UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Estudio hidrológico de la quebrada Cascajal con fines de prevención de inundación CP. Cascajal-Santa-Ancash-2020"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTORES:

Bach. Valderrama Acosta, Heber Daniel

Bach. Yataco Morillo, David Josué

ASESORA:

Ms. Saavedra Vera, Janet Verónica DNI. N°. 32964440 Código ORCID: 0000-0002-4195-982X

> Nuevo Chimbote- Perú 2024

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Estudio hidrológico de la quebrada Cascajal con fines de prevención de inundación CP. Cascajal-Santa-Ancash-2020"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

REVISADO Y APROBADO POR:

Ms. Saavedra Vera, Janet Verónica

Asesora

DNI: N°. 32964440 ORCID: 0000-0002-4195-982X

Nuevo Chimbote- Perú 2024

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Estudio hidrológico de la quebrada Cascajal con fines de prevención de inundación CP. Cascajal-Santa-Ancash-2020"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

REVISADO Y APROBADO POR LOS SIGUIENTE JURADOS:

Ms. Sparrow Álamo, Edgar Gustavo Presidente

DNI: 32904375

ORCID: 0000-0003-4469-0288

Dr. López Carranza, Atilio Ruben

DNI: 32965940

ORCID: 0000-0002-3631-2001

Ms. Saavedra Vera, Janet Verónica

Integrante

DNI: N°. 32964440 ORCID: 0000-0002-4195-982X

Nuevo Chimbote- Perú 2024

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil - EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 23 días del mes de mayo del año dos mil veinticuatro, siendo las 11: 00 horas, en el Aula C-1 de la Escuela Profesional de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución Nº 337-2023-UNS-CFI, con fecha 09.06.2023, integrado por los siguientes docentes: Ms. Edgar Gustavo Sparrow Alamo (Presidente), Dr. Atilio Rubén López Carranza (Secretario), Ms. Janet Verónica Saavedra Vera (Integrante), Ms. Felipe Eleuterio Villavicencio González (Accesitario) en base a la Resolución Decanal Nº 251-2024-UNS-FI se da inicio la sustentación de la Tesis titulada: "ESTUDIO HIDROLÓGICO EN LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIONES EN EL C.P. CASCAJAL-SANTA-ANCASH-2020", presentado por las Bachilleres: VALDERRAMA ACOSTA HEBER DANIEL con cód. Nº 0201413054, y YATACO MORILLO DAVID JOSUÉ con cód. Nº 0201413060, quienes fueron asesorados por la docente Ms. Janet Verónica Saavedra Vera, según lo establece la T. Resolución Decanal Nº 256-2020-UNS-FI, de fecha 01.10.2020.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
VALDERRAMA ACOSTA HEBER DANIEL	17	BUENO

Siendo las 12.00 horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 23 de mayo de 2024.

Ms. Edgar Gustavo Sparrow Alamo Presidente

Ms. Janet Verónica Saavedra Vera

Integrante

UNIVERSIDAD NACIONAL DEL SANTA

Rectorado: Av. Pacífico Nº 508 - Urb. Buenos Aires

Campus Universitario: Av. Universitaria s/n – Urb. Bellamar Central telefónica: (51)-43-310445 - Nuevo Chimbote – Ancash – Perú

www.uns.edu.pe

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil - EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 23 días del mes de mayo del año dos mil veinticuatro, siendo las 11: 00 horas, en el Aula C-1 de la Escuela Profesional de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución Nº 337-2023-UNS-CFI, con fecha 09.06.2023, integrado por los siguientes docentes: Ms. Edgar Gustavo Sparrow Alamo (Presidente), Dr. Atilio Rubén López Carranza (Secretario), Ms. Janet Verónica Saavedra Vera (Integrante), Ms. Felipe Eleuterio Villavicencio González (Accesitario) en base a la Resolución Decanal Nº 251-2024-UNS-FI se da inicio la sustentación de la Tesis titulada: "ESTUDIO HIDROLÓGICO EN LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIONES EN EL C.P. CASCAJAL-SANTA-ANCASH-2020", presentado por las Bachilleres: VALDERRAMA ACOSTA HEBER DANIEL con cód. Nº 0201413054, y YATACO MORILLO DAVID JOSUÉ con cód. Nº 0201413060, quienes fueron asesorados por la docente Ms. Janet Verónica Saavedra Vera, según lo establece la T. Resolución Decanal Nº 256-2020-UNS-FI, de fecha 01.10.2020.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
YATACO MORILLO DAVID JOSUÉ	17	BUENO

Siendo las 12.00 horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 23 de mayo de 2024.

Dr. Atilio Rubé

Ms. Edgar Gustavo Sparrow Alamo

Presidente

Ms. Janet Verónica Saavedra Vera

Integrante

www.uns.edu.pe

Digital Receipt

This receipt acknowledges that <u>Turnitin</u> received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

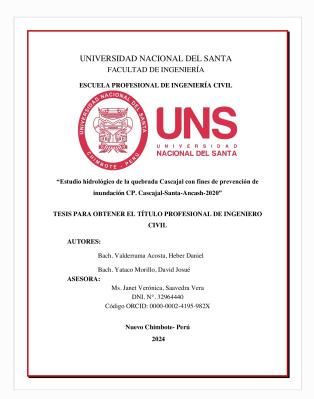
Submission author: Janet Saavedra Vera1

Assignment title: Revisión tesis

Submission title: Tesis Valderrama y Yataco

File name: TESIS_10-04-24.docx

File size: 20.8M


Page count: 146

Word count: 16,433

Character count: 90,217

Submission date: 11-Apr-2024 03:58PM (UTC-0500)

Submission ID: 2275395472

Tesis Valderrama y Yataco

ORIGINALITY REPORT	
18% 18% INTERNET SOURCE	4% 8% ES PUBLICATIONS STUDENT PAPERS
PRIMARY SOURCES	
pt.scribd.com Internet Source	4%
repositorio.unc.edu.p	1 %
bibdigital.epn.edu.ec	1 %
idoc.pub Internet Source	1 %
hdl.handle.net Internet Source	1 %
idbdocs.iadb.org Internet Source	1 %
7 repositorio.uns.edu.p	ne 1 %
Submitted to Universion María Student Paper	sidad Católica de Santa <1 %
repositorio.ana.gob.	pe <1 %

DEDICATORIA

A Dios por bendecirnos cada día y ayudarnos a levantarnos cada día a día para lograr nuestros objetivos.

A nuestros padres por brindarnos su apoyo y siempre estar a nuestro lado en cada paso de nuestra carrera universitaria.

A los docentes por ser parte de nuestro aprendizaje como profesionales.

AGRADECIMIENTO

A los docentes de la Escuela Profesional de Ingeniería civil por todas las enseñanzas, sabidurías y orientación dadas a lo largo de mi formación académica profesional.

A la "UNIVERSIDAD NACIONAL DEL SANTA", por brindarme formación profesional durante la permanencia en su institución.

INDICE

DEDICATORIA	IV -
AGRADECIMIENTO	V -
RESUMEN	XIII -
ABSTRACT	XIV -
CAPÍTULO I: INTRODUCCIÓN	15 -
1.1. ANTECEDENTES DEL PROBLEMA	15 -
1.2. FORMULACIÓN DEL PROBLEMA	16 -
1.3. OBJETIVOS	16 -
1.3.1. Objetivo General	16 -
1.3.2. Objetivos Específicos	16 -
1.4. JUSTIFICACIÓN	17 -
1.5. LIMITACIÓN DEL TRABAJO	17 -
1.6. HIPÓTESIS DE LA INVESTIGACIÒN	17 -
CAPÍTULO II: MARCO TEÓRICO	18 -
2.1. ANTECEDENTES DE LA INVESTIGACIÓN	18 -
2.1.1. Internacional	18 -
2.1.2. Nacional	19 -
2.1.3. Local	24 -
2.2. BASE TEÓRICA	24 -
2.2.1.Modelación hidrológica	24 -
2.2.1.1 Modelo hidrológico	24 -
2.2.1.1.1 Modelo HEC-HMS	26 -
2.2.1.2 Modelo Hidraúlico	26 -
2.2.1.2.1. Modelo HEC-RAS	27 -
2.2.1.2.2. Extensión HEC-GEORAS	27-
2.2.1.3 Cuenca Hidrográfica	27 -
2.2.1.3.1. Área de la cuenca	27 -
2.2.1.3.2. Perímetro de la cuenca	- 28 -

2.2.1.3.3. Longitud de máximo recorrido	28 -
2.2.1.3.4. Tiempo de concentración	28 -
2.2.1.4. Caudales maximos	28 -
2.2.1.4.1 Inundaciones.	28 -
2.2.1.4.2. Tipos de inundaciones	29 -
2.2.1.4.3. Riesgo de inundación	29 -
2.3. DEFINICIÓN DE TÉRMINOS	30 -
2.3.1. Modelo hidrológico	30 -
2.3.2. Modelo Hidráulico	30 -
2.3.3. Quebrada	30 -
2.3.4. Inundación	30 -
2.3.5. Precipitación	30 -
2.3.6. Escorrentía	30 -
2.3.7. Erosión	30 -
2.3.8. Caudal	30 -
CAPÍTULO III: MATERIALES Y MÉTODOS	31 -
3.1 MATERIALES	31 -
3.1.1 Información básica	31 -
3.1.2. Materiales, equipos y programas de cómputo	32 -
3.1.3 Ubicación de la cuenca en estudio	32 -
3.2. Metodología	33 -
3.2.1. Trabajo en campo	33 -
3.2.2. Trabajo en gabinete	33 -
3.2.3 Técnica y análisis de recolección de datos	52 -
3.2.4 Variables	53 -
CAPÍTULO IV: RESULTADOS Y DISCUSIONES	54 -
4.1. Modelamiento hidrológico	54 -
4.1.1. Determinación de los parámetros geomorfológicos e hidrológicos	54 -
4.1.1.1 Delimitación del área de aporte	57 -
4.1.1.2 Cálculo del número de curva y abstracción con AcrGis	54 -
4.1.1.3 Selección de los periodos de retorno	55 -
4.1.1.4 Análisis de la precipitación máxima 24 horas	- 55 -

4.1.1.5 Cálculo del tiempo de concentración y de retardo	58-
4.1.2. Cálculo del caudal con el HEC-HMS	59 -
4.2. Modelo hidráulico	60 -
4.2.1. Modelamiento hidráulico con Hec-RAS	60 -
4.2.1.1 Procesamiento del levantamiento topográfico	60 -
4.2.1.2 Determinación de la rugosidad	60 -
4.2.1.3 Cálculo de la pendiente del tramo en estudio	61 -
4.2.1.4 Modelamiento hidráulico (HEC-RAS)	61 -
4.2.2. Modelamiento hidráulico (Extensión Hec-GeoRas)	61 -
4.2.2.1 Generación de las áreas y mapas de inundación	61 -
4.3 DISCUSIONES	62 -
CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES	64 -
5.1. CONCLUSIONES	64 -
5.2. RECOMENDACIONES	65 -
CAPÍTULO VI: REFERENCIAS BIBLIOGRÁFICAS	66 -
CAPÍTULO VII: ANEXOS	74 -

ÍNDICE DE TABLAS

Tabla 1. Ubicación de las estaciones	31 -
Tabla 2. Tipos de suelos aprovechamiento de suelos identificados	36 -
Tabla 3. Variables que determinan el CN	38 -
Tabla 4. Períodos de retorno establecidos en cuatro categorías	38 -
Tabla 5. Valores para el cálculo del coeficiente de rugosidad mediante la ecuación (14) 39 -
Tabla 6. Operacionalización de las variables	46 -
Tabla 7. Parámetros geomorfológicos del área de estudio	54 -
Tabla 8. Valor del [CN] Pond y I_a	55 -
Tabla 9. Periodos de retorno (años) elegidos	55 -
Tabla 10. Precipitación máxima 24 horas a diferentes periodos de retorno	56 -
Tabla 11. Análisis de regresión para las 4 estaciones para Tr= 25 años	56 -
Tabla 12. Ecuaciones de regionalización de la precipitación	57 -
Tabla 13. Precipitaciones para cada periodo de retorno	58 -
Tabla 14. Valores obtenidos con diferentes métodos	58 -
Tabla 15. Resumen de los métodos elegidos con valores similares de tiempo de co	oncentración
	59 -
Tabla 16. Datos de entrada	59 -
Tabla 17. Caudales máximos a diferentes tiempos de retorno	60 -
Tabla 18. Rugosidad de Manning obtenida para el área en estudio	60 -

ÍNDICE DE FIGURAS

Figura 1. Coeficiente de correlación	42
Figura 2. Delimitación de cuenca	74
Figura 3. Histograma estación Buena Vista	76
Figura 4. Histograma estación Sihuas	77
Figura 5. Histograma estación Mollepata	79
Figura 6. Histograma estación Talla Guadalune	80

ÍNDICE DE ANEXOS

Anexo 1. CARTA NACIONAL (18-g)	73 -
Anexo 2. IMAGEN DE APOYO DEL GOOGLE EARTH USADA EN LA TESIS	74 -
Anexo 3. DATOS METEOROLÓGICOS PARA CADA ESTACIÓN	75 -
Anexo 4MAPA M1 – DELIMITACION DE LA CUENCA	81 -
Anexo 5. MAPA M2 – USO Y APROVECHAMIENTO DE SUELOS	88 -
Anexo 6. MAPA M3 – RANGO DE PENDIENTES	89 -
Anexo 7. MAPA M4 – GRUPOS HIDROLOGICOS	92 -
Anexo 8. MAPA M5 – UBICACIÓN DE ESTACIONES METEOROLOGICAS	85-
Anexo 9. AJUSTE DE DISTRIBUCIONES PROBILÍSTICAS PARA DIFER	ENTES
ESTACIONES	86 -
Anexo 10. GRÁFICOS Y ECUACIÓNES DE REGIONALIZACIÓN PARA DIFER	ENTES
PERIODOS DE RETORNO	88 -
Anexo 11. DISTRIBUCIÓN ESPACIAL DE PUNTOS DE ELEVACIÓN ELEGIDOS DI	ENTRO
Y FUERA DE LA SUB CUENCA	89 -
Anexo 12. MAPA M6 – GENERACIÓN DE ISOYETAS A TR=25 AÑOS	92 -
Anexo 13. MAPA M7 – GENERACION DE ISOYETAS A TR=50 AÑOS	93 -
Anexo 14. VALORES DE VARIABLES USADAS PARA CALCULAR LA PRECIPIT	ACIÓN
MEDIA	94 -
Anexo 15. PROGRAMA HEC-HMS	96 -
Anexo 16. RESULTADOS OBTENIDOS DEL PROGRAMA HEC HMS PARA 25 Y 50) AÑOS
DE PERIODO DE RETORNO	99 –
Anexo 17. UBICACIÓN Y ELEVACIÓN DE PUNTOS TOPOGRÁFICOS	100 -
Anava 18 PEREIL I ONGITUDINAL	101

Anexo 19. SECCIONES TRANSVERSALES - 10:	2 –
Anexo 20. COEFICIENTE DE RUGOSIDAD DE MANNING 10	17 -
Anexo 21. CÁLCULO DE LA PENDIENTE DEL TRAMO EN ESTUDIO 11	0 -
Anexo 22. PROGRAMA HEC-RAS 12	2 -
Anexo 23. MAPA M11 – ELEMENTOS GEOMETRICOS OBTENIDOS 12	:3 -
Anexo 24. MAPA M12 – AREAS INUNDADAS A TR=25 AÑOS 12	:4 -
Anexo 25. MAPA M13 – AREAS INUNDADAS A TR=50 AÑOS 12	25-
Anexo 26. CÁLCULOS DEL TIEMPO DE CONCENTRACIÓN Y DE RETARDO 12	6 -
Anexo 27. PANEL FOTOGRÁFICO 12	28-
Anexo 28. APLICACIÓN DEL PROGRAMA HEC-RAS 13	34-
Anexo 29. CARACTERISTICAS HIDRAULICAS DEL RIO CASCAJAL PARA 25 Y 50 AÑO	OS
DE PERIODO DE RETORNO 13	8 -
Anexo 30 CALCIJI OS ESTADISTICOS DE DISTRIBUCIONES	.9 _

RESUMEN

Esta investigación tuvo como finalidad determinar las zonas inundables ocasionadas por

una máxima avenida en la quebrada Cascajal – del distrito de Chimbote.

El tramo de estudio fue de aproximadamente 4.0 Km, por lo cual se realizó el levantamiento

topográfico en el mes de agosto 2022, acumulando 2 km de longitud aguas arribas y 2 km

aguas abajo desde el punto de estudio. La investigación fue de tipo aplicada. Se realizó el

procesamiento de datos mediante programa Hec-RAS y Hec-GeoRas. Concluyendo la

investigación determinando parámetros geomorfológicos e hidrológicos de la quebrada

Cascajal, donde se obtuvo caudales 16.5 m3/s y 29 m3/s a 25 y 50 años de periodo de

retorno respectivamente. Además, se identificó las áreas inundadas en dichos tiempos, el

cual representa 9.19 km2 de áreas inundadas totales y 5.03 km2 de áreas de cultivo en la

actualidad para un tiempo de retorno de 25 años; y 9.24 km2 de áreas inundadas totales y

5.03 km2 de áreas de cultivo en la actualidad para un tiempo de retorno de 50 años.

Palabras claves: Estudio hidrológico, quebrada, Cascajal

XIII

ABSTRACT

The purpose of this investigation was to determine the flood zones caused by a maximum

flood in the Cascajal ravine – in the district of Chimbote.

The study section was approximately 4.0 km, for which the topographic survey was carried

out in the month of August 2022, accumulating 2 km in length upstream and 2 km

downstream from the study point. The research was of an applied type. Data processing

was carried out using the Hec-RAS and Hec-GeoRas software. Concluding the research by

determining geomorphological and hydrological parameters of the Cascajal stream, where

flow rates of 16.5 m3/s and 29 m3/s were obtained at 25 and 50 years of return period

respectively. In addition, the flooded areas were identified at said times, which represents

9.19 km2 of total flooded areas and 5.03 km2 of crop areas at present for a return time of

25 years; and 9.24 km2 of total flooded areas and 5.03 km2 of crop areas at present for a

return time of 50 years.

Keywords: Hydrological study, ravine, Cascajal

XIV

CAPÍTULO I: INTRODUCCIÓN

1.1 ANTECEDENTES DEL PROBLEMA

El estudio de las precipitaciones en sus diferentes formas y el escurrimiento superficial, así como investigaciones de las causas y consecuencias de los desastres naturales, enriquecen aquellos estudios de desastres relacionados a fenómenos meteorológicos excepcionales y al cambio climático. La predicción e investigación de fenómenos naturales de precipitaciones máximas, especialmente inundaciones, hace aproximadamente 20 años, fue una situación muy compleja que involucraba innumerables análisis empíricos y cálculos cuantiosos; por lo cual no se lograron tener adecuadas decisiones en tiempos precisos que eran necesarias para la prevención de dichos fenómenos.

En el presente, los modelamientos hidrológicos e hidráulicos hacen que el procesamiento de la información sea mucha más fácil, debido a que realizan cálculos en corto tiempo y en diferentes escenarios, simulando las consecuencias futuras, de tal manera se tome acciones de prevención y correctivas, para proteger a los pueblos y los cultivos. En nuestro departamento, la mayoría de las quebradas no cuenta con investigaciones de esta envergadura, donde solo se basaron en el análisis de ciertos tramos, sin prever los problemas que se ocasionarían aguas arriba; y que estos tengan consecuencias desfavorables.

En la quebrada Cascajal es preciso realizar investigaciones acerca de modelamientos hidrológicos e hidráulicos ya que es una de las zonas que se encuentra en el valle de santa y presenta pueblos adyacentes en su recorrido, por el cual es necesario la prevención de desastres en los lugares más críticas (diques de material propio, defensas vivas, muros de contención, entre otras propuestas de solución).

1.2 FORMULACIÓN DEL PROBLEMA

¿Cuáles son las áreas de inundación producto de una máxima avenida en la quebrada Cascajal, que son un alto riesgo para la localidad de Cascajal y en qué medida se puede prevenir desastres de la manera más eficiente?

1.3 OBJETIVOS

1.3.1 Objetivo General

Elaborar la zonificación las áreas inundables ocasionadas por la quebrada Cascajal, zona Cp. Cascajal producto de una máxima avenida, mediante modelamiento hidráulico e hidrológico e identificar medidas de prevención ante posibles desastres.

1.3.2 Objetivos Específicos

- Recopilar y procesar información cartográfica y topográfica para caracterizar la quebrada Cascajal.
- Seleccionar y procesar datos hidrológicos (intensidades máximas de precipitación).
- Estimar caudales máximos con un modelamiento hidrológico, estimando un riesgo de predicción admisible a la zona de Cascajal.
- Describir las áreas inundables de la zona de estudio producto de una máxima avenida en la quebrada Cascajal del CP. Cascajal.
- Proponer medidas estructurales y no estructurales que reduzcan el riesgo de inundación existente en la quebrada Cascajal

1.4 JUSTIFICACIÓN

Con esta investigación se pretende contribuir a la búsqueda de medidas de prevención y posibles soluciones que protejan a los pobladores de Cascajal frente a fenómenos naturales como inundaciones, debido a las circunstancias indicadas se están considerando el tramo en la quebrada Cascajal 2km aguas abajo y 2km aguas arriba para proponer el tipo de defensa más eficaz tanto en el margen izquierdo como margen derecha, según la determinación de las áreas más afectadas a ser inundadas. Por ello en el aspecto social es importante ya que busca dar mayor seguridad a los habitantes de las casas aledañas a la quebrada. De igual manera aspecto metodológico busca con el análisis y los resultados obtenidos servir de apoyo para futuras investigaciones que provean información acerca de las posibles zonas mas afectadas para su prevención. Además, en el aspecto ambiental y económico busca brindar información de cuales son las zonas que requieren mejoramiento en sus defensas de la quebrada Cascajal ante una avenida, con el fin de evitar el daño de los terrenos con vegetaciones y de las viviendas cercanas para no generar pérdidas materiales y económicas por los gastos que involucraría su reactivación.

1.5 LIMITACIÓN DEL TRABAJO

- Difícil acceso al lugar de investigación, Cascajal, debido a que no hay mucho transporte que va por esa ruta.
- Poca información acerca de estudios hidrológicos realizados anteriormente en las quebradas del país.

1.6 HIPÓTESIS DE LA INVESTIGACIÓN

Si realizamos el estudio hidráulico e hidrológico de la quebrada Cascajal, se determinará medidas de protección de desastres ante una eminente avenida.

CAPÍTULO II: MARCO TEÓRICO

2.1 ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1 Internacional

Florencia & Damián (2018), en su estudio denominado "Estudio Hidrológico de la Cuenca Alta del Río Neuquén", tuvo como finalidad analizar la variabilidad en su Cuenca en estudio y su asociación con fenómenos hidrometeorológicos, durante los 2000-2014, el cual se basó principalmente en la relación acerca del fenómeno ENOS, teniendo en cuenta el índice Oceánico del Niño y el índice de oscilación Sur, además utilizaron el procesamiento de imágenes satelitales ópticas, junto a ello datos temperatura, precipitación, caudal y aquellos equivalentes de agua de nieve, y se basaron en la data de información geográficas y herramientas estadísticos. La investigación encontró una asociación entre las variables, pero su correlación tuvo un valor moderado ya que obtuvieron un valor r de 0,38 respecto a índice Oceánico del Niño y -0,17 índice de oscilación Sur (nivel significancia 5%), a su vez también encontraron una correlación débil y moderada entre la temperatura, precipitación, caudal. El trabajo concluye mencionando que dentro de los sectores de la Cuenca se presenta una relación positiva entre la recarga hídrica y drenaje de la cuenca del Rio.

Moya & Álvarez (2018), en su tesis titulada "Modelación hidráulica de un canal urbano en la ciudad de Bogotá, caso de estudio: canal rio negro", el cual tuvo la finalidad de determinar el estado hidráulico del canal y la delimitación de la zona de afluencia, además busco desarrollar un modelo hidráulico para analizar los caudales máximos que puedan provocar desbordamientos en dicho canal. La investigación encontró que el canal presenta velocidades de flujo promedio de 1m/s y velocidades máximas de 2 m/s con ángulos de

34.8° en margen derecha y 33,7° en margen izquierda en aguas abajo, teniendo el canal una base entre 3-16 metros; además con el análisis realizado con HEC RAS, lograron determinar caudales de desbordamiento en cada tramo del canal, mostrando que entre KM 1+127en la sección 15 hasta KM 1+47 en la sección 18 es el tramo más crítico ya que presenta un caudal de 7.3 m3/s. El trabajo de investigación concluyo dando a conocer que aquellos habitantes de la zona que se encuentran dentro del tramo critico son vulnerables a los desbordamientos que se producirá por lo cual recomienda mantenimientos constantes del canal.

2.1.2 Nacional

Miranda & Rodríguez (2020), en su estudio "Modelamiento hidráulico de la quebrada San Carlos, con fines de prevención; Distrito Laredo – Trujillo, La Libertad" de tipo teórica, cuantitativa, transversal y diseño descriptivo, el cual tuvo como objetivo determinar aquellas zonas vulnerables a inundaciones debido a las máximas avenidas que presenta la quebrada. La investigación realizo estudios topográficos e hidrológicos mediante levantamiento el cual se hizo en un recorrido de 3 km desde la salida de la cuenca hacia aguas abajo, también hicieron uso de software (autocad, civil 3D, Global Mapper, Hec Ras, entre otro) para procesar los datos recopilados de los estudios hidrológicos y topográficos encontrados, el cual les permitió determinar aquellas zonas críticas. El trabajo concluyo recomendando que en las zonas afectadas se implemente un muro de contención a base de gavión y un canal de evacuación, para prevenir futuros daños e inundaciones en dichos sectores.

Oyola & Medina (2019), en su investigación "Estimación de caudales máximos con fines de prevención de inundaciones aplicando el modelo hidrológico HEC-RAS, caso Rio

Zarumilla – 2018", tuvo la finalidad determinar los posibles lugares inundables, con el fin de prevenir que los pobladores del Distrito Papayal en Zarumilla-Tumbes, tenga daños económicos, y sobre todo evitar pérdidas humanas; para ello en la investigación hicieron uso de Software hidroest2 y media aritmética, el cual se evaluó durante 6 periodos de retorno en diferentes años, además levantaron topográficamente estructura que con ayuda de GPS, luego fue analizado y procesado en Excel y el Software ArcGIS 10.3, también realizaron cálculo de hidráulica y dieron a conocer mapas de las zonas de inundación con sus respectivos caudales que se producirían dentro de 2(445.07 m³/s), 5 (722.00m³/s), 10 (889.71 m³/s), 25 (1089.76 m³/s),50 (1231.50 m³/s) y 100 (1368.59 m³/s) año. El trabajo de investigación concluyo mencionando que las zonas que se consideran más vulnerables a daños provocados por desbordamiento del rio, son aquellas que se ubican en llanuras dentro de los márgenes del rio Zarumilla, por lo cual recomiendan a las personas que viven o trabajan en dichos terrenos cercanos se han traslados a otro lugar o colocar muros.

Bejarano (2018), desarrolló su tesis titulada "Modelamiento hidráulico del río Jequetepeque desde el km 0+000 al km 10+000, con fines de prevención, Pacasmayo, la Libertad 2018", de tipo descriptiva e inductivo, el cual tuvo como finalidad desarrollar modelamiento hidráulico en el rio Jequetepeque con el objetivo de lograr prevenir futuras inundaciones. La investigación realizo análisis topográficos e hidrológicos, donde hallaron tramos críticos, perteneciente a los caudales máximos dentro del periodo de retorno de 10,25,50,100,150 años además presentaba gran crecimiento de árboles. Concluyendo el estudio que la mejor solución para esto es diseñar diques enrocados.

Irigoín (2020), en su tesis titulada "Modelación hidráulica e hidrológica de eventos para la predicción de escenarios de riesgos en la microcuenca de la quebrada Juninguillo – Moyobamba, 2018", tuvo como objetivo desarrollar simulaciones hidráulicas e hidrológicas para prevenir riesgos de inundaciones. La investigación hizo uso de datos brindados por SENAMHI, y para su procesamiento de la información utilizaron software HEC-HMS el cual sirvió como modelación hidrológica, encontrando como resultados los valores de caudales para periodos de retorno de 50(24,00 m3/s), 100 (29,20 m3/s), 150 (32,50 m3/s) y 500 (44,00 m3/s) años, y para la modelación hidráulica utilizaron software HEC-RAS, obteniendo los datos de las zonas inundaciones dentro de los periodos de retorno anteriormente mencionado, concluyendo en el monitoreo del comportamiento de la hidráulica pluvial mediante la implementación de una estación meteorológica.

Trigoso (2018), en su investigación "Modelamiento hidráulico de la quebrada Calispuquio – tramo ciudad de Cajamarca – ciudad universitaria, con fines de prevención de inundaciones" de tipo descriptivo, tuvo como objetivo determinar cuáles son las zonas propensas a inundaciones debido a avenidas máximas en la quebrada Calispuquio; el tramo a investigar fue de una longitud de 3.2 km de un terreno de o.78 mk2, donde utilizaron estudios topográficos, cartográficos, hidrológicos e hidráulicos, para su procesamiento y posterior análisis usaron software tales como AutocaCAD, ArcGis, Global Mapper e Iber. La investigación encontró riesgo de 10% con caudales de máxima avenida en los periodos de retorno 50,100,200,300 y 500 años; y área de inundación 10.8 ha, con riesgo muy alto, por lo cual propone medidas preventivas tales como limpieza del canal, colocación de muros, etc.

Arias (2019), en su estudio denominado "Alternativas para la estabilización de las quebradas en el tramo puente los Ángeles – puente Ricardo palma con fines de mitigación de huaycos" de tipo no experimental y diseño descriptivo, tuvo como finalidad la elaboración de alternativas para prevenir huaycos de los tramos Puente los Ángeles-Ricardo Palma". El estudio recopilo datos de topografía de las cartas nacionales además se utilizó datos de geología, geotécnica, geomorfología e hidrología del tramo a estudiar, para su posterior procesamiento y análisis estadístico. El trabajo concluyo proponiendo estructuras como diques de contención y obras de drenaje para aquellas zonas con riesgo de huaycos y que en todas las quebradas deben recibir mantenimiento continuo.

Loyola (2019), en su estudio titulada "Evaluación del riesgo por inundación en la quebrada del cauce del Río Grande, tramo desde el Puente Candopata hasta el Puente Cumbicus de la ciudad de Huamachuco, Provincia de Sánchez Carrión — La Libertad", de tipo descriptivo, buscó determinar el riesgo de ser inundado por la quebrada Rio Grande donde incluyeron como población de estudio 31 familias aledañas al cauce del río. El estudio recopilo datos meteorológicos, mapas de INDECI, CEPPLAN Y CEDEPAS, y realizo cuestionarios para evaluar la población en riesgo encontrando alta vulnerabilidad (51-75%) de dichas zonas a posibles inundaciones. El trabajo de investigación concluye proponiendo la prevención y la ejecución de medidas protectoras tales como el enrocamiento lateral de sus márgenes del Río.

Portella & Villafuerte (2020), en su trabajo de investigación denominado "Evaluación del riesgo de inundación del río Cascajal en el entorno del caserío de Sincape (distrito de Olmos) y análisis de alternativas de solución", tuvo como finalidad identificar las áreas

inundables en Sincape y evaluar el riesgo que presenta la población ante las inundaciones. La investigación utilizó programas HEC-RAS, Arc MAP y HEC-GEORAS para procesar la información recopilada posterior a ello se logró desarrollar mapas de las zonas inundables del Río Cascajal para periodos de retorno 100 y 200 años, planteando, así como alternativa solución enrocamiento en los márgenes más vulnerables del Río.

