87 336 18.03 0.00 3.01 90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 99 181 8.53 1.18 6.49 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	84	323	17.24	0.00	2.16	
90 345 18.58 0.00 3.89 93 357 19.32 0.00 4.12 96 195 9.39 0.88 5.93 99 181 8.53 1.18 6.49 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	87	336	18.03	0.00	3.01	ž A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	345	18.58	0.00	3.89	5.00 🚔 Ensayo
96 195 9.39 0.88 5.93 99 181 8.53 1.18 6.49 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	03	357	19.30	0.00	<u>4</u> 12	会 monotónico
90 153 9.35 0.88 3.75 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 99 181 8.53 1.18 6.49 Desplazamiento (mm) 102 173 8.04 1.49 8.83 Desplazamiento (mm) 105 169 7.79 2 9.35 Desplazamiento (mm) 108 164 7.49 3.15 10.67 Desplazamiento (mm) 111 158 7.12 4.36 12.01 Desplazamiento (mm) 114 154 6.87 5.89 13.37 Desplazamiento (mm)	06	105	0.20	0.00	T.12	0.00 × · · · · · · · · · · · · · · · · · ·
99 161 8.35 1.18 0.49 Desplazamiento (mm) 102 173 8.04 1.49 8.83 105 169 7.79 2 9.35 108 164 7.49 3.15 10.67 111 158 7.12 4.36 12.01 114 154 6.87 5.89 13.37	90	195	7.37	0.00	J.73 6 40	0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99 100	101	0.33	1.18	0.49	Despiazamiento (mm)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	102	1/3	8.04	1.49	8.83	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	169	7.79	2	9.35	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	108	164	7.49	3.15	10.67	
114 154 6.87 5.89 13.37	111	158	7.12	4.36	12.01	
	114	154	6.87	5.89	13.37	

Muro:	M-03	Largo (m): 2.50
Fecha de fabricación del adobe:	03/07/2024	Altura (m): 2.00
Fecha de fabricación de muro:	01/08/2024	Espesor (m): 0.40
Fecha de ensayo:	16/09/2024	Carga muerta vertical (Ton): 0.50
Tiempo total de secado:	75	

Tiomno	Presión Fuerza		Desplaz	amiento	_
петро	lateral	lateral	Inferior	Superior	
(seg)	(Psi)	(kN)	(mm)	(mm)	
0	0	0.00	0.00	0.00	
3	20	0.98	0.00	0.00	
6	39	1.90	0.00	0.00	25.00
9	50	2.44	0.00	0.00	25.00
12	63	3.08	0.00	0.00	
15	77	3.76	0.00	0.00	20.00
18	97	4.74	0.00	0.00	2 🖇
21	115	5.62	0.00	0.00	± 15.00 ₽
24	129	6.30	0.00	0.00	S S S
27	135	6.59	0.00	0.00	10.00
30	143	6.98	0.00	0.00	erza
33	169	8.25	0.00	0.00	Ĩ§
36	175	8.55	0.00	0.00	5.00 8
39	187	9.13	0.00	0.00	Š.
42	207	10.11	0.00	0.00	0.00 🕹
45	219	10.86	0.00	0.03	0.00
48	227	11.35	0.00	0.09	
51	236	11.90	0.00	0.13	
54	245	12.45	0.00	0.26	
57	262	13.50	0.00	0.33	
60	281	14.66	0.00	0.51	25.00
63	291	15.27	0.00	0.76	25.00 -
66	294	15.46	0.00	0.94	
69	300	15.83	0.00	1.27	20.00 -
72	307	16.25	0.00	1.53	î
75	319	16.99	0.00	1.76	<u>¥</u> 15.00 -
78	324	17.30	0.00	2.03	era
81	336	18.03	0.00	2.45	
84	346	18.65	0.00	2.77	
87	354	19.14	0.00	3.18	E E
90	204	9.94	0.92	3.54	5.00 Z
93	196	9.45	1 24	4 1 9	ž
96	101	0.14	1.64	5.58	0.00 2
90	191	7.1 4 0.65	2.71	2.20	0.
99	183	8.00	2./1	0.84	
102	167	/.6/	3.42	8.15	
105	154	6.87	3.96	9.71	
108	148	6.50	5.48	11.07	
111	146	6.38	6.28	11.86	

Muro:	M-04	Largo (m): 2.50
Fecha de fabricación del adobe:	04/07/2024	Altura (m): 2.00
Fecha de fabricación de muro:	03/08/2024	Espesor (m): 0.40
Fecha de ensayo:	16/09/2024	Carga muerta vertical (Ton): 0.50
Tiempo total de secado:	74	

Presión Fuerza Desplazamiento

Tiemno	Presión	Fuerza	Desplaz	amiento	_
itempo	lateral	lateral	Inferior	Superior	
(seg)	(Psi)	(kN)	(mm)	(mm)	
0	0	0.00	0.00	0.00	-
3	19	0.93	0.00	0.00	Desplazamiento lateral inferior
6	21	1.03	0.00	0.00	
9	27	1.32	0.00	0.00	
12	36	1.76	0.00	0.00	16.00
15	43	2.10	0.00	0.00	14.00
18	50	2.44	0.00	0.00	2 12.00
21	60	2.93	0.00	0.00	
24	76	3.71	0.00	0.00	
27	84	4.10	0.00	0.00	<u>•</u> 8.00
30	93	4.54	0.00	0.00	6 .00 8
33	101	4.93	0.00	0.00	4 .00 8
36	110	5.37	0.00	0.00	2 00 Sector Ensayo
39	116	5.67	0.00	0.03	
42	123	6.01	0.00	0.06	
45	133	6.50	0.00	0.09	Desplazamiento (mm)
40 51	130	0.74	0.00	0.12	
54	140	7.23	0.04	0.15	
57	160	7.52	0.15	0.22	Desplazamiento lateral superior
60	168	8 20	0.29	0.29	
63	176	8.60	0.46	0.48	18.00
66	181	8.84	0.51	0.66	16.00
69	192	9.38	0.68	0.84	14.00
72	202	9.87	0.70	1.06	
75	212	10.43	0.77	1.23	
78	218	10.80	0.85	1.55	
81	227	11.35	0.89	1.89	8.00 1
84	239	12.08	0.96	2.47	₿ 6.00 \$
87	245	12.45	1.13	3.11	
90	260	13 37	1 42	3.84	Ensayo
93	266	13.74	1.95	4 26	2.00 g monotónico
96	270	13.99	2 33	4 91	
99	278	14.48	2.55	5.93	0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Desplazamiento (mm)
102	270	15.03	3.28	6.26	Despiazamento (mm)
102	207	15.05	3.20	6.57	
103	302	15.40	1.82	7 92	
111	305	16.13	5.15	8.08	
111	202	0.00	5.15	0.76	
114	203	9.00	5.17	9.45	
117	190	9.57	5.10	10.50	
120	1//	0.20	J.10	11.05	
123	100	1.24	5.18	12.80	
126	128	5.28	5.19	15.8/	
129	115	4.48	5.2	15	
132	102	3.68	5.2	16.11	
135	97	3.38	5.2	17.28	A second and a s
138	92	3.07	5.2	18.4	

Muro:	M-05	Largo (m): 2.50
Fecha de fabricación del adobe:	04/07/2024	Altura (m): 2.00
Fecha de fabricación de muro:	03/08/2024	Espesor (m): 0.40
Fecha de ensayo:	14/09/2024	Carga muerta vertical (Ton): 0.50
Tiempo total de secado:	72	

Tiomno	Presión	Fuerza	Desplaz	amiento	_
mempo	lateral	lateral	Inferior	Superior	_
(seg)	(Psi)	(kN)	(mm)	(mm)	
0	0	0.00	0.00	0.00	
3	10	0.49	0.00	0.00	Desplazamiento lateral inferior
6	21	1.03	0.00	0.00	20.00 -
9	35	1.71	0.00	0.00	20.00
12	55	2.69	0.00	0.00	18.00
15	68	3.32	0.00	0.00	16.00
18	79	3.86	0.00	0.00	€ 14.00
21	92	4.49	0.00	0.00	12.00
24	101	4.93	0.00	0.00	
27	113	5.52	0.00	0.00	8.00
30	125	6.10	0.00	0.02	й _{6.00} & Х
33	138	6.74	0.00	0.05	1 4 00 8
36	146	7.13	0.00	0.09	→ Ensayo
39	153	7.47	0.02	0.12	2.00 monotonico
42	160	7.81	0.04	0.17	
45	168	8.20	0.08	0.24	0.00 1.00 2.00 3.00 4.00 Desplazamiento (mm)
48	173	8.45	0.12	0.29	
51	183	8.94	0.19	0.35	
54	18/	9.13	0.22	0.53	Description to lateral symposium
57	196	9.57	0.28	0.01	Desplazamiento lateral superior
60 62	200	9.72	0.37	0.82	20.00
66	209	10.21	0.49	1.11	
60	212	10.43	0.03	1.54	16.00
72	210	11.72	1 1 9	2.20	
75	233	11.72	1.10	2.29	
75	257	11.90	1.31	2.71	e 12.00
/8	256	13.13	1.88	3./1	a 10.00 b b b b c c c c c c c c c c
81	257	13.19	2.09	4.09	8.00 #
84	264	13.62	2.34	4.64	e.oo 矣
87	269	13.92	2.86	5.81	
90	290	15.21	3.07	6.17	$200 \neq = = = =$
93	295	15.52	3.23	6.49	
96	303	16.01	3.86	7.75	0.00 4.00 8.00 12.00 16.00
99	322	17.17	4.07	8.11	Desplazamiento (mm)
102	213	10.49	4.08	8.64	A 1000
105	199	9.63	4.08	9.43	
108	179	8.41	4.09	10.54	and
111	164	7 4 9	4 09	11 37	
11/	151	6.69	1.09	12.17	and the second of the second o
117	1/2	6.20	4.00	12.17	and the second second
11/	145	5.20	4.09	13.39	
120	129	5.54	4.09	14.20	and the second sec
123	123	4.97	4.10	15.33	
126	115	4.48	4.10	16.66	The standard and a st
129	111	4.24	4.10	17.67	