Espinoza & Neyra (2019), en su tesis titulada "Modelamiento hidráulico e hidrológico de la quebrada Bomboca, zona urbana del centro poblado Chunchuquillo, para condiciones extremas, usando HEC-RAS", de tipo aplicada y experimental, tuvo como objetivo el modelamiento del comportamiento hidráulica de la quebrada Bomboca usando regímenes hidrológicos. El trabajo de investigación encontró caudales máximos de periodos de retorno: 2 (24.624m3/s), 5 (38.528 m3/s), 10 (50.863 m3/s), 25 (70.842 m3/s), 50 (96.712 m3/s), 200 (119.642 m3/s),500 (149.293 m3/s) años, además hallaron que los niveles máximos de inundación fueron de aprox. 3.50m. El trabajo concluye mencionando que las zonas que tienen alta vulnerabilidad son las que se encuentra dentro del margen derecho en la quebrada, por lo cual recomendaron ejecutar de inmediato medidas preventivas.

Antícona et al. (2021), en su estudio titulado "Modelamiento Hidrológico de la Quebrada San Idelfonso mediante SIG en Trujillo, La Libertad 2020" de tipo descriptivo y diseño no experimental, corte longitudinal, tuvo como finalidad desarrollar un modelo hidrológico en la quebrada (San Idelfonso), mediante la recopilación de datos de los últimos 50 años del sistema geográfico de Trujillo y para el procesamiento y análisis se utilizaron software ArcGIS, HEC-RAS, HEC-HMS y Civil 3D. La investigación determinó mapas de la ubicación, precipitaciones de la quebrada, encontrando que en los años 1983,1998 y 2017

se presentó altas precipitaciones, además se identificó las zonas vulnerables. Concluyendo dando alternativas como el desarrollo de modelos hidrológicos para prevenir avenidas y deslizamientos futuros de la quebrada.

2.1.3 Local

Aguilar & Rodríguez (2019), en su tesis titulada "Evaluación del riesgo y vulnerabilidad en el distrito de Nuevo Chimbote ante una precipitación intensa en la quebrada San Antonio, 2019" de tipo descriptiva, el cual tuvo como objetivo determinar la vulnerabilidad y el riesgo de la ciudad de Nuevo Chimbote, debido a precipitaciones intensas en la quebrada San Antonio, para ello la investigación utilizo Manual de estimaciones de riesgo de inundaciones pluviales, determinando así que dicho distrito tiene alto nivel de peligro, vulnerabilidad y riesgo de inundaciones.

2.2 BASE TEÓRICA

2.2.1 Modelación hidrológica

Es un mecanismo de alta relevancia en el estudio de las avenidas, el cual se maneja en todas partes, sobre todo en aquellos lugares muy desarrollados, además hoy en día es de gran importancia para el análisis y prevención las futuras inundaciones también sirve como planteamiento de hipótesis principalmente realistas o previsibles los cuales brinden a la toma de decisiones un mayor grado de confianza tanto para ordenar el territorio en relación a los ríos o según criterios en base a obras e infraestructuras que sean especialmente útiles en situaciones de emergencias tales como lluvias intensas (Dueñas, 1997)

2.2.1.1 Modelo hidrológico. Está representada por un sistema complejo y real que se presenta mediante un prototipo, el cual se muestra bajo la forma física o matemática. En cuanto a la forma matemática, está representado por un sistema real con expresión analítica

y en forma físico el sistema real está representado por la "cuenca hidrográfica" y todos los componentes que forma parte del ciclo hidrológico (IDEAM,2014)

El modelo hidrológico hace uso de métodos que evalúan la escorrentía y precipitación con hidrogramas que determinan dicho efecto de manera directa la escorrentía que son producidos al precipitar una cuenca dentro de un período de retorno determinado. A su vez facilita el desarrollo de simulaciones de aquellos procesos hidrológicos según el nivel de situaciones o de forma continua; las simulaciones de nivel de situaciones asemejan el comportamiento hídrico que se produce ante una precipitación mientras aquellas de continua simulación son las que comprendan un tiempo con diferentes periodos de eventos dentro de ese tiempo (Estrada & Pacheco, 2012)

La finalidad del sistema hidrológico es conocer cómo se da la operación de este sistema y saber predecir su salida. Dentro de sus variables mensurables se encuentra las entradas y salidas del sistema hidrológico; y dentro de su estructura hace uso de ecuaciones donde se analiza las entradas y salidas. Las variables que se consideran dentro de las entras y salidas son: precipitaciones, infiltraciones y escorrentías (Chow, Maidment & Mays,1994)

2.2.1.1.1 Precipitación. Se define como el volumen de agua que cae sobre la superficie terrestre y conlleva a la humedad atmosférica, esto se presenta en forma de lluvia o como nieve o granizo; siendo las precipitaciones un proceso muy importante dentro del ciclo hidrológico (Chow et al, 1994)

2.2.1.1.2 Precipitación efectiva. Se denomina como aquel exceso de precipitación, donde aquellas sustancias que llegan a la superficie terrestre no se retienen

y no se llegan a infiltrar, debido a que hay precipitación en exceso que posteriormente se produce cuando sale por la cuenca como escorrentía directa (Chow et al, 1994)

- **2.2.1.1.3 Medición de precipitaciones.** Es aquella medición que se hace a nivel del agua que se genera dentro de una superficie horizontal y se representa en términos (altura de las láminas de agua) expresado en milímetros (Puelles, 2015)
- 2.2.1.1.4 Escorrentía. Aquella cantidad de agua que se encuentra cuando llega a las corrientes superficiales, continuas o intermitentes de una cuenca, la cual inicialmente fue parte de una precipitación. Una escorrentía depende de factores meteorológicos (temperatura, precipitaciones), geográficos (ubicación, morfología geográfica de la cuenca), biológicos (Cunya & Atoche, 2017)
- 2.2.1.1.5 Modelo HEC-HMS. Este modelo fue diseñado con el fin de crear en hidrogramas la salida de varias subcuencas o una cuenca, haciendo uso de hietogramas con diseño, que evalúan perdidas productos de infiltración, conversión y flujo de base de las lluvias que se presenta en escorrentía directa. Los elementos de este diseño son: modelo de una cuenca y meteorológico, serie conformada por datos, interfaz del usuario y especificaciones de control (Menéndez & Re, 2009)
- 2.2.1.2 Modelo hidráulico. Son aquellos prototipos que hacen uso de la matemática para describir el flujo en canales abiertos, ríos, lagos, humedales, etc. Así como también sirve de ayuda para determinar las profundidades y velocidad del agua en las inundaciones (Cersa, 2021)
- **2.2.1.2.1 Modelo HEC-RAS.** Modelo unidimensional, que sirve para análisis hidráulicos del flujo de agua en lamina libre tanto en un régimen no permanente y

permanente. La simulación hidráulica se basa en datos de información geométrica y de flujo (Army Corps of Engineers, 2008)

En régimen hidráulico permanente se encarga principalmente de desarrollar cálculos de los perfiles de las superficies de agua que se da en un flujo variado gradualmente con el fin de analizar dentro del cauce sus canales, para desarrollar así modelos de flujos subcríticos, supercríticos y mixtos; mientras el régimen hidráulico no permanente se basa en el diseño de modelo de aquellas zonas de inundación y a su vez estudios que controlan las crecidas de las aguas (CIWR HEC, 2015)

2.2.1.2.2 Extensión HEC-GEORAS. Son procedimientos y herramientas desarrollados para el procesamiento de información georreferenciales, los cuales son de gran ayuda cuando se utiliza HEC-RAS además que es una herramienta creada para ArcGIS. Dicha herramienta lo que hace es crear archivos con información acerca del terreno, cauces del rio y secciones transversales que luego son importados a HEC-RAS, además se puede exportar de HEC-RAS a ArcGIS aquellos datos de calados y velocidades, los cuales posteriormente ayuda a crear mapas donde se identifique las zonas vulnerables a inundaciones (Ackrerman, 2009)

2.2.1.3 Cuenca Hidrográfica. Zona de terreno que convergen las aguas cuando caen debido a una precipitación, las cuales son transportadas siguiendo un solo curso por un mismo cauce (Villon, 2004)

2.2.1.3.1 Área de la cuenca. Zona que se presenta proyectada horizontalmente y de forma irregular, es importante ya que influye en el volumen de agua de la cuenca y su

magnitud de sus caudales. La proyección horizontal se puede evaluar topográficamente con el uso de AutoCAD Civil, Raster (Villon, 2004)

- 2.2.1.3.2 Perímetro de la cuenca. Nivel del borde que forma una cuenca cuando se encuentra horizontalmente en un plano, comúnmente tiene forma de bordes irregulares, que permite determinar la concentración de la cuenca en un determinado tiempo (Villon, 2004)
- 2.2.1.3.3 Longitud de máximo recorrido. Distancia que mide el cauce principal, desde el punto de efluencia al punto de división de las aguas máximas (Villon, 2004)
- **2.2.1.4 Caudales máximos.** Es la mayor cantidad de agua que transcurre por un área provocado por alta precipitación, importante en diseños hidráulicos (alcantarillas, canales, conductos, etc) y predecir inundaciones (Sotero, 1987)
- **2.2.1.4.1 Tiempo de concentración.** Periodo de tiempo transcurrido cuando cae una gota de agua desde la parte más alejada hasta la salida de la cuenca, el cual depende de sus características topográficas y geográficas (Villon, 2004)
- 2.2.1.4.2 Periodo de retorno. Número de años o frecuencia de presentación de un evento (Gutiérrez, 2010)
- **2.2.1.5 Inundaciones.** Salida del agua fuera de cualquier masa de agua ya sea ríos, quebradas, acumulación de aguas que no fueron drenadas, etc (IDEAM,2017) las cuales afectan a los que viven en zonas planas bajas, donde no hay una área verde e infiltración de agua y se encuentren cerca a orillas de agua (CENAPRED, 2009)

2.2.1.5.1 Tipos de inundaciones. Por su duración existe inundaciones rápidas y lentas; las de tipo rápidas se producen por elevadas precipitaciones con fuerte pendiente producidos en cauces de ríos, siendo la inundación más frecuente en las poblaciones; en cuanto a las inundaciones lentas se produce cuando las precipitaciones son duraderas y continuas, ya que aumentan su volumen a medida que trascurre el tiempo pero no generan un desbordamiento de aguas, se producen principalmente en zonas planas cercanas a las aguas (CENEPRED, 2014)

Por su origen tenemos inundaciones pluviales y fluviales; las inundaciones pluviales, se producen por concentración de agua de lluvia moderadas y persistentes en un área determinada, sin que haya crecida de las aguas; y las inundaciones fluviales, se desarrollan por crecida de aguas de ríos y arroyos (CENEPRED, 2014)

2.2.1.5.2 Riesgo de inundación. Son aquellos factores que determinan la forma de presentación de la intensidad de inundación, el cual depende de las características del terreno (tipos, usos del suelo), como se distribuye la vegetación, red de drenaje, litología, pendiente de la cuenca y las obras que presente sus cauces (INDECI, 2011)

2.3 DEFINICIÓN DE TÉRMINOS

- **2.3.1** *Modelo hidrológico*. "Representación reducida de un sistema complejo y real denominado prototipo, que se presenta de manera matemática o física" (IDEAM,2017)
- 2.3.2 Modelo Hidráulico. "Construcción digital (virtual) de una red de distribución de agua, que permite reproducir y prever el comportamiento de la misma, para poder realizar pruebas y definir soluciones" (Beerhalte, s.f)
 - 2.3.3 Quebrada. "Arroyo o riachuelo que corre por una quiebra" (RAE,2014)
- 2.3.4 Inundación. "Salida de una masa de agua de su cauce, que abarca zonas que normalmente son secas" (ONEMI, 2020)
- **2.3.5** *Precipitación.* "Agua atmosférica, que se presenta de forma sólida o líquida el cual se almacena dentro de la superficie de la tierra" (RAE,2014)
- **2.3.6** Escorrentía. "Corriente de agua que se sale de donde se encuentra almacenado que pueden ser de cauces naturales o artificiales" (RAE,2014)
- 2.3.7 Erosión. "Deterioro de un área terrestre ocasionada por agentes externos (agua, viento)" (RAE,2014)
- 2.3.8 Caudal. "Volumen de agua que recorre a través de un canal o río en una unidad de tiempo" (Caudal, s.f)

CAPÍTULO III: MATERIALES Y MÉTODOS

3.1 Materiales

3.1.1 Información Básica

3.1.1.1 Información Cartográfica e Imágenes Satelitales. En la obtención de la información cartográfica se empleó la carta nacional a escala 1:100,000, hoja 18-g (Santa Rosa), descargada del portal del MINEDUM. En el Anexo 1 se muestra la carta nacional empleada. Se usó la información AP_22129_FBS_F7000_RT1.dem (datos ASF).

Para la visualización se utilizó imágenes de Google Earth y SAS Planet (Anexo 2)

3.1.1.2 Información Topográfica. Se obtuvo mediante levantamiento topográfico del tramo de estudio con estación total. Se realizó en el mes de agosto del 2022, acumulando 2 kilómetro de longitud aguas arriba y 2 kilómetros aguas abajo desde el punto de estudio.

3.1.1.3 Información Pluviométrica. La información se obtuvo del SENAMHI, donde se muestra la ubicación de las 4 estaciones usadas en la siguiente tabla:

Tabla 1. *Ubicación de las estaciones*

Ubicación / Estación	Latitud (W)	Longitud (S)	Altitud (msnm)
Sihuas	08° 34' 0 "	77° 39' 0 "	3361
Mollepata	08° 11' 28.93"	77° 57' 14.3"	2709
Buena Vista	09° 26' 1.38 "	78° 12' 29.8 "	206
Talla (Guadalupe)	07° 16' 48.33"	79° 25' 8.61"	117

En el Anexo 3, se presentan los datos meteorológicos obtenidos de las precipitaciones máximas en 24 horas para cada estación y aplicados en la tesis.

3.1.2 Materiales, Equipos y Programas

- Estación total
- GPS
- 03 prismas
- Wincha (50 metros)
- Cuaderno de anotaciones
- Lápiz y lapicero
- Cámara fotográfica
- Laptop
- **Programas**: Paquete Microsoft Office 2010 (Excel, Power Point, Word), ArcGis 10.2, HEC RAS 5.0, HEC HMS 4.0, HidroEsta, Autocad Civil 3D. Extensión para los modelos: Hec-GeoRAS

3.1.3 Ubicación de la Cuenca en Estudio

- 3.1.3.1 Ubicación Geográfica. Localidad: Quebrada Cascajal zona Cp. Cascajal/ Distrito: Chimbote / Provincia: Santa / Departamento: Ancash
- **3.1.3.2 Limites de estudios.** Quebrada Cascajal, zona Cp. Cascajal el cual se está considerando 2km aguas arriba y 2km aguas abajo.

3.2 Metodología

La investigación es de tipo aplicada, donde inicialmente se hizo una recopilación de información hidrometeorológica de cuatro estaciones pluviométricas tomadas del portal web oficial del SENAMHI, y luego mediante el modelo matemático HEC HMS se simuló el análisis del modelamiento hidrológico de la cuenca en la quebrada Cascajal con la finalidad de conocer el caudal máximo para los periodos de retorno de 25 y 50 años. Luego con el modelamiento Hidráulico se simuló mediante el programa HEC RAS los comportamientos de estos caudales máximos en el tramo de estudio de 2km aguas arriba y 2km aguas abajo del punto de estudio el cual interseca áreas de cultivo y zonas de viviendas, con la finalidad de determinar áreas inundables y de esta forma se propuso medidas de prevención estructurales con gaviones.

3.2.1 Trabajo en Campo. Consistió en dos fases:

- 3.2.1.1 Hidrológica. Comprende la observación de los rasgos geomorfológicas de la sub cuenca (cobertura, relieves y tributarios).
- **3.2.1.2 Hidráulica.** Es donde se realiza el levantamiento topográfico tomando en cuenta la forma del rio, bordes del cauce, áreas de cultivos y vivienda las cuales son propensas a ser inundadas, así como también la observación del material fluvial en todo el ancho del rio, vegetación en los bordes, sinuosidad del rio, etc.

3.2.2 Trabajo en Gabinete

3.2.2.1 Recopilación de Información. Se obtuvo con parámetros de simulación hidrológica del programa HEC HMS y simulación hidráulica con programa

HEC RAS, el cual obtuvo de investigar libros, tesis, data de internet, basados en hidrología e hidráulica.

3.2.2.2 Modelamiento Hidrológico

de los caudales que se requieren.

3.2.2.2.1 Determinación de los Parámetros Geomorfológicos e Hidrológicos. Estos parámetros fueron obtenidos del procesamiento con el software ArcGis 10.1, apoyándose en la información raster ASTGTM_S10W078_dem e historial de datos de máxima precipitación dentro de las 24 horas en 4 estaciones cercanas del área de estudio respectivamente, posteriormente se desarrolló el modelo hidrológico y obtención

3.2.2.2.1.1 Delimitación del Área de Aporte. Para la delimitación del área de estudio comprendida en la Sub cuenca se hizo uso del programa ArcGis 10.1, paquete de herramientas Spatial Analyst Tools e información de un Modelo Digital de Elevación (DEM) obtenida del Geoservidor del Ministerio del Ambiente (MINAM); los posteriores procesos se describen a continuación:

- Fill Sinks: Con esta herramienta se corrige el DEM el cual rellena las imperfecciones que se hallan en la superficie para que las celdas en depresión lleguen a nivel del terreno, para la obtención de la dirección del flujo. ArcToolbox > Spatial Analyst Tools > Hydrology > Fill
- Flow Direction: define la direccionalidad del flujo el cual busca cambiar de manera descendente dentro de una celda a otra. ArcToolbox > Spatial Analyst Tools > Hydrology
 Flow Direction

- Flow Acumulation: Genera el ráster de acumulación de flujo en cada una de las celdas.
 Se determina el número de celdas de aguas arriba que vierten sobre cada una de las celdas inmediatamente aguas debajo de ella. ArcToolbox > Spatial Analyst Tools > Hydrology
 > Flow Accumulation
- Luego se determina el punto donde inicia el tramo de estudio, con la creación de shapefile (tipo punto), luego se interpoló con el modelo de elevación digital (DEM) para determinar las 3 dimensiones de las coordenadas. ArcToolbox > 3D Analyst Tools > Functional Surface > Interpolate Shape
- Watershed: esta herramienta usa el ráster generado en Flow Direction y muestra el punto de desfogue interpolado. ArcToolbox > Spatial Analyst Tools > Hydrology > Watershed

Para finalizar, para la obtención del polígono dentro del área de estudio basta convertir el ráster a shapefile tipo polígono. *ArcToolbox* > *Conversion Tools* > *From Raster* > *Raster to Polygon*

3.2.2.2.1.2. Cálculo del Número de Curva (CN) y abstracción inicial con ArcGis. El número de curva es un índice que mide la potencialidad de que se produzca escorrentía en una cuenca y es inversamente proporcional a la máxima capacidad de retención de la misma. Se representa mediante un número adimensional, las que varían entre 0 y 100; donde un área con CN=0 no tiene escurrimiento y otra con CN=100 es impermeable y toda la precipitación genera escorrentía.

La abstracción inicial (Ia) incluye todas las pérdidas antes de que se inicie el escurrimiento. Se trata de un parámetro variable, pero al analizar los resultados obtenidos para un gran número de cuencas experimentales de pequeñas dimensiones, se desarrolló una ecuación empírica:

$$I_a = 0.2 * S \tag{3}$$

La retención potencial máxima (S) y los datos básicos obtenidos de la cuenca guardan relación por medio del parámetro intermedio y el número de curva (CN) por lo que es calculado con la siguiente ecuación:

$$S = \frac{2540}{CN} - 25.4\tag{4}$$

El número de curva (CN) es un valor característico de la zona que se obtiene mediante tablas donde se anotan las características del suelo, pendiente y cubierta vegetal.

Uso y Aprovechamiento de Suelos: Determinada con ayuda de la imagen satelital Landsat, donde se clasifica mediante ArcGis, que fueron asemejados con las imágenes de visualización directa como el Google Earth y SASplanet.

Tabla 2.

Tipos de suelos aprovechamiento de suelos identificados

USO Y APROVECHAMIENTOS DE SUELOS Pradera pobre

La siguiente variable que fue necesario utilizar para obtener la cantidad de la curva fueron elaboradas con tablas presentadas por el autor Temez (1978), es la característica hidrológica donde se asemeja la forma que se cultiva un terreno. Se dividen en dos grupos: R (cultivo que sigue la línea de máxima pendiente) y N (cultivo que sigue las curvas de nivel).

Pendiente: variable importante para identificar número de curva es la pendiente, clasificada en función de las condiciones hidrológicas para la infiltración, es decir buena si la pendiente es menor del 3%, y mala si es mayor o igual al 3%; para ello se utilizó un Modelo de Elevación Digital. (ArcToolbox > Spatial Analyst Tools > Slope > Reclassify)

Grupo Hidrológico: es importante en la generación de escorrentía y naturaleza del suelo. Se denomina "Grupo hidrológico del suelo" al suelo que comprende las 4 clases de permeabilidad de acuerdo a su profundidad y textura donde: elevada (Grupo A), moderada (Grupo B), escasa (Grupo C) y nula (Grupo D). (Ibáñez A., et al, Pág.8)

Grupo A: Es el menor de las escorrentías, el cual incluye los suelos de mayor permeabilidad a pesar de estar saturados. Comprenden terrenos profundos sueltos a base de arena o grava y con escaso limo o arcilla. (Arenoso, arenosos-limosos, loes, etc.)

Grupo B: Incluye los suelos de permeabilidad moderada que se encuentran saturados, los cuales son: terrenos arenosos menos profundos que los del Grupo A, de textura francoarenosa de mediana profundidad y los francos profundos.

Grupo C: Incluye los suelos de moderada permeabilidad cuando están saturados, por presentar un estrato impermeable que dificulta la infiltración o porque, en conjunto, su textura es franco – arcillosa o arcillosa.

Grupo D: Es el que ofrece mayor escorrentía. Incluye los suelos que presentan gran impermeabilidad, tales como los terrenos muy arcillosos profundos con alto grado de tumefacción, los terrenos que presentan en la superficie o cerca de la misma una capa de arcilla muy impermeable y aquellos otros con subsuelo muy impermeable próximo a la superficie.

Para obtener el CN se usaron las tres variables, como indica la siguiente tabla.

Tabla 3.Variables que determinan el CN

		GRUPO HIDROLOG		(CO	
USO Y APROVECHAMIENTOS DE SUELOS	PENDIENTE	A	В	C	D
Barbecho R	>= 3	77	68	89	93
Barbecho N	>= 3	74	82	86	89
Barbecho R	< 3	71	78	82	86
Barbecho N	< 3	71	78	82	86
Cultivo en hilera R	>= 3	69	79	86	89
Cultivo en hilera N	>= 3	67	76	82	86
Cultivo en hilera R	< 3	64	73	78	82
Cultivo en hilera N	< 3	64	73	78	82
Cereales de invierno R	>= 3	63	75	83	86
Cereales de invierno N	>= 3	61	73	81	83
Cereales de invierno R	< 3	59	70	78	81
Cereales de invierno N	< 3	59	70	78	81
Rotación de cultivos pobres R	>= 3	86	77	85	89
Rotación de cultivos pobres N	>= 3	64	75	82	86
Rotación de cultivos pobres R	< 3	63	73	79	83
Rotación de cultivos pobres N	< 3	63	73	79	83
Rotación de cultivos densos R	>= 3	58	71	81	85
Rotación de cultivos densos N	>= 3	54	69	78	82
Rotación de cultivos densos R	< 3	52	67	76	79
Rotación de cultivos densos N	< 3	52	67	76	79
Pradera pobre	>= 3	68	78	86	89
Pradera media	>= 3	49	69	78	85
Pradera buena	>= 3	42	60	74	79
Pradera muy buena	>= 3	39	55	69	77
Pradera pobre	< 3	46	67	81	88
Pradera media	< 3	39	59	75	83
Pradera buena	< 3	29	48	69	78
Pradera muy buena	< 3	17	33	67	76
Plantaciones regulares de aprovechamiento forestal pobre	>= 3	45	66	77	83
Plantaciones regulares de aprovechamiento forestal media	>= 3	39	60	73	78
Plantaciones regulares de aprovechamiento forestal buena	>= 3	33	54	69	77
Plantaciones regulares de aprovechamiento forestal pobre	< 3	40	60	73	78
Plantaciones regulares de aprovechamiento forestal media	< 3	35	54	69	77
Plantaciones regulares de aprovechamiento forestal buena	< 3	25	50	67	76
Masa forestal (Bosque, monte bajo,) muy clara		56	75	86	91

Masa forestal (Bosque, monte bajo,) clara		46	68	78	83
Masa forestal (Bosque, monte bajo,) med	40	60	69	76	
Masa forestal (Bosque, monte bajo,) espe	36	52	62	69	
Masa forestal (Bosque, monte bajo,) muy		29	44	54	60
espesa					
Rocas permeables	>= 3	94	94	94	94
Rocas permeables < 3		91	91	91	91
Rocas impermeables >= 3		96	96	96	96
Rocas impermeables	< 3	93	93	93	93

Fuente: Ferrér M., Rodriguez J., Estrela T. 1995:45

Los valores obtenidos para diferentes usos de suelos se multiplicaron con sus áreas respectivas para obtener un CN ponderado, aplicando la siguiente fórmula:

$$CN_{Pond} = \frac{CN_1 * A_1 + CN_2 * A_2 + \dots + CN_n * A_n}{A_{cuenca}}$$
 (5)

3.2.2.2.1.3 Periodo de Retorno. La frecuencia con las que se presenta las inundaciones depende de las precipitaciones altas; por ello al determinar los periodos de retorno se consideró los criterios recomendados por INDECI, mostrándose en la siguiente tabla:

Tabla 4.Períodos de retorno establecidos en cuatro categorías

Niveles de intensidad	Periodo de retorno en años (T)
Muy Alta	1 < T < 5 años
Alta	5 < T < 15 años
Media	15 < T < 50 años
Baja	50 < T < 200 años o más

Fuente: INDECI, 2011:15

3.2.2.2.1.4 Análisis de la Precipitación Máxima 24 horas). Para

el análisis de frecuencia: de precipitación máxima 24 horas, se calculó con el Software Hidroesta el cual hace uso de modelos probabilísticos Normal, Log Normal 2P, Log

Normal 3P, Log Pearson tipo III, Gumbel y Log Gumbel para hallar la funcionabilidad de probabilidad más significativa. Donde por ejemplo en base al modelo probabilístico de distribución Valor Extremo Tipo I (Gumbel), se elige los extremos de los datos máximos hidrometereológicos obtenidos en las 4 estaciones mencionadas para corroborar la distribución probabilística. Se representa el análisis mediante la fórmula:

$$F(X)=e^{-e^{-(x-u)/\alpha}}$$

Donde:

F(x) = Probabilidad de que se presente un valor menor que X.

e = base de los logaritmos neperianos

 α ; μ = parámetros de la función.

Los parámetros de ajuste se estiman como: $\alpha = \frac{\sqrt{6} * s}{\pi}$

Donde: $u = \bar{x} - 0.5772*\alpha$

X = media aritmética de la muestra

s = desviación típica de la muestra

Para hallar la precipitación máxima que se presentara en un periodo de retorno determinado, se planteó la siguiente ecuación. $P(x < x_T) = 1 - \frac{1}{T}$

$$F(x_T) = \frac{T-1}{T}$$

Luego de la función de distribución de Probabilidad, se despejó la variable XT.

$$(X_T - u)/\alpha = -\ln(-\ln(F(X_T)))$$

Obteniendo la fórmula:
$$X_T = u - \ln \left(\ln \left(\frac{T}{T-1} \right) \right) * \alpha$$

Para la Prueba de ajuste: se hizo de igual manera en software Hidroesta usando los mismos modelos probabilísticos Normal, Log Normal 2P, Log Normal 3P, Log Pearson tipo III, Gumbel y Log Gumbel. Donde además se realizó la estadística de bondad de Kolmogórov-Smirnov, el cual compara la distribución acumulada observada de las variables que presentan una distribución teórica. Para lo cual se ajustó a una significancia $\alpha = 0.05$, donde dará una hipótesis positiva si el delta teórico hallado es menor al delta tubular.

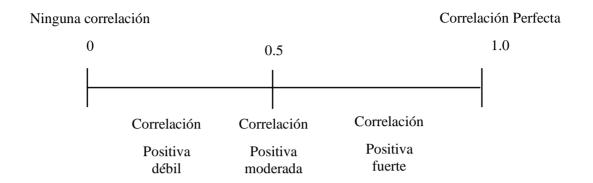
Debido a que en la subcuenca de estudio no se encontró información de las precipitaciones se buscó analizar los datos regionales de precipitaciones máximas en 24 horas con las estaciones: Buena Vista, Sihuas, Mollepata y Talla (Guadalupe) – para precipitaciones máximas durante 24 horas en distintos tiempos de retorno.

Análisis de regresión y coeficiente de correlación: Para la caracterización de la precipitación a nivel regional se buscó la relación Altitud Vs. Precipitación, utilizando el análisis de regresión y coeficiente de correlación. Luego del análisis de regresión se obtuvo las funciones que se representan en ecuaciones:

$$y = x^2 - ax + bz ag{6}$$

Dónde:

x: variable independiente (variable conocidade elevación)


y: variable dependiente (variablede precipitación que trata de predecir)

a: constante *b*: pendiente de la linea o coeficiente de regresión.

El presente diagrama muestra de manera detallada el resultado del coeficiente de correlación (r) entre ambas variables:

Figura 1.Coeficiente de correlación

Fuente: Villa A., Sedano M., López A., Juan A., Pág.4.

3.2.2.2.1.4.1. Generación de Isoyetas. Para generar isoyetas, se realizó los siguientes pasos:

- Se eligió 50 nuevos puntos de elevación dentro y fuera de la cuenca para luego aplicar la ecuación elegida de regresión lineal y generar puntos de precipitación a diferentes periodos de retorno.
- Los puntos de precipitación fueron ingresados en el software ArcGis en coordenadas geográficas, luego de usar la opción Export Data se llevó a coordenadas UTM.

(Data Management Tools > Projections and Transformation > Project)

- Se convirtió los puntos ingresados a raster mediante el comando Spline.

(3D Analyst Tools > Raster Interpolation > Spline)

- Se reclasificó el raster para una mejor observación de las isoyetas.

(Spatial Analyst Tools > Reclassify)

- Se determinó las áreas en cada franja para poder aplicar la siguiente fórmula y obtener una precipitación promedio de la cuenca. La siguiente ecuación muestra la fórmula para obtener precipitación promedio del área investigada.

$$P_{Media} = \frac{\sum_{j=1}^{m} [(P_j + P_{j+1}/2)] * A_j}{\sum_{j=1}^{m} A_j}$$
 (7)

Dónde:

 P_{Media} : Precipitación promedio de la cuenca.

 A_i : Area incluida entre dos isoyetas consecutivas (j y j + 1).

 P_i : Valor de la Precipitación máxima de 24 horas de la isoyeta j.

m: Número total de isoyetas.

3.2.2.2.1.5. Cálculo del Tiempo de Concentración y Tiempo de

Retardo

3.2.2.2.1.5.1. Tiempo de Concentración. Se muestra las diferentes fórmulas de manera empírica que existen:

Método de KIRKICH

$$T_c = 0.06628 * \left(\frac{Lc^{0.77}}{S^{0.385}}\right)$$
 (8)

Dónde:

Tc = Tiempo de concentración (Hrs)

Lc = Longitud del cauce (Km)

S = Pendiente (m/m)

Método de FAO

$$T_c = \frac{L^{1.15}}{15 \cdot H^{0.385}} \tag{9}$$

Dónde:

Tc = Tiempo de concentración (Hrs)

L = Longitud del cauce (Km)

H = Desnivel total del cauce principal (Km)

Método de Rowe

$$T_c = \left[\frac{0.86 * L^3}{H} \right]^{0.385} \tag{10}$$

Dónde:

Tc = Tiempo de concentración (Hrs)

L = Longitud del cauce (Km)

H = Desnivel total del cauce principal (m)

Método de BASSO

$$T_c = 0.067 * \frac{L^{1.15}}{H^{0.385}} \tag{11}$$

<u>Dónde:</u>

Tc = Tiempo de concentración (Hrs)

L = Longitud del cauce (Km)

H = Desnivel total del cauce principal (Km)

Método de VENTE CHOW

$$T_C = 0.005 * \left(\frac{L}{\sqrt{S}}\right)^{0.64} \tag{12}$$

Dónde:

Tc = Tiempo de concentración (Hrs)

L = Longitud del cauce (m)

S = Pendiente del cauce principal (%)

3.2.2.2.1.5.2. Tiempo de Retardo. El tiempo de concentración está relacionado con el tiempo de retardo por medio de la siguiente fórmula:

$$T_r = 0.6 * T_c \tag{13}$$

3.2.2.2.2 Cálculo del caudal con el HEC-HMS. Para asemejar la manera en cómo se presenta la hidrológica de la cuenca, se usó los elementos a mencionar: modelo de cuenca, meteorológicos, especificaciones de control e información de entrada.

- *Basin Model (Modelo de la cuenca)*. Consiste en informar sobre las variedades de subcuencas y sus respectivos rasgos hidrológicas.
- *Metereological Model (Modelo meteorológico)*. Consiste en asignar algunos pluviómetros, además de precipitaciones teóricas o reales.
- Control Specifications (Especificaciones de control). Indica el software cuando inicia y termina el incremento del tiempo. (Time Interval) para efectuar los cálculos. (Sánchez San Román JF.2012:1)

Con los valores geomorfológicos e hidrológicos obtenidos en el estudio y los componentes anteriormente descritos, se realizó la simulación hidrológica para la obtención de los caudales a distintos periodos de retorno.

3.2.2.3 Modelamiento Hidráulico. Para poder modelar el tramo elegido con Hec RAS, y determinar las áreas inundadas con el Hec-GeoRas se realizó lo siguiente:

3.2.2.3.1 Modelamiento Hidráulico con Hec-RAS

3.2.2.3.1.1 Procesamiento del Levantamiento Topográfico. Los puntos obtenidos en campo se procesaron en el software Civil 3D, donde se obtiene las curvas de nivel, secciones transversales y perfil longitudinal del tramo en estudio.

3.2.2.3.1.2 Análisis y Cálculo de la Rugosidad de Manning. Es difícil la obtener el coeficiente de rugosidad *n*, ya que no hay un método exacto que determine el valor *n*. Al elegir un valor de *n*, estima dentro de un canal determinado la resistencia al flujo. (Ven Te Chow.1994: 98) El coeficiente de rugosidad según Cowan

presenta factores que alteran su proceso por lo cual elaboro la siguiente ecuación para obtener el valor de n, que puede calcularse por:

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) * m_5$$
 (14)

Donde:

 n_0 : Materiales naturales involucrados.

 n_1 : Grado de irregularidad

 n_2 Variaciones en forma y tamaño de la sección transversal del canal.

 n_3 : Efecto relativo de las obstrucciones.

 n_4 : Vegetación.

 m_5 : Grado de los efectos por meandros.

Mediante las visitas a campo y fotografías referenciales (**Anexo 10**) se determinó la rugosidad de Manning con ayuda de la siguiente tabla: (0.02+0.005+0.005+0.005+0.0075) *1 = 0.0475

Tabla 5.Valores para el cálculo del coeficiente de rugosidad mediante la ecuación (14)

Condiciones del canal			Valores
	Tierra		0.020
Matarial invaluanced	Corte en roca	n_0	0.025
Material involucrado	Grava fina	<u> </u>	0.024
	Grava gruesa		0.028
	Suave		0.000
Grado de	Menor	$ n_1$	0.005
irregularidad	Moderado	<u> </u>	0.010
	Severo	<u> </u>	0.020
	Gradual		0.000
Variaciones de la	Ocasionalmente alternante	n_2	0.005
sección transversal	Frecuentemente alternante		0.010-0.015

	Insignificante		0.000
Efecto relativo de	Menor	n_3	0.010-0.015
las obstrucciones	Apreciable		0.020-0.030
	Severo		0.040-0.060
Vegetación	Baja		0.005-0.010
	Apreciable	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.010-0.015
	Media		0.025-0.050
	Muy alta		0.050-0.100
	Menor		1.000
Grado de los efectos por meandros	Apreciable	m_5	1.150
	Severo		1.300

Fuente: Ven Te Chow., 1994: 105

- Al colocar el valor de n1, representa el nivel según grado de irregularidad donde es suave para superficies comparables; moderado para aquellos canales mínimamente degradados o medianamente, además de taludes laterales derrumbados en moderada intensidad o canales artificiales o de drenaje que se encuentren erosionados, a su vez el grado menor para canales artificiales demasiados dragados los cuales comprender taludes laterales levemente con erosiones o aquellos canales artificiales o de drenaje socavados; y severos para bancas que están destrozadas por derrumbe de aquellos cauces naturales o que tengan taludes laterales muy desgastados en canales artificiales o de drenaje, y también aquellas superficies deformes (salientes y entrantes) con irregularidades que se evidencia en canales artificiales muy excavados en roca.
- Al elegir el valor de *n2*, se pretende que la variación en cuanto a su forma y tamaño en una sección transversal sea *gradual*; y *ocasionalmente alternante* si las secciones pequeñas y grandes provocan que la corriente cambie de un lado a otro, y *frecuentemente*

alternante si las secciones pequeñas y grandes intercalan de manera frecuente o cuando cambia la forma en la corriente primordial de un lado a otro.

- Al colocar el valor de *n3*, representa las obstrucciones en el área tales como raíces expuestas, depósito de basura, palos, y troncos que se caen o que quedan atascados (no deben estar en más de una vez). Determina las consecuencias relativas de las obstrucciones (objetos angulares o puntiagudos) que provocan un flujo de mayor intensidad a diferencia de aquellas superficies lisas o que presenten objetos curvos, además el espaciamiento transversal, la posición y longitudinalidad evidencian el tramo que se presenta.
- Al colocar el valor de *n4*, determina las consecuencias según su grado vegetación: *Bajo*: aquel crecimiento de pastos densos o malezas con flexibilidad (pastos azules y de bermuda), el cual tiene un promedio de profundidad de flujo de 2-3 veces la altura de vegetación.

Medio: a) césped: el promedio de profundidad del flujo es 1-2 veces la altura de vegetación,
b) pastos con tallos, malezas o plantas jóvenes con cubierta moderada: tiene un promedio de profundidad de flujo es 2-3 veces la altura de la vegetación.

Alto: a) prados de césped: tiene un promedio de profundidad de aproximadamente igual a la altura de vegetación, b) sauces o plantas de algodón de 8-10 años de edad durante el invierno, con malezas y matorrales de crecimiento intermedio, sin vegetación en el follaje, si el radio hidráulico es > a 2 pies.

Muy Alto: a) pastos: el promedio de profundidad de flujo es menos que la mitad de altura de vegetación, b) matorrales de sauces que presentan más o menos 1 año durante la estación de crecimiento, además presenta crecimiento de malezas con follaje completo alrededor de

los taludes laterales o de aquellas plantas de hojas anchas dentro del canal que presentan crecimiento denso, que tengan cualquier valor hidráulico de hasta 10 a 15 pies.

- Al determinar el *valor de m5*, el valor por meandros es dependiente de la relación entre la longitud con meandros y la longitud recta del tramo de un canal. Meandros menores determina una relación de 1 - 1.2, apreciables de 1.2 - 1.5, y severos de 1.5 a más. (Ven Te Chow., 1994: 105-107)

3.2.2.3.1.3 Cálculo de la Pendiente del Tramo en Estudio. La ecuación determina la pendiente del cauce del tramo (18) según criterio de Taylor y Schwarz.

$$S = \left[\frac{L}{\frac{l_1}{\sqrt{S_1} + \frac{l_2}{\sqrt{S_2}} + \frac{l_3}{\sqrt{S_3}} + \dots + \frac{l_n}{\sqrt{S_n}}}}\right]^2$$
(18)

Dónde:

S: Pendiente media del cauce del rio.

L: Longitud total del rio

 L_n : Longitud del tramo n

 S_n : Pendiente del tramo n

3.2.2.3.1.4 Análisis Hidráulico con HEC-RAS. Se realizo en base al software con sistema métrico (*Options > Unit system (US Customary/SI*)), luego se procedió a crear el proyecto trabajando con el modelo de flujo permanente.

3.2.2.3.1.4.1. Ingreso de datos geométricos. Los datos geométricos del rio se ingresaron mediante la exportación de las secciones transversales del software Civil 3D al HEC-RAS mediante el icono Export to HEC-RAS almacenándose en la ventana Geometric Data.

3.2.2.3.1.4.2 Ingreso de datos hidráulicos. Datos que

requiere el modelo son los siguientes:

- Cantidad de perfiles a ser computarizados.
- Datos de flujo: mide el caudal de distintos periodos de retorno.
- Condiciones de contorno ("Reach Boundary Conditions"):
- Know W.S: Nivel de agua que se conoce, adecuada si está dentro de un nivel en una sección transversal.
- Critical Depth: Profundidad crítica, si hay sección de control es adecuada, sin exigir datos adicionales.
- Normal Depth: Profundidad normal, si el flujo se aproxima al uniforme es adecuado. Si es necesario utilizar la pendiente del tramo de influencia.
- Rating Curve: Curva de gasto, evidencia el área de control que determina la relación entre caudal fija y calado sea adecuado.

3.2.2.3.1.4.3 Ejecutar la Simulación Hidráulica. Para desarrollar la hidráulica simulada del cauce se requiere generar un plan que produzca un fichero con información acerca de la geometría e hidráulica con uso de *Run >Steady Flow Analysi*, seleccionamos el fichero de datos geométricos e hidráulicos respectivos para la simulación, en cuanto al régimen de flujo podemos seleccionar supercrítico, subcrítico o mixto, pero se sugiere seleccionar "Mixed" el cual necesita las condiciones que establece en contorno aguas arriba y aguas abajo; además se utilizó un régimen de flujo mixto debido a que no se determinó el tipo de flujo para finalizar se utilizó el modelo de simulación con el icono "Compute".

3.2.2.3.1.4.4 Exportar resultados desde HEC RAS. Utilizó

Export GIS Data desde la ventana principal del HEC-RAS, y se eligió los perfiles de flujo que se tienen que exportar de distintos años de tiempo de retorno que fueron analizados. (File > Export GIS Data)

3.2.2.3.2. Modelamiento Hidráulico (Extensión Hec-GeoRas)

3.2.2.3.2.1. Generación de Áreas y Mapas de Inundación. Se realizaron los siguientes pasos:

- Convertir el archivo RAS GIS Export File: se requiere la conversión del archivo SDF que fue exportado de HEC-RAS a un formato XML que GeoRAS pueda identificar, en cuanto a la pestaña ImportRAS SDF File permite elegir el RAS GIS Export File (SDF) y convierte a un archivo XML.
- Importar el archivo RASGIS Export File: se apertura la ventana "RAS Mapping", el cual permitió importar documentos desde HEC-RAS, con Layer Setup, posterior a ello se eligió el documento importado; el cual convirtió el terreno con el tamaño de la celda, obteniendo los elementos geométricos como eje del río, banks point (límite de los bordes del rio), XS Cut Lines (Secciones transversales).

Mapa de inundación se realizó de la siguiente manera:

Se inicia creando el TIN de las superficies luego las elevaciones superficiales de agua.

- Con la pestaña *RAS Mapping > Import Ras Data* se obtuvo los archivos en formato Top para ArcGis.
- Superficie de agua TIN: en la pestaña RAS Mapping > Inundation Mapping > Water Surface Generation, se eligió aquellos perfiles superficiales de agua que se van a crear y agrega el TIN de la superficie agua para determinar análisis según mapeo.

- Delineación de llanuras inundables: con RAS Mapping > Inundation Mapping > Floodplain Delineation Using Raster, el TIN superficial de agua es convertido a una GRID enfocado en una rasterización Cell Size el cual sirve para comparar con el terreno y diferenciarlo con el cálculo de la elevación en el polígono envolvente.
- Celda de profundidad de inundación ("d" raster) incluye aquellas elevaciones superficiales de agua que son mayores a elevación del terreno asimismo la profundidad de las celdas de inundación puede ser convertidas en información vectorial que define llanura inundable según su límite ("b" Polígono).
- Para desarrollar las zonas de inundación en un mapa se reclasificó los grids de profundidad (*Spatial Analyst Tools > Reclass > Reclassify*) para cada periodo de retorno.

3.2.3 Técnicas y análisis estadístico de recolección de datos

Se realizó en base a Trabajo de campo (observación de los rasgos geomorfológicos, levantamiento topográfico) y Trabajo de gabinete (cálculos estadísticos y verificaciones). Para lo cual se utilizó programas ARCGIS y HEC-HMS para determinar modelamiento hidrológico mientras HECC-RAS y la extensión HEC-GEORAS para modelamiento hidráulico. De igual manera se realizó análisis de frecuencia, verificar la distribución de ajuste de las precipitaciones máximas en 24 horas mediante modelos probabilísticos Normal, Log Normal 2P, Log Normal 3P, Log Pearson tipo III, Gumbel y Log Gumbel para hallar la funcionabilidad de probabilidad más significativa mediante Software estadístico Hidroesta y para el ajuste de distribución además se hizo uso de la estadística de bondad de Kolmogórov-Smirnov, el cual compara la distribución acumulada observada de las variables que presentan una distribución teórica. Para lo cual se ajustó a una significancia α = 0.05, donde dará una hipótesis positiva si el delta teórico hallado es menor

al delta tubular. Además, para la caracterización de la precipitación a nivel regional se buscó la relación Altitud Vs. Precipitación en base a análisis de regresión y coeficiente de correlación Pearson que se muestra en la figura1.

3.2.4 Variables

Variable Independiente: Estudio hidrológico

Variable Dependiente: Estructura de prevención de Desastres.

Tabla 6. *Operacionalización de variables*

	VARIABLE	DEFINICION CONCEPTUAL	DEFINICION
	VIIIII	DELINIOISIN SONOEL TOILE	OPERACIONAL
INDEPENDIENTE	Estudio hidrológico e hidráulico de la quebrada Cascajal en el CP. Cascajal, provincia del Santa, departamento Ancash	Modelo hidrológico "Representación reducida de un sistema complejo y real denominado prototipo, representada de forma matemática o física" (IDEAM,2017). Modelo hidráulico "Construcción digital de la red donde se distribuye el agua, que prevé su comportamiento, para realizar prácticas y soluciones" (Beerhalte, s.f)	Modelamiento hidrológico se procesará mediante ARCGIS y HEC-HMS para determinar caudal máximo en el área de estudio. Para modelamiento hidráulico se utilizará con HECC-RAS y la extensión HEC-GEORAS donde se obtendrá las áreas inundables en el tramo elegido.
DEPENDIENTE	Estructura de prevención de Desastres.	"Aquella construcción para la prevención de desastres" (Escuder, 2010)	Identificar aquellas áreas que requieren estructuras para su prevención, y recomendar algunas.

CAPÍTULO IV: RESULTADOS Y DISCUSIONES

4.1 Modelamiento Hidrológico

4.1.1 Determinación de los Parámetros Geomorfológicos e Hidrológicos

4.1.1.1 Delimitación del Área de Aporte. Siguiendo los pasos del Ítem **3.2.2.2.1** (procesados por el software ArcGis 10.1), se delimitó el área de estudio (ver cálculos en **Anexo 19.1**). En la siguiente tabla se muestran en resumen los valores de los parámetros geomorfológicos. MAPA 01 (**Anexo 4**).

Tabla 7.Parámetros geomorfológicos del área de estudio

Parámetros Geomorfológicos	Valor	Unid.
Área de aporte	74.98	Km2
Perímetro	40.02	Km
Altitud media	931.75	msnm
Longitud total del cauce principal	13.11	Km
Pendiente del cauce principal	5.84	%
Pendiente del área de cuenca en estudio	13.12	%

4.1.1.2 Cálculo del número de curva y abstracción inicial con AcrGis. Se obtuvo según el Ítem **3.2.2.2.1.2**. donde se obtuvo los siguientes mapas:

MAPA M-02 (**Anexo 5**): Muestra el uso y aprovechamiento de suelos se visualiza la subcuenca conformada por pradera pobre a un 100.0%.

MAPA-03 (**Anexo 6**): Muestra la pendiente de la subcuenca de estudio, donde se visualiza que el 98.56% presenta pendiente >=3% y el 1.44% de <3%.

MAPA-04 (**Anexo 7**): se observa grupos hidrológicos que se presentan dentro de la zona de estudio, cubriendo 74.98 Km2 de área el grupo hidrológico "B".

El CN (Ponderado) se calculó con la ecuación (5) así como la abstracción con las ecuaciones (3) y (4), mostrando su resultado en la siguiente tabla:

$$I_a = 0.2 * S \tag{3}$$

$$S = \frac{2540}{CN} - 25.4\tag{4}$$

$$CN_{Pond} = \frac{CN_1 * A_1 + CN_2 * A_2 + \dots + CN_n * A_n}{A_{cuenca}}$$
 (5)

Tabla 8.

Valor del 《CN》_Pond y I_a

Sub Cuenca Cascajal				
CN (ponderado)	78			
S (mm)	71.9			
I (mm)	14.38			

4.1.1.3 Selección de los periodos de retorno. Según las recomendaciones de INDECI y **tabla 1** (periodos de retorno establecidos en 4 categorías), se seleccionaron los periodos de retorno para 25 y 50 años.

Tabla 9. *Periodos de retorno (años) elegidos*

Nivel de Intensidad	Periodo de Retorno (años)
Media	25 y 50

4.1.1.4 Análisis de la precipitación máxima 24 horas. Se realizo mediante análisis de frecuencia y prueba de ajuste, obteniendo los resultados mostrados en MAPA-05
(Anexo 8) evidencia la ubicación espacial de las 4 estaciones meteorológicas: Buena Vista,

Sihuas, Mollepata y Talla (Guadalupe) respecto a la subcuenca Cascajal. La siguiente tabla muestra las precipitaciones máximas 24 horas obtenidas de acuerdo al mejor ajuste de distribución. La prueba de ajuste calculada con la estadística mencionada se muestra en el **Anexo 9** para cada estación y 25 y 50 años de periodo de retorno.

Tabla 10.Precipitación máxima 24 horas a diferentes periodos de retorno

ESTACIÓN	Distribusión de sinete	δ	δ	Periodo de	e retorno
ESTACION	TACIÓN Distribución de ajuste		Teórico	25	50
Buena vista	Gumbel	0.3041	0.3013	30.07	36.58
Sihuas	Gamma 3P	0.3041	0.0678	58.38	66.04
Mollepata	Gamma 3P	0.3041	0.07809	47.79	52.81
Talla Guadalupe	Log Pearson tipo III	0.3041	0.0681	30.49	37.46

Donde como resultado nos da que los deltas teóricos son menores que los deltas tabulares; los datos se ajustan a las distribuciones mencionadas con un nivel de significación del 5%. Se realizó el análisis de regresión lineal entre las 4 estaciones como se muestra en el siguiente cuadro:

Tabla 11.Análisis de regresión para las 4 estaciones para Tr= 25 años

Estación	Altitud	PP_Max2 24 Hrs	Pp_(mm) Ecuación	Pp_2era Ecuación	Pp_3era Ecuación
Sihuas	3361	58.38	59.98	28.23	59.83
Mollepata	2709	47.79	48.15	28.15	48.87
Buena Vista	206	30.07	30.26	28.00	
Talla Guadalupe	117	30.49	30.32	•••	30.52
		R ²	0.999	0.9672	0.95
		R	1.00	0.98	0.97
	•		SI	NO	NO

Se puede observar el resultado de los coeficientes de correlación al combinar las distintas estaciones, siendo la 1era ecuación la mejor combinación por ello se trabajó con las estaciones de Sihuas, Mollepata, Buena Vista y Talla Guadalupe.

El siguiente cuadro muestra las ecuaciones de regionalización de la precipitación máxima 24 horas (Altitud Vs. Precipitación) para los periodos de retorno 25 y 50 años, mediante análisis de regresión y coeficiente de correlación, el **anexo 10** muestra la gráfica de la regionalización de la precipitación máxima de 24 horas.

Tabla 12. *Ecuaciones de regionalización de la precipitación*

PP Máx.24 (horas)	Ecuación	R	Correlación
Tr = 25 años	$Y = 3E - 06X^2 - 0.0016X + 30.465$	1.00	Positiva Fuerte
Tr = 50 años	$Y = 4E - 06X^2 - 0.0066X + 37.96$	1.00	Positiva Fuerte

4.1.1.4.1 Mapas de Isoyetas. En el Anexo 11, se muestran los puntos de elevación y precipitación distribuidos espacialmente dentro y fuera de la cuenca para la variedad de periodos de retorno. El Mapa-06 (Anexo 12), muestra las isoyetas para la máxima precipitación en las 24 horas con un periodo de retorno de 25 años, que varía dentro de un rango de 30.275 a 37.7 mm. El Mapa-07 (Anexo 13), muestra las isoyetas para la precipitación máxima durante 24 horas en un periodo de retorno de 50 años, el cual muestra la variación de la precipitación entre un rango de 35.19 a 41.5 mm. En el Anexo 14, se muestran los valores de cada variable empleada en la ecuación (7) para generar las precipitaciones promedios a diferentes tiempos de retorno. En la siguiente tabla se muestra los parámetros hidrológicos para los diferentes tiempos de retorno.

$$P_{Media} = \frac{\sum_{j=1}^{m} [(P_j + P_{j+1}/2)] * A_j}{\sum_{j=1}^{m} A_j}$$
 (7)

Tabla 13.Precipitaciones para cada periodo de retorno

Periodo de retorno	Precipitación media
Tr = 25 años	31.5 mm
Tr = 50 años	36.0 mm

4.1.1.5 Cálculo del tiempo de concentración y de retardo. En la siguiente tabla se presenta un resumen de todos los pasos de los cálculos realizados (Anexo 26) según el Ítem 3.2.2.2.1.5 Tiempo de concentración en el área de estudio.

Tabla 14.Valores obtenidos con diferentes métodos

Métodos	t_c (hr)
KIRKICH	1.46
ROW	1.41
FAO	1.40
BASSO	1.41
VENTE CHOW	1.25

Como el resultado del método de Vente Chow es menor a comparación de los resultados obtenidos con los 4 últimos métodos (KIRKICH, ROW, FAO Y BASSO) se trabajó con el promedio de los 4 valores que se asemejan.

Tabla 15.Resumen de los métodos elegidos con valores similares de tiempo de concentración

Métodos	t_c (hr)
KIRKICH	1.46
ROW	1.41
FAO	1.40
BASSO	1.41
PROMEDIO	1.41

Aplicando la ecuación (13) se determinó el tiempo de retardo (t_c) de 51.0 minutos

$$T_r = 0.6 * T_c \tag{13}$$

4.1.2 Cálculo del caudal con el HEC-HMS. En la siguiente tabla se observa la información de entrada que se utilizó en el modelamiento hidrológico.

Tabla 16.Datos de entrada

Sub Cuenca Cascajal	Valores	Unid.
Área	74.98	Km2
Pp. Máx.24 horas - 25 años	31.5	mm
Pp. Máx.24 horas - 50 años	36.0	mm
Abstracción Inicial	14.38	mm
CN	78.0	
Lag Time	51.0	minutos

El **Anexo 15**, muestra el esquema del modelo hidrológico en HEC HMS y sus componentes. En la siguiente tabla se observa los caudales máximos simulados mediante el modelo hidrológico con el programa HEC HMS.

Tabla 17.Caudales máximos a diferentes tiempos de retorno

Caudales máximos		Unid.
Qmáx - 25 años	16.5	m3/s
Qmáx - 50 años	29.2	m3/s

En el **Anexo 16** se muestra las vistas obtenidas en el contorno **HEC-HMS** para los diferentes periodos de retornos.

4.2 Modelo Hidráulico

4.2.1 Modelamiento hidráulico con Hec-RAS

4.2.1.1 Procesamiento del levantamiento topográfico. El Mapa-08 (**Anexo 17**) muestra la ubicación y elevación de los puntos topográficos que se obtuvo en el tramo de estudio (río, áreas de cultivo, viviendas, etc.). El perfil longitudinal y las secciones transversales se muestran en el M-09 y M-10 respectivamente. (**Anexo 18-19**)

4.2.1.2 Determinación de la rugosidad. La siguiente tabla muestra los valores elegidos según la condición real del área de estudio que se puede apreciar mediante fotografías (**Anexo 20**).

Tabla 18.Rugosidad de Manning obtenida para el área en estudio

Condiciones del río		Valor
n_0	Grava gruesa	0.02
n_1	Suave	0.005
n_2	Ocasionalmente alternante	0.005
n_3	Menor	0.01
n_4	Baja	0.0075
m_5	Menor	1.0
	n	0.0475

4.2.1.3 Cálculo de la pendiente del tramo en estudio. La pendiente del tramo de rio en estudio calculado mediante el criterio de Taylor y Schwarz es de 1.1 % o 0.011 m/m.

$$S = \left[\frac{L}{\frac{l_1}{\sqrt{s_1} + \frac{l_2}{\sqrt{s_2}} + \frac{l_3}{\sqrt{s_3}} \dots \frac{l_3}{\sqrt{s_n}}} \right]^2$$

En el **Anexo 21**, se muestran los datos y los valores de las variables que intervienen en la fórmula.

4.2.1.4 Modelamiento hidráulico (HEC-RAS). Se ha considerado un dique en la Sección 1975, y por observación en campo se consideraron las siguientes características: El Anexo 22, muestra el esquema hidráulico del área investigada durante su etapa inicial. El Anexo 29, muestra las características del tramo de rio en estudio tales como caudal, tirante de agua, velocidad, etc.; para diferentes tiempos de retorno.

4.2.2 Modelamiento Hidráulico (Extensión Hec-GeoRas)

4.2.2.1 Generación de las Áreas y Mapas de Inundación. Luego de seguir el proceso que se describe en el sub ítem B del Ítem 3.2.2.3, el mapa M-11 (Anexo 23) muestra los elementos geométricos obtenidos (eje del río, banks point, XS Cut Lines) y el área de estudio.

El mapa M- 12 (**Anexo 24**) muestran las áreas totales de inundación para Tr:25 años. El mapa M- 13 (**Anexo 25**) muestran las áreas totales de inundación para Tr:25 años.

4.3 DISCUCIONES

La investigación realizada en la quebrada Cascajal tuvo como finalidad determinar las áreas inundables ocasionadas por la avenida máxima en la quebrada Cascajal. Según Aguilar & Rodríguez (2019), en su investigación "Evaluación del riesgo y vulnerabilidad en el distrito de Nuevo Chimbote ante una precipitación intensa en la quebrada San Antonio, 2019" determinó que dicho distrito tiene alto nivel de peligro, vulnerabilidad y riesgo de inundaciones; en nuestra investigación se obtuvo similares resultados en la quebrada Cascajal, por lo cual es importante tomar medidas de protección como prevención en dicha zona. Además, comparando con Moya & Álvarez (2018), en su estudio "Modelación hidráulica de un canal urbano en la ciudad de Bogotá, caso de estudio: canal rio negro" también mediante análisis con HEC RAS determinó cuales son las zonas más vulnerables a los desbordamientos.

De igual manera en nuestro trabajo se logró determinar aquellas zonas vulnerables en riesgo de ser inundadas a diferentes periodos de retorno, de los cuales son 9.19 km2 de áreas inundadas totales y 5.03 km2 de áreas de cultivo en la actualidad en un tiempo de retorno de 25 años; se encontró 9.24 km2 de áreas inundadas totales y 5.03 km2 de áreas de cultivo en la actualidad para un tiempo de retorno de 50 años.

Así mismo, en el trabajo realizado por Miranda & Rodríguez (2020), en su estudio "Modelamiento hidráulico de la quebrada San Carlos, con fines de prevención; Distrito Laredo – Trujillo, La Libertad" se obtuvieron similares resultados permitiendo concluir que en ambas zonas vulnerables se debe prevenir mediante la colocación de muros de contención gavión y un canal de evacuación, para prevenir futuros daños e inundaciones en dichos sectores. Como se observa en las investigaciones anteriores también obtuvieron

similares resultados que en esta investigación, dándonos a conocer que tanto en nuestra localidad como en alrededores del Perú aún existe áreas de quebradas ubicadas en lugares poblados que son muy vulnerables a generar inundaciones, y que hasta el día de hoy aún no se realizaron medidas de protección, por lo cual con este trabajo se pretende brindar algunas recomendaciones de cómo prevenir daños futuros, mediante el mantenimiento anual de dichas áreas vulnerables a desbordes, además se debe brindar charlas informativas de cómo actuar ante inundaciones fluviales y plantear la colocación de muros de gaviones, enrocados.

CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

- Se logró recopilar y procesar la información cartográfica de la carta nacional a escala 1:100,000, hoja 18-g (Santa Rosa), descargada del portal del MINEDUM y se adquirió datos mediante levantamiento topográfico en el tramo de estudio, acumulando 2 kilómetro de longitud aguas arriba y 2 kilómetros aguas abajo desde el punto de estudio en la quebrada Cascajal.
- Se obtuvo precipitación máxima dentro de las 24 horas para los periodos de retorno 25 años, el cual muestra que la precipitación varía entre un rango de 30.275 a 37.7 mm. y con un periodo de retorno de 50 años, la precipitación varía entre un rango de 35.19 a 41.5 mm.
- Se determinaron los parámetros geomorfológicos e hidrológicos; los cuales sirvieron para generar los caudales 16.5 m3/s y 29.2 m3/s a 25 y 50 años de periodo de retorno respectivamente.
- Se realizó el modelo hidráulico en el software Hec-RAS y Hec-GeoRas para el tramo elegido del rio Cascajal, determinando áreas inundadas a diferentes periodos de retorno, se obtuvo 9.19 km2 de áreas inundadas totales y 5.03 km2 de áreas de cultivo en la actualidad para un tiempo de retorno de 25 años; se obtuvo 9.24 km2 de áreas inundadas totales y 5.03 km2 de áreas de cultivo en la actualidad para un tiempo de retorno de 50 años.
- Se sugiere medidas estructurales tales como muros de gaviones en todo el tramo del estudio y medidas no estructurales como el mantenimiento anual del rio

Cascajal, esto como medida de protección para evitar el desborde y la inundación de las viviendas aledañas.

5.2 RECOMENDACIONES

- Se recomienda realizar mantenimiento anual al cauce del rio Cascajal.
- Se recomienda realizar obras de protección, como gaviones, en todo el tramo del estudio, para proteger a las áreas de cultivo y las viviendas que están muy cercanas al borde del rio, respetando la faja marginal mínima establecida en la investigación o las recomendaciones mínimas que estipula la Autoridad Nacional del Agua (ANA).
- Se recomienda dar charlas de riesgo ante inundaciones fluviales a los pobladores para enriquecer su cultura de riesgo.
- Se recomienda realizar estudios similares teniendo en cuenta nuevos software de simulación hidráulica como Ibero Hec-Ras 5.1, para un mejor acercamiento a la realidad.