16.00

Table Contraction

A CONTRACTOR AND A

20.00

5.00

Muro:	M-06	Largo (m): 2.50
Fecha de fabricación del adobe:	05/07/2024	Altura (m): 2.00
Fecha de fabricación de muro:	03/08/2024	Espesor (m): 0.40
Fecha de ensayo:	14/09/2024	Carga muerta vertical (Ton): 0.50
Tiempo total de secado:	71	

Tiemno	Presión	Fuerza	Desplaz	amiento	_
irempo	lateral	lateral	Inferior	Superior	r
(seg)	(Psi)	(kN)	(mm)	(mm)	_
0	0	0.00	0.00	0.00	
3	16	0.78	0.00	0.00	Desplazamiento lateral inferior
6	25	1.22	0.00	0.00	10.00
9	38	1.86	0.00	0.00	18.00
12	46	2.25	0.00	0.00	16.00
15	59	2.88	0.00	0.00	14.00
18	74	3.61	0.00	0.00	
21	80	3.91	0.00	0.00	
24	85	4.15	0.00	0.00	
27	91	4.44	0.00	0.00	8.00 K
30	95	4.64	0.00	0.00	E 6.00 Å
33	104	5.08	0.00	0.00	₽ 400 Å
36	110	5.37	0.00	0.02	Ensayo
39	115	5.62	0.00	0.05	2.00 8 monotónico
42	120	5.86	0.00	0.07	0.00 &
45	125	6.10	0.00	0.09	0.00 1.00 2.00 3.00 4.00 5.00
48	138	6.74	0.00	0.11	Desplazamiento (mm)
51	141	6.89	0.05	0.16	
54	150	7.33	0.08	0.21	
57	159	7.77	0.10	0.27	Desplazamiento lateral superior
60	164	8.01	0.12	0.36	
63	168	8.20	0.16	0.48	
66	173	8.45	0.20	0.67	16.00
69	179	8.74	0.31	0.83	14.00
72	187	9.13	0.42	1.02	Z 1000
75	194	9.47	0.53	1.23	
78	200	9.77	0.67	1.55	
81	208	10.16	0.81	1.86	<u> </u>
81	210	10.86	0.01	2 / 1	
07	217	11 47	1.07	2.71	
0/	229	11.4/	1.07	3.22	
90	243	12.33	1.68	3.8/	2.00 A monotónico
93	254	13.00	2.19	4.25	0.00 🛣
96	268	13.86	2.73	4.76	0.00 4.00 8.00 12.00 16.00 20.00
99	277	14.41	3.43	5.98	Desplazamiento (mm)
102	280	14.60	3.82	6.23	
105	289	15.15	4.11	6.62	The comments of the second states and the
108	302	15.95	4.38	7.94	PAGAMATO INT
111	311	16.50	4.54	8.43	and the second sec
114	213	10.20	4 55	8.85	the the the second of the
117	213	0.07	т.JJ 155	0.00	
11/	202	9.82	4.33	9.88	and the second s
120	181	8.53	4.56	10.73	the second secon
123	163	7.42	4.56	11.42	and the second of the second s
126	157	7.06	4.56	12.09	and the second sec
129	148	6.50	4.57	13.11	
132	136	5.77	4.57	13.84	and after start of a
135	128	5.28	4.58	14.71	and the state of t
138	113	4 36	4 58	15.63	The second se
1/1	104	2 01	1.50	16.60	INTERIOR CONTRACTOR
141	104	3.81	4.38	10.09	and the second

Muro:	M-07	Largo (m): 2.50
Fecha de fabricación del adobe:	05/07/2024	Altura (m): 2.00
Fecha de fabricación de muro:	06/08/2024	Espesor (m): 0.40
Fecha de ensayo:	14/09/2024	Carga muerta vertical (Ton): 0.50
Tiempo total de secado:	71	

Tiomno	Presión	Fuerza	Desplaz	amiento	_
rrempo	lateral	lateral	Inferior	Superior	
(seg)	(Psi)	(kN)	(mm)	(mm)	
0	0	0.00	0.00	0.00	
3	16	0.78	0.00	0.00	Desplazamiento lateral inferior
6	31	1.51	0.00	0.00	16.00 -
9	52	2.54	0.00	0.00	
12	67	3.27	0.00	0.00	14.00
15	75	3.66	0.00	0.00	12.00
18	81	3.96	0.00	0.00	
21	88	4.30	0.00	0.00	
24	92 102	4.49	0.00	0.00	₽ 8.00 +
30	102	4.98 5.42	0.00	0.00	n 6.00
33	120	5.86	0.00	0.02	
36	120	6.20	0.08	0.26	Ensavo
39	135	6.59	0.17	0.58	2.00 \$ monotónico
42	140	6.84	0.30	0.93	0.00
45	150	7.33	0.54	1.39	0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
48	157	7.67	0.83	1.73	Desplazamiento (mm)
51	165	8.06	1.07	2.17	
54	169	8.25	1.49	2.72	
57	180	8.79	1.83	3.64	Desplazamiento lateral superior
60	190	9.28	2.16	4.46	16.00 -
63	198	9.67	2.79	5.19	10.00
66	205	10.01	3.27	6.22	14.00
69 72	208	10.18	3.80	/.30	12.00
12	212	10.43	4.05	8.54	
75	219	10.80	5.21	9.41	
/8	222	11.04	6.08	10.33	₽ 8.00 + A ⁴
81	230	11.53	/.15	11.07	r 6.00 x
84	237	11.96	8.19	12.12	
87	245	12.45	9.32	13.37	
90	255	13.07	10.53	14.48	2.00 <u>人</u> ————————————————————————————————————
93	258	13.25	11.71	15.37	0.00
96	261	13.43	12.83	15.99	0.00 4.00 8.00 12.00 16.00 20.00 24.00 28.00
99	204	9.94	12.84	16.51	Desplazamiento (mm)
102	198	9.57	12.84	17.53	
105	194	9.33	12.85	18.52	ONTWEETING
108	186	8.83	12.85	19.43	CHARLEN AND AND AND AND AND AND AND AND AND AN
111	175	8.16	12.86	20.47	and the second second
114	167	7.67	12.86	21.54	and the second of the second o
117	163	7.42	12.86	22.73	and the second s
120	158	7.12	12.87	23.89	·
123	152	6.75	12.87	24.63	Then have a to be the

Solution contraction and

Muro:	M-08	Largo (m): 2.50
Fecha de fabricación del adobe:	06/07/2024	Altura (m): 2.00
Fecha de fabricación de muro:	06/08/2024	Espesor (m): 0.40
Fecha de ensayo:	15/09/2024	Carga muerta vertical (Ton): 0.50
Tiempo total de secado:	71	

Tiamna	Presión	Fuerza	Desplazamiento		
rrempo	lateral	lateral	Inferior	Superior	
(seg)	(Psi)	(kN)	(mm)	(mm)	
0	0	0.00	0.00	0.00	_
3	18	0.88	0.00	0.00	Desplazamiento lateral inferior
6	34	1.66	0.00	0.00	16.00
9	55	2.69	0.00	0.00	16.00
12	73	3.57	0.00	0.00	14.00
15	93	4.54	0.00	0.00	12.00
18	105	5.13	0.00	0.00	E
21	112	5.47	0.00	0.04	
24	123	6.01	0.00	0.07	5 8.00 6 6 6 6 7 7 7 7 7 7 7 7 7 7
27	128	6.25	0.00	0.11	
30	134	6.54	0.00	0.25	
33	13/	6.69	0.02	0.39	
30 20	141	0.89	0.08	0.01	2.00 2.00 - Ensayo
39 42	144	7.05	0.10	0.95	
42	151	7.37 777	0.25	1.23	0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
48	162	7.72	0.55	1.40	Desplazamiento (mm)
51	170	8 30	0.73	2 21	
54	176	8.60	0.96	2.76	
57	184	8.99	1.35	3.52	Desplazamiento lateral superior
60	188	9.18	1.69	4.68	
63	196	9.57	2.01	5.27	16.00
66	201	9.82	2.63	6.41	14.00
69	210	10.31	3.11	7.53	
72	216	10.67	3.67	8.49	7
75	219	10.86	4.35	9.32	
78	228	11.41	5.17	10.21	
81	238	12.02	5.98	10.98	
84	240	12.15	6.64	11.79	
87	248	12.64	7.83	12.55	Ž 4.00 Ž
90	255	13.07	9.32	13.61	2.00×10^{-1}
93	263	13.56	11.24	14.67	
96	269	13.92	12.12	15.24	
99	207	10.12	12.14	15.89	Desplazamiento (mm)
102	191	9.14	12.15	16.84	
105	188	8.96	12.15	17.77	
108	182	8.59	12.15	18.91	
111	176	8.22	12.17	20.01	
114	172	7.98	12.17	21.26	
117	168	7.73	12.17	22.18	the second s
120	163	7.42	12.18	23.15	and the second s
123	162	7.36	12.18	24.13	the second of th
					and a second sec