REFERENCIAS BIBLIOGRÁFICAS

- ACKRERMAN, Cameron T. (2009). HEC GeoRAS GIS Tools for Support of HEC–RAS using ArcGIS. California: US Army Corps Enginners. Recuperado el 6 noviembre 2021, https://www.hec.usace.army.mil/software/hec-georas/documentation/HEC-GeoRAS42_UsersManual.pdf
- Aguilar P, Rodríguez R. (2019). Evaluación del riesgo y vulnerabilidad en el distrito de Nuevo Chimbote ante una precipitación intensa en la quebrada San Antonio [Tesis de pregrado]. Perú: Repositorio Universidad Nacional del Santa [consultado 6 noviembre 2021]. Disponible en: http://repositorio.uns.edu.pe/bitstream/handle/UNS/3658/15174.pdf?sequence=1&isallowed=y
- Aguamarket. S.f. Definición de caudal. Disponible en: https://www.aguamarket.com/diccionario/terminos.asp?Id=427
- Aguilar P, Rodríguez R. (2019). Evaluación del riesgo y vulnerabilidad en el distrito de Nuevo Chimbote ante una precipitación intensa en la quebrada San Antonio, 2019 [Tesis de pregrado]. Perú: Repositorio Universidad Nacional del Santa [consultado 6 noviembre 2021]. Disponible en: http://repositorio.uns.edu.pe/bitstream/handle/UNS/3658/15174.pdf?sequence=1&isAllowed=y
- Antícona F, Cabanillas L, Lujan J. (2021). *Modelamiento Hidrológico de la Quebrada*San Idelfonso mediante SIG en Trujillo, La Libertad 2020. Perú [consultado 6

- noviembre 2021]. Disponible en: https://laccei.org/LACCEI2021-
 VirtualEdition/full_papers/FP158.pdf
- Arias B. (2019). Alternativas para la estabilización de las quebradas en el tramo puente los Ángeles puente Ricardo palma con fines de mitigación de huaycos [Tesis de pregrado]. Perú [consultado 6 noviembre 2021]. Disponible en: http://repositorio.unfv.edu.pe/handle/UNFV/4058
- Bejarano S. (2018). Modelamiento hidráulico del río Jequetepeque desde el km 0+000 al km 10+000, con fines de prevención, Pacasmayo, la Libertad 2018 [Tesis de pregrado]. Perú [consultado 6 noviembre 2021]. Disponible en: https://repositorio.upn.edu.pe/handle/11537/14967
- CENEPRED (Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres, Perú). (2014). *Manual para la evaluación de riesgos originados por fenómenos naturales*. Vers. 2. Lima, Perú
- CERSA. (2021). *Desarrollo de modelos hidráulicos*. Disponible en: https://cersa.org.pe/capacitaciones/?q=content/blog/desarrollo-de-modelos-hidr%C3%A1ulicos
- CHOW, Ven T, David R. y MAYS, Larry W. (1994). *Hidrología Aplicada*. Santa Fé de Bogotá: McGraw-Hill.
- CIWR HEC. (2015). *HEC–RAS River Analysis System*. Davis, California: US Corps Army of Engineers.
- Dueñas, C. (1997). *Marco normativo vigente ante el riesgo de inundaciones*. Jornadas Parlamentarias sobre prevención de riesgos relacionados con el agua: VI- La

- protección civil ante el riesgo de inundaciones. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1680-0338201200010000
- Espinoza R, Neyra R. (2019). *Modelamiento hidráulico e hidrológico de la quebrada*Bomboca, zona urbana del centro poblado Chunchuquillo, para condiciones

 extremas, usando HEC-RAS [Tesis de pregrado]. Perú [consultado 6 noviembre

 2021]. Disponible en: http://m.repositorio.unj.edu.pe/handle/UNJ/248
- Estudio hidrológico. Certicalia. (s.f).. Disponible en: https://www.certicalia.com/estudio-hidrologico
- Estrada V, Pacheco R. (2012). *Modelación hidrológica con HEC-HMS en cuencas montañosas de la región oriental de Cuba*. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1680-03382012000100008
- Fleming, Matt & BRAUER, Tom. (2015). *Hydrologic Modeling System: User Manual*.

 California: US Army Corps og Engineers.
- Florencia G, Damián G. (2018). Estudio Hidrológico de la Cuenca Alta del Río Neuquén", tuvo como finalidad analizar la variabilidad en la Cuenca Alta del Río Neuquén (CARN) y su asociación con fenómenos hidrometeorológicos, durante los 2000-2014 [Tesis de licenciatura]. Argentina [consultado 6 noviembre 2021]. Disponible en: http://rdi.uncoma.edu.ar:8080/bitstream/handle/123456789/5825/Tesis%20Finessi %20%26%20Groch%20%282018%29.pdf?sequence=1&isAllowed=y
- INDECI. (2011). "Manual de estimación de riesgos ante inundaciones fluviales". 1era Edición. Lima Perú. 81p.

- IDEAM. Instituto de Hidrología, Meteorología y Estudios Ambientales. (2014). Adscrito al Ministerio de Ambiente y Desarrollo Sostenible de Colombia. Disponible en: http://www.ideam.gov.co/web/agua/modelacion-hidrologica
- IDEAM. (2017). Guía Metodológica para la Elaboración de Mapas de Inundación, 1ra Ed. Editorial: IDEAM. Bogotá, Colombia.
- IDEAM. (2017). Modelación hidrológica. Editorial: IDEAM. Bogotá, Colombia. Disponible en: http://www.ideam.gov.co/web/agua/modelacion-hidrologica.
- Irigoin S. (2020). Modelación hidráulica e hidrológica de eventos para la predicción de escenarios de riesgos en la microcuenca de la quebrada Juninguillo – Moyobamba, 2018 [Tesis de maestría]. Perú [consultado 6 noviembre 2021]. Disponible en: http://repositorio.unsm.edu.pe/handle/11458/4026
- Loyola J. (2019). Evaluación del riesgo por inundación en la quebrada del cauce del Río Grande, tramo desde el Puente Candopata hasta el Puente Cumbicus de la ciudad de Huamachuco, Provincia de Sánchez Carrión – La Libertad [Tesis de maestría]. Perú [consultado 6 noviembre 2021]. Disponible en: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/31347/loyola_mj.pdf? sequence
- Menéndez, Mariano. (2009).Códigos Numéricos para Hidrología Urbana. Especialización en Hidrología Urbana. Buenos Aires: Facultad de Ingeniería, UBA, 2009.
- Moran J, Rodríguez E. (2020). Modelamiento hidráulico de la quebrada San Carlos, con fines de prevención; Distrito Laredo – Trujillo, La Libertad [Tesis de pregrado]. Perú

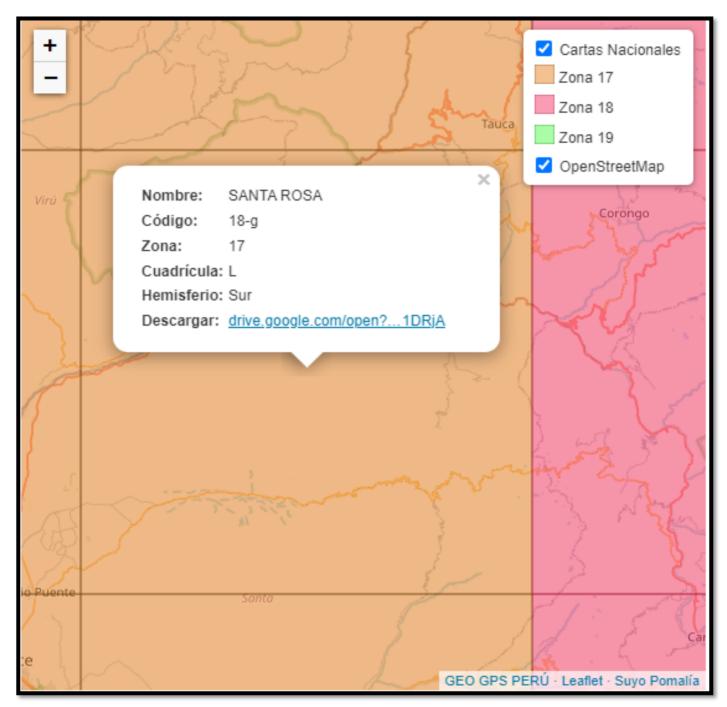
"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"

- [consultado 6 noviembre 2021]. Disponible en: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/47895/Miranda_MJM
 -Rodr%C3%ADguez VEA-SD.pdf?sequence=1&isAllowed=y
- Molero E. y Nanía LS. (2007). *Manual básico de HEC-RAS y HEC-GEORAS* Universidad de Granda Granada.59p.
- Moran J, Rodríguez E. (2020). *Modelamiento hidráulico de la quebrada San Carlos, con fines de prevención; Distrito Laredo Trujillo, La Libertad* [Tesis de pregrado]. Perú [consultado 6 noviembre 2021]. Disponible en: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/47895/Miranda MJM -Rodr%C3%ADguez VEA-SD.pdf?sequence=1&isAllowed=y
- Moya R, Álvarez W. (2018). *Modelación hidráulica de un canal urbano en la ciudad de Bogotá, caso de estudio: canal rio negro* [Tesis de pregrado]. Colombia [consultado 6 noviembre 2021]. Disponible en: https://repository.ucatolica.edu.co/bitstream/10983/16344/1/DOCUMENTO%20M
 https://repository.ucatolica.edu.co/bitstream/10983/16344/1/DOCUMENTO%20M
 <a href="https://openstage.com/documents/document
- Oyola A, Medina O. (2019). Estimación de caudales máximos con fines de prevención de inundaciones aplicando el modelo hidrológico HEC-RAS, caso Rio Zarumilla 2018 [Tesis de pregrado]. Perú [consultado 6 noviembre 2021]. Disponible en: http://repositorio.untumbes.edu.pe/bitstream/handle/20.500.12874/1057/TESIS%20 -%20OYOLA%20Y%20MEDINA.pdf?sequence=1&isAllowed=y

"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"

- Pachac H, Yenica C. (2013). Modelamiento hidrológico e hidráulico para avenidas de la sub cuenca Quillcay, con fines de protección del sector Nueva Florida, Distrito de Independencia 2013 [Tesis de pregrado]. Perú: repositorio Universidad Nacional Santiago Antúnez de Mayolo [consultado 6 noviembre 2021]. Disponible en: http://repositorio.unasam.edu.pe/handle/UNASAM/1192
- Portella C, Villafuerte C. (2020). Evaluación del riesgo de inundación del río Cascajal en el entorno del caserío de Sincape (distrito de Olmos) y análisis de alternativas de solución [Tesis de pregrado]. Perú [consultado 6 noviembre 2021]. Disponible en: https://repositorio.uss.edu.pe/bitstream/handle/20.500.12802/6954/Portella%20Delgado%20Cristian%20%26%20Villafuerte%20Mayanga%20Crosby.pdf?sequence=1&isAllowed=y
- Real Academia Española: *diccionario de la lengua española*. 23 ed., [versión 23.4 en línea]. (2014). Disponible en: https://dle.rae.es/quebrada
- Real Academia Española: *diccionario de la lengua española*. 23 ed., [versión 23.4 en línea]. (2014). Disponible en: https://dle.rae.es/precipitaci%C3%B3n
- Real Academia Española: *diccionario de la lengua española*. 23 ed., [versión 23.4 en línea]. (2014). Disponible en: https://dle.rae.es/escorrent%C3%ADa?m=form
- Real Academia Española: diccionario de la lengua española. 23 ed., [versión 23.4 en línea]. (2014). Disponible en: https://dle.rae.es/erosi%C3%B3n
- Sánchez San Román JF. (2012). *Manual elemental de HEC-HMS*. Departamento de geología-Universidad Salamanca (España). p.24). Consultado el 14 Abr. 2015. Disponible en http://www.hec.usace.army.mil/software/hec-hms

"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"


- Sotero, H. (1987). Estudio de máximas avenidas haciendo uso de modelos probabilísticos

 Aplicación rio Chicama (Tesis de pregrado). Lima.
- Tarazona H. (2016). Modelamiento hidrológico de la cuenca del río Ica con fines de prevención de inundaciones en la ciudad de Ica [Tesis de pregrado]. Perú [consultado 6 noviembre 2021]. Disponible en: http://repositorio.lamolina.edu.pe/handle/UNALM/2490
- Trigoso B. (2018). Modelamiento hidráulico de la quebrada Calispuquio tramo ciudad de Cajamarca ciudad universitaria, con fines de prevención de inundaciones [Tesis de pregrado]. Perú [consultado 6 noviembre 2021]. Disponible en: https://repositorio.unc.edu.pe/bitstream/handle/UNC/2049/TESIS%20-%20FINAL.pdf?sequence=1&isAllowed=y
- U.S. Army Corps of Engineers. (2008). *HEC RAS River Analysis System*. User's manual. Disponible en htto://www.hec.usace.army.mil.
- Villón, M. (2004). Hidrología, 4ta Ed. Editorial: Tecnológica de Costa Rica. Cartago, Costa Rica.
- Ven Te, Chow. (1994). *Hidrología Aplicada*, 1ed. Edit. NOMOS Santafé de Bogotá Colombia, 299p.
- Villa A., Sedano M., López A., Juan A., Correlación lineal y análisis de regresión. P.21.
 Consultado el 15 Mar. 2016. Disponible en http://www.uoc.edu/in3/emath/docs/RegresionLineal.pdf
- Villón Béjar MG. (2011). *Hidrología aplicada*. 105p.

CAPITULO VII: ANEXOS

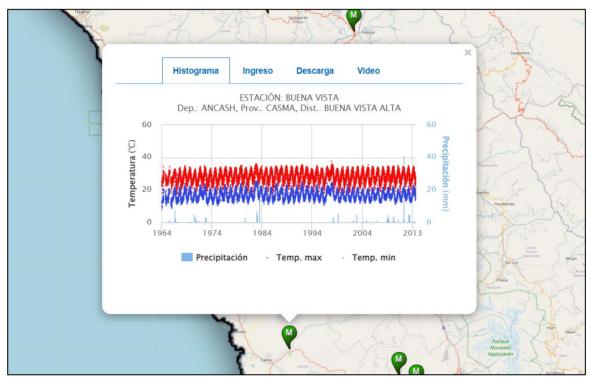
Anexo 1. CARTA NACIONAL (18-g)

Fuente: MINEDUM – Descarga de información espacial del MED

Anexo 2. IMAGEN DE APOYO DEL GOOGLE EARTH USADA EN LA TESIS

Figura 2.Delimitación de cuenca

Fuente: Google Earth

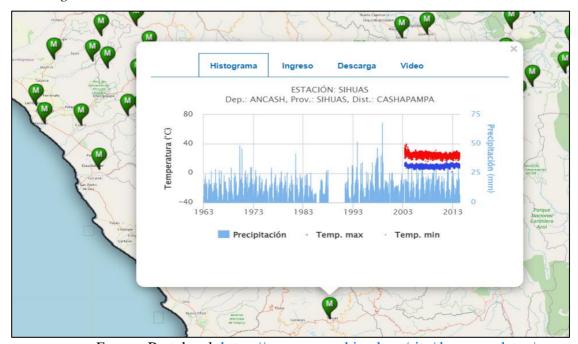

Anexo 3. DATOS METEOROLÓGICOS PARA CADA ESTACIÓN

Anexo 3.1Datos meteorológicos - estación Buena Vista

ESTACIÓN:	BUENA VISTA			
PARÁMETRO:	PRECIPITACION			
	MAXIMA			
	EN 24 HORAS (mm)			
Año	PP. Max			
1994	0.01			
1995	0.01			
1996	0.01			
1997	0.01			
1998	3.60			
1999	5.60			
2000	39.00			
2001	0.01			
2002	5.30			
2003	0.40			
2004	1.70			
2005	0.00			
2006	1.50			
2007	0.00			
2008	2.50			
2009	4.70			
2010	4.00			
2011	2.00			
2012	41.00			
2013	5.00			

"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"

Figura 3. *Histograma estación Buena Vista*

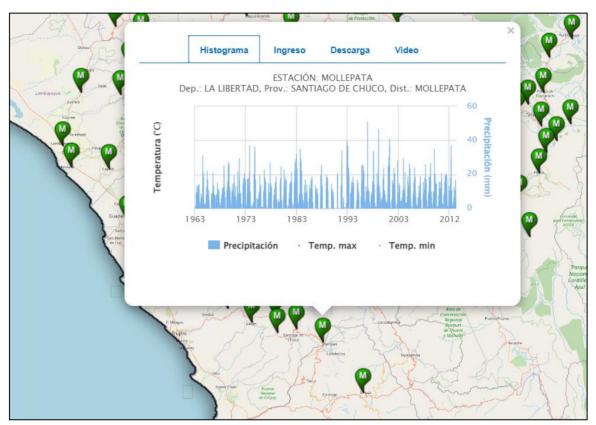

Anexo 3.2.Datos meteorológicos - estación Sihuas

ESTACIÓN:	SIHUAS
PARÁMETRO:	PRECIPITACION MAXIMA EN 24 HORAS (mm)
Año	PP. Max
1994	52.50
1995	35.30
1996	26.90
1997	38.30
1998	46.90
1999	68.30
2000	25.20

Fuente: Portal web https://www.senamhi.gob.pe/site/descarga-datos/

Figura 4. *Histograma estación Sihuas*

Fuente: Portal web https://www.senamhi.gob.pe/site/descarga-datos/



Anexo 3.3.Datos meteorológicos - estación Mollepata

0	
ESTACIÓN:	MOLLEPATA
PARÁMETRO:	PRECIPITACION MAXIMA EN 24 HORAS (mm)
Año	PP. Max
1994	19.20
1995	25.30
1996	26.00
1997	51.20
1998	34.10
1999	47.10
2000	24.00
2001	41.30
2002	28.60
2003	29.60
2004	21.60
2005	26.70
2006	24.00
2007	19.50
2008	26.50
2009	35.20
2010	20.70
2011	21.20
2012	20.80
2013	37.70

Figura 5. *Histograma estación Mollepata*

Anexo 3.4.Datos meteorológicos - estación Talla Guadalupe

ESTACIÓN:	TALLA - GUADALUPE
PARÁMETRO:	PRECIPITACION MAXIMA EN 24 HORAS (mm)
Año	PP. Max
1994	7.1
1995	4.2
1996	3.9
1997	20.9
1998	63
1999	21.8
2000	8.5

2001	8.4
2002	7.6
2003	4.4
2004	5
2005	8.9
2006	7
2007	6.1
2008	5.3
2009	15.4
2010	11.9
2011	8.4
2012	16.6
2013	10.9

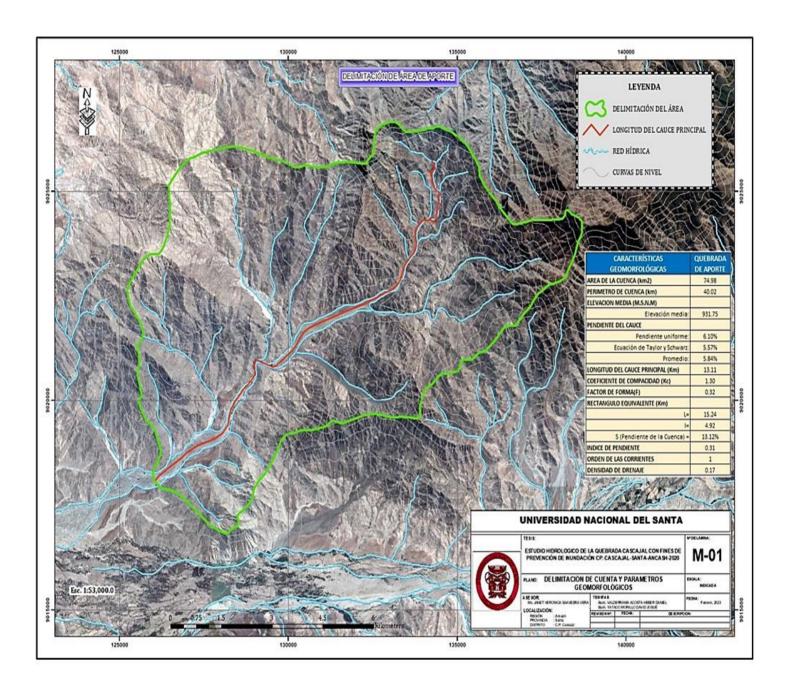
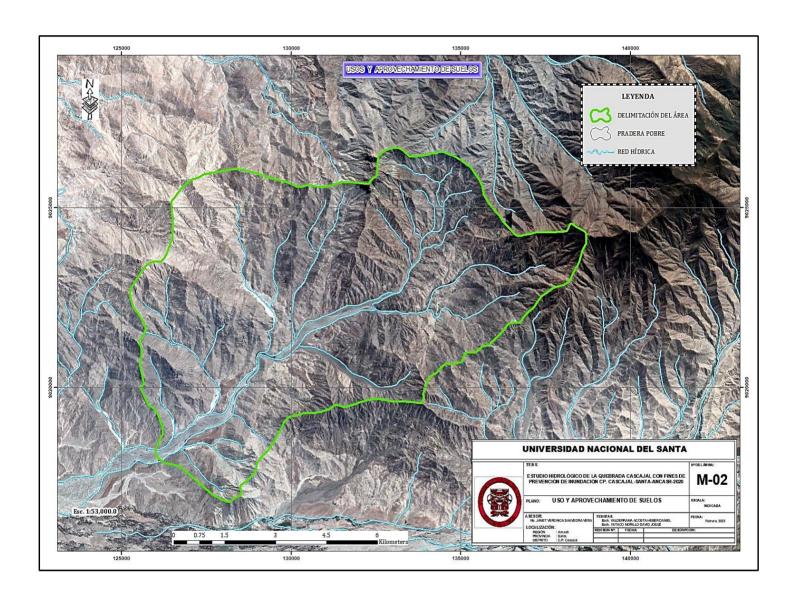
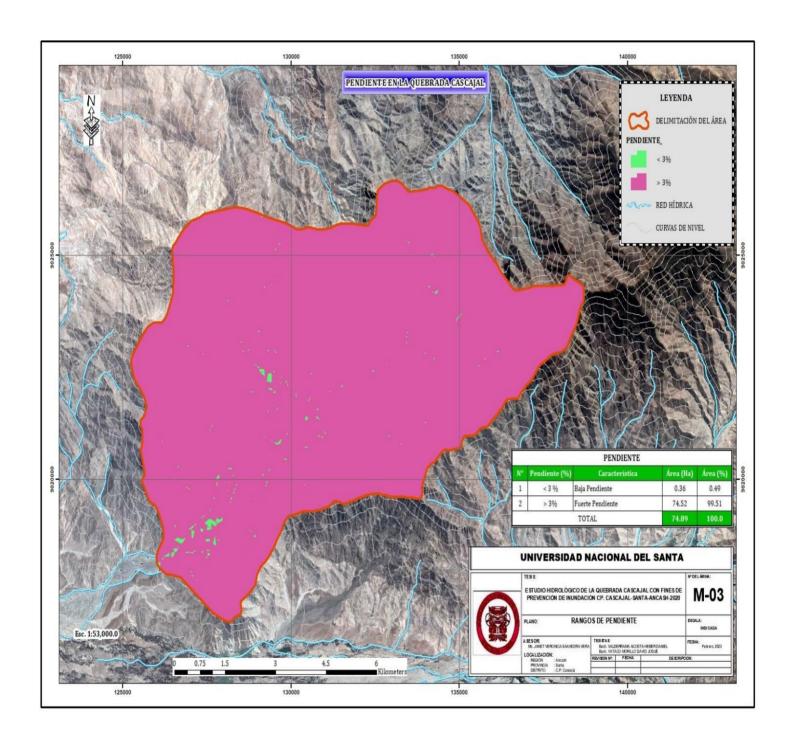

Fuente: Portal web https://www.senamhi.gob.pe/site/descarga-datos/

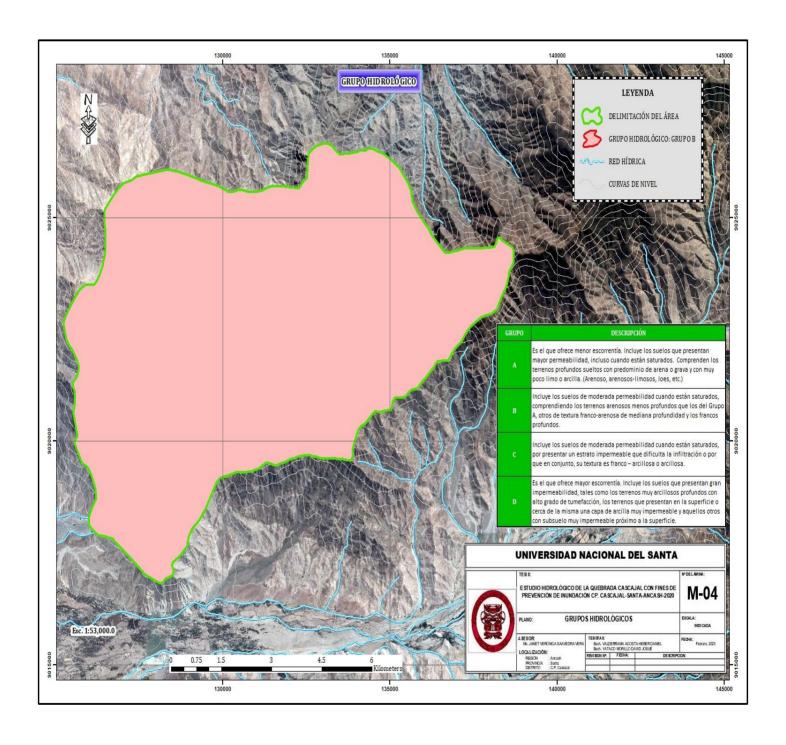
Figura 6. *Histograma estación Talla Guadalupe*



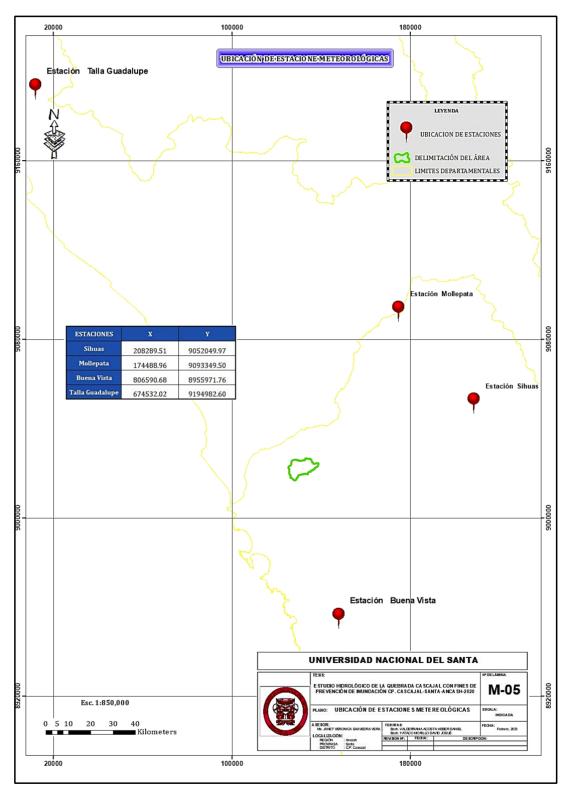
Anexo 4. MAPA M1 – DELIMITACIÓN DE LA CUENCA



Anexo 5. MAPA M2 – USO Y APROVECHAMIENTO DE SUELOS



Anexo 6. MAPA M3 - RANGO DE PENDIENTES



Anexo 7. MAPA M4 – GRUPOS HIDROLÓGICOS

Anexo 8. MAPA M5 – UBICACIÓN DE ESTACIONES METEOROLÓGICAS

Anexo 9. AJUSTE DE DISTRIBUCIONES PROBILÍSTICAS PARA DIFERENTES ESTACIONES

Anexo 9.1. *Ajuste de distribuciones a datos de la estación Buena Vista*

,	PP. Max 24 horas - Estación Buena Vista				
DISTRIBUCIÓN	$\delta_{Tabulado}$	$\delta_{Teorico}$	Tr= 25 Años	Tr = 50 Años	
Normal	0.3041	0.3645	26.6	30.2	
Log Normal 2P	NO SE AJUSTA				
Log Normal 3P		NO SE AJUS	STA		
Gamma 2P		NO SE AJUS	STA		
Gamma 3P	0.3041	0.3717	32.78	42.59	
Gumbel	0.3041	0.3013	30.07	36.58	
Log Pearson tipo III	NO SE AJUSTA				

Las distribuciones que mejor se ajusta a los datos de la estación Buena Vista es Gummbel.

Anexo 9.2. *Ajuste de distribuciones a datos de la estación Sihuas*

	PP. Max 24 horas - Estación Sihuas					
DISTRIBUCIÓN	$\delta_{Tabulado}$ δ_{Teo}	rico	Tr=25 Años	Tr = 50 Años		
Normal	0.3041	0.1742	53.21	56.76		
Log Normal 2P	0.3041	0.1244	53.32	58.53		
Log Normal 3P	0.3041	0.0733	58.52	68.55		
Gamma 2P	0.3041	0.1368	52.49	56.81		
Gamma 3P	0.3041	0.0678	58.38	66.04		
Gumbel	0.3041	0.1065	56.64	63.06		
Log Pearson tipo III	0.3041	0.06818	58.45	68.26		

Las distribuciones se mejor se ajusta a los datos de la estación Buena Vista es Gamma 3P.

"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"

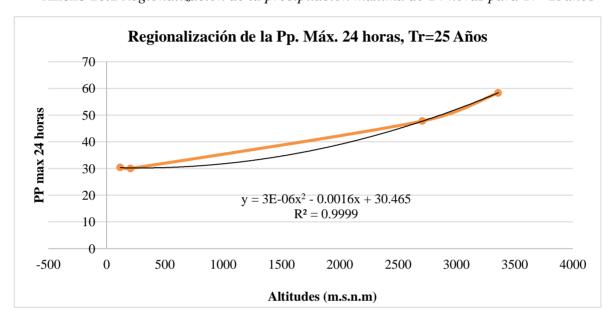
Anexo 9.3. *Ajuste de distribuciones a datos de la estación Mollepata*

DISTRIBUCIÓN	PP. Max 24 horas - Estación Mollepata					
DISTRIBUCION	$\delta_{Tabulado}$ $\delta_{Teorico}$		Tr= 25 Años	Tr = 50 Años		
Normal	0.3041	0.170	44.61	47.36		
Log Normal 2P	0.3041	0.126	45.48	49.6		
Log Normal 3P	0.3041	0.093	49.92	58.02		
Gamma 2P	0.3041	0.144	44.55	47.95		
Gamma 3P	0.3041	0.078	47.79	52.81		
Gumbel	0.3041	0.110	47.26	52.24		
Log Pearson tipo III	0.3041	0.087	48.67	55.45		

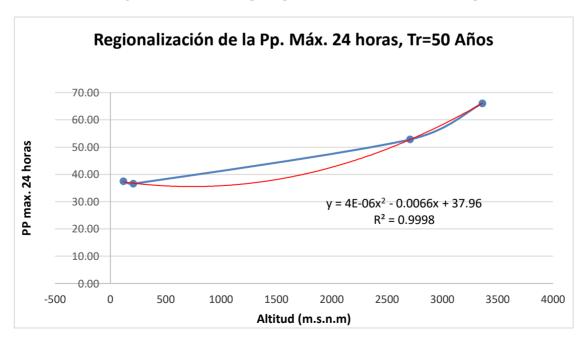
Las distribuciones se ajustan a los datos de la estación Mollepata es Gamma 3P

< Anexo 9.4.

Ajuste de distribuciones a datos de la Estación Talla Guadalupe

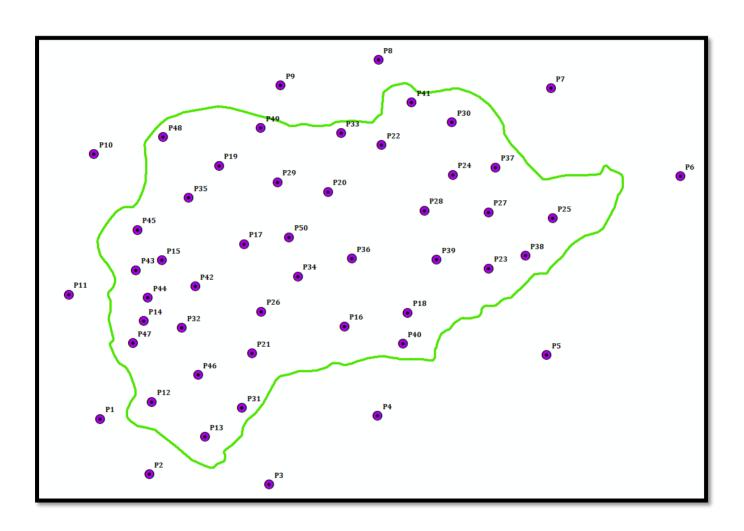

nicennin vición	PP. Max 24 horas - Estación Talla - Guadalupe					
DISTRIBUCIÓN	$\delta_{Tabulado}$ $\delta_{Teorico}$		Tr= 25 Años	Tr = 50 Años		
Normal	0.3041	0.2254	35.12	39.08		
Log Normal 2P	0.3041	0.1435	0.1435 30.49			
Log Normal 3P	0.3041	0.0827	38.56	53.53		
Gamma 2P	0.3041	0.1894	31.04	36.18		
Gamma 3P	NO SE AJUSTAN					
Gumbel	0.3041	0.2312	30.49	37.46		
Log Pearson tipo III	0.3041	0.0681	38.29	55.18		

Las distribuciones se ajustan a los datos de la estación Talla - Guadalupe es Log Pearson tipo III.