位明

Muro:	M-09	Largo (m): 2.50
Fecha de fabricación del adobe:	06/07/2024	Altura (m): 2.00
Fecha de fabricación de muro:	06/08/2024	Espesor (m): 0.40
Fecha de ensayo:	15/09/2024	Carga muerta vertical (Ton): 0.50
Tiempo total de secado:	71	

Tiamna	Presión	Fuerza	Desplaz	amiento	
rrempo	lateral	lateral	Inferior	Superior	-
(seg)	(Psi)	(kN)	(mm)	(mm)	
0	0	0.00	0.00	0.00	-
3	21	1.03	0.00	0.00	Desplazamiento lateral inferior
6	41	2.00	0.00	0.00	14.00
9	55	2.69	0.00	0.00	14.00
12	63	3.08	0.00	0.00	12.00
15	70	3.42	0.00	0.00	
18	79	3.86	0.00	0.00	Ę ^{10.00}
21	82	4.00	0.00	0.00	
24	90	4.40	0.00	0.00	
27	100	4.88	0.00	0.00	e 6.00 *
30	111	5.42	0.00	0.00	V 4.00 8
33 26	121	5.91	0.00	0.09	
30	127	6.20	0.00	0.16	2.00 \$+ monotónico
12	130	6 70	0.04	0.50	
45	143	6.98	0.09	0.94	0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
48	151	7 37	0.93	1.65	Desplazamiento (mm)
51	160	7.81	1.12	2.28	
54	169	8.25	2.19	2.89	
57	177	8.64	2.63	3.55	Desplazamiento lateral superior
60	186	9.08	3.12	4.17	
63	195	9.52	3.79	4.96	14.00
66	200	9.77	4.68	5.69	12 00
69	207	10.11	5.73	7.02	
72	210	10.31	6.98	8.43	₽ 10.00
75	219	10.86	7.87	9.88	ž
78	224	11.16	9.01	11.23	
81	230	11.53	10.11	12.67	
84	237	11.96	11.24	14.54	
87	248	12.64	12.43	15.86	
90	253	12.94	13.09	16.32	2.00 🛱 Ensayo
93	202	9.82	13.12	16.98	4 monotonico
96	195	9.39	13.13	17.89	$0.00 \Delta + + + + + + + + + + + + + + + + + +$
99	183	8.65	13.13	18.75	0.00 4.00 8.00 12.00 16.00 20.00 24.00 28.00 Desplazamiento (mm)
102	171	7.91	13.15	19.56	
105	166	7.61	13.15	20.53	
102	157	7.06	13.15	20.55	
111	153	6.81	13.16	21.50	
111	1/2	6.50	13.10	22.49	
114	140	6.14	13.17	23.33	La la
11/	142	5.00	13.1/	24.30	
120	138	5.89	13.18	23.32	

Muro:	M-10	Largo (m): 2.50	
Fecha de fabricación del adobe:	07/07/2024	Altura (m): 2.00	
Fecha de fabricación de muro:	08/08/2024	Espesor (m): 0.40	
Fecha de ensayo:	15/09/2024	Carga muerta vertical (Ton): 0.50	
Tiempo total de secado:	70		

Tiamna	Presión	Fuerza	Desplaz	amiento	
rrempo	lateral	lateral	Inferior	Superior	-
(seg)	(Psi)	(kN)	(mm)	(mm)	
0	0	0.00	0.00	0.00	-
3	33	1.61	0.00	0.00	Desplazamiento lateral inferior
6	54	2.64	0.00	0.00	
9	75	3.66	0.00	0.00	18.00
12	91	4.44	0.00	0.00	16.00
15	103	5.03	0.00	0.00	14.00
18	115	5.62	0.00	0.00	2 12 00
21	119	5.81	0.00	0.00	
24	129	6.30	0.00	0.07	
27	135	6.59	0.00	0.09	8.00
30	144	7.03	0.00	0.13	6.00 8
33	155	7.57	0.07	0.17	₿ 400 §
36	165	8.06	0.09	0.21	Ens
39	182	8.89	0.11	0.36	2.00 t mc
42	191	9.33	0.56	0.88	0.00 🛇
45	203	9.91	0.84	1.24	0.00 1.00 2.00 3.00 4.00 5.00
48	213	10.40	1.13	1.63	Desplazamiento (mm)
51	232	11.33	1.47	1.95	
54	241	11.77	1.72	2.06	
57	244	11.92	2.07	2.81	Desplazamiento lateral superior
60	248	12.64	2.53	3.27	10.00
63	257	13.19	2.95	4.12	18.00
66	264	13.62	3.33	5.38	16.00
69	274	14.23	3.87	6.29	14.00
72	281	14.66	4.21	7.51	2 12 00
75	287	15.03	4.63	8.47	
78	296	15.58	5.01	9.53	
81	303	16.01	5.97	10.01	
84	226	11.29	5.99	10.68	6.00 A
87	224	11.16	5.99	11.21	
90	220	10.92	6.01	11 84	
93	218	10.92	6.01	12.56	2.00 X
06	215	10.00	6.02	12.50	0.00 🕹 🦷 🤖
90 00	213	10.01	6.02	13.43	0.00 4.00 8.00 12.00 16.00
99	212	10.43	0.03	14.31	Desplazamiento (mm)
102	208	10.18	6.03	15.28	
105	201	9.75	6.04	16.12	and the second se
108	199	9.63	6.04	17.06	and an Alf good a sold in the
111	198	9.57	6.04	18.19	and the second s

Muro:	M-11	Largo (m): 2.50
Fecha de fabricación del adobe:	07/07/2024	Altura (m): 2.00
Fecha de fabricación de muro:	08/08/2024	Espesor (m): 0.40
Fecha de ensayo:	15/09/2024	Carga muerta vertical (Ton): 0.50
Tiempo total de secado:	70	

Tampa	Presión	Fuerza	Desplaz	zamiento	
петро	lateral	lateral	Inferior	Superior	-
(seg)	(Psi)	(kN)	(mm)	(mm)	
0	0	0.00	0.00	0.00	-
3	30	1.47	0.00	0.00	Desplazamiento lateral inferior
6	46	2.25	0.00	0.00	10.00
9	57	2.78	0.00	0.00	18.00
12	62	3.03	0.00	0.00	16.00
15	71	3.47	0.00	0.00	14.00
18	74	3.61	0.00	0.00	2 12.00
21	78	3.81	0.00	0.00	
24	87	4.25	0.00	0.00	
27	96	4.69	0.00	0.00	8.00
30	102	4.98	0.00	0.00	6.00
33	109	5.32	0.00	0.00	4 .00 8
36	121	5.91	0.00	0.00	2 00 Ensayo
39	133	6.50	0.00	0.05	monotonico
42	154	7.52	0.09	0.16	
45	167	8.16	0.18	0.86	0.00 2.00 4.00 6.00 8.00 Desplazamiento (mm)
48	180	8.79	0.30	1.18	
51	185	9.03	0.73	1.42	
54	193	9.43	1.05	2.01	
57	204	9.96	1.36	2.81	Desplazamiento lateral superior
60	212	10.43	1.89	3.26	18 00
63	224	12.00	2.44	4.09	
66	239	12.08	2.96	5.23	
69 72	245	12.45	3.12	0.54	14.00
12	256	13.13	3.69	/.16	2 12.00
75	264	13.62	4.16	8.34	
78	281	14.66	4.97	9.27	
81	287	15.03	5.83	10.13	
84	292	15.33	6.68	10.78	
87	204	9.94	6.7	11.52	
90	202	9.82	6.7	12.01	200 Δ
93	199	9.63	6.72	12.46	
96	193	9.26	6.71	13.01	0.00 4.00 8.00 12.00 16.00 20.00 24.00
99	189	9.02	6.73	13.99	Desplazamiento (mm)
102	186	8.83	6.73	15.12	
105	184	8 71	6 74	16.21	
100	182	8 50	674	17.40	and the second s
100	102	0.39	0.74	1/.49	the state of the s
111	1/8	ð.34	0./3	10.07	
114	1 / 1	8.28	6.76	19.94	- the stand of the stand of the
					have been a start of the start

and and an and an and and

Muro:	M-12	Largo (m): 2.50
Fecha de fabricación del adobe:	08/07/2024	Altura (m): 2.00
Fecha de fabricación de muro:	08/08/2024	Espesor (m): 0.40
Fecha de ensayo:	16/09/2024	Carga muerta vertical (Ton): 0.50
Tiempo total de secado:	70	

Tiompo	Presión	Fuerza	Desplaz	zamiento	
mempo	lateral	lateral	Inferior	Superior	
(seg)	(Psi)	(kN)	(mm)	(mm)	
0	0	0.00	0.00	0.00	-
3	28	1.37	0.00	0.00	Desplazamiento lateral inferior
6	37	1.81	0.00	0.00	10.00
9	45	2.20	0.00	0.00	18.00
12	53	2.59	0.00	0.00	16.00
15	61	2.98	0.00	0.00	14.00
18	74	3.61	0.00	0.00	2 12.00
21	79	3.86	0.00	0.00	
24	86	4.20	0.00	0.00	
27	102	4.98	0.00	0.00	
30	112	5.47	0.00	0.00	6.00 §
33	124	6.06	0.00	0.00	
36	131	6.40	0.00	0.02	2 00 Å Ensayo
39	143	6.98	0.00	0.09	2.00 monotonic
42	152	7.42	0.00	0.46	
45	164	8.01	0.01	0.97	0.00 1.00 2.00 3.00 4.00 5.00 6.00
48	178	8.69	0.08	1.23	Desplazamento (mm)
51	189	9.23	0.36	1.49	
54	198	9.67	0.59	1.87	
57	204	9.96	0.94	2.12	Desplazamiento lateral superior
60	214	10.55	1.16	2.46	18.00 -
63	225	11.23	1.42	2.75	
66	231	11.59	1.73	3.49	
69	240	12.15	2.07	4.37	14.00
72	246	12.51	2.71	5.22	2 12.00
75	258	13.25	3.16	6.48	
78	269	13.92	3.80	7.31	
81	276	14.35	4.27	8.74	
84	291	15.27	5.39	9.86	Š 6.00 A
87	299	15.76	6.22	10.37	₽ 4.00 Å
90	218	10.80	6.23	11.05	
93	215	10.61	6.24	11.86	
96	214	10.55	6.24	12.72	0.00Δ i i i i i i
99	212	10.43	6.25	13.61	0.00 4.00 8.00 12.00 16.00 20.00 Desplazamiento (mm)
102	208	10.18	6.26	14 57	
102	200	9.88	6.26	15.4	
109	100	0.62	6 27	16.42	
100	199	9.03	6 20	10.42	The second secon
111	193	9.39	0.28	1/.33	and the second sec
114	193	9.26	6.28	18.39	
117	191	9.14	6.28	19.60	- A

Anexo R

Esfuerzo de corte (MPa)

			-		-	-		-			
	Muro:				M-01					Lto (mm):	2223
Fecha de fabricación del muro: $01/08/2024$ $Area corte (m^2)$: 1.28 Fecha de ensayo: 77 Alto (m): 2.50 Carga vertical W (kN): 4.90 Espesor (m): 0.40 Densidad de la energía de deformación (MPa 4.27E-05)Ut (J): 85.40 T Vv \sqrt{v}	Fecha de	Fecha de fabricación del adobe: 01/07/2024							Lco (mm):	2119	
Fecha de ensayo:16/09/2024Largo (m): 2.50Tiempo total de secado: 77 Alto (m): 2.00Carga vertical W (kN):4.90Espesor (m): 0.40Densidad e la energía de deformación (MPa 4.27E-05Ut (J): 85.40T \mathbf{Fr} \mathbf{Wv} \mathbf{r} $\mathbf{\delta t}$ $\mathbf{\delta c}$ \mathbf{F} Fv \mathbf{Wv} \mathbf{r} $\mathbf{\delta t}$ $\mathbf{\delta c}$ \mathbf{Fr} \mathbf{V} 0 \mathbf{N} \mathbf{W} \mathbf{V} $\mathbf{\delta t}$ <	Fecha de	e fabricac	ión del m	uro:	01/08/20)24			Área	corte (m^2) :	1.28
Term total de secado:77Alto (m): 2.00Carga vertical W (kN):4.90Espesor (m): 0.40Densidad de la energía de deformación (MPa 4.27E-05Ut (J): 85.40TKY(kN) (kN) (kN) (kN) (MPa) (mm) (mm) (mm/mm) (mm/mm) (mm/mm)(mm/mm)00.000.000.000.0000.0000.0000.0000.0000.00000.00000.000062.982.333.065.390.00420.000.000.00000.00000.00000.00000.0000124.493.513.066.570.00510.000.000.00000.00000.00000.0000185.524.313.067.370.00580.000.000.00000.00000.00000.0000246.505.073.0610.270.00840.000.000.00000.00000.0000308.116.333.0612.110.00950.000.000.00000.00000.0000429.827.673.0610.270.01320.530.000.00000.00000.00004811.599.053.0612.110.00950.000.00000.00000.00020.0011616.4412.843.0615.900.01243.480.410.00160.00220.0018<	Fecha de	e ensavo:			16/09/20)24				Largo (m):	2.50
Interpotential of socialityInterpotential of socialityCarga vertical W (kN):4.90Espesor (m):0.40Densidad de la energía de deformación (MPa 4.27E-05Ut (J):85.40TFWFv+Wv τ δ_{c} ϵ_{c} Υ (seg) (kN) (kN) (kN) (kN) (MPa) (mm) (mm) (mm/mm) (mm/mm) (mm/mm)(mm/mm)(mm/mm)(mm/mm)(mm/mm)00.000.0000.00000.00000.000000.000.000.0000.00000.000000.000.000.0000.00000.000000.000.000.0000.00000.000000.000.0000.00000.00001TFState for the formation (MPa 4.27E-05Ut (MN)(MN)(mm)(mm/mm)(mm/mm)(mm/mm)(mm/mm)(mm/mm)00.000.00000.0000 <td>Tiemno</td> <td>total de s</td> <td>ecado.</td> <td></td> <td>77</td> <td></td> <td></td> <td></td> <td></td> <td>Alto (m).</td> <td>2.00</td>	Tiemno	total de s	ecado.		77					Alto (m).	2.00
Calga ventear w (ktv).Calga ventear w (ktv).Ut (J): 85.40 Densidad de la energía de deformación (MPa 4.27E-05)Ut (J): 85.40 TFvWvFv+Wv τ δ_{c} ϵ Υ (kN)(kN)(kN)(kN)(kN)(kN)(MP a 4.27E-05Ut (J): 85.40 0.000.000.0000.0000.00000.00(kN)(kN)(kN)(MP a 4.27E-05Ut (J): 85.40 T(mm/mm)(mm/mm)(mm/mm)(mm/mm)00.000.0000.00000.000000.000.0000.00000.000000.000.0000.00000.000000.000.0000.00000.0000.0000.00000.0000.0000<	Corgo vo	rtical W	(kN).		4 90				F	nesor (m):	0.40
Densidad de la energía de deformación (MPa 4.27E-05Ut (J): 85.40 TFFvWvFv+Wv τ δt δc ϵt ϵc Y(seg)(kN)(kN)(kN)(MPa)(mm)(mm)(mm/mm)(mm/mm)(mm/mm)00.000.000.000.0000.000.000.0000.0000.00000.000062.982.333.065.390.00420.000.000.00000.00000.0000124.493.513.066.570.00510.000.000.00000.00000.0000185.524.313.067.370.00580.000.000.00000.00000.0000246.505.073.068.130.00640.000.0000.00000.0000308.116.333.069.390.00730.000.0000.00000.0000369.237.213.0610.270.00800.000.00000.00000.00004811.599.053.0612.110.00950.000.00000.00000.00004811.599.053.0613.070.01020.530.000.00100.00000.0000615.991.783.0614.840.01162.260.100.00160.00020.00116616.4412.843.0617.090.01334.291.30 <td< td=""><td>Carga ve</td><td>itical w</td><td>(KIN):</td><td></td><td>4.90</td><td></td><td></td><td></td><td>La</td><td>pesor (m).</td><td>0.40</td></td<>	Carga ve	itical w	(KIN):		4.90				La	pesor (m).	0.40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Densida	d de la en	ergía de o	leforma	ción (MPa	4.27E-0:	5			Ut (J):	85.40
(seg)(kN)(kN)(kN)(mPa)(mm)(mm)(mm/mm)(mm/mm)(mm/mm)00.000.000.000.0000.0000.0000.0000.00000.000062.982.333.065.390.00420.000.0000.00000.00000.0000124.493.513.066.570.00510.000.0000.00000.00000.0000185.524.313.067.370.00580.000.000.00000.00000.0000246.505.073.068.130.00640.000.0000.00000.0000308.116.333.069.390.0730.000.0000.00000.0000369.237.213.0610.270.00840.000.0000.00000.00004811.599.053.0612.110.00950.000.00000.00000.00004811.599.053.0612.110.00950.000.00000.00000.00026015.0911.783.0614.840.01162.260.100.00100.00020.00116616.4412.843.0615.900.01243.480.410.00160.00220.00187217.9714.033.0617.090.01334.291.300.00190.00060.00257818.2214.223.06	Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	8c	Ŷ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2.98	2.33	3.06	5.39	0.0042	0.00	0.00	0.0000	0.0000	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	4.49	3.51	3.06	6.57	0.0051	0.00	0.00	0.0000	0.0000	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	5.52	4.31	3.06	7.37	0.0058	0.00	0.00	0.0000	0.0000	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	6.50	5.07	3.06	8.13	0.0064	0.00	0.00	0.0000	0.0000	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	8.11	6.33	3.06	9.39	0.0073	0.00	0.00	0.0000	0.0000	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	9.23	7.21	3.06	10.27	0.0080	0.00	0.00	0.0000	0.0000	0.0000
48 11.59 9.05 3.06 12.11 0.0095 0.00 0.000 0.0000 0.0000 0.0000 54 12.82 10.01 3.06 13.07 0.0102 0.53 0.00 0.0002 0.0000 0.0002 60 15.09 11.78 3.06 14.84 0.0116 2.26 0.10 0.0010 0.0000 0.0011 66 16.44 12.84 3.06 15.90 0.0124 3.48 0.41 0.0016 0.0002 0.0018 72 17.97 14.03 3.06 17.09 0.0133 4.29 1.30 0.0019 0.0006 0.0025 78 18.22 14.22 3.06 17.29 0.0135 5.64 2.06 0.0025 0.0010 0.0035 84 8.96 6.99 3.06 10.06 0.0079 8.59 3.10 0.0039 0.0015 0.0053 90 7.42 5.80 3.06 8.86 0.0069 12.62 4.39 0.0057 0.0021 0.0077 0.0029 0.0106 <	42	9.82	7.67	3.06	10.73	0.0084	0.00	0.00	0.0000	0.0000	0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48	11.59	9.05	3.06	12.11	0.0095	0.00	0.00	0.0000	0.0000	0.0000
	54	12.82	10.01	3.06	13.07	0.0102	0.53	0.00	0.0002	0.0000	0.0002
6616.4412.843.0615.900.01243.480.410.00160.00020.00187217.9714.033.0617.090.01334.291.300.00190.00060.00257818.2214.223.0617.290.01355.642.060.00250.00100.0035848.966.993.0610.060.00798.593.100.00390.00150.0053907.425.803.068.860.006912.624.390.00570.00210.0077966.505.083.068.140.006417.126.050.00770.00290.0106	60	15.09	11.78	3.06	14.84	0.0116	2.26	0.10	0.0010	0.0000	0.0011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66	16.44	12.84	3.06	15.90	0.0124	3.48	0.41	0.0016	0.0002	0.0018
7818.2214.223.0617.290.01355.642.060.00250.00100.0035848.966.993.0610.060.00798.593.100.00390.00150.0053907.425.803.068.860.006912.624.390.00570.00210.0077966.505.083.068.140.006417.126.050.00770.00290.0106	72	17.97	14.03	3.06	17.09	0.0133	4.29	1.30	0.0019	0.0006	0.0025
84 8.96 6.99 3.06 10.06 0.0079 8.59 3.10 0.0039 0.0015 0.0053 90 7.42 5.80 3.06 8.86 0.0069 12.62 4.39 0.0057 0.0021 0.0077 96 6.50 5.08 3.06 8.14 0.0064 17.12 6.05 0.0077 0.0029 0.0106	78	18.22	14.22	3.06	17.29	0.0135	5.64	2.06	0.0025	0.0010	0.0035
90 7.42 5.80 3.06 8.86 0.0069 12.62 4.39 0.0057 0.0021 0.0077 96 6.50 5.08 3.06 8.14 0.0064 17.12 6.05 0.0077 0.0029 0.0106	84	8.96	6.99	3.06	10.06	0.0079	8.59	3.10	0.0039	0.0015	0.0053
96 6.50 5.08 3.06 8.14 0.0064 17.12 6.05 0.0077 0.0029 0.0106	90	7.42	5.80	3.06	8.86	0.0069	12.62	4.39	0.0057	0.0021	0.0077
	96	6.50	5.08	3.06	8.14	0.0064	17.12	6.05	0.0077	0.0029	0.0106