Anexo 10. GRÁFICOS Y ECUACIÓNES DE REGIONALIZACIÓN PARA DIFERENTES PERIODOS DE RETORNO

Anexo 10.1 Regionalización de la precipitación máxima de 24 horas para Tr=25años


Anexo 1.2. Regionalización de la precipitación máxima de 24 horas para Tr = 50 años

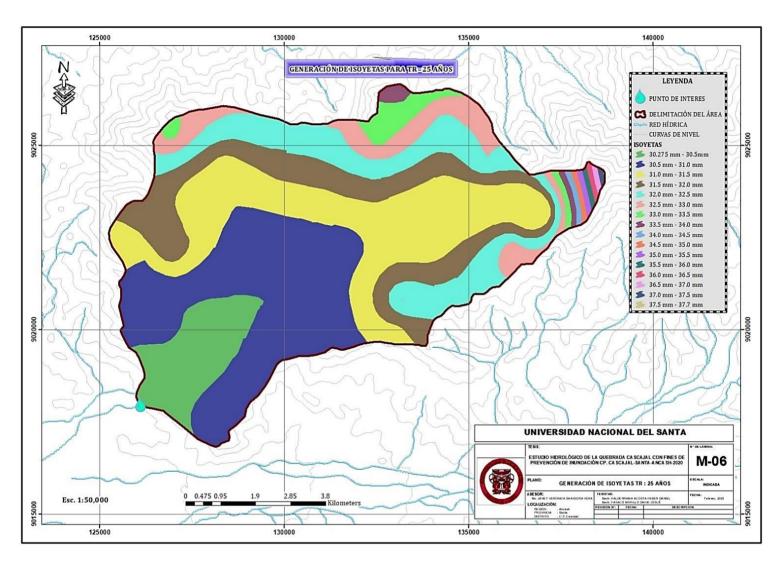
Anexo 11. DISTRIBUCIÓN ESPACIAL DE PUNTOS DE ELEVACIÓN ELEGIDOS DENTRO Y FUERA DE LA SUB CUENCA

Anexo 2.1.Distribución espacial de puntos de elevación

Anexo 11.2

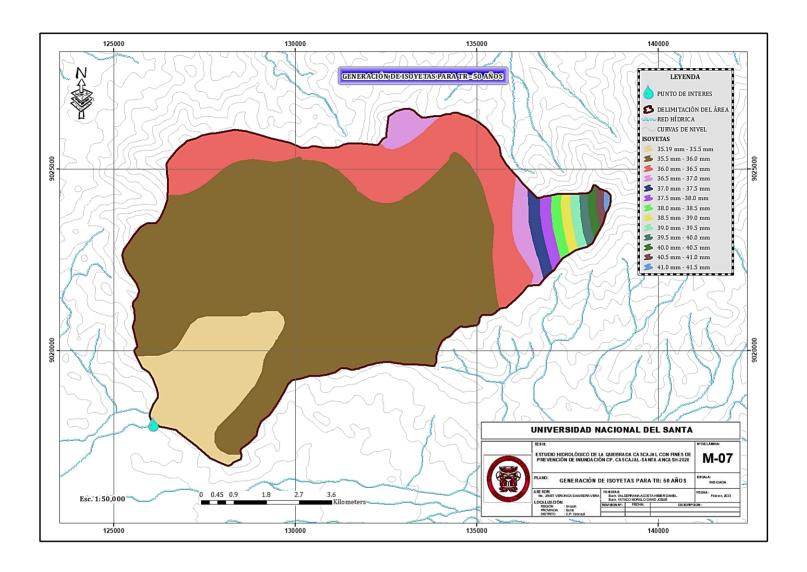
Puntos de elevación y precipitación con sus respectivas coordenadas de ubicación para diferentes periodos de retorno

Sub		Coordenadas utm			Tr=25 años	Tr=50 años
Cuenca Des	Descripción	X	Y	Z	Pp max 24 horas (mm)	Pp max 24 horas (mm)
Cascajal	P1	785348.00	9018805.00	361.00	30.28	36.10
Cascajal	P2	786581.00	9017365.00	433.00	30.33	35.85
Cascajal	P3	789650.00	9017056.00	465.00	30.37	35.76
Cascajal	P4	792452.00	9018767.00	651.00	30.69	35.36
Cascajal	P5	796804.95	9020252.68	1056.00	32.12	35.45
Cascajal	P6	800294.00	9024775.00	2362.00	43.42	44.69
Cascajal	P7	797021.00	9027073.00	1305.00	33.49	36.16
Cascajal	P8	792619.90	9027875.91	1384.00	34.00	36.49
Cascajal	P9	790103.00	9027262.00	1128.00	32.48	35.60
Cascajal	P10	785297.00	9025577.00	1007.00	31.90	35.37
Cascajal	P11	784596.00	9021998.00	780.00	31.04	35.25
Cascajal	P12	786681.00	9019215.00	397.00	30.30	35.97
Cascajal	P13	788026.00	9018305.00	628.00	30.64	35.39
Cascajal	P14	786500.00	9021288.00	865.00	31.33	35.24
Cascajal	P15	786995.00	9022836.00	1026.00	31.98	35.40
Cascajal	P16	791636.00	9021072.00	700.00	30.82	35.30
Cascajal	P17	789103.00	9023215.00	657.00	30.71	35.35
Cascajal	P18	793264.00	9021392.00	1136.00	32.52	35.62
Cascajal	P19	788499.00	9025227.00	850.00	31.27	35.24
Cascajal	P20	791272.00	9024520.00	925.00	31.55	35.28
Cascajal	P21	789261.87	9020415.98	576.00	30.54	35.49
Cascajal	P22	792662.00	9025693.00	1244.00	33.12	35.94
Cascajal	P23	795361.00	9022488.00	1055.00	32.12	35.45



"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"

Cascajal	P24	794476.00	9024905.00	929.00	31.57	35.28
Cascajal	P25	797013.00	9023747.00	140.00	30.30	37.11
Cascajal	P26	789522	9021479	555	30.50	35.53
Cascajal	P27	795378	9023931	1016	30.76	35.32
Cascajal	P28	793732	9023997	820	31.17	35.24
Cascajal	P29	789988	9024783	923	31.54	35.28
Cascajal	P30	794472	9026246	1090	32.29	35.52
Cascajal	P31	788983	9019031	643	30.68	35.37
Cascajal	P32	787477	9021098	497	30.41	35.67
Cascajal	P33	791630	9026014	1128	32.48	35.60
Cascajal	P34	790469	9022369	606	30.60	35.43
Cascajal	P35	787704	9024424	802	31.11	35.24
Cascajal	P36	791855	9022805	679	30.76	35.32
Cascajal	P37	795575	9025075	1134	32.51	35.62
Cascajal	P38	796304	9022802	1190	32.81	35.77
Cascajal	P39	794023	9022737	821	31.17	35.24
Cascajal	P40	793124.53	9020601.72	872	31.35	35.25
Cascajal	P41	793455	9026772	1303	33.47	36.15
Cascajal	P42	787835	9022153	659	30.71	35.35
Cascajal	P43	786325	9022591	765	31.00	35.25
Cascajal	P44	786618	9021881	629	30.65	35.39
Cascajal	P45	786381	9023626	945	31.63	35.30
Cascajal	P46	787876	9019886	440	30.34	35.83
Cascajal	P47	786219	9020725	614	30.61	35.42
Cascajal	P48	787077	9025986	1250	33.15	35.96
Cascajal	P49	789578	9026181	1127	32.47	35.60
Cascajal	P50	790258	9023369	711	30.84	35.29


Anexo 12. MAPA M6 – GENERACIÓN DE ISOYETAS A TR=25 AÑOS

El Mapa-06 (**Anexo 12**), muestra las isoyetas para la máxima precipitación en las 24 horas con un periodo de retorno de 25 años, que varía dentro de un rango de 30.275 a 37.7 mm.

Anexo 13. MAPA M7 – GENERACIÓN DE ISOYETAS A TR=50 AÑOS

El Mapa-07 (**Anexo 13**), muestra las isoyetas para la precipitación máxima durante 24 horas en un periodo de retorno de 50 años, el cual muestra la variación de la precipitación entre un rango de 35.19 a 41.5 mm.

Anexo 14. VALORES DE VARIABLES USADAS PARA CALCULAR LA PRECIPITACIÓN MEDIA

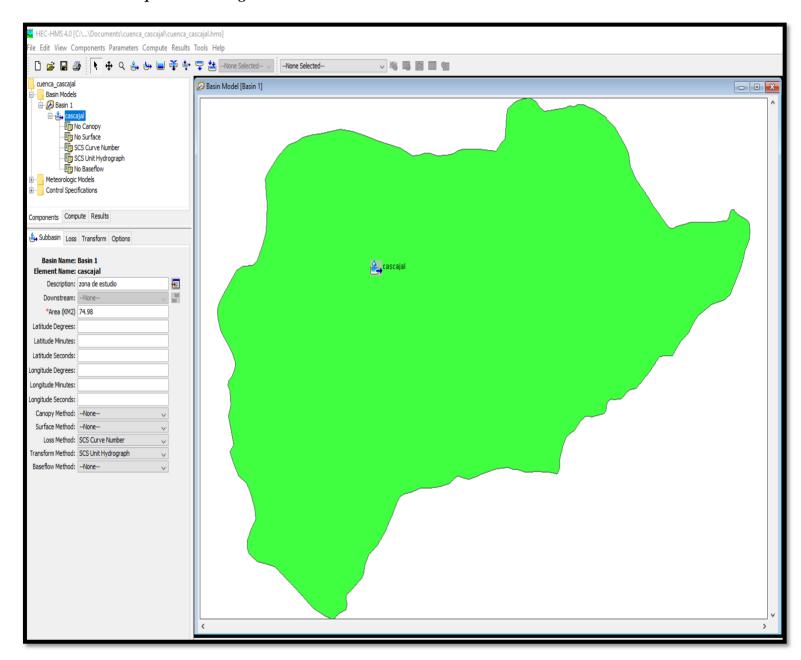
$$P_{Media} = \frac{\sum_{j=1}^{m} [(P_j + P_{j+1}/2)] * A_j}{\sum_{j=1}^{m} A_j}$$
 (7)

Anexo 14.1.Precipitación media - Tiempo de retorno de 25 años

P _j (mm)	P _{j+1 (mm)}	A _j (m2)	$\frac{P_j + P_{j+1}}{2}$	$\mathbf{A_j}*\left(\frac{\mathbf{P_j}+\mathbf{P_{j+1}}}{2}\right)$
30.275	30.5	6439410.5	30.39	195677586.6
30.5	31	19867357.65	30.75	610921247.7
31	31.5	17709417.52	31.25	553419297.5
31.5	32	11713832.83	31.75	371914192.4
32	32.5	10608989.77	32.25	342139920.1
32.5	33	4971683.94	32.75	162822649
33	33.5	1756450.42	33.25	58401976.47
33.5	34	560293.65	33.75	18909910.69
34	34.5	214482.85	34.25	7346037.613
34.5	35	200409.85	34.75	6964242.288
35	35.5	172935.31	35.25	6095969.678
35.5	36	148178.84	35.75	5297393.53
36	36.5	142889.38	36.25	5179740.025
36.5	37	98177.34	36.75	3608017.245
37	37.5	60493.99	37.25	2253401.128
37.5	37.7	6725.67	37.60	252885.192
	$\sum_{j=1}^{m} A_{j}$	74671729.51	$\sum_{j=1}^{m} [(P_j + P_{j+1}/2)] * A$	j 2351204467
			Pp media =	31.5

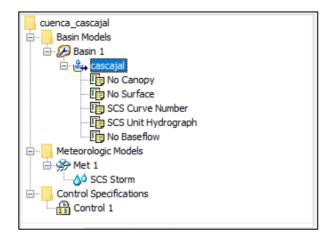
"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"

Anexo 14.2Precipitación media - Tiempo de retorno de 50 años

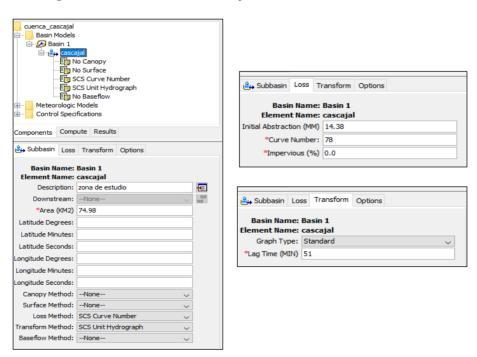

P _j (mm)	P _{j+(1} mm)	A _j (m2)	$\frac{P_j + P_{j+1}}{2}$	$\mathbf{A_{j}}*\left(\frac{\mathbf{P_{j}}+\mathbf{P_{j+1}}}{2}\right)$
35.19	35.5	8884923.47	35.35	314037620
35.5	36	47840915.11	35.75	1710312715
36	36.5	12502627.54	36.25	453220248.2
36.5	37	2144315.04	36.75	78803577.72
37	37.5	730533.26	37.25	27212363.94
37.5	38	580948.91	37.75	21930821.35
38	38.5	485119.63	38.25	18555825.85
38.5	39	418359.26	38.75	16211421.33
39	39.5	379043.22	39.25	14877446.39
39.5	40	333739.6	39.75	13266149.1
40	40.5	295011.66	40.25	11874219.32
40.5	41	206801.73	40.75	8427170.498
41	41.5	85613.36	41.25	3531551.1
	$\sum_{j=1}^{m} A_{j}$	74887951.79	$\sum_{j=1}^{m} [(P_j + P_{j+1}/2)] * A_j$	2692261130
			Pp media =	36.0

Anexo 15. PROGRAMA HEC-HMS

Anexo 15.1.

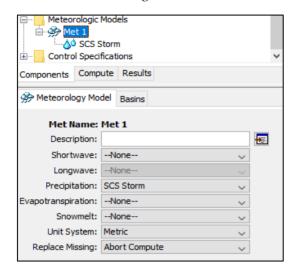

Esquema hidrológico en el HEC HMS

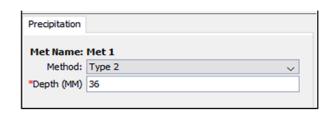
Anexo 15.2.


Vista general de los componentes del modelo hidrológico HEC HMS

Fuente: Elaboración propia en el programa HEC HMS

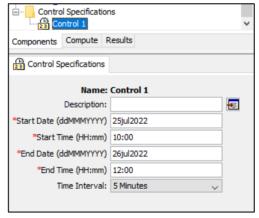
Anexo 15.3.


Modelo hidrológico de la Sub cuenca Cascajal en HEC-HMS



Anexo 15.4.

Modelo meteorológico HEC HMS de la Sub cuenca Cascajal



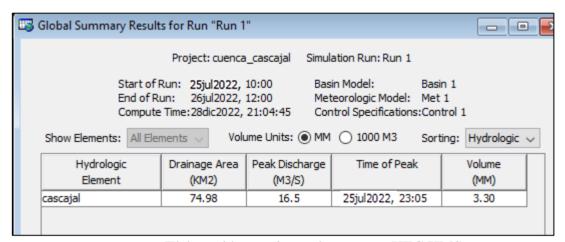
Fuente: Elaboración propia en el programa HEC HMS

Anexo 15.5

Modelo de control HEC HMS de la Sub cuenca Cascajal

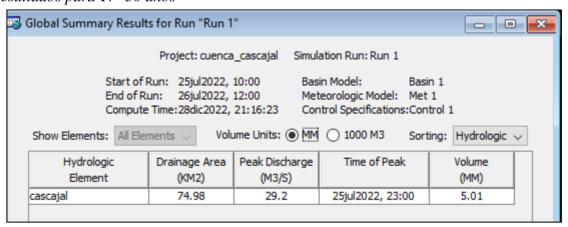
Fuente: Elaboración propia en el programa HEC HMS

Anexo 15.6. Modelo de corrida HEC HMS de la Sub cuenca Cascajal

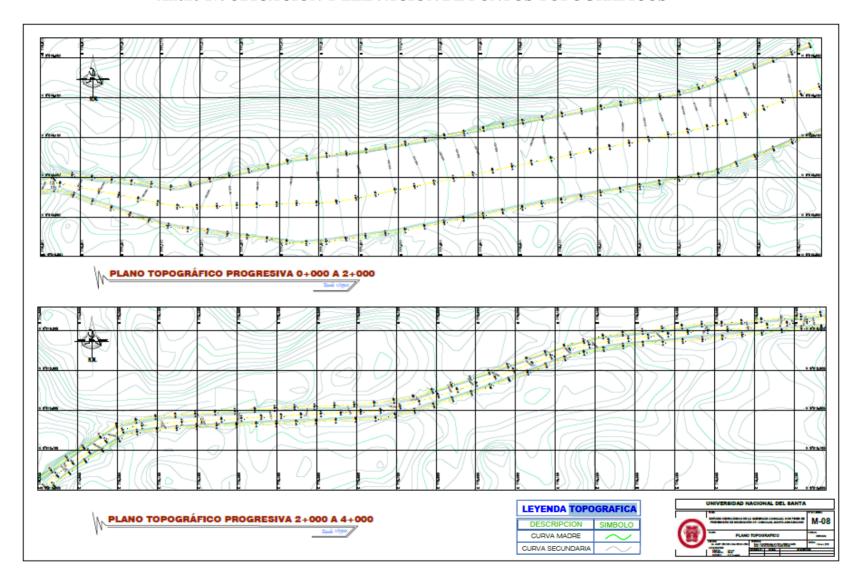


Anexo 16. RESULTADOS OBTENIDOS DEL PROGRAMA HEC HMS PARA 25 Y 50 AÑOS DE PERIODO DE RETORNO

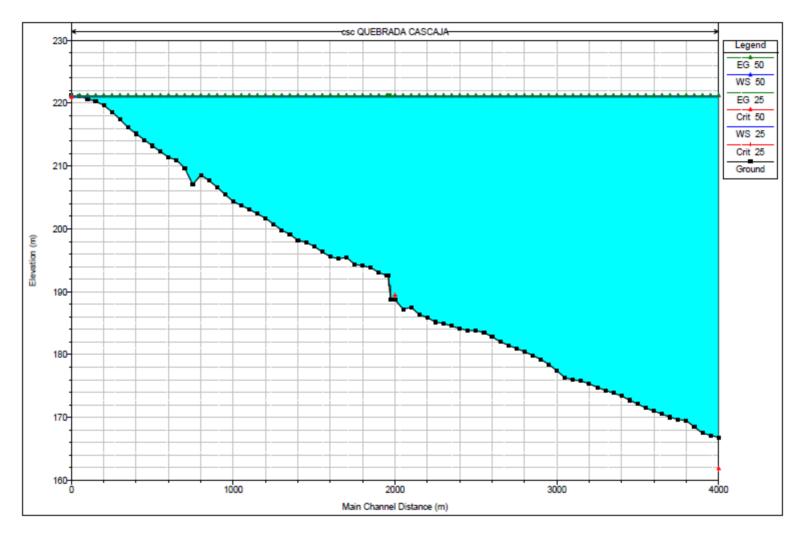
Anexo 16.1


Resultados para Tr=25 años

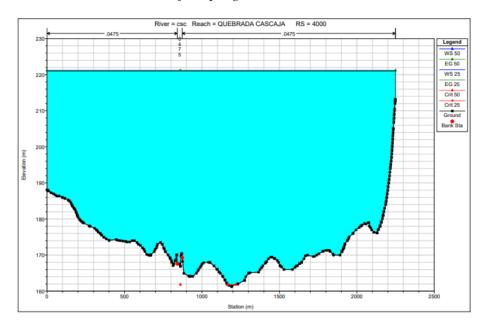
Fuente: Elaboración propia en el programa HEC HMS

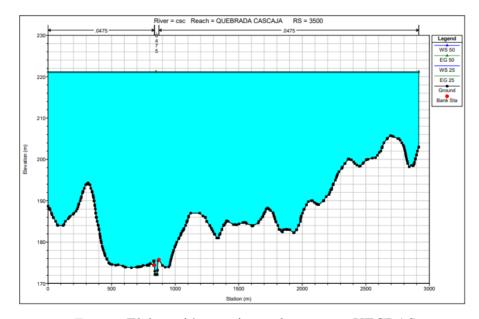

Anexo 16.2.

Resultados para Tr=50 años

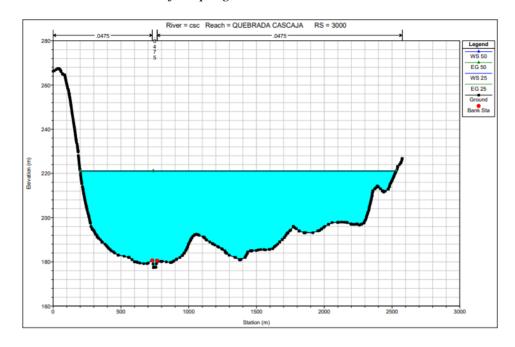


Anexo 17. UBICACIÓN Y ELEVACIÓN DE PUNTOS TOPOGRÁFICOS

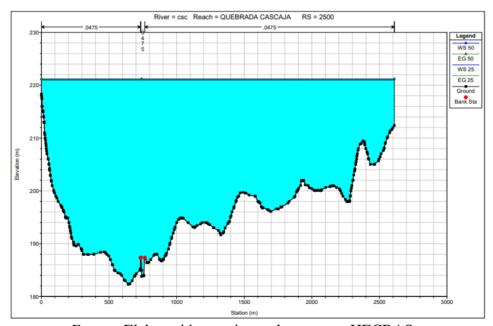

ANEXO 18. PERFIL LONGITUDINAL


Anexo 19. SECCIONES TRANSVERSALES

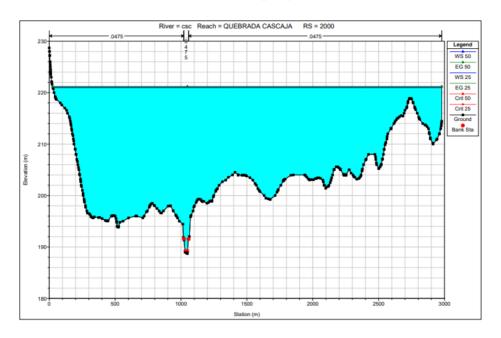
Sección transversal del rio cascajal - progresiva 4+000


Fuente: Elaboración propia en el programa HECRAS

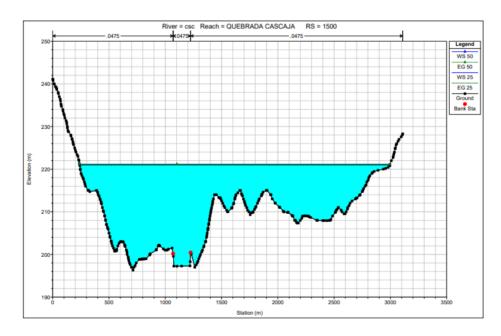
Sección transversal del rio cascajal - progresiva 3+500


Fuente: Elaboración propia en el programa HECRAS

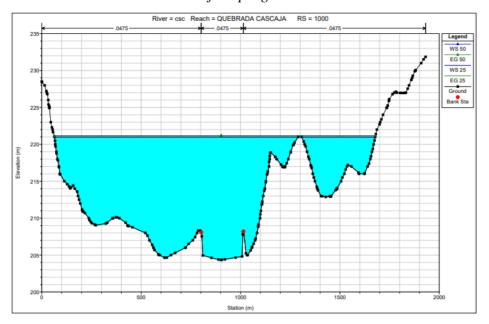
Sección transversal del rio cascajal - progresiva 3+000


Fuente: Elaboración propia en el programa HECRAS

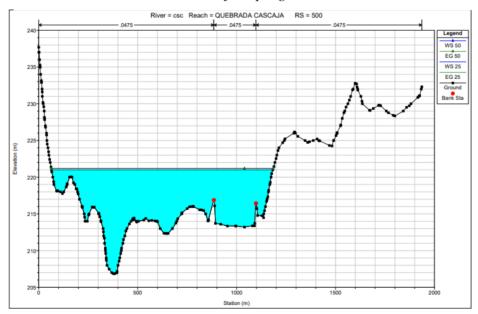
Sección transversal del rio cascajal - progresiva 2+500


Fuente: Elaboración propia en el programa HECRAS

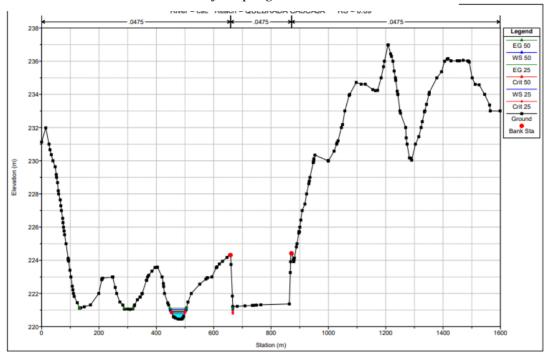
Sección transversal del río cascajal - progresiva 2+000


Fuente: Elaboración propia en el programa HECRAS

Sección transversal del río cascajal - progresiva 1+500


Fuente: Elaboración propia en el programa HECRAS

Sección transversal del río cascajal - progresiva 1+000


Fuente: Elaboración propia en el programa HECRAS

Sección transversal del río cascajal - progresiva 0+500

Fuente: Elaboración propia en el programa HECRAS

Sección transversal del río cascajal - progresiva 0+000

Fuente: Elaboración propia en el programa HECRAS

Anexo 20. COEFICIENTE DE RUGOSIDAD DE MANNING

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) * m_5$$
 (14)

En la siguiente fotografía se observa los materiales involucrados en el cauce del rio conformado por tierra.

Fotografía. 1.

n_0= Material del cauce del rio - tierra

En la siguiente fotografía se observa un material bien gradado, con taludes laterales ligeramente erosionados.

Fotografía 2.

n_1= Grado de irregularidad – material bien gradado

En la siguiente fotografía se evidencia el cambio de la sección transversal en este punto (progresiva 2+000), considerándolo como ocasionalmente alternante.

Fotografía 3.

n_2= Variación de la sección transversal – ocasionalmente alternante

En la siguiente fotografía se muestra poca presencia de obstrucciones, considerando este valor como efecto relativo de las obstrucciones menor.

Fotografía 4.

 $n_3 = Obstrucciones - menor$

En la siguiente fotografía se aprecia la presencia de vegetación en un tramo corto de toda el área de estudio, por lo que consideramos condición de vegetación baja.

Fotografía 5.

n_4= Vegetación – baja

 m_5 = Grados de los efectos por meandros

Se considera el grado de los efectos por meandros menor, debido que la relación entre la longitud de los meandros y la longitud recta del tramo de estudio próximo a la unidad.

$$m_5 = \frac{L_m}{L_r} = \frac{996.3}{785.69} = 1.26$$

Anexo 21. CÁLCULO DE LA PENDIENTE DEL TRAMO EN ESTUDIO

Anexo 21.1 Características geomorfológicas de la delimitación de la cuenca

a.- $\acute{A}REA$ DE LA CUENCA (A) = 74.98 Km2 Cuenca Pequeña

b.- PERÍMETRO DE LA CUENCA (P) = 40.02 Km

c.- LONGITUD DEL CAUCE PRINCIPAL (L) = 13.11 Km Mediano

d.- COEFICIENTE DE COMPACIDAD (Kc)

$$K_c = \frac{P}{2\sqrt{\pi A}}$$

Kc= 1.30 De Oval redonda a oval oblonga

Clase de	Rangos de	Forms do la Cuonca
Forma	Clase.	Forma de la Cuenca
Clase Kc1	< 1.25	Casi redonda a oval redonda
Clase kc2	1.25 - 1.50	Oval redonda a Oval oblonga
Clase Kc3	1.50 - 1.75	Oval oblonga a rectangular

Fuente: Instituto Nacional de Ecología (2004), Análisis morfológico de cuencas, estudiado por Alfonso fuentes Junco

Por lo tanto, de acuerdo al resultado obtenido, tendremos una Cuenca de Oval redonda a oval Oblonga.

e. LONGITUD DE LA CUENCA: Para Obtener la Longitud de la cuenca se usó la siguiente formula del Rectángulo Equivalente

$$L = \frac{K\sqrt{A}}{1.12} X \left(1 + \sqrt{1 - \left(\frac{1.12}{K}\right)^2}\right)$$

Longitud de la Cuenca (L) = 15.24 km **CUENCA MEDIANA**

f. FACTOR DE FORMA (Ff)

$$F = \frac{Ancho}{Longitud} = \frac{A}{L^2} = \frac{B}{L}$$

Am: Ancho Medio de la cuenca
 A: Área de la cuenca (km²)
 L: Longitud del rio más largo.

Ff = 0.32

LIGERAMENTE ACHATADA

Rangos de Ff	Clase de Forma
0.01 - 0.18	Muy poco Achatada
0.18 - 0.36	Ligeramente. Achatada
0.36 - 0.54	Moderadam. Achatada

Fuente: Instituto Nacional de Ecología (2004), Análisis morfológico de cuencas, estudiado por Alfonso fuentes Junco

g.- ANCHO D ELA CUENCA (B)

$$B = F_f * L$$

Ancho de la Cuenca (B) = 4.92 km

h.- RECTANGULO EQUIVALENTE

$$L = \frac{P}{4} \pm \sqrt{(\frac{P}{4})^2 - A}$$

$$L = \frac{K\sqrt{A}}{1.12} X \left(1 + \sqrt{1 - \left(\frac{1.12}{K}\right)^2}\right)$$

$$I = \frac{K\sqrt{A}}{1.12} X \left(1 - \sqrt{1 - \left(\frac{1.12}{K}\right)^2}\right)$$

$$L = 15.24 \text{ Km}$$

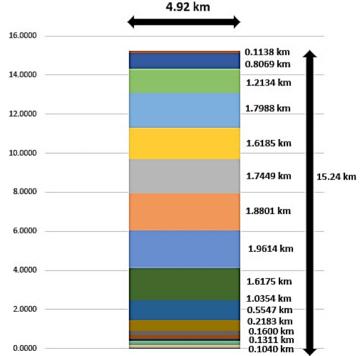
			1		
N°	Curvas de Nivel (m)		Área del rectangulo equivalente (Km2)	Li (Km)	Li x I (Km2)
1	2300.00	2200.00	0.0470	0.0096	0.0470
2	2200.00	2100.00	0.1470	0.0299	0.1470
3	2100.00	2000.00	0.2400	0.0488	0.2400
4	2000.00	1900.00	0.4400	0.0894	0.4400
5	1900.00	1800.00	0.5100	0.1037	0.5100
6	1800.00	1700.00	0.5117	0.1040	0.5117
7	1700.00	1600.00	0.6450	0.1311	0.6450
8	1600.00	1500.00	0.7870	0.1600	0.7870
9	1500.00	1400.00	1.0742	0.2183	1.0742
10	1400.00	1300.00	2.7290	0.5547	2.7290
11	1300.00	1200.00	5.0940	1.0354	5.0940
12	1200.00	1100.00	7.9580	1.6175	7.9580
13	1100.00	1000.00	9.6500	1.9614	9.6500
14	1000.00	900.00	9.2500	1.8801	9.2500
15	900.00	800.00	8.5850	1.7449	8.5850
16	800.00	700.00	7.9630	1.6185	7.9630
17	700.00	600.00	8.8500	1.7988	8.8500
18	600.00	500.00	5.9700	1.2134	5.9700
19	500.00	400.00	3.9700	0.8069	3.9700
20	400.00	300.00	0.5600	0.1138	0.5600
			74.98		74.98

18.0000

Cálculo de la Pendiente media de la Cuenca - Rectángulo equivalente

 $\Delta H = 2$

 $L=15.24 \; Km$


S=0.131

S=13.12%

Dv: Desnivel entre curvas de nivel.