Resultados de esfuerzo de corte y deformación angular de los muros

Muro:	M-02	Lto (mm):	2042
Fecha de fabricación del adobe:	02/07/2024	Lco (mm):	2042
Fecha de fabricación del muro:	01/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	16/09/2024	Largo (m):	2.50
Tiempo total de secado:	76	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deforma	ción (MPa 5.16E-05	Ut (J):	103.20

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	8c	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	1.90	1.49	3.06	4.55	0.0036	0.00	0.00	0.0000	0.0000	0.0000
12	2.54	1.98	3.06	5.04	0.0039	0.00	0.00	0.0000	0.0000	0.0000
18	3.81	2.97	3.06	6.04	0.0047	0.00	0.00	0.0000	0.0000	0.0000
24	4.54	3.55	3.06	6.61	0.0052	0.00	0.00	0.0000	0.0000	0.0000
30	5.52	4.31	3.06	7.37	0.0058	0.00	0.00	0.0000	0.0000	0.0000
36	6.84	5.34	3.06	8.40	0.0066	0.00	0.00	0.0000	0.0000	0.0000
42	8.25	6.44	3.06	9.51	0.0074	0.00	0.00	0.0000	0.0000	0.0000
48	9.13	7.13	3.06	10.19	0.0080	0.00	0.00	0.0000	0.0000	0.0000
54	10.16	7.93	3.06	10.99	0.0086	0.00	0.00	0.0000	0.0000	0.0000
60	11.59	9.05	3.06	12.11	0.0095	0.05	0.00	0.0000	0.0000	0.0000
66	13.25	10.35	3.06	13.41	0.0105	1.17	0.10	0.0006	0.0000	0.0006
72	15.03	11.73	3.06	14.80	0.0116	2.36	0.56	0.0012	0.0003	0.0014
78	15.95	12.45	3.06	15.51	0.0121	3.84	1.09	0.0019	0.0005	0.0024
84	17.24	13.46	3.06	16.52	0.0129	4.27	1.78	0.0021	0.0009	0.0030
90	18.58	14.51	3.06	17.57	0.0137	5.61	2.31	0.0027	0.0011	0.0039
93	19.32	15.09	3.06	18.15	0.0142	6.17	2.67	0.0030	0.0013	0.0043
96	9.39	7.33	3.06	10.39	0.0081	7.11	3.35	0.0035	0.0016	0.0051
102	8.04	6.28	3.06	9.34	0.0073	10.59	5.08	0.0052	0.0025	0.0077
108	7.49	5.85	3.06	8.91	0.0070	14.88	7.01	0.0073	0.0034	0.0107
114	6.87	5.37	3.06	8.43	0.0066	20.17	8.92	0.0099	0.0044	0.0142

Muro:	M-03	Lto (mm):	2140
Fecha de fabricación del adobe:	03/07/2024	Lco (mm):	2163
Fecha de fabricación del muro:	01/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	16/09/2024	Largo (m):	2.50
Tiempo total de secado:	75	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deforma	ción (MPa4.72E-05	Ut (J):	94.40

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	E C	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	1.90	1.49	3.06	4.55	0.0036	0.00	0.00	0.0000	0.0000	0.0000
12	3.08	2.40	3.06	5.46	0.0043	0.00	0.00	0.0000	0.0000	0.0000
18	4.74	3.70	3.06	6.76	0.0053	0.00	0.00	0.0000	0.0000	0.0000
24	6.30	4.92	3.06	7.98	0.0062	0.00	0.00	0.0000	0.0000	0.0000
30	6.98	5.45	3.06	8.51	0.0066	0.00	0.00	0.0000	0.0000	0.0000
36	8.55	6.67	3.06	9.73	0.0076	0.00	0.00	0.0000	0.0000	0.0000
42	10.11	7.89	3.06	10.96	0.0086	0.00	0.00	0.0000	0.0000	0.0000
48	11.35	8.86	3.06	11.92	0.0093	0.00	0.00	0.0000	0.0000	0.0000
54	12.45	9.72	3.06	12.78	0.0100	0.41	0.00	0.0002	0.0000	0.0002
60	14.66	11.45	3.06	14.51	0.0113	1.68	0.08	0.0008	0.0000	0.0008
66	15.46	12.07	3.06	15.13	0.0118	2.92	0.36	0.0014	0.0002	0.0015
72	16.25	12.69	3.06	15.75	0.0123	3.99	1.02	0.0019	0.0005	0.0023
78	17.30	13.51	3.06	16.57	0.0129	4.98	1.65	0.0023	0.0008	0.0031
84	18.65	14.56	3.06	17.62	0.0138	5.49	2.26	0.0026	0.0010	0.0036
87	19.14	14.94	3.06	18.00	0.0141	5.97	2.49	0.0028	0.0012	0.0039
90	9.94	7.76	3.06	10.82	0.0085	6.96	3.15	0.0033	0.0015	0.0047
96	9.14	7.14	3.06	10.20	0.0080	10.54	4.90	0.0049	0.0023	0.0072
102	7.67	5.99	3.06	9.05	0.0071	14.86	6.83	0.0069	0.0032	0.0101
108	6.50	5.08	3.06	8.14	0.0064	19.89	8.56	0.0093	0.0040	0.0133

0.0020

Deformación angular (mm/mm)

0.0030

0.0040

0.0050

Muro:	M-04	Lto (mm):	2041
Fecha de fabricación del adobe:	04/07/2024	Lco (mm):	2100
Fecha de fabricación del muro:	03/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	16/09/2024	Largo (m):	2.50
Tiempo total de secado:	74	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deforma	ción (MPa 2.77E-05	Ut (J):	55.40

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	E C	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	1.03	0.80	3.06	3.86	0.0030	0.00	0.00	0.0000	0.0000	0.0000
12	1.76	1.37	3.06	4.43	0.0035	0.00	0.00	0.0000	0.0000	0.0000
18	2.44	1.91	3.06	4.97	0.0039	0.00	0.00	0.0000	0.0000	0.0000
24	3.71	2.90	3.06	5.96	0.0047	0.00	0.00	0.0000	0.0000	0.0000
30	4.54	3.55	3.06	6.61	0.0052	0.00	0.00	0.0000	0.0000	0.0000
36	5.37	4.19	3.06	7.26	0.0057	0.00	0.00	0.0000	0.0000	0.0000
42	6.01	4.69	3.06	7.75	0.0061	0.00	0.00	0.0000	0.0000	0.0000
48	6.74	5.26	3.06	8.32	0.0065	0.00	0.00	0.0000	0.0000	0.0000
54	7.52	5.87	3.06	8.93	0.0070	0.00	0.00	0.0000	0.0000	0.0000
60	8.20	6.41	3.06	9.47	0.0074	0.00	0.00	0.0000	0.0000	0.0000
66	8.84	6.90	3.06	9.96	0.0078	0.05	0.00	0.0000	0.0000	0.0000
72	9.87	7.70	3.06	10.76	0.0084	0.18	0.00	0.0001	0.0000	0.0001
78	10.80	8.43	3.06	11.49	0.0090	0.84	0.05	0.0004	0.0000	0.0004
84	12.08	9.44	3.06	12.50	0.0098	1.32	0.18	0.0006	0.0001	0.0007
90	13.37	10.44	3.06	13.50	0.0105	1.73	0.33	0.0008	0.0002	0.0010
96	13.99	10.92	3.06	13.98	0.0109	2.26	0.56	0.0011	0.0003	0.0014
102	15.03	11.73	3.06	14.80	0.0116	2.92	0.99	0.0014	0.0005	0.0019
108	15.95	12.45	3.06	15.51	0.0121	3.76	1.37	0.0018	0.0007	0.0025
111	16.13	12.60	3.06	15.66	0.0122	3.99	1.45	0.0020	0.0007	0.0026
114	9.88	7.71	3.06	10.77	0.0084	4.78	1.78	0.0023	0.0008	0.0032
120	8.28	6.47	3.06	9.53	0.0074	7.65	2.77	0.0037	0.0013	0.0051
126	5.28	4.12	3.06	7.18	0.0056	10.62	3.94	0.0052	0.0019	0.0071
132	3.68	2.88	3.06	5.94	0.0046	13.36	4.93	0.0065	0.0023	0.0089
138	3.07	2.40	3.06	5.46	0.0043	15.98	5.77	0.0078	0.0027	0.0106

0.0030

Deformación angular (mm/mm)

0.0020

0.0010

Muro:	M-05	Lto (mm):	1997
Fecha de fabricación del adobe:	04/07/2024	Lco (mm):	2053
Fecha de fabricación del muro:	03/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	14/09/2024	Largo (m):	2.50
Tiempo total de secado:	72	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deform	ación (MPa 3.45E-05	Ut (J):	69.00

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	E C	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	1.03	0.80	3.06	3.86	0.0030	0.00	0.00	0.0000	0.0000	0.0000
12	2.69	2.10	3.06	5.16	0.0040	0.00	0.00	0.0000	0.0000	0.0000
18	3.86	3.01	3.06	6.07	0.0047	0.00	0.00	0.0000	0.0000	0.0000
24	4.93	3.85	3.06	6.91	0.0054	0.00	0.00	0.0000	0.0000	0.0000
30	6.10	4.77	3.06	7.83	0.0061	0.00	0.00	0.0000	0.0000	0.0000
36	7.13	5.57	3.06	8.63	0.0067	0.00	0.00	0.0000	0.0000	0.0000
42	7.81	6.10	3.06	9.16	0.0072	0.00	0.00	0.0000	0.0000	0.0000
48	8.45	6.60	3.06	9.66	0.0075	0.00	0.00	0.0000	0.0000	0.0000
54	9.13	7.13	3.06	10.19	0.0080	0.05	0.00	0.0000	0.0000	0.0000
60	9.72	7.59	3.06	10.65	0.0083	0.30	0.00	0.0002	0.0000	0.0002
66	10.43	8.14	3.06	11.20	0.0087	0.89	0.05	0.0004	0.0000	0.0005
72	11.72	9.15	3.06	12.21	0.0095	1.42	0.23	0.0007	0.0001	0.0008
78	13.13	10.25	3.06	13.31	0.0104	1.88	0.41	0.0009	0.0002	0.0011
84	13.62	10.63	3.06	13.69	0.0107	2.41	0.66	0.0012	0.0003	0.0015
90	15.21	11.88	3.06	14.94	0.0117	2.97	1.12	0.0015	0.0005	0.0020
96	16.01	12.50	3.06	15.56	0.0122	3.91	1.65	0.0020	0.0008	0.0028
99	17.17	13.41	3.06	16.47	0.0129	4.62	1.73	0.0023	0.0008	0.0032
102	10.49	8.19	3.06	11.25	0.0088	5.72	1.85	0.0029	0.0009	0.0038
108	8.41	6.56	3.06	9.62	0.0075	8.36	2.84	0.0042	0.0014	0.0056
114	6.69	5.22	3.06	8.28	0.0065	10.13	3.99	0.0051	0.0019	0.0070
120	5.34	4.17	3.06	7.23	0.0056	12.01	4.98	0.0060	0.0024	0.0084
126	4.48	3.50	3.06	6.56	0.0051	15.65	5.92	0.0078	0.0029	0.0107

0.0020 0.0000

0.0000

0.0010

0.0020

Deformación angular (mm/mm)

0.0030

Muro:	M-06	Lto (mm):	2063
Fecha de fabricación del adobe:	05/07/2024	Lco (mm):	1846
Fecha de fabricación del muro:	03/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	14/09/2024	Largo (m):	2.50
Tiempo total de secado:	71	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deforma	ación (MPa 3.11E-05	Ut (J):	62.20

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	E C	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	1.22	0.95	3.06	4.01	0.0031	0.00	0.00	0.0000	0.0000	0.0000
12	2.25	1.75	3.06	4.82	0.0038	0.00	0.00	0.0000	0.0000	0.0000
18	3.61	2.82	3.06	5.88	0.0046	0.00	0.00	0.0000	0.0000	0.0000
24	4.15	3.24	3.06	6.30	0.0049	0.00	0.00	0.0000	0.0000	0.0000
30	4.64	3.62	3.06	6.68	0.0052	0.00	0.00	0.0000	0.0000	0.0000
36	5.37	4.19	3.06	7.26	0.0057	0.00	0.00	0.0000	0.0000	0.0000
42	5.86	4.58	3.06	7.64	0.0060	0.00	0.00	0.0000	0.0000	0.0000
48	6.74	5.26	3.06	8.32	0.0065	0.00	0.00	0.0000	0.0000	0.0000
54	7.33	5.72	3.06	8.78	0.0069	0.00	0.00	0.0000	0.0000	0.0000
60	8.01	6.25	3.06	9.32	0.0073	0.00	0.00	0.0000	0.0000	0.0000
66	8.45	6.60	3.06	9.66	0.0075	0.06	0.00	0.0000	0.0000	0.0000
72	9.13	7.13	3.06	10.19	0.0080	0.23	0.00	0.0001	0.0000	0.0001
78	9.77	7.63	3.06	10.69	0.0083	0.86	0.05	0.0004	0.0000	0.0004
84	10.86	8.48	3.06	11.54	0.0090	1.42	0.20	0.0007	0.0001	0.0008
90	12.33	9.63	3.06	12.69	0.0099	1.80	0.36	0.0009	0.0002	0.0011
96	13.86	10.83	3.06	13.89	0.0108	2.34	0.58	0.0011	0.0003	0.0014
102	14.60	11.40	3.06	14.46	0.0113	2.97	1.04	0.0014	0.0006	0.0020
108	15.95	12.45	3.06	15.51	0.0121	3.84	1.52	0.0019	0.0008	0.0027
111	16.50	12.88	3.06	15.95	0.0125	4.42	1.57	0.0021	0.0009	0.0030
114	10.49	8.19	3.06	11.25	0.0088	5.61	1.85	0.0027	0.0010	0.0037
120	8.53	6.66	3.06	9.72	0.0076	8.00	2.84	0.0039	0.0015	0.0054
126	7.06	5.51	3.06	8.57	0.0067	10.80	3.99	0.0052	0.0022	0.0074
132	5.77	4.50	3.06	7.57	0.0059	13.51	4.98	0.0065	0.0027	0.0092
138	4.36	3.40	3.06	6.46	0.0050	15.80	5.92	0.0077	0.0032	0.0109