S% = 100 *

Dh: Distancia horizontal o Lado menor del Rectángulo equivalente

i.- INDICE DE PENDIENTE

$$I_{P} = \sum_{i=2}^{n} \sqrt{\beta_{i} (a_{i} - a_{i-1})} \frac{1}{\sqrt{L}}$$

Donde:

Ip = Índice de pendiente

n = Número de curvas de nivel existentes en el rectángulo equivalente, incluido los externos

 a_i = Cotas de las curvas de nivel consideradas en Km

 eta_i = Fracción de la superficie total de la cuenca, comprendida entre las cotas a_i y a_{i-1}

1	$\beta_{\rm i} = {A_i / A_i}$					
N°	Curvas d	e Nivel (m)	Área del rectangulo equivalente (Km2)	$a_i - a_{i-1}$ (Km)	eta_i	$\sqrt{\beta_i (a_i - a_{i-1})}$
1	2300.00	2200.00	0.0470	0.100	0.0006	0.008
2	2200.00	2100.00	0.1470	0.100	0.0020	0.014
3	2100.00	2000.00	0.2400	0.100	0.0032	0.018
4	2000.00	1900.00	0.4400	0.100	0.0059	0.024
5	1900.00	1800.00	0.5100	0.100	0.0068	0.026
6	1800.00	1700.00	0.5117	0.100	0.0068	0.026
7	1700.00	1600.00	0.6450	0.100	0.0086	0.029
8	1600.00	1500.00	0.7870	0.100	0.0105	0.032
9	1500.00	1400.00	1.0742	0.100	0.0143	0.038
10	1400.00	1300.00	2.7290	0.100	0.0364	0.060
11	1300.00	1200.00	5.0940	0.100	0.0679	0.082
12	1200.00	1100.00	7.9580	0.100	0.1061	0.103
13	1100.00	1000.00	9.6500	0.100	0.1287	0.113
14	1000.00	900.00	9.2500	0.100	0.1234	0.111
15	900.00	800.00	8.5850	0.100	0.1145	0.107
16	800.00	700.00	7.9630	0.100	0.1062	0.103
17	700.00	600.00	8.8500	0.100	0.1180	0.109
18	600.00	500.00	5.9700	0.100	0.0796	0.089
19	500.00	400.00	3.9700	0.100	0.0529	0.073
20	400.00	300.00	0.5600	0.100	0.0075	0.027
		-	74.98		1.00	1.19

Cálculo del índice de Pendiente:

$$S = 0.306$$

j.- ORDEN DE CORRIENTES

1

DENSIDAD DE DRENAJE

$$D_d = \frac{L}{A}$$

Donde:

L=13.11Km Longitud total de las corrientes perennes o intermitentes en Km

A= 74.98 Km² Área de la Cuenca

Calculo:

Dd = 0.175 **Densidad de drenaje baja**

Rango de densidad	Clases
0.1 - 1.8	Baja
1.9 - 3.6	Moderada
3.7 - 5.6	Alta

Fuente: Instituto Nacional de Ecología (2004), Análisis morfológico de cuencas, estudiado por Alfonso fuentes Junco

I.- PENDIENTE DEL CAUCE PRINCIPAL

Pendiente Uniforme

Datos:

Cota Mayor = 1100 msns **Cota Menor** = 300 msns

Н = 0.80Km Km

L = 13.11 $LC = \frac{(HM - Hm)}{}$ 1000 * L

HM: Cota Mayor. Hm: Cota Menor.

L: Longitud del curso de agua mas largo.

Cálculo:

0.06 S =

S = 6.1%

Ecuación de Taylor y Schwartz

$$S = \left[\frac{L}{\frac{l_1}{\sqrt{s_1} + \frac{l_2}{\sqrt{s_2} + \frac{l_3}{\sqrt{s_3} \dots \frac{l_3}{\sqrt{s_n}}}}} \right]^2$$

N°	Curvas de Nivel (m)		L (Km)	H (Km)	S	$L_{/\sqrt{S}}$
1	300.00	400.00	1.21	0.1	0.08	4.21
2	400.00	500.00	2.78	0.1	0.04	14.66
3	500.00	600.00	2.25	0.1	0.04	10.67
4	600.00	700.00	1.90	0.1	0.05	8.28
5	700.00	800.00	1.38	0.1	0.07	5.13
6	800.00	900.00	1.36	0.1	0.07	5.02
7	900.00	1000.00	1.35	0.1	0.07	4.96
8	1000.00	1100.00	0.88	0.1	0.11	2.61
		•				

13.11 0.80 55.53

Cálculo de la Pendiente Principal:

S = 0.056

S = 5.6%

Anexo 21.2. Pendiente del tramo en estudio

N°	Curvas de	Nivel (m)	L (Km)	H (Km)	S	L/\sqrt{S}
1	226.50	226.00	0.110	0.0005	0.005	1.63
2	226.00	225.00	0.100	0.001	0.010	1.00
3	225.00	224.00	0.062	0.001	0.016	0.49
4	224.00	223.00	0.030	0.001	0.033	0.16
5	223.00	222.00	0.038	0.001	0.026	0.23
6	222.00	221.00	0.038	0.001	0.027	0.23
7	221.00	220.00	0.052	0.001	0.019	0.37
8	220.00	219.00	0.051	0.001	0.020	0.37
9	219.00	218.00	0.064	0.001	0.016	0.52
10	218.00	217.00	0.064	0.001	0.016	0.52
11	217.00	216.00	0.064	0.001	0.016	0.51
12	216.00	215.00	0.060	0.001	0.017	0.46
13	215.00	214.00	0.064	0.001	0.016	0.52
14	214.00	213.00	0.061	0.001	0.016	0.48
15	213.00	212.00	0.047	0.001	0.022	0.32
16	212.00	211.00	0.046	0.001	0.022	0.31
17	211.00	210.00	0.040	0.001	0.025	0.25
18	210.00	209.00	0.060	0.001	0.017	0.46
19	209.00	208.00	0.078	0.001	0.013	0.68
20	208.00	207.00	0.072	0.001	0.014	0.61
21	207.00	206.00	0.070	0.001	0.014	0.59
22	206.00	205.00	0.043	0.001	0.023	0.28
23	205.00	204.00	0.084	0.001	0.012	0.77
24	204.00	203.00	0.079	0.001	0.013	0.70
25	203.00	202.00	0.064	0.001	0.016	0.51
26	202.00	201.00	0.075	0.001	0.013	0.65
27	201.00	200.00	0.173	0.001	0.006	2.28
28	200.00	199.00	0.079	0.001	0.013	0.71
29	199.00	198.00	0.065	0.001	0.015	0.53
30	198.00	197.00	0.061	0.001	0.017	0.47
31	197.00	196.00	0.002	0.001	0.556	0.00
32	196.00	195.00	0.002	0.001	0.502	0.00
33	195.00	194.00	0.002	0.001	0.508	0.00
34	194.00	193.00	0.060	0.001	0.017	0.46
35	193.00	192.00	0.057	0.001	0.018	0.43
36	192.00	191.00	0.026	0.001	0.038	0.14
37	191.00	190.00	0.083	0.001	0.012	0.75

						•
38	190.00	189.00	0.108	0.001	0.009	1.12
39	189.00	188.00	0.116	0.001	0.009	1.24
40	188.00	187.00	0.166	0.001	0.006	2.13
41	187.00	186.00	0.067	0.001	0.015	0.55
42	186.00	185.00	0.099	0.001	0.010	0.99
43	185.00	184.00	0.086	0.001	0.012	0.80
44	184.00	183.00	0.072	0.001	0.014	0.61
45	183.00	182.00	0.057	0.001	0.018	0.43
46	182.00	181.00	0.051	0.001	0.020	0.36
47	181.00	180.00	0.084	0.001	0.012	0.78
48	180.00	179.00	0.121	0.001	0.008	1.33
49	179.00	178.00	0.108	0.001	0.009	1.12
50	178.00	177.00	0.090	0.001	0.011	0.86
51	177.00	176.00	0.081	0.001	0.012	0.73
52	176.00	175.00	0.089	0.001	0.011	0.84
53	175.00	174.00	0.103	0.001	0.010	1.05
54	174.00	173.00	0.129	0.001	0.008	1.47
55	173.00	172.00	0.090	0.001	0.011	0.85
56	172.00	171.50	0.084	0.0005	0.006	1.09

4.03 0.06 37.75

Pendiente = 0.011 m/m

Pendiente = 1.1 %

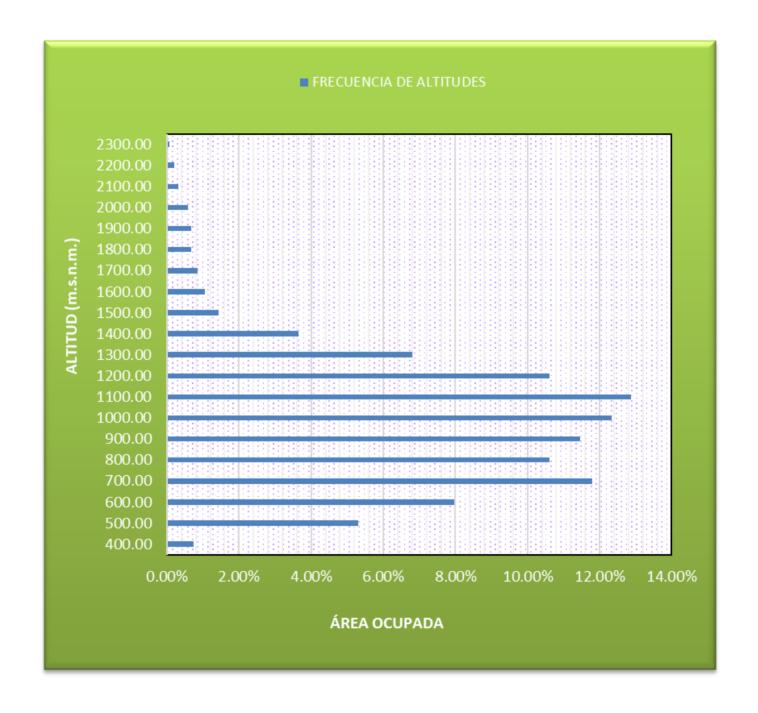
Fuente: Elaboración propia

Anexo 21.3 CURVAS CARACTERÍSTICAS DE UNA CUENCA

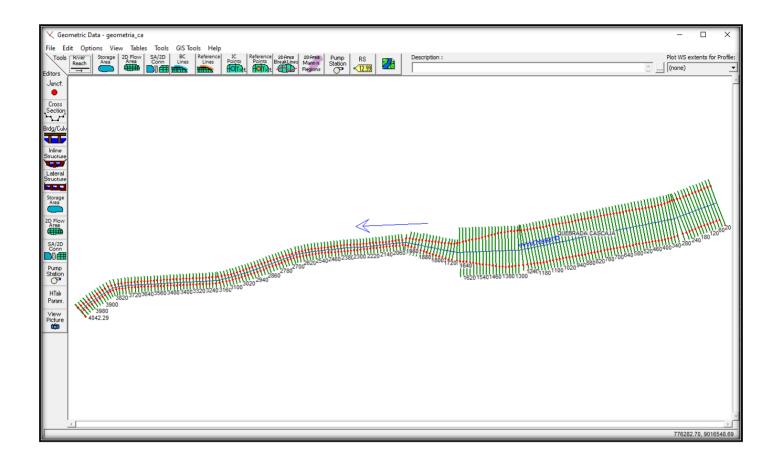
Curva hipsométrica

	Cotas		Área Parcial	Área Bajo la	Área Sobre la	Área Bajo la	Área Sobre la
Inicial	Final	Media	(Km2)	Curva	Curva	Curva (%)	Curva (%)
300	400	350	0.560	0.56	74.42	0.75%	99.25%
400	500	450	3.970	4.53	70.45	6.04%	93.96%
500	600	550	5.970	10.50	64.48	14.00%	86.00%
600	700	650	8.850	19.35	55.63	25.81%	74.19%
700	800	750	7.963	27.31	47.67	36.43%	63.57%
800	900	850	8.585	35.90	39.08	47.88%	52.12%
900	1000	950	9.250	45.15	29.83	60.21%	39.79%
1000	1100	1050	9.650	54.80	20.18	73.08%	26.92%
1100	1200	1150	7.958	62.76	12.22	83.70%	16.30%
1200	1300	1250	5.094	67.85	7.13	90.49%	9.51%
1300	1400	1350	2.729	70.58	4.40	94.13%	5.87%
1400	1500	1450	1.074	71.65	3.33	95.56%	4.44%
1500	1600	1550	0.787	72.44	2.54	96.61%	3.39%
1600	1700	1650	0.645	73.09	1.90	97.47%	2.53%
1700	1800	1750	0.512	73.60	1.38	98.15%	1.85%
1800	1900	1850	0.510	74.11	0.87	98.83%	1.17%
1900	2000	1950	0.440	74.55	0.43	99.42%	0.58%
2000	2100	2050	0.240	74.79	0.19	99.74%	0.26%
2100	2200	2150	0.147	74.93	0.05	99.94%	0.06%
2200	2300	2250	0.047	74.98	0.00	100.00%	0.00%
	TOTAL		74.98				

Elevación media

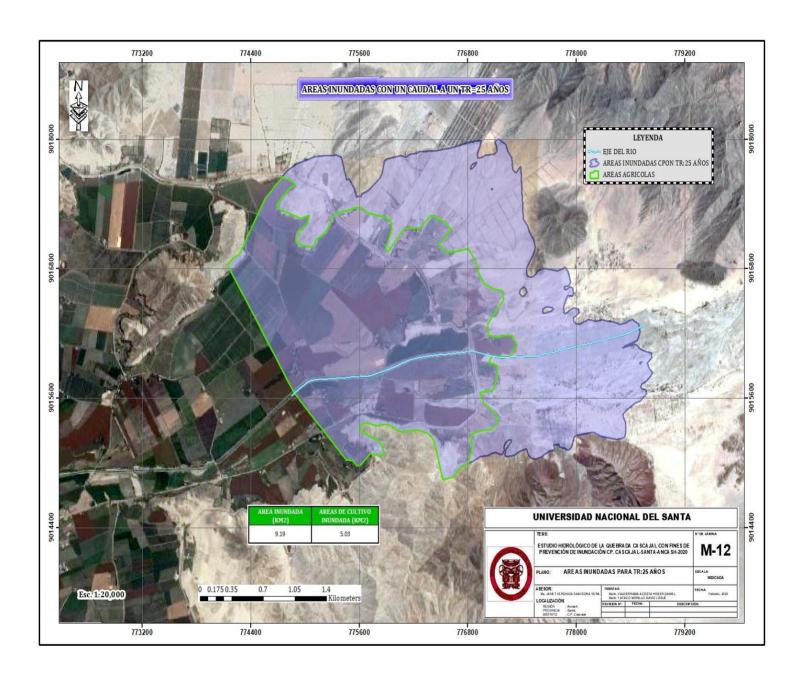

	1		2	3	4	5	6	7	8
Cotas	(ms	nm)	Cota media (msnm)	Área (Km2)	Sumatoria (Km2)	% del total	% acum. por encima	Cota (msnm)	(2) x (3)
Final		Inicial					100.0%	2300.0	
2300.00	-	2200.00	2250.0	0.0470	0.047	0.06%	99.9%	2200.0	105.8
2200.00	-	2100.00	2150.0	0.1470	0.194	0.20%	99.7%	2100.0	316.1
2100.00	-	2000.00	2050.0	0.2400	0.434	0.32%	99.4%	2000.0	492.0
2000.00	-	1900.00	1950.0	0.4400	0.874	0.59%	98.8%	1900.0	858.0
1900.00	-	1800.00	1850.0	0.5100	1.384	0.68%	98.2%	1800.0	943.5
1800.00	-	1700.00	1750.0	0.5117	1.896	0.68%	97.5%	1700.0	895.5
1700.00	-	1600.00	1650.0	0.6450	2.541	0.86%	96.6%	1600.0	1064.3
1600.00	-	1500.00	1550.0	0.7870	3.328	1.05%	95.6%	1500.0	1219.9
1500.00	-	1400.00	1450.0	1.0742	4.402	1.43%	94.1%	1400.0	1557.6
1400.00	-	1300.00	1350.0	2.7290	7.131	3.64%	90.5%	1300.0	3684.2
1300.00	-	1200.00	1250.0	5.0940	12.225	6.79%	83.7%	1200.0	6367.5
1200.00	-	1100.00	1150.0	7.9580	20.183	10.61%	73.1%	1100.0	9151.7
1100.00	-	1000.00	1050.0	9.6500	29.833	12.87%	60.2%	1000.0	10132.5
1000.00	-	900.00	950.0	9.2500	39.083	12.34%	47.9%	900.0	8787.5
900.00	-	800.00	850.0	8.5850	47.668	11.45%	36.4%	800.0	7297.3
800.00	-	700.00	750.0	7.9630	55.631	10.62%	25.8%	700.0	5972.3
700.00	-	600.00	650.0	8.8500	64.481	11.80%	14.0%	600.0	5752.5
600.00	_	500.00	550.0	5.9700	70.451	7.96%	6.0%	500.0	3283.5
500.00	-	400.00	450.0	3.9700	74.421	5.29%	0.7%	400.0	1786.5
400.00	-	300.00	350.0	0.5600	74.98	0.75%	0.0%		196.0
		Total		74.98		100%			69863.8
	Al	titud medi	ia	= 931.8	msnm				<u></u>

Frecuencia de altitudes

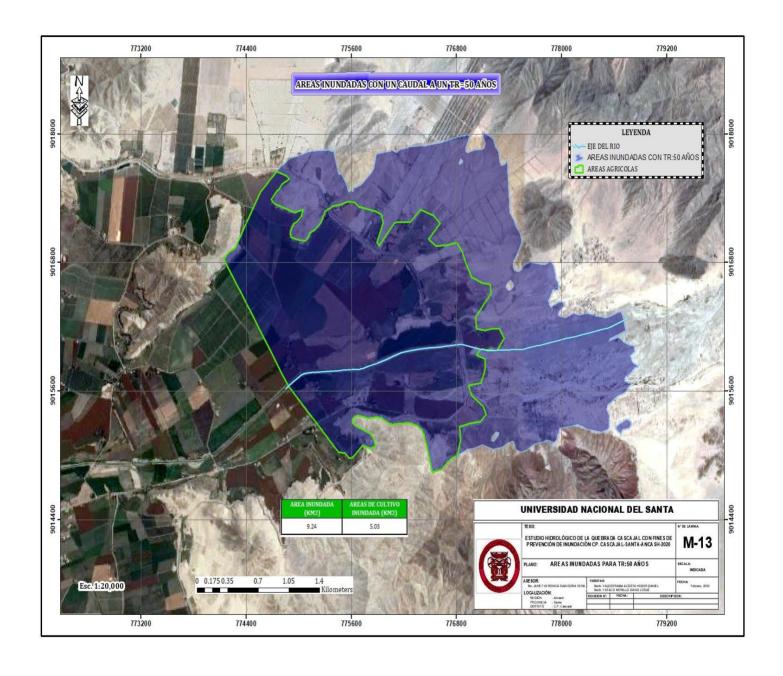

Cotas	% del total		
Final		Inicial	% dei totai
400.00	-	300.00	0.75%
500.00	-	400.00	5.29%
600.00	-	500.00	7.96%
700.00	-	600.00	11.80%
800.00	-	700.00	10.62%
900.00	-	800.00	11.45%
1000.00	-	900.00	12.34%
1100.00	-	1000.00	12.87%
1200.00	-	1100.00	10.61%
1300.00	-	1200.00	6.79%
1400.00	-	1300.00	3.64%
1500.00	-	1400.00	1.43%
1600.00	-	1500.00	1.05%
1700.00	-	1600.00	0.86%
1800.00	-	1700.00	0.68%
1900.00	-	1800.00	0.68%
2000.00	-	1900.00	0.59%
2100.00	-	2000.00	0.32%
2200.00	-	2100.00	0.20%
2300.00	-	2200.00	0.06%


Anexo 22. PROGRAMA HEC-RAS

Fuente: Programa HECRA



Anexo 23. MAPA M11 – ELEMENTOS GEOMÉTRICOS OBTENIDOS



Anexo 24. MAPA M12 – ÁREAS INUNDADAS A TR=25 AÑOS

Anexo 25. MAPA M13 – ÁREAS INUNDADAS A TR=50 AÑOS

Anexo 26. CÁLCULOS DEL TIEMPO DE CONCENTRACIÓN Y DE RETARDO VALORES DEL CAUCE

Longitud del cauce	13.11
Pendiente del cauce (%)	5.57%
Pendiente del cauce (m/m)	0.056
Desnivel del cauce principal	0.80

MÉTODO DE KIRKICH

$$T_c = 0.06628 * \left(\frac{Lc^{0.77}}{S^{0.385}}\right)$$
 (8)

Dónde:

Tc = Tiempo de concentración (Hrs)

Lc = Longitud del cauce (Km)

1.46

S = Pendiente (m/m)

MÉTODO DE FAO

$$T_c = \frac{L^{1.15}}{15 * H^{0.385}} \tag{9}$$

Dónde:

Tc = Tiempo de concentración (Hrs)

1.40

L = Longitud del cauce (Km)

H = Desnivel total del cauce principal (Km)

MÉTODO DE ROWE

$$T_c = \left[\frac{0.86 * L^3}{H}\right]^{0.385} \tag{10}$$

Dónde:

Tc = Tiempo de concentración (Hrs)

L = Longitud del cauce (Km)

1.41

H = Desnivel total del cauce principal (m)

MÉTODO DE BASSO

$$T_c = 0.067 * \frac{L^{1.15}}{H^{0.385}} \tag{11}$$

Dónde:

Tc = Tiempo de concentración (Hrs)

1.41

1.25

L = Longitud del cauce (Km)

H = Desnivel total del cauce principal (Km)

MÉTODO DE VENTE CHOW

$$T_C = 0.005 * \left(\frac{L}{\sqrt{S}}\right)^{0.64} \tag{12}$$

Dónde:

Tc = Tiempo de concentración (Hrs)

L = Longitud del cauce (m)

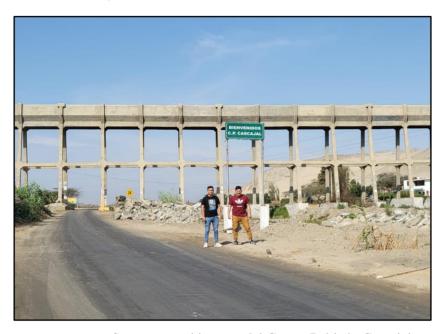
S = Pendiente del cauce principal (%)

Como el resultado del método de Vente Chow es menor a comparación de los resultados obtenidos con los 4 últimos métodos (KIRKICH, FAO Y BASSO) se trabajó con el promedio de los 4 valores que se asemejan. Promedio: 1.41

TIEMPO DE RETARDO

$$T_r = 0.6 * T_c$$

Tr=	0.85	Hrs
Lag Time	51.0	minutos


CNp	78	84
S	71.9	4.8
Ia=	14.38	0.97

Anexo 27. PANEL FOTOGRÁFICO

IMAGEN N°01:

Centro Poblado Cascajal.

Se muestra el ingreso del Centro Poblado Cascajal.

IMAGEN N°02:

Formación de diques

Se muestra la formación de diques causados por el pase del huaico a lo largo de la carretera del acceso al centro poblado, producido por el fenómeno del niño costero en marzo del año 2017.

IMAGEN N°03:

Efectos del fenomeno del niño costero en viviendas

Se muestra los efectos del fenomeno del niño costero de marzo del 2017, causados en las viviendas del centro poblado.

IMAGEN N°04:

Levantamiento topográfico

Se muestra la realización del levantamiento topográfico con estación total.

IMAGEN N°05:

Eje del rio

Se muestra la toma de puntos en el eje del rio.

IMAGEN N°06:

Margen del río

Se muestra la toma de puntos en el margen del rio.

IMAGEN N°07:

Progresivas 2+500.

Se muestra el rio entre las progresivas 2+500.

IMAGEN N°08:

Canal chinecas.

Se muestra la compuerta de captacion del canal chinecas.

IMAGEN N°09:

Compuerta de captacion del canal chinecas

Se muestra la compuerta de captacion del canal chinecas que intersecta el área de estudio.

IMAGEN N°10:

Progresivas 2+000.

Se muestra el fondo del rio en las progresivas 2+000.

IMAGEN N°11:

Progresiva 1+900

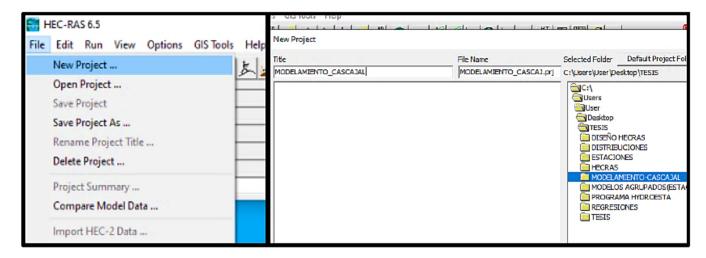
Se muestra el ancho del rio en la progresiva 1+900.

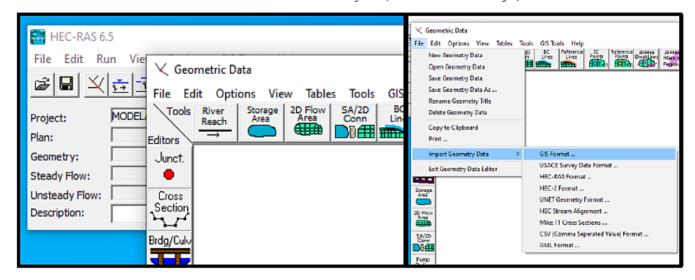
IMAGEN N°12:

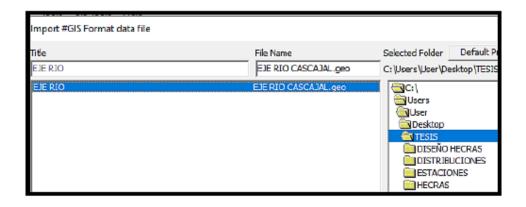
Progresiva1+970.

Se muestra el ancho del rio en la progresiva1+970.

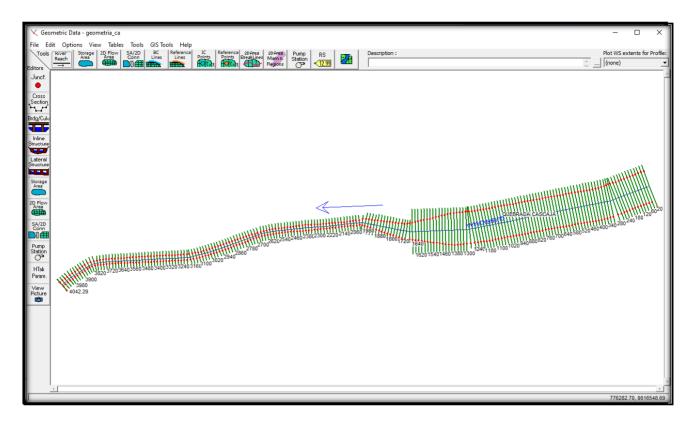
IMAGEN N°13:


Progresiva 1+750

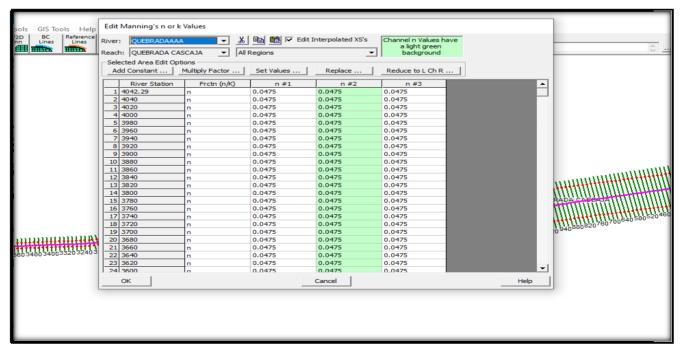

Se muestra el cambio del ancho de seccion transversal en la progresiva 1+750


Anexo 28. APLICACIÓN DEL PROGRAMA HEC-RAS

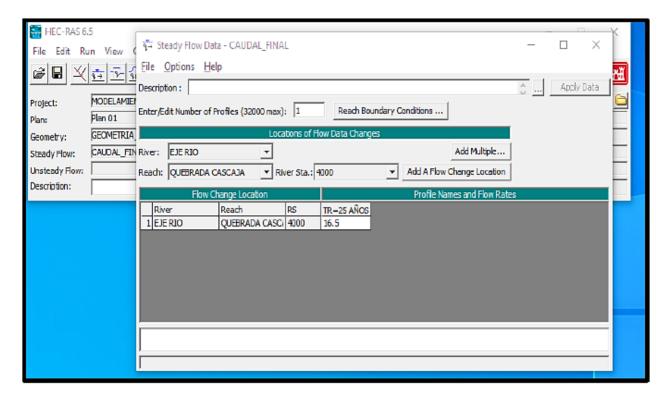
Creamos nuevo Proyecto(Modelamiento Cascajal)



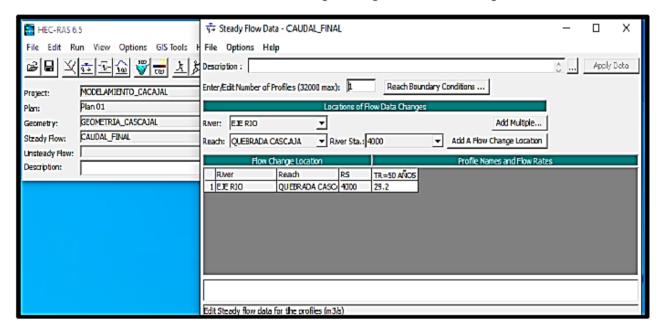
Importamos geometria dellevantamiento topografico



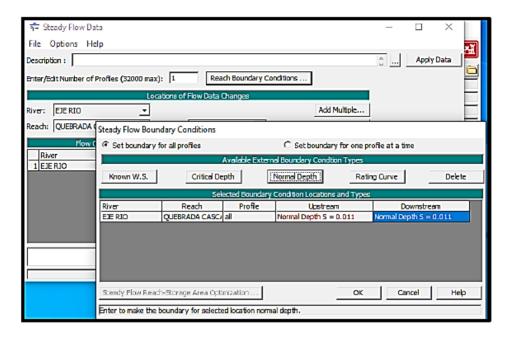
Seleccionamos eje



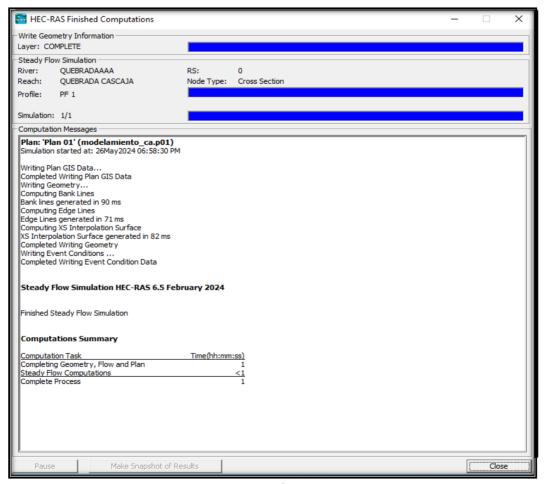
Se aprecia geometria del cauce



Colocamos el coeficiente de Manning



Colocamos el Caudal para un periodo de retorno para T=25 años



Colocamos el Caudal para un periodo de retorno para T=50 años

Colocamos la pendiente S= 0.011

corremos el programa.

"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"

Anexo 29. CARACTERÍSTICAS HIDRAÚLICAS DEL RIO CASCAJAL PARA 25 Y 50 AÑOS DE PERIÓDO DE RETORNO

HEC-RAS Plan: Plan 01 River: EJE RIO Reach: QUEBRADA CASCAJA Profile: TR=25 AÑOS

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
QUEBRADA CASCAJA	4000	TR= 25 AÑOS	16.50	166.84	161.75	161.86	161.87	0.037756	1.42	10.89	48.33	1.01
QUEBRADA CASCAJA	3980	TR= 25 AÑOS	16.50	166.96	165.05	164.56	165.26	0.031977	1.03	8.18	20.19	0.80
QUEBRADA CASCAJA	3960	TR= 25 AÑOS	16.50	167.10	165.20	165.12	165.40	0.031914	1.41	8.40	21.71	0.92
QUEBRADA CASCAJA	3940	TR= 25 AÑOS	16.50	167.24	165.59	165.21	165.77	0.033512	0.15	8.77	25.13	0.48
QUEBRADA CASCAJA	3920	TR= 25 AÑOS	16.50	167.37	166.40	166.35	166.59	0.032749	2.05	8.56	23.07	0.99
QUEBRADA CASCAJA	3900	TR= 25 AÑOS	16.50	167.52	167.49	167.53	167.65	0.033190	1.28	9.26	29.18	1.02
QUEBRADA CASCAJA	3880	TR= 25 AÑOS	16.50	167.91	168.48	168.42	168.67	0.028499	1.95	8.87	24.75	0.97
QUEBRADA CASCAJA	3860	TR= 25 AÑOS	16.50	168.32	168.64	168.52	168.79	0.021134	0.94	10.65	34.91	0.72
QUEBRADA CASCAJA	3840	TR= 25 AÑOS	16.50	168.72	169.02	168.58	169.16	0.025999	0.93	10.48	38.37	0.78
QUEBRADA CASCAJA	3820	TR= 25 AÑOS	16.50	169.10	169.57	169.25	169.71	0.031342	1.51	9.87	33.00	0.95
QUEBRADA CASCAJA	3800	TR= 25 AÑOS	16.50	169.51	170.18	170.02	170.34	0.017915	1.79	10.41	39.50	0.80
QUEBRADA CASCAJA	3780	TR= 25 AÑOS	16.50	169.63	170.21	170.28	170.47	0.030368	2.22	7.42	15.43	1.02
QUEBRADA CASCAJA	3760	TR= 25 AÑOS	16.50	169.67	170.22	170.29	170.46	0.029503	2.16	7.64	16.27	1.01
QUEBRADA CASCAJA	3740	TR= 25 AÑOS	16.50	169.72	170.24	170.35	170.47	0.029780	2.12	7.80	17.29	1.01
QUEBRADA CASCAJA	3720	TR= 25 AÑOS	16.50	169.79	170.30	170.38	170.52	0.030012	2.09	7.91	18.00	1.01
QUEBRADA CASCAJA	3700	TR= 25 AÑOS	16.50	170.04	170.51	170.68	170.72	0.030213	2.06	8.00	18.62	1.01
QUEBRADA CASCAJA	3680	TR= 25 AÑOS	16.50	170.22	170.72	170.78	170.94	0.029824	2.09	7.89	17.82	1.01
QUEBRADA CASCAJA	3660	TR= 25 AÑOS	16.50	170.44	170.92	170.95	171.15	0.029989	2.10	7.85	17.67	1.01
QUEBRADA CASCAJA	3640	TR= 25 AÑOS	16.50	170.63	171.11	171.21	171.33	0.029970	2.10	7.87	17.75	1.01
QUEBRADA CASCAJA	3620	TR= 25 AÑOS	16.50	170.81	171.29	171.38	171.52	0.030044	2.09	7.89	17.90	1.01
QUEBRADA CASCAJA	3600	TR= 25 AÑOS	16.50	171.01	171.22	171.43	171.31	0.040229	1.43	12.86	77.44	1.03
QUEBRADA CASCAJA	3580	TR= 25 AÑOS	16.50	171.18	171.65	171.63	171.81	0.025053	1.86	10.04	33.22	0.91
QUEBRADA CASCAJA	3560	TR= 25 AÑOS	16.50	171.36	171.87	171.72	172.05	0.025249	1.93	9.10	27.34	0.92
QUEBRADA CASCAJA	3540	TR= 25 AÑOS	16.50	171.62	172.10	172.21	172.31	0.030391	2.06	8.02	18.82	1.01
QUEBRADA CASCAJA	3520	TR= 25 AÑOS	16.50	171.87	172.34	172.41	172.55	0.030493	2.04	8.08	19.24	1.01
QUEBRADA CASCAJA	3500	TR= 25 AÑOS	16.50	172.15	172.57	173.62	172.78	0.030608	2.02	8.18	19.93	1.01
QUEBRADA CASCAJA	3480	TR= 25 AÑOS	16.50	172.38	172.81	172.86	173.01	0.030612	2.01	8.21	20.15	1.01
QUEBRADA CASCAJA	3460	TR= 25 AÑOS	16.50	172.63	173.05	173.12	173.26	0.030747	2.00	8.23	20.35	1.01
QUEBRADA CASCAJA	3440	TR= 25 AÑOS	16.50	172.89	173.31	173.42	173.51	0.030772	2.00	8.27	20.61	1.01
QUEBRADA CASCAJA	3420	TR= 25 AÑOS	16.50	173.14	173.57	173.59	173.77	0.030890	1.99	8.30	20.88	1.01
QUEBRADA CASCAJA	3400	TR= 25 AÑOS	16.50	173.42	173.60	173.22	173.70	0.036738	1.22	12.11	62.20	0.95
QUEBRADA CASCAJA	3380	TR= 25 AÑOS	16.50	173.60	173.94	173.99	174.08	0.035292	1.66	9.72	34.00	1.01

"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"

QUEBRADA CASCAJA	3360	TR= 25 AÑOS	16.50	173.78	174.11	174.02	174.26	0.029157	1.52	9.79	30.22	0.92
QUEBRADA CASCAJA	3340	TR= 25 AÑOS	16.50	173.96	174.41	174.32	174.60	0.029240	1.94	8.66	23.89	0.98
QUEBRADA CASCAJA	3320	TR= 25 AÑOS	16.50	174.14	174.58	174.62	174.78	0.030837	1.99	8.29	20.81	1.01
QUEBRADA CASCAJA	3300	TR= 25 AÑOS	16.50	174.32	174.18	173.10	174.27	0.039674	1.02	12.33	68.40	0.98
QUEBRADA CASCAJA	3280	TR= 25 AÑOS	16.50	174.48	174.92	174.95	175.13	0.030513	2.01	8.21	20.13	1.01
QUEBRADA CASCAJA	3260	TR= 25 AÑOS	16.50	174.70	175.14	175.17	175.34	0.030590	2.01	8.22	20.23	1.01
QUEBRADA CASCAJA	3240	TR= 25 AÑOS	16.50	174.92	175.35	175.38	175.56	0.030596	2.00	8.24	20.36	1.01
QUEBRADA CASCAJA	3220	TR= 25 AÑOS	16.50	175.13	175.58	175.61	175.78	0.030689	2.00	8.26	20.53	1.01
QUEBRADA CASCAJA	3200	TR= 25 AÑOS	16.50	175.36	173.52	173.88	173.67	0.034055	1.20	9.71	33.51	1.04
QUEBRADA CASCAJA	3180	TR= 25 AÑOS	16.50	175.54	175.99	175.97	176.13	0.028496	1.84	9.79	32.65	0.96
QUEBRADA CASCAJA	3160	TR= 25 AÑOS	16.50	175.74	176.05	176.02	176.15	0.035850	1.48	10.32	40.29	0.99
QUEBRADA CASCAJA	3140	TR= 25 AÑOS	16.50	175.85	176.12	176.09	176.22	0.025748	1.03	11.07	40.61	0.80
QUEBRADA CASCAJA	3120	TR= 25 AÑOS	16.50	175.91	176.26	176.23	176.38	0.030614	1.41	9.96	33.47	0.92
QUEBRADA CASCAJA	3100	TR= 25 AÑOS	16.50	175.98	176.00	175.12	176.08	0.024267	0.15	14.24	83.45	0.48
QUEBRADA CASCAJA	3080	TR= 25 AÑOS	16.50	176.04	176.63	176.60	176.81	0.029073	2.05	8.08	20.85	0.99
QUEBRADA CASCAJA	3060	TR= 25 AÑOS	16.50	176.13	176.72	176.75	176.94	0.030099	2.08	7.93	18.24	1.01
QUEBRADA CASCAJA	3040	TR= 25 AÑOS	16.50	176.57	177.14	177.17	177.36	0.030176	2.06	8.01	18.65	1.01
QUEBRADA CASCAJA	3020	TR= 25 AÑOS	16.50	177.00	177.54	177.57	177.75	0.030810	2.03	8.13	19.71	1.01
QUEBRADA CASCAJA	3000	TR= 25 AÑOS	16.50	177.43	177.94	178.45	178.14	0.031080	1.99	8.29	20.85	1.01
QUEBRADA CASCAJA	2980	TR= 25 AÑOS	16.50	177.87	178.32	178.35	178.51	0.031173	1.96	8.43	21.83	1.01
QUEBRADA CASCAJA	2960	TR= 25 AÑOS	16.50	178.27	178.70	178.73	178.89	0.031514	1.93	8.56	22.85	1.01
QUEBRADA CASCAJA	2940	TR= 25 AÑOS	16.50	178.64	179.07	179.09	179.26	0.031610	1.90	8.68	23.78	1.01
QUEBRADA CASCAJA	2920	TR= 25 AÑOS	16.50	178.97	179.38	179.41	179.56	0.031547	1.91	8.64	23.50	1.01
QUEBRADA CASCAJA	2900	TR= 25 AÑOS	16.50	179.24	179.65	179.56	179.84	0.031424	1.92	8.57	22.95	1.01
QUEBRADA CASCAJA	2880	TR= 25 AÑOS	16.50	179.50	179.93	179.96	180.12	0.031317	1.94	8.49	22.35	1.01
QUEBRADA CASCAJA	2860	TR= 25 AÑOS	16.50	179.76	180.22	180.26	180.42	0.031199	1.96	8.42	21.85	1.01
QUEBRADA CASCAJA	2840	TR= 25 AÑOS	16.50	180.02	180.53	180.57	180.73	0.031180	1.97	8.36	21.39	1.01
QUEBRADA CASCAJA	2820	TR= 25 AÑOS	16.50	180.27	180.81	180.84	181.01	0.031199	1.98	8.31	21.11	1.01
QUEBRADA CASCAJA	2800	TR= 25 AÑOS	16.50	180.47	180.33	180.66	180.46	0.035540	1.22	10.40	41.11	1.01
QUEBRADA CASCAJA	2780	TR= 25 AÑOS	16.50	180.68	180.99	180.97	181.09	0.027230	1.07	11.43	44.87	0.82
QUEBRADA CASCAJA	2760	TR= 25 AÑOS	16.50	180.88	181.18	181.15	181.28	0.022721	0.91	11.12	39.61	0.74
QUEBRADA CASCAJA	2740	TR= 25 AÑOS	16.50	181.09	181.41	181.38	181.53	0.022725	1.05	10.57	34.30	0.77
QUEBRADA CASCAJA	2720	TR= 25 AÑOS	16.50	181.29	181.66	181.63	181.78	0.023866	1.30	10.19	30.43	0.82
QUEBRADA CASCAJA	2700	TR= 25 AÑOS	16.50	181.49	181.20	181.60	181.29	0.040248	1.87	12.04	65.17	1.02
QUEBRADA CASCAJA	2680	TR= 25 AÑOS	16.50	181.73	182.07	182.04	182.19	0.030708	1.47	9.85	32.14	0.93
QUEBRADA CASCAJA	2660	TR= 25 AÑOS	16.50	181.96	182.31	182.29	182.44	0.032503	1.58	9.56	30.61	0.97
QUEBRADA CASCAJA	2640	TR= 25 AÑOS	16.50	182.17	182.54	182.51	182.66	0.029889	1.52	9.64	29.54	0.93
QUEBRADA CASCAJA	2620	TR= 25 AÑOS	16.50	182.48	182.79	182.77	182.92	0.022938	1.14	10.36	31.36	0.78

"ESTUDIO HIDROLÓGICO DE LA QUEBRADA CASCAJAL CON FINES DE PREVENCIÓN DE INUNDACIÓN CP. CASCAJAL-SANTA-ANCASH-2020"

QUEBRADA CASCAJA	2600	TR= 25 AÑOS	16.50	182.82	181.22	181.92	181.32	0.038320	1.82	11.71	58.54	1.02
QUEBRADA CASCAJA	2580	TR= 25 AÑOS	16.50	183.14	183.14	183.11	183.37	0.030463	0.15	7.33	14.19	0.48
QUEBRADA CASCAJA	2560	TR= 25 AÑOS	16.50	183.38	183.37	183.33	183.59	0.031341	2.05	7.40	15.06	0.99
QUEBRADA CASCAJA	2540	TR= 25 AÑOS	16.50	183.60	183.58	183.60	183.80	0.032916	2.08	7.87	18.51	1.01
QUEBRADA CASCAJA	2520	TR= 25 AÑOS	16.50	183.76	184.07	184.03	184.17	0.029493	1.42	10.19	33.82	0.91
QUEBRADA CASCAJA	2500	TR= 25 AÑOS	16.50	183.81	182.77	182.89	182.91	0.035093	1.96	10.10	37.91	1.02
QUEBRADA CASCAJA	2480	TR= 25 AÑOS	16.50	183.83	184.34	184.37	184.56	0.030199	2.10	7.86	17.69	1.01
QUEBRADA CASCAJA	2460	TR= 25 AÑOS	16.50	183.84	184.35	184.38	184.57	0.030264	2.09	7.88	17.86	1.01
QUEBRADA CASCAJA	2440	TR= 25 AÑOS	16.50	183.89	184.38	184.41	184.60	0.030238	2.09	7.90	18.02	1.01
QUEBRADA CASCAJA	2420	TR= 25 AÑOS	16.50	184.01	184.49	184.52	184.72	0.030137	2.10	7.86	17.73	1.01
QUEBRADA CASCAJA	2400	TR= 25 AÑOS	16.50	184.15	184.23	184.12	184.31	0.033108	0.67	12.91	73.09	0.79
QUEBRADA CASCAJA	2380	TR= 25 AÑOS	16.50	184.34	184.83	184.88	185.06	0.030078	2.09	7.90	17.95	1.01
QUEBRADA CASCAJA	2360	TR= 25 AÑOS	16.50	184.51	185.01	185.07	185.23	0.030243	2.07	7.96	18.40	1.01
QUEBRADA CASCAJA	2340	TR= 25 AÑOS	16.50	184.63	185.10	185.16	185.31	0.030475	2.01	8.19	19.94	1.01
QUEBRADA CASCAJA	2320	TR= 25 AÑOS	16.50	184.78	185.29	185.34	185.49	0.030986	2.00	8.24	20.49	1.01
QUEBRADA CASCAJA	2300	TR= 25 AÑOS	16.50	184.94	185.56	185.62	185.77	0.030993	2.04	8.09	19.53	1.01
QUEBRADA CASCAJA	2280	TR= 25 AÑOS	16.50	185.12	185.75	185.79	185.97	0.030613	2.08	7.92	18.34	1.01
QUEBRADA CASCAJA	2260	TR= 25 AÑOS	16.50	185.17	185.80	185.85	186.03	0.030276	2.12	7.78	17.33	1.01
QUEBRADA CASCAJA	2240	TR= 25 AÑOS	16.50	185.19	185.86	185.92	186.09	0.030008	2.16	7.64	16.40	1.01
QUEBRADA CASCAJA	2220	TR= 25 AÑOS	16.50	185.55	186.11	186.16	186.36	0.029166	2.18	7.58	15.83	1.01
QUEBRADA CASCAJA	2200	TR= 25 AÑOS	16.50	185.89	186.58	186.78	186.82	0.029501	2.20	7.49	15.47	1.01
QUEBRADA CASCAJA	2180	TR= 25 AÑOS	16.50	186.08	186.70	186.75	186.94	0.029449	2.18	7.56	15.82	1.01
QUEBRADA CASCAJA	2160	TR= 25 AÑOS	16.50	186.24	186.75	186.79	186.99	0.029401	2.17	7.61	16.04	1.01
QUEBRADA CASCAJA	2140	TR= 25 AÑOS	16.50	186.54	187.06	187.09	187.30	0.029357	2.17	7.62	16.11	1.01
QUEBRADA CASCAJA	2120	TR= 25 AÑOS	16.50	187.00	187.60	187.65	187.84	0.029546	2.16	7.65	16.41	1.01
QUEBRADA CASCAJA	2100	TR= 25 AÑOS	16.50	187.53	188.39	188.46	188.62	0.029429	2.11	7.80	17.13	1.01
QUEBRADA CASCAJA	2080	TR= 25 AÑOS	16.50	186.50	187.07	187.28	187.61	0.092344	3.24	5.10	13.94	1.71
QUEBRADA CASCAJA	2060	TR= 25 AÑOS	16.50	187.05	187.62	187.67	187.87	0.028734	2.25	7.35	14.39	1.01
QUEBRADA CASCAJA	2040	TR= 25 AÑOS	16.50	187.93	188.52	188.56	188.79	0.028510	2.30	7.17	13.41	1.01
QUEBRADA CASCAJA	2020	TR= 25 AÑOS	16.50	188.07	188.72	188.77	188.95	0.029869	2.12	7.77	17.16	1.01
QUEBRADA CASCAJA	2000	TR= 25 AÑOS	16.50	188.72	189.26	189.87	189.47	0.031090	1.99	8.30	20.97	1.02
QUEBRADA CASCAJA	1980	TR= 25 AÑOS	16.50	188.98	189.36	189.41	189.54	0.031989	1.86	8.85	25.27	1.01
QUEBRADA CASCAJA	1960	TR= 25 AÑOS	16.50	192.74	193.13	193.18	193.29	0.032898	1.76	9.38	29.87	1.01
QUEBRADA CASCAJA	1940	TR= 25 AÑOS	16.50	192.42	192.96	192.99	193.12	0.033931	1.78	9.27	29.63	1.02
QUEBRADA CASCAJA	1920	TR= 25 AÑOS	16.50	192.74	193.08	193.12	193.23	0.033647	1.71	9.66	32.67	1.01
QUEBRADA CASCAJA	1900	TR= 25 AÑOS	16.50	193.05	193.45	193.61	193.58	0.035090	1.63	10.10	37.76	1.02
QUEBRADA CASCAJA	1880	TR= 25 AÑOS	16.50	193.41	193.71	193.75	193.83	0.035327	1.59	10.40	40.87	1.01
QUEBRADA CASCAJA	1860	TR= 25 AÑOS	16.50	193.72	194.05	194.09	194.17	0.036482	1.55	10.66	44.57	1.01

QUEBRADA CASCAJA	1840	TR= 25 AÑOS	16.50	193.98	194.63	194.67	194.80	0.033225	1.81	9.11	27.96	1.01
QUEBRADA CASCAJA	1820	TR= 25 AÑOS	16.50	194.15	194.64	194.68	194.78	0.035688	1.62	10.21	39.33	1.01
QUEBRADA CASCAJA	1800	TR= 25 AÑOS	16.50	194.14	194.65	194.97	194.79	0.035918	1.62	10.18	39.22	1.02
QUEBRADA CASCAJA	1780	TR= 25 AÑOS	16.50	194.12	194.63	194.67	194.78	0.035128	1.67	9.89	35.84	1.01
QUEBRADA CASCAJA	1760	TR= 25 AÑOS	16.50	194.16	194.73	194.77	194.88	0.034374	1.72	9.57	32.45	1.01
QUEBRADA CASCAJA	1740	TR= 25 AÑOS	16.50	194.89	195.43	195.47	195.57	0.035068	1.64	10.08	37.49	1.01
QUEBRADA CASCAJA	1720	TR= 25 AÑOS	16.50	195.35	195.69	195.74	195.79	0.040269	1.35	12.25	67.96	1.01
QUEBRADA CASCAJA	1700	TR= 25 AÑOS	16.50	195.46	195.81	195.92	195.89	0.040032	1.28	12.91	77.21	1.01
QUEBRADA CASCAJA	1680	TR= 25 AÑOS	16.50	195.76	195.99	196.01	196.07	0.041969	1.26	13.13	83.44	1.01
QUEBRADA CASCAJA	1660	TR= 25 AÑOS	16.50	195.50	195.72	195.76	195.80	0.041202	1.27	13.04	80.83	1.01
QUEBRADA CASCAJA	1640	TR= 25 AÑOS	16.50	195.47	195.68	195.72	195.76	0.041184	1.27	13.01	80.34	1.01
QUEBRADA CASCAJA	1620	TR= 25 AÑOS	16.50	195.65	196.07	196.02	196.09	0.039941	1.15	14.30	99.41	0.97
QUEBRADA CASCAJA	1600	TR= 25 AÑOS	16.50	195.55	195.79	195.23	195.88	0.032380	0.90	13.00	73.04	0.84
QUEBRADA CASCAJA	1580	TR= 25 AÑOS	16.50	195.78	196.19	196.25	196.28	0.040524	1.36	12.15	66.86	1.02
QUEBRADA CASCAJA	1560	TR= 25 AÑOS	16.50	196.10	196.43	196.47	196.51	0.040586	1.27	12.95	78.52	1.01
QUEBRADA CASCAJA	1540	TR= 25 AÑOS	16.50	196.53	196.84	196.88	196.91	0.049266	1.11	14.92	129.57	1.04
QUEBRADA CASCAJA	1520	TR= 25 AÑOS	16.50	196.95	197.16	197.12	197.17	0.045342	1.04	15.98	146.24	0.99
QUEBRADA CASCAJA	1500	TR= 25 AÑOS	16.50	197.23	197.05	197.34	197.23	0.031240	1.89	8.87	26.50	1.01
QUEBRADA CASCAJA	1480	TR= 25 AÑOS	16.50	197.56	197.71	197.67	197.72	0.013444	0.46	21.07	175.02	0.51
QUEBRADA CASCAJA	1460	TR= 25 AÑOS	16.50	197.82	198.03	198.07	198.08	0.048576	1.02	16.31	161.41	1.01
QUEBRADA CASCAJA	1440	TR= 25 AÑOS	16.50	197.92	198.27	198.31	198.32	0.048082	1.03	15.97	150.82	1.01
QUEBRADA CASCAJA	1420	TR= 25 AÑOS	16.50	198.02	198.47	198.51	198.53	0.043757	1.13	14.64	112.96	1.01
QUEBRADA CASCAJA	1400	TR= 25 AÑOS	16.50	198.20	198.55	198.62	198.65	0.038215	1.41	11.73	58.62	1.01
QUEBRADA CASCAJA	1380	TR= 25 AÑOS	16.50	198.62	198.93	198.97	199.01	0.041840	1.24	13.34	86.56	1.01
QUEBRADA CASCAJA	1360	TR= 25 AÑOS	16.50	199.01	199.20	199.24	199.24	0.050044	0.94	17.54	196.28	1.01
QUEBRADA CASCAJA	1340	TR= 25 AÑOS	16.50	199.25	199.41	199.45	199.45	0.051421	0.94	17.47	198.49	1.02
QUEBRADA CASCAJA	1320	TR= 25 AÑOS	16.50	199.49	199.65	199.69	199.70	0.050044	0.98	16.84	177.55	1.02
QUEBRADA CASCAJA	1300	TR= 25 AÑOS	16.50	199.80	199.95	200.02	200.00	0.048346	1.00	16.53	164.95	1.01
QUEBRADA CASCAJA	1280	TR= 25 AÑOS	16.50	200.19	200.38	200.44	200.44	0.045396	1.10	15.05	124.61	1.01
QUEBRADA CASCAJA	1260	TR= 25 AÑOS	16.50	200.58	200.83	200.87	200.87	0.048602	0.95	17.36	187.18	1.01
QUEBRADA CASCAJA	1240	TR= 25 AÑOS	16.50	201.02	201.22	201.26	201.27	0.053673	0.95	17.32	200.64	1.04
QUEBRADA CASCAJA	1220	TR= 25 AÑOS	16.50	201.21	201.49	201.53	201.55	0.046316	1.14	14.43	113.71	1.03
QUEBRADA CASCAJA	1200	TR= 25 AÑOS	16.50	201.69	201.89	201.92	201.95	0.046543	1.06	15.54	137.38	1.01
QUEBRADA CASCAJA	1180	TR= 25 AÑOS	16.50	201.93	202.14	202.18	202.20	0.046709	1.09	15.18	129.99	1.02
QUEBRADA CASCAJA	1160	TR= 25 AÑOS	16.50	202.24	202.46	202.42	202.47	0.020417	0.65	19.51	155.51	0.65
QUEBRADA CASCAJA	1140	TR= 25 AÑOS	16.50	202.53	202.74	202.69	202.75	0.012252	0.46	20.42	154.26	0.50
QUEBRADA CASCAJA	1120	TR= 25 AÑOS	16.50	202.81	202.98	203.00	203.04	0.045751	1.06	15.60	137.01	1.01
QUEBRADA CASCAJA	1100	TR= 25 AÑOS	16.50	203.09	203.24	203.35	203.29	0.047089	1.02	16.10	151.53	1.01

QUEBRADA CASCAJA	1080	TR= 25 AÑOS	16.50	203.34	203.53	203.57	203.58	0.049923	0.99	16.63	171.63	1.02
QUEBRADA CASCAJA	1060	TR= 25 AÑOS	16.50	203.60	203.80	203.84	203.86	0.048644	1.02	16.23	158.46	1.01
QUEBRADA CASCAJA	1040	TR= 25 AÑOS	16.50	203.85	204.06	204.10	204.11	0.046274	1.03	16.08	149.13	1.01
QUEBRADA CASCAJA	1020	TR= 25 AÑOS	16.50	204.11	204.31	204.35	204.37	0.044761	1.09	15.15	125.31	1.01
QUEBRADA CASCAJA	1000	TR= 25 AÑOS	16.50	204.36	204.60	204.75	204.67	0.043699	1.17	14.10	102.83	1.01
QUEBRADA CASCAJA	980	TR= 25 AÑOS	16.50	204.72	204.95	204.99	205.02	0.044399	1.15	14.33	108.37	1.01
QUEBRADA CASCAJA	960	TR= 25 AÑOS	16.50	205.22	205.41	205.45	205.47	0.046902	1.06	15.55	138.53	1.01
QUEBRADA CASCAJA	940	TR= 25 AÑOS	16.50	205.72	205.92	205.96	205.98	0.046542	1.07	15.38	133.93	1.01
QUEBRADA CASCAJA	920	TR= 25 AÑOS	16.50	206.20	206.43	206.47	206.49	0.046556	1.08	15.27	131.65	1.01
QUEBRADA CASCAJA	900	TR= 25 AÑOS	16.50	206.63	206.00	205.92	206.06	0.045826	0.85	15.83	142.41	0.79
QUEBRADA CASCAJA	880	TR= 25 AÑOS	16.50	207.06	206.46	206.50	206.62	0.032863	0.94	9.20	28.44	1.02
QUEBRADA CASCAJA	860	TR= 25 AÑOS	16.50	207.49	205.55	205.59	205.76	0.030848	0.98	8.29	20.86	1.02
QUEBRADA CASCAJA	840	TR= 25 AÑOS	16.50	207.92	205.48	205.52	205.70	0.030028	1.00	7.93	18.16	1.01
QUEBRADA CASCAJA	820	TR= 25 AÑOS	16.50	208.27	206.43	206.47	206.69	0.028449	1.10	7.25	13.76	1.01
QUEBRADA CASCAJA	800	TR= 25 AÑOS	16.50	208.58	208.46	208.53	208.74	0.028208	1.22	7.04	12.80	1.01
QUEBRADA CASCAJA	780	TR= 25 AÑOS	16.50	207.88	208.46	208.42	208.56	0.033172	1.58	9.98	35.11	0.98
QUEBRADA CASCAJA	760	TR= 25 AÑOS	16.50	207.02	207.60	207.63	207.79	0.044508	1.93	8.53	29.40	1.15
QUEBRADA CASCAJA	740	TR= 25 AÑOS	16.50	207.70	208.45	208.49	208.64	0.031007	1.93	8.56	22.64	1.01
QUEBRADA CASCAJA	720	TR= 25 AÑOS	16.50	208.97	209.65	209.60	209.68	0.032181	1.09	13.94	82.54	0.88
QUEBRADA CASCAJA	700	TR= 25 AÑOS	16.50	209.68	209.83	209.45	209.92	0.024010	0.66	13.88	76.79	0.70
QUEBRADA CASCAJA	680	TR= 25 AÑOS	16.50	210.17	210.44	210.49	210.52	0.042515	1.24	13.32	87.41	1.01
QUEBRADA CASCAJA	660	TR= 25 AÑOS	16.50	210.67	210.93	210.98	210.99	0.044925	1.08	15.29	128.46	1.01
QUEBRADA CASCAJA	640	TR= 25 AÑOS	16.50	211.06	211.26	211.31	211.32	0.045322	1.11	14.99	123.69	1.01
QUEBRADA CASCAJA	620	TR= 25 AÑOS	16.50	211.19	211.46	211.52	211.53	0.044829	1.16	14.22	107.08	1.02
QUEBRADA CASCAJA	600	TR= 25 AÑOS	16.50	211.40	206.15	206.22	206.28	0.036183	1.99	10.46	42.30	1.01
QUEBRADA CASCAJA	580	TR= 25 AÑOS	16.50	211.91	212.19	212.12	212.17	0.046227	0.91	18.05	198.65	0.97
QUEBRADA CASCAJA	560	TR= 25 AÑOS	16.50	212.16	212.43	212.49	212.48	0.052752	0.95	17.36	199.10	1.03
QUEBRADA CASCAJA	540	TR= 25 AÑOS	16.50	212.47	212.79	212.75	212.79	0.047130	0.95	17.32	182.00	0.99
QUEBRADA CASCAJA	520	TR= 25 AÑOS	16.50	212.84	213.14	213.08	213.13	0.043592	0.97	17.07	166.29	0.96
QUEBRADA CASCAJA	500	TR= 25 AÑOS	16.50	213.22	207.25	207.49	207.39	0.034343	1.63	9.81	34.60	1.01
QUEBRADA CASCAJA	480	TR= 25 AÑOS	16.50	213.59	213.83	213.77	213.83	0.016101	0.59	19.77	148.33	0.58
QUEBRADA CASCAJA	460	TR= 25 AÑOS	16.50	213.97	213.89	213.94	214.11	0.029457	1.99	7.89	17.73	1.01
QUEBRADA CASCAJA	440	TR= 25 AÑOS	16.50	214.35	214.54	214.58	214.60	0.045575	1.06	15.55	135.50	1.01
QUEBRADA CASCAJA	420	TR= 25 AÑOS	16.50	214.74	214.96	215.03	215.02	0.048525	1.06	15.64	144.04	1.02
QUEBRADA CASCAJA	400	TR= 25 AÑOS	16.50	215.12	213.68	213.69	213.79	0.037623	1.62	11.11	50.62	1.01
QUEBRADA CASCAJA	380	TR= 25 AÑOS	16.50	215.50	215.79	215.73	215.78	0.044259	0.90	18.31	199.39	0.95
QUEBRADA CASCAJA	360	TR= 25 AÑOS	16.50	215.89	216.05	216.10	216.10	0.048777	0.94	17.47	190.81	1.01
QUEBRADA CASCAJA	340	TR= 25 AÑOS	16.50	216.38	216.59	216.63	216.64	0.051405	0.97	16.93	183.53	1.02