Muro:	M-07	Lto (mm):	2041
Fecha de fabricación del adobe:	05/07/2024	Lco (mm):	1830
Fecha de fabricación del muro:	06/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	14/09/2024	Largo (m):	2.50
Tiempo total de secado:	71	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deforma	ción (MPa 1.99E-05	Ut (J):	39.80

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	8c	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	1.51	1.18	3.06	4.24	0.0033	0.00	0.00	0.0000	0.0000	0.0000
12	3.27	2.56	3.06	5.62	0.0044	0.00	0.00	0.0000	0.0000	0.0000
18	3.96	3.09	3.06	6.15	0.0048	0.00	0.00	0.0000	0.0000	0.0000
24	4.49	3.51	3.06	6.57	0.0051	0.00	0.00	0.0000	0.0000	0.0000
30	5.42	4.23	3.06	7.29	0.0057	0.00	0.00	0.0000	0.0000	0.0000
36	6.20	4.84	3.06	7.90	0.0062	0.00	0.00	0.0000	0.0000	0.0000
42	6.84	5.34	3.06	8.40	0.0066	0.03	0.00	0.0000	0.0000	0.0000
48	7.67	5.99	3.06	9.05	0.0071	0.13	0.00	0.0001	0.0000	0.0001
54	8.25	6.44	3.06	9.51	0.0074	0.41	0.00	0.0002	0.0000	0.0002
60	9.28	7.25	3.06	10.31	0.0080	0.79	0.15	0.0004	0.0001	0.0005
66	10.01	7.82	3.06	10.88	0.0085	1.17	0.28	0.0006	0.0002	0.0007
72	10.43	8.14	3.06	11.20	0.0087	1.45	0.41	0.0007	0.0002	0.0009
78	11.04	8.62	3.06	11.68	0.0091	1.91	0.51	0.0009	0.0003	0.0012
84	11.96	9.34	3.06	12.40	0.0097	2.34	0.66	0.0011	0.0004	0.0015
90	13.07	10.20	3.06	13.26	0.0104	2.67	0.89	0.0013	0.0005	0.0018
96	13.43	10.49	3.06	13.55	0.0106	3.43	1.04	0.0017	0.0006	0.0022
102	9.57	7.47	3.06	10.53	0.0082	5.72	2.06	0.0028	0.0011	0.0039
108	8.83	6.90	3.06	9.96	0.0078	8.23	2.97	0.0040	0.0016	0.0057
114	7.67	5.99	3.06	9.05	0.0071	10.39	3.86	0.0051	0.0021	0.0072
120	7.12	5.56	3.06	8.62	0.0067	13.06	4.57	0.0064	0.0025	0.0089

Esfuerzo de corte (MPa)

Muro:	M-08	Lto (mm):	2011
Fecha de fabricación del adobe:	06/07/2024	Lco (mm):	2061
Fecha de fabricación del murete:	06/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	15/09/2024	Largo (m):	2.50
Tiempo total de secado:	71	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deformad	ción (MPa 2.20E-05	Ut (J):	44.00

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	8c	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	1.66	1.30	3.06	4.36	0.0034	0.00	0.00	0.0000	0.0000	0.0000
12	3.57	2.78	3.06	5.84	0.0046	0.00	0.00	0.0000	0.0000	0.0000
18	5.13	4.00	3.06	7.07	0.0055	0.00	0.00	0.0000	0.0000	0.0000
24	6.01	4.69	3.06	7.75	0.0061	0.00	0.00	0.0000	0.0000	0.0000
30	6.54	5.11	3.06	8.17	0.0064	0.00	0.00	0.0000	0.0000	0.0000
36	6.89	5.38	3.06	8.44	0.0066	0.00	0.00	0.0000	0.0000	0.0000
42	7.37	5.76	3.06	8.82	0.0069	0.15	0.00	0.0001	0.0000	0.0001
48	7.91	6.18	3.06	9.24	0.0072	0.36	0.00	0.0002	0.0000	0.0002
54	8.60	6.71	3.06	9.77	0.0076	0.61	0.03	0.0003	0.0000	0.0003
60	9.18	7.17	3.06	10.23	0.0080	0.97	0.08	0.0005	0.0000	0.0005
66	9.82	7.67	3.06	10.73	0.0084	1.19	0.13	0.0006	0.0001	0.0007
72	10.67	8.34	3.06	11.40	0.0089	1.55	0.20	0.0008	0.0001	0.0009
78	11.41	8.91	3.06	11.97	0.0093	2.03	0.36	0.0010	0.0002	0.0012
84	12.15	9.48	3.06	12.55	0.0098	2.46	0.76	0.0012	0.0004	0.0016
90	13.07	10.20	3.06	13.26	0.0104	2.74	1.04	0.0014	0.0005	0.0019
96	13.92	10.87	3.06	13.93	0.0109	3.66	1.27	0.0018	0.0006	0.0024
102	9.14	7.14	3.06	10.20	0.0080	5.94	2.18	0.0030	0.0011	0.0040
108	8.59	6.71	3.06	9.77	0.0076	8.46	3.05	0.0042	0.0015	0.0057
114	7.98	6.23	3.06	9.29	0.0073	10.64	4.01	0.0053	0.0019	0.0072
120	7.42	5.80	3.06	8.86	0.0069	13.56	4.72	0.0067	0.0023	0.0090

Muro:	M-09	Lto (mm):	1984
Fecha de fabricación del adobe:	06/07/2024	Lco (mm):	2036
Fecha de fabricación del muro:	06/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	15/09/2024	Largo (m):	2.50
Tiempo total de secado:	71	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deforma	ción (MPa 1.85E-05	Ut (J):	37.00

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	E C	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	2.00	1.56	3.06	4.62	0.0036	0.00	0.00	0.0000	0.0000	0.0000
12	3.08	2.40	3.06	5.46	0.0043	0.00	0.00	0.0000	0.0000	0.0000
18	3.86	3.01	3.06	6.07	0.0047	0.00	0.00	0.0000	0.0000	0.0000
24	4.40	3.43	3.06	6.49	0.0051	0.00	0.00	0.0000	0.0000	0.0000
30	5.42	4.23	3.06	7.29	0.0057	0.00	0.00	0.0000	0.0000	0.0000
36	6.20	4.84	3.06	7.90	0.0062	0.00	0.00	0.0000	0.0000	0.0000
42	6.79	5.30	3.06	8.36	0.0065	0.00	0.00	0.0000	0.0000	0.0000
48	7.37	5.76	3.06	8.82	0.0069	0.20	0.00	0.0001	0.0000	0.0001
54	8.25	6.44	3.06	9.51	0.0074	0.56	0.00	0.0003	0.0000	0.0003
60	9.08	7.09	3.06	10.15	0.0079	0.86	0.08	0.0004	0.0000	0.0005
66	9.77	7.63	3.06	10.69	0.0083	1.07	0.20	0.0005	0.0001	0.0006
72	10.31	8.05	3.06	11.11	0.0087	1.47	0.36	0.0007	0.0002	0.0009
78	11.16	8.72	3.06	11.78	0.0092	1.91	0.58	0.0010	0.0003	0.0012
84	11.96	9.34	3.06	12.40	0.0097	2.46	0.74	0.0012	0.0004	0.0016
90	12.94	10.11	3.06	13.17	0.0103	3.15	0.99	0.0016	0.0005	0.0021
96	9.39	7.33	3.06	10.39	0.0081	4.88	1.98	0.0025	0.0010	0.0034
102	7.91	6.18	3.06	9.24	0.0072	7.24	2.72	0.0036	0.0013	0.0050
108	7.06	5.51	3.06	8.57	0.0067	9.32	3.58	0.0047	0.0018	0.0065
114	6.50	5.08	3.06	8.14	0.0064	11.48	4.19	0.0058	0.0021	0.0078
120	5.89	4.60	3.06	7.66	0.0060	13.87	4.83	0.0070	0.0024	0.0094

Muro:	M-10	Lto (mm):	2032
Fecha de fabricación del adobe:	07/07/2024	Lco (mm):	2014
Fecha de fabricación del muro:	08/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	15/09/2024	Largo (m):	2.50
Tiempo total de secado:	70	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deforma	ción (MPa 3.50E-05	Ut (J):	70.00