QUEBRADA CASCAJA	320	TR= 25 AÑOS	16.50	216.91	216.76	216.82	216.97	0.031169	1.99	8.30	20.81	1.01
QUEBRADA CASCAJA	300	TR= 25 AÑOS	16.50	217.43	211.12	211.08	211.26	0.034764	1.28	9.83	35.16	0.98
QUEBRADA CASCAJA	280	TR= 25 AÑOS	16.50	217.90	216.69	216.64	216.93	0.029083	1.09	6.95	12.24	0.88
QUEBRADA CASCAJA	260	TR= 25 AÑOS	16.50	218.21	217.32	217.28	217.50	0.029769	0.66	7.89	17.80	0.70
QUEBRADA CASCAJA	240	TR= 25 AÑOS	16.50	218.79	217.73	217.79	217.95	0.030422	1.24	7.97	18.48	1.01
QUEBRADA CASCAJA	220	TR= 25 AÑOS	16.50	219.37	218.61	218.66	218.92	0.029465	1.08	6.68	10.88	1.01
QUEBRADA CASCAJA	200	TR= 25 AÑOS	16.50	219.66	216.22	216.35	216.32	0.038254	1.83	11.76	59.06	1.04
QUEBRADA CASCAJA	180	TR= 25 AÑOS	16.50	219.95	219.56	219.51	219.72	0.031199	0.97	8.12	19.56	0.96
QUEBRADA CASCAJA	160	TR= 25 AÑOS	16.50	220.18	220.37	220.42	220.42	0.046706	1.01	16.29	154.99	1.01
QUEBRADA CASCAJA	140	TR= 25 AÑOS	16.50	220.35	220.56	220.60	220.61	0.047882	0.99	16.59	165.31	1.01
QUEBRADA CASCAJA	120	TR= 25 AÑOS	16.50	220.53	220.72	220.77	220.77	0.046369	1.02	16.12	150.35	1.01
QUEBRADA CASCAJA	100	TR= 25 AÑOS	16.50	220.69	219.42	219.65	219.54	0.037044	1.92	11.04	49.26	1.01
QUEBRADA CASCAJA	80	TR= 25 AÑOS	16.50	220.87	221.05	221.10	221.10	0.049202	0.94	17.63	196.61	1.01
QUEBRADA CASCAJA	60	TR= 25 AÑOS	16.50	221.04	221.16	221.21	221.20	0.049084	0.93	17.65	196.64	1.01
QUEBRADA CASCAJA	40	TR= 25 AÑOS	16.50	221.11	221.22	221.27	221.27	0.049230	0.94	17.63	196.59	1.01
QUEBRADA CASCAJA	20	TR= 25 AÑOS	16.50	221.18	221.31	221.36	221.36	0.050670	0.94	17.48	196.58	1.01
QUEBRADA CASCAJA	0	TR= 25 AÑOS	16.50	221.29	221.41	221.46	221.46	0.052096	0.95	17.34	196.75	1.02

HEC-RAS Plan: Plan 02 River: EJE RIO Reach: QUEBRADA CASCAJA Profile: TR=50 AÑOS

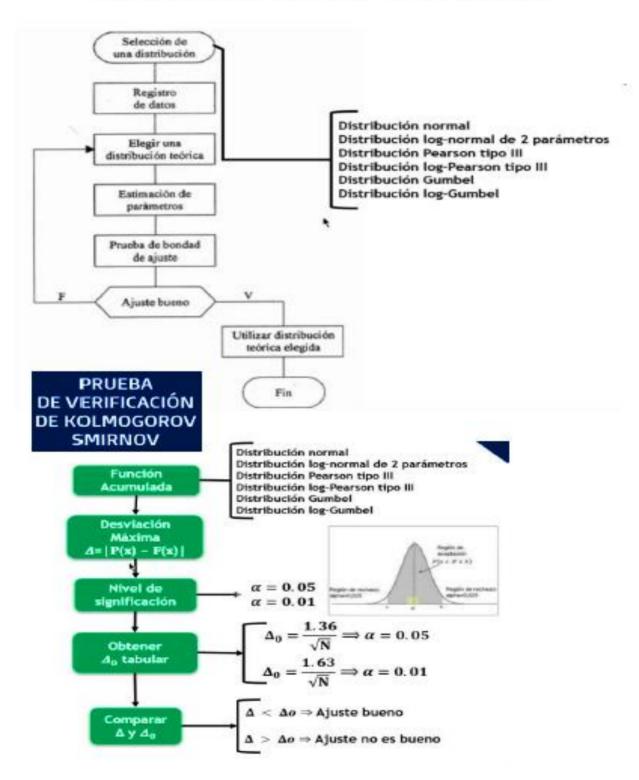
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
QUEBRADA CASCAJA	4000	TR= 50 AÑOS	29.20	166.84	161.86	161.93	162.01	0.034607	1.71	17.27	60.89	1.02
QUEBRADA CASCAJA	3980	TR= 50 AÑOS	29.20	166.96	165.24	165.12	165.54	0.028487	2.26	12.07	20.59	0.96
QUEBRADA CASCAJA	3960	TR= 50 AÑOS	29.20	167.10	165.38	165.46	165.66	0.028463	2.38	12.37	22.06	1.01
QUEBRADA CASCAJA	3940	TR= 50 AÑOS	29.20	167.24	165.75	165.82	166.01	0.028895	1.72	13.00	25.32	1.01
QUEBRADA CASCAJA	3920	TR= 50 AÑOS	29.20	167.37	166.58	166.65	166.84	0.028644	2.40	12.70	23.57	1.01
QUEBRADA CASCAJA	3900	TR= 50 AÑOS	29.20	167.52	167.66	167.51	167.85	0.025842	0.58	15.36	43.45	0.69
QUEBRADA CASCAJA	3880	TR= 50 AÑOS	29.20	167.91	168.66	168.58	168.91	0.025100	2.29	13.69	28.70	0.96
QUEBRADA CASCAJA	3860	TR= 50 AÑOS	29.20	168.32	168.78	168.66	168.98	0.023194	1.43	15.43	36.10	0.83
QUEBRADA CASCAJA	3840	TR= 50 AÑOS	29.20	168.72	169.15	169.07	169.34	0.024396	1.34	16.05	41.62	0.84
QUEBRADA CASCAJA	3820	TR= 50 AÑOS	29.20	169.10	169.70	169.61	169.91	0.030063	1.93	14.43	34.40	0.99
QUEBRADA CASCAJA	3800	TR= 50 AÑOS	29.20	169.51	170.34	170.20	170.53	0.017232	2.06	17.36	47.02	0.81
QUEBRADA CASCAJA	3780	TR= 50 AÑOS	29.20	169.63	170.48	170.35	170.70	0.017546	2.19	15.51	35.27	0.83
QUEBRADA CASCAJA	3760	TR= 50 AÑOS	29.20	169.67	170.45	170.52	170.78	0.026472	2.57	11.35	17.07	1.01
QUEBRADA CASCAJA	3740	TR= 50 AÑOS	29.20	169.72	170.45	170.58	170.78	0.026703	2.52	11.57	18.06	1.01
QUEBRADA CASCAJA	3720	TR= 50 AÑOS	29.20	169.79	170.50	170.65	170.82	0.026918	2.49	11.71	18.67	1.01

QUEBRADA CASCAJA	3700	TR= 50 AÑOS	29.20	170.04	170.71	170.82	171.02	0.027059	2.47	11.84	19.35	1.01
QUEBRADA CASCAJA	3680	TR= 50 AÑOS	29.20	170.22	170.93	170.99	171.25	0.026966	2.50	11.67	18.55	1.01
QUEBRADA CASCAJA	3660	TR= 50 AÑOS	29.20	170.44	171.13	171.22	171.45	0.026649	2.50	11.68	18.41	1.01
QUEBRADA CASCAJA	3640	TR= 50 AÑOS	29.20	170.63	171.32	171.41	171.64	0.026713	2.50	11.69	18.48	1.01
QUEBRADA CASCAJA	3620	TR= 50 AÑOS	29.20	170.81	171.50	171.58	171.82	0.026648	2.49	11.75	20.08	1.01
QUEBRADA CASCAJA	3600	TR= 50 AÑOS	29.20	171.01	171.31	171.45	171.42	0.036107	1.70	19.70	88.14	1.03
QUEBRADA CASCAJA	3580	TR= 50 AÑOS	29.20	171.18	171.81	171.70	172.01	0.022743	2.14	15.98	41.35	0.91
QUEBRADA CASCAJA	3560	TR= 50 AÑOS	29.20	171.36	172.06	172.01	172.28	0.020262	2.15	15.35	35.21	0.87
QUEBRADA CASCAJA	3540	TR= 50 AÑOS	29.20	171.62	172.36	172.24	172.60	0.018964	2.18	14.31	36.26	0.85
QUEBRADA CASCAJA	3520	TR= 50 AÑOS	29.20	171.87	172.54	172.65	172.84	0.027240	2.44	11.96	19.94	1.01
QUEBRADA CASCAJA	3500	TR= 50 AÑOS	29.20	172.15	172.77	172.83	173.07	0.027336	2.41	12.10	20.62	1.01
QUEBRADA CASCAJA	3480	TR= 50 AÑOS	29.20	172.38	173.00	173.12	173.29	0.027297	2.40	12.15	20.81	1.01
QUEBRADA CASCAJA	3460	TR= 50 AÑOS	29.20	172.63	173.24	173.36	173.54	0.027361	2.40	12.18	21.02	1.01
QUEBRADA CASCAJA	3440	TR= 50 AÑOS	29.20	172.89	173.50	173.58	173.79	0.027428	2.39	12.23	21.27	1.01
QUEBRADA CASCAJA	3420	TR= 50 AÑOS	29.20	173.14	173.76	173.68	174.04	0.026751	2.36	12.45	23.57	0.99
QUEBRADA CASCAJA	3400	TR= 50 AÑOS	29.20	173.42	173.69	173.81	173.82	0.035410	1.58	18.09	69.47	1.02
QUEBRADA CASCAJA	3380	TR= 50 AÑOS	29.20	173.60	174.07	174.14	174.28	0.031826	2.03	14.48	35.98	1.02
QUEBRADA CASCAJA	3360	TR= 50 AÑOS	29.20	173.78	174.25	174.33	174.47	0.030059	2.00	14.19	32.37	1.01
QUEBRADA CASCAJA	3340	TR= 50 AÑOS	29.20	173.96	174.60	174.52	174.85	0.025030	2.26	13.48	27.83	0.96
QUEBRADA CASCAJA	3320	TR= 50 AÑOS	29.20	174.14	174.77	174.81	175.06	0.027530	2.38	12.29	21.62	1.01
QUEBRADA CASCAJA	3300	TR= 50 AÑOS	29.20	174.32	174.27	174.34	174.39	0.035540	1.72	18.44	73.20	1.01
QUEBRADA CASCAJA	3280	TR= 50 AÑOS	29.20	174.48	175.12	175.24	175.41	0.027288	2.40	12.17	20.96	1.01
QUEBRADA CASCAJA	3260	TR= 50 AÑOS	29.20	174.70	175.33	175.46	175.62	0.027323	2.40	12.19	21.06	1.01
QUEBRADA CASCAJA	3240	TR= 50 AÑOS	29.20	174.92	175.55	175.69	175.84	0.027330	2.39	12.21	21.19	1.01
QUEBRADA CASCAJA	3220	TR= 50 AÑOS	29.20	175.13	175.77	175.82	176.06	0.027305	2.38	12.25	21.35	1.01
QUEBRADA CASCAJA	3200	TR= 50 AÑOS	29.20	175.36	173.67	173.52	173.86	0.031514	2.38	15.24	41.45	0.89
QUEBRADA CASCAJA	3180	TR= 50 AÑOS	29.20	175.54	176.12	176.03	176.33	0.025424	2.14	15.08	36.37	0.95
QUEBRADA CASCAJA	3160	TR= 50 AÑOS	29.20	175.74	176.14	176.25	176.32	0.031638	1.84	15.54	42.87	1.01
QUEBRADA CASCAJA	3140	TR= 50 AÑOS	29.20	175.85	176.21	176.14	176.39	0.027370	1.48	15.85	42.10	0.90
QUEBRADA CASCAJA	3120	TR= 50 AÑOS	29.20	175.91	176.36	176.28	176.57	0.029742	1.83	14.58	35.10	0.97
QUEBRADA CASCAJA	3100	TR= 50 AÑOS	29.20	175.98	176.08	176.01	176.18	0.025038	0.51	22.23	101.63	0.66
QUEBRADA CASCAJA	3080	TR= 50 AÑOS	29.20	176.04	176.82	176.75	177.06	0.020643	2.21	14.36	30.97	0.89
QUEBRADA CASCAJA	3060	TR= 50 AÑOS	29.20	176.13	176.93	176.99	177.24	0.026918	2.47	11.81	19.23	1.01
QUEBRADA CASCAJA	3040	TR= 50 AÑOS	29.20	176.57	177.34	177.46	177.65	0.027140	2.45	11.90	19.62	1.01
QUEBRADA CASCAJA	3020	TR= 50 AÑOS	29.20	177.00	177.73	177.78	178.03	0.027437	2.43	12.04	20.36	1.01
QUEBRADA CASCAJA	3000	TR= 50 AÑOS	29.20	177.43	178.12	178.24	178.41	0.027430	2.38	12.29	21.48	1.01
QUEBRADA CASCAJA	2980	TR= 50 AÑOS	29.20	177.87	178.50	178.65	178.78	0.027858	2.35	12.44	22.44	1.01
QUEBRADA CASCAJA	2960	TR= 50 AÑOS	29.20	178.27	178.87	178.92	179.15	0.028052	2.31	12.63	23.44	1.01

QUEBRADA CASCAJA	2940	TR= 50 AÑOS	29.20	178.64	179.24	179.29	179.51	0.028310	2.29	12.76	24.24	1.01
QUEBRADA CASCAJA	2920	TR= 50 AÑOS	29.20	178.97	179.55	179.66	179.82	0.028141	2.29	12.74	24.06	1.01
QUEBRADA CASCAJA	2900	TR= 50 AÑOS	29.20	179.24	179.82	179.94	180.10	0.027949	2.31	12.65	23.55	1.01
QUEBRADA CASCAJA	2880	TR= 50 AÑOS	29.20	179.50	180.11	180.19	180.38	0.027709	2.32	12.56	22.97	1.01
QUEBRADA CASCAJA	2860	TR= 50 AÑOS	29.20	179.76	180.40	180.52	180.69	0.027734	2.35	12.45	22.47	1.01
QUEBRADA CASCAJA	2840	TR= 50 AÑOS	29.20	180.02	180.72	180.85	181.00	0.027757	2.36	12.36	22.06	1.01
QUEBRADA CASCAJA	2820	TR= 50 AÑOS	29.20	180.27	181.00	181.12	181.28	0.027746	2.37	12.31	21.82	1.01
QUEBRADA CASCAJA	2800	TR= 50 AÑOS	29.20	180.47	180.46	180.59	180.63	0.032240	1.80	15.79	46.12	1.01
QUEBRADA CASCAJA	2780	TR= 50 AÑOS	29.20	180.68	181.07	181.03	181.25	0.030292	1.52	16.07	46.45	0.93
QUEBRADA CASCAJA	2760	TR= 50 AÑOS	29.20	180.88	181.27	181.14	181.46	0.024589	1.38	16.09	41.09	0.84
QUEBRADA CASCAJA	2740	TR= 50 AÑOS	29.20	181.09	181.52	181.47	181.72	0.024284	1.54	15.42	35.96	0.86
QUEBRADA CASCAJA	2720	TR= 50 AÑOS	29.20	181.29	181.77	181.68	181.99	0.026279	1.79	14.54	31.93	0.92
QUEBRADA CASCAJA	2700	TR= 50 AÑOS	29.20	181.49	181.29	181.15	181.42	0.035732	0.80	18.05	69.62	0.95
QUEBRADA CASCAJA	2680	TR= 50 AÑOS	29.20	181.73	182.18	182.25	182.39	0.031383	1.95	14.41	34.87	1.01
QUEBRADA CASCAJA	2660	TR= 50 AÑOS	29.20	181.96	182.43	182.458	182.65	0.031829	2.05	14.14	33.47	1.02
QUEBRADA CASCAJA	2640	TR= 50 AÑOS	29.20	182.17	182.65	182.57	182.87	0.030054	2.00	14.17	32.22	0.99
QUEBRADA CASCAJA	2620	TR= 50 AÑOS	29.20	182.48	182.91	182.88	183.11	0.026384	1.67	14.87	33.86	0.91
QUEBRADA CASCAJA	2600	TR= 50 AÑOS	29.20	182.82	181.32	181.21	181.45	0.034695	0.90	17.86	66.30	0.98
QUEBRADA CASCAJA	2580	TR= 50 AÑOS	29.20	183.14	183.41	183.35	183.61	0.019367	1.00	15.87	37.08	0.71
QUEBRADA CASCAJA	2560	TR= 50 AÑOS	29.20	183.38	183.61	183.55	183.81	0.020293	1.04	15.74	36.97	0.73
QUEBRADA CASCAJA	2540	TR= 50 AÑOS	29.20	183.60	183.81	183.76	184.00	0.021226	1.04	16.00	39.27	0.74
QUEBRADA CASCAJA	2520	TR= 50 AÑOS	29.20	183.76	184.16	184.25	184.36	0.031723	1.92	14.85	38.07	1.01
QUEBRADA CASCAJA	2500	TR= 50 AÑOS	29.20	183.81	182.91	182.84	183.08	0.032263	1.02	15.81	46.34	0.68
QUEBRADA CASCAJA	2480	TR= 50 AÑOS	29.20	183.83	184.55	184.68	184.87	0.027041	2.52	11.60	18.16	1.01
QUEBRADA CASCAJA	2460	TR= 50 AÑOS	29.20	183.84	184.56	184.72	184.88	0.027103	2.51	11.63	18.33	1.01
QUEBRADA CASCAJA	2440	TR= 50 AÑOS	29.20	183.89	184.58	184.87	184.90	0.026980	2.50	11.68	18.51	1.01
QUEBRADA CASCAJA	2420	TR= 50 AÑOS	29.20	184.01	184.70	184.91	185.02	0.026824	2.51	11.63	18.20	1.01
QUEBRADA CASCAJA	2400	TR= 50 AÑOS	29.20	184.15	184.31	184.24	184.43	0.031978	1.08	19.13	76.68	0.88
QUEBRADA CASCAJA	2380	TR= 50 AÑOS	29.20	184.34	185.04	185.15	185.36	0.026690	2.49	11.72	18.59	1.01
QUEBRADA CASCAJA	2360	TR= 50 AÑOS	29.20	184.51	185.22	185.34	185.53	0.026931	2.48	11.79	19.06	1.01
QUEBRADA CASCAJA	2340	TR= 50 AÑOS	29.20	184.63	185.30	185.38	185.59	0.027431	2.41	12.09	20.62	1.01
QUEBRADA CASCAJA	2320	TR= 50 AÑOS	29.20	184.78	185.48	185.53	185.77	0.027641	2.40	12.19	21.16	1.01
QUEBRADA CASCAJA	2300	TR= 50 AÑOS	29.20	184.94	185.75	185.81	186.06	0.027558	2.43	11.99	20.22	1.01
QUEBRADA CASCAJA	2280	TR= 50 AÑOS	29.20	185.12	185.95	185.99	186.27	0.027177	2.48	11.75	18.97	1.01
QUEBRADA CASCAJA	2260	TR= 50 AÑOS	29.20	185.17	186.02	186.10	186.34	0.027026	2.53	11.53	17.94	1.01
QUEBRADA CASCAJA	2240	TR= 50 AÑOS	29.20	185.19	186.08	186.16	186.41	0.026052	2.55	11.43	17.03	1.01
QUEBRADA CASCAJA	2220	TR= 50 AÑOS	29.20	185.55	186.34	186.45	186.68	0.026226	2.59	11.26	16.58	1.01
QUEBRADA CASCAJA	2200	TR= 50 AÑOS	29.20	185.89	186.81	186.89	187.16	0.026387	2.62	11.16	16.26	1.01

QUEBRADA CASCAJA	2180	TR= 50 AÑOS	29.20	186.08	186.93	186.98	187.27	0.026406	2.59	11.25	16.65	1.01
QUEBRADA CASCAJA	2160	TR= 50 AÑOS	29.20	186.24	186.98	187.05	187.31	0.026272	2.58	11.33	16.86	1.00
QUEBRADA CASCAJA	2140	TR= 50 AÑOS	29.20	186.54	187.29	187.32	187.63	0.026384	2.58	11.32	16.89	1.01
QUEBRADA CASCAJA	2120	TR= 50 AÑOS	29.20	187.00	187.82	187.96	188.16	0.026379	2.56	11.41	17.28	1.01
QUEBRADA CASCAJA	2100	TR= 50 AÑOS	29.20	187.53	188.61	188.87	188.93	0.026353	2.52	11.58	17.88	1.02
QUEBRADA CASCAJA	2080	TR= 50 AÑOS	29.20	186.50	187.25	187.47	188.01	0.083635	3.87	7.54	14.54	1.72
QUEBRADA CASCAJA	2060	TR= 50 AÑOS	29.20	187.05	187.86	187.92	188.22	0.026048	2.67	10.93	15.20	1.01
QUEBRADA CASCAJA	2040	TR= 50 AÑOS	29.20	187.93	188.78	188.85	189.15	0.025779	2.71	10.78	14.59	1.01
QUEBRADA CASCAJA	2020	TR= 50 AÑOS	29.20	188.07	188.93	188.97	189.26	0.026746	2.53	11.54	17.99	1.01
QUEBRADA CASCAJA	2000	TR= 50 AÑOS	29.20	188.72	189.45	189.59	189.74	0.027675	2.37	12.34	21.97	1.01
QUEBRADA CASCAJA	1980	TR= 50 AÑOS	29.20	188.98	189.53	189.65	189.78	0.028594	2.23	13.11	26.33	1.01
QUEBRADA CASCAJA	1960	TR= 50 AÑOS	29.20	192.74	193.28	193.36	193.50	0.029481	2.08	14.04	32.05	1.01
QUEBRADA CASCAJA	1940	TR= 50 AÑOS	29.20	192.42	193.11	193.25	193.34	0.029669	2.13	13.73	30.35	1.01
QUEBRADA CASCAJA	1920	TR= 50 AÑOS	29.20	192.74	193.22	193.50	193.43	0.029870	2.06	14.20	33.22	1.01
QUEBRADA CASCAJA	1900	TR= 50 AÑOS	29.20	193.05	193.57	193.66	193.77	0.031128	1.97	14.83	38.25	1.01
QUEBRADA CASCAJA	1880	TR= 50 AÑOS	29.20	193.41	193.82	193.88	194.01	0.031454	1.91	15.25	41.34	1.01
QUEBRADA CASCAJA	1860	TR= 50 AÑOS	29.20	193.72	194.16	194.25	194.34	0.032050	1.86	15.69	45.06	1.01
QUEBRADA CASCAJA	1840	TR= 50 AÑOS	29.20	193.98	194.80	194.85	195.01	0.029967	2.01	14.53	35.27	1.01
QUEBRADA CASCAJA	1820	TR= 50 AÑOS	29.20	194.15	194.78	194.86	194.94	0.032949	1.81	16.13	49.33	1.01
QUEBRADA CASCAJA	1800	TR= 50 AÑOS	29.20	194.14	194.79	194.85	194.96	0.033186	1.81	16.09	49.30	1.01
QUEBRADA CASCAJA	1780	TR= 50 AÑOS	29.20	194.12	194.77	194.94	194.96	0.032048	1.89	15.42	43.13	1.01
QUEBRADA CASCAJA	1760	TR= 50 AÑOS	29.20	194.16	194.88	194.99	195.07	0.031707	1.93	15.11	40.61	1.01
QUEBRADA CASCAJA	1740	TR= 50 AÑOS	29.20	194.89	195.58	195.64	195.72	0.034732	1.68	17.43	62.25	1.01
QUEBRADA CASCAJA	1720	TR= 50 AÑOS	29.20	195.35	195.78	195.83	195.91	0.036605	1.58	18.48	75.07	1.02
QUEBRADA CASCAJA	1700	TR= 50 AÑOS	29.20	195.46	195.88	195.97	196.00	0.036694	1.53	19.03	81.00	1.01
QUEBRADA CASCAJA	1680	TR= 50 AÑOS	29.20	195.76	196.07	196.18	196.18	0.036139	1.51	19.38	83.78	1.01
QUEBRADA CASCAJA	1660	TR= 50 AÑOS	29.20	195.50	195.79	195.87	195.91	0.037062	1.50	19.47	86.46	1.01
QUEBRADA CASCAJA	1640	TR= 50 AÑOS	29.20	195.47	195.76	195.82	195.87	0.037658	1.47	19.90	92.45	1.01
QUEBRADA CASCAJA	1620	TR= 50 AÑOS	29.20	195.65	196.08	196.16	196.19	0.039770	1.45	20.19	99.65	1.03
QUEBRADA CASCAJA	1600	TR= 50 AÑOS	29.20	195.55	195.88	195.81	195.99	0.032146	1.12	20.52	93.84	0.89
QUEBRADA CASCAJA	1580	TR= 50 AÑOS	29.20	195.78	196.28	196.36	196.40	0.037858	1.51	19.36	86.52	1.02
QUEBRADA CASCAJA	1560	TR= 50 AÑOS	29.20	196.10	196.51	196.62	196.62	0.038481	1.44	20.27	98.30	1.01
QUEBRADA CASCAJA	1540	TR= 50 AÑOS	29.20	196.53	196.90	196.98	196.99	0.042243	1.33	22.03	129.78	1.03
QUEBRADA CASCAJA	1520	TR= 50 AÑOS	29.20	196.95	197.17	197.25	197.25	0.040489	1.26	23.49	150.34	1.01
QUEBRADA CASCAJA	1500	TR= 50 AÑOS	29.20	197.23	197.33	197.28	197.41	0.011862	0.39	29.29	192.66	0.47
QUEBRADA CASCAJA	1480	TR= 50 AÑOS	29.20	197.56	197.72	197.65	197.79	0.017443	0.72	29.85	176.33	0.63
QUEBRADA CASCAJA	1460	TR= 50 AÑOS	29.20	197.82	198.07	198.15	198.15	0.042435	1.22	24.03	163.72	1.01
QUEBRADA CASCAJA	1440	TR= 50 AÑOS	29.20	197.92	198.32	198.45	198.39	0.045605	1.23	23.66	164.34	1.04

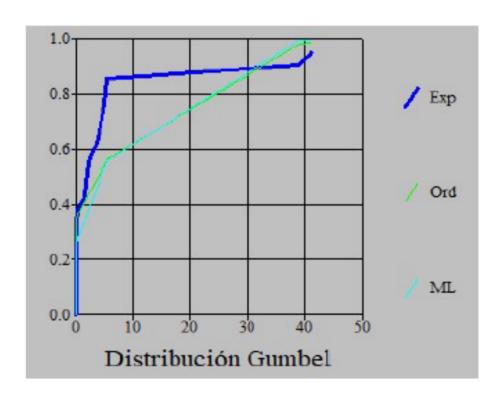
QUEBRADA CASCAJA	1420	TR= 50 AÑOS	29.20	198.02	198.53	198.62	198.61	0.040945	1.27	23.05	141.95	1.01
QUEBRADA CASCAJA	1400	TR= 50 AÑOS	29.20	198.20	198.65	198.72	198.78	0.035907	1.59	18.33	72.50	1.01
QUEBRADA CASCAJA	1380	TR= 50 AÑOS	29.20	198.62	199.03	199.01	199.09	0.041383	1.13	25.78	189.36	0.98
QUEBRADA CASCAJA	1360	TR= 50 AÑOS	29.20	199.01	199.24	199.34	199.30	0.045450	1.15	25.43	196.39	1.02
QUEBRADA CASCAJA	1340	TR= 50 AÑOS	29.20	199.25	199.45	199.51	199.51	0.044930	1.14	25.63	198.63	1.01
QUEBRADA CASCAJA	1320	TR= 50 AÑOS	29.20	199.49	199.70	199.78	199.77	0.044359	1.14	25.52	194.66	1.01
QUEBRADA CASCAJA	1300	TR= 50 AÑOS	29.20	199.80	200.00	200.08	200.06	0.044817	1.13	25.84	202.26	1.01
QUEBRADA CASCAJA	1280	TR= 50 AÑOS	29.20	200.19	200.43	200.58	200.52	0.046174	1.30	22.43	145.23	1.06
QUEBRADA CASCAJA	1260	TR= 50 AÑOS	29.20	200.58	200.88	200.75	200.94	0.039734	1.09	26.78	202.05	0.96
QUEBRADA CASCAJA	1240	TR= 50 AÑOS	29.20	201.02	201.26	201.35	201.33	0.045834	1.14	25.59	200.78	1.02
QUEBRADA CASCAJA	1220	TR= 50 AÑOS	29.20	201.21	201.55	201.68	201.64	0.040928	1.34	21.81	123.70	1.02
QUEBRADA CASCAJA	1200	TR= 50 AÑOS	29.20	201.69	201.95	202.05	202.03	0.041061	1.25	23.36	147.26	1.01
QUEBRADA CASCAJA	1180	TR= 50 AÑOS	29.20	201.93	202.19	202.25	202.28	0.041429	1.28	22.76	138.88	1.01
QUEBRADA CASCAJA	1160	TR= 50 AÑOS	29.20	202.24	202.47	202.36	202.54	0.026089	0.92	27.14	165.52	0.78
QUEBRADA CASCAJA	1140	TR= 50 AÑOS	29.20	202.53	202.75	202.65	202.83	0.016348	0.72	29.32	164.34	0.62
QUEBRADA CASCAJA	1120	TR= 50 AÑOS	29.20	202.81	203.04	203.13	203.12	0.041850	1.25	23.39	149.82	1.01
QUEBRADA CASCAJA	1100	TR= 50 AÑOS	29.20	203.09	203.29	203.38	203.37	0.041792	1.20	24.34	165.33	1.01
QUEBRADA CASCAJA	1080	TR= 50 AÑOS	29.20	203.34	203.57	203.65	203.64	0.044207	1.17	24.94	183.38	1.01
QUEBRADA CASCAJA	1060	TR= 50 AÑOS	29.20	203.60	203.85	203.92	203.92	0.045730	1.15	25.46	197.92	1.02
QUEBRADA CASCAJA	1040	TR= 50 AÑOS	29.20	203.85	204.11	204.23	204.18	0.043654	1.19	24.46	173.07	1.01
QUEBRADA CASCAJA	1020	TR= 50 AÑOS	29.20	204.11	204.37	204.45	204.45	0.042019	1.26	23.23	147.73	1.01
QUEBRADA CASCAJA	1000	TR= 50 AÑOS	29.20	204.36	204.67	204.62	204.76	0.038679	1.30	22.69	142.07	0.99
QUEBRADA CASCAJA	980	TR= 50 AÑOS	29.20	204.72	205.02	205.13	205.10	0.039670	1.28	22.85	141.65	1.01
QUEBRADA CASCAJA	960	TR= 50 AÑOS	29.20	205.22	205.47	205.53	205.55	0.041933	1.25	23.29	148.42	1.01
QUEBRADA CASCAJA	940	TR= 50 AÑOS	29.20	205.72	205.98	206.05	206.06	0.042160	1.25	23.35	150.05	1.01
QUEBRADA CASCAJA	920	TR= 50 AÑOS	29.20	206.20	206.49	206.56	206.56	0.043403	1.20	24.24	168.47	1.01
QUEBRADA CASCAJA	900	TR= 50 AÑOS	29.20	206.63	206.05	206.11	206.13	0.041153	1.01	23.37	147.69	1.01
QUEBRADA CASCAJA	880	TR= 50 AÑOS	29.20	207.06	206.61	206.58	206.84	0.029582	0.92	13.74	30.43	0.78
QUEBRADA CASCAJA	860	TR= 50 AÑOS	29.20	207.49	205.74	205.63	206.03	0.027584	0.72	12.40	22.27	0.62
QUEBRADA CASCAJA	840	TR= 50 AÑOS	29.20	207.92	205.69	205.75	206.00	0.026938	1.25	11.92	19.60	1.01
QUEBRADA CASCAJA	820	TR= 50 AÑOS	29.20	208.27	206.69	206.78	207.03	0.026825	1.20	11.34	17.15	1.01
QUEBRADA CASCAJA	800	TR= 50 AÑOS