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	E C	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	2.64	2.06	3.06	5.12	0.0040	0.00	0.00	0.0000	0.0000	0.0000
12	4.44	3.47	3.06	6.53	0.0051	0.00	0.00	0.0000	0.0000	0.0000
18	5.62	4.39	3.06	7.45	0.0058	0.00	0.00	0.0000	0.0000	0.0000
24	6.30	4.92	3.06	7.98	0.0062	0.00	0.00	0.0000	0.0000	0.0000
30	7.03	5.49	3.06	8.55	0.0067	0.00	0.00	0.0000	0.0000	0.0000
36	8.06	6.29	3.06	9.35	0.0073	0.00	0.00	0.0000	0.0000	0.0000
42	9.33	7.28	3.06	10.34	0.0081	0.28	0.00	0.0001	0.0000	0.0001
48	10.40	8.12	3.06	11.18	0.0087	0.79	0.00	0.0004	0.0000	0.0004
54	11.77	9.19	3.06	12.25	0.0096	1.17	0.10	0.0006	0.0000	0.0006
60	12.64	9.87	3.06	12.93	0.0101	1.47	0.38	0.0007	0.0002	0.0009
66	13.62	10.63	3.06	13.69	0.0107	2.21	0.89	0.0011	0.0004	0.0015
72	14.66	11.45	3.06	14.51	0.0113	3.33	1.35	0.0016	0.0007	0.0023
78	15.58	12.17	3.06	15.23	0.0119	4.37	1.60	0.0022	0.0008	0.0029
81	16.01	12.50	3.06	15.56	0.0122	4.80	1.83	0.0024	0.0009	0.0033
84	11.29	8.81	3.06	11.88	0.0093	5.66	2.13	0.0028	0.0011	0.0038
90	10.92	8.53	3.06	11.59	0.0090	7.54	2.59	0.0037	0.0013	0.0050
96	10.61	8.29	3.06	11.35	0.0089	9.63	3.12	0.0047	0.0015	0.0063
102	10.18	7.95	3.06	11.01	0.0086	11.91	4.09	0.0059	0.0020	0.0079
108	9.63	7.52	3.06	10.58	0.0083	14.96	5.36	0.0074	0.0027	0.0100

Muro:	M-11	Lto (mm):	2084
Fecha de fabricación del adobe:	07/07/2024	Lco (mm):	2030
Fecha de fabricación del muro:	08/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	15/09/2024	Largo (m):	2.50
Tiempo total de secado:	70	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deforma	ción (MPa 2.70E-05	Ut (J):	54.00

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	E C	۲
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	2.25	1.75	3.06	4.82	0.0038	0.00	0.00	0.0000	0.0000	0.0000
12	3.03	2.36	3.06	5.43	0.0042	0.00	0.00	0.0000	0.0000	0.0000
18	3.61	2.82	3.06	5.88	0.0046	0.00	0.00	0.0000	0.0000	0.0000
24	4.25	3.32	3.06	6.38	0.0050	0.00	0.00	0.0000	0.0000	0.0000
30	4.98	3.89	3.06	6.95	0.0054	0.00	0.00	0.0000	0.0000	0.0000
36	5.91	4.61	3.06	7.68	0.0060	0.00	0.00	0.0000	0.0000	0.0000
42	7.52	5.87	3.06	8.93	0.0070	0.00	0.00	0.0000	0.0000	0.0000
48	8.79	6.86	3.06	9.93	0.0078	0.03	0.00	0.0000	0.0000	0.0000
54	9.43	7.36	3.06	10.42	0.0081	0.51	0.00	0.0002	0.0000	0.0002
60	10.43	8.14	3.06	11.20	0.0087	0.86	0.00	0.0004	0.0000	0.0004
66	12.08	9.44	3.06	12.50	0.0098	1.42	0.08	0.0007	0.0000	0.0007
72	13.13	10.25	3.06	13.31	0.0104	1.91	0.46	0.0009	0.0002	0.0011
78	14.66	11.45	3.06	14.51	0.0113	2.90	0.97	0.0014	0.0005	0.0019
84	15.33	11.97	3.06	15.04	0.0117	4.14	1.32	0.0020	0.0007	0.0026
90	9.82	7.66	3.06	10.73	0.0084	5.97	2.08	0.0029	0.0010	0.0039
96	9.26	7.23	3.06	10.29	0.0080	8.00	2.87	0.0038	0.0014	0.0053
102	8.83	6.90	3.06	9.96	0.0078	10.19	3.59	0.0049	0.0018	0.0067
108	8.59	6.71	3.06	9.77	0.0076	12.22	4.62	0.0059	0.0023	0.0081
114	8.28	6.47	3.06	9.53	0.0074	14.91	5.46	0.0072	0.0027	0.0098

Muro:	M-12	Lto (mm):	2088
Fecha de fabricación del adobe:	08/07/2024	Lco (mm):	2110
Fecha de fabricación del muro:	08/08/2024	Área corte (m^2) :	1.28
Fecha de ensayo:	16/09/2024	Largo (m):	2.50
Tiempo total de secado:	70	Alto (m):	2.00
Carga vertical W (kN):	4.90	Espesor (m):	0.40
Densidad de la energía de deforma	Ut (J):	57.80	

Т	F	Fv	Wv	Fv+Wv	τ	δt	δc	٤t	8c	Y
(seg)	(kN)	(kN)	(kN)	(kN)	(MPa)	(mm)	(mm)	(mm/mm)	(mm/mm)	(mm/mm)
0	0.00	0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.0000	0.0000
6	1.81	1.41	3.06	4.47	0.0035	0.00	0.00	0.0000	0.0000	0.0000
12	2.59	2.02	3.06	5.08	0.0040	0.00	0.00	0.0000	0.0000	0.0000
18	3.61	2.82	3.06	5.88	0.0046	0.00	0.00	0.0000	0.0000	0.0000
24	4.20	3.28	3.06	6.34	0.0050	0.00	0.00	0.0000	0.0000	0.0000
30	5.47	4.27	3.06	7.33	0.0057	0.00	0.00	0.0000	0.0000	0.0000
36	6.40	5.00	3.06	8.06	0.0063	0.00	0.00	0.0000	0.0000	0.0000
42	7.42	5.80	3.06	8.86	0.0069	0.00	0.00	0.0000	0.0000	0.0000
48	8.69	6.79	3.06	9.85	0.0077	0.05	0.00	0.0000	0.0000	0.0000
54	9.67	7.55	3.06	10.61	0.0083	0.48	0.00	0.0002	0.0000	0.0002
60	10.55	8.24	3.06	11.30	0.0088	0.91	0.00	0.0004	0.0000	0.0004
66	11.59	9.05	3.06	12.11	0.0095	1.37	0.08	0.0007	0.0000	0.0007
72	12.51	9.77	3.06	12.83	0.0100	1.83	0.30	0.0009	0.0001	0.0010
78	13.92	10.87	3.06	13.93	0.0109	2.79	0.97	0.0013	0.0005	0.0018
84	15.27	11.93	3.06	14.99	0.0117	3.91	1.30	0.0019	0.0006	0.0025
87	15.76	12.31	3.06	15.37	0.0120	4.34	1.55	0.0021	0.0007	0.0028
90	10.80	8.43	3.06	11.49	0.0090	5.13	1.83	0.0025	0.0009	0.0033
96	10.55	8.24	3.06	11.30	0.0088	7.01	2.62	0.0034	0.0012	0.0046
102	10.18	7.95	3.06	11.01	0.0086	9.68	3.20	0.0046	0.0015	0.0062
108	9.63	7.52	3.06	10.58	0.0083	12.14	4.22	0.0058	0.0020	0.0078
114	9.26	7.23	3.06	10.29	0.0080	14.43	5.13	0.0069	0.0024	0.0093

Anexo S

Fotografías del proceso de ejecución de la investigación

Figura 46

Extracción del suelo para la elaboración de los adobes

Nota. Cantera ubicada en Matacoto - Yungay - Ancash.

Figura 47

Suelo traído de la cantera Matacoto y su zarandeo

Nota. El zarandeo se ha realizado con la malla Nº4.

Figura 48

Toma de muestra de suelo y construcción del tendal

Nota. Se tomo muestra de suelo para su análisis en laboratorio.

Preparación del barro y elaboración del adobe

Nota. Las medidas de los adobes fueron de 0.40x0.40x0.12 m.

Figura 50

Acopio de piedras del rio Santa y elaboración de shicras con piedras

Nota. Se seleccionaron piedras de 1", 3" y 5" de diámetro para ser rellenadas en las shicras.

Figura 51

Secado de los adobes y trazo de la cimentación para los muros

Nota. A partir del tercer día de la elaboración se puso de canto a los adobes para completar su secado.

<image>

Nota. El cimiento fue construido con concreto ciclópeo C:H 1:10 + 30% PG.

Construcción de cimiento y colocación de shicras

Figura 53

Colocación de la capa intermedia y capa superior del sobrecimiento

Nota. La capa intermedia fue de malla de pescar con piedras de 1/2" y la superior viga collar de madera.

Figura 54

Construcción de muros y vista de los doce muros concluidos

Nota. La construcción de los muros se realizó como máximo a una altura de 1 m por jornada.

Pintado de los muros de adobe

Nota. Se ha realizado el pintado con la finalidad de observar mejor el modo de falla y las grietas.

Figura 56

Ensayo brasileño y tracción directa de mortero en laboratorio

Nota. Los ensayos se llevaron a cabo en el laboratorio Mathlab Ingeniería Sismorresistente E.I.R.L.

Figura 57

Ensayo de prismas y muretes en laboratorio

Nota. Los ensayos se llevaron a cabo bajo la supervisión del ingeniero estructural.

Verificación de los equipos en el muro para el ensayo monotónico

Nota. Se muestra los equipos utilizados para el ensayo monotónico y el muro después del ensayo.

Figura 59

Visualización de las lecturas de desplazamiento y modo de falla del muro

Nota. Modos de falla en los muros de adobe debido a la carga horizontal aplicado.

Figura 60

Verificación de la bomba por el ingeniero estructurista y equipo de apoyo

Nota. Se muestra a los integrantes que participaron en el ensayo de los muros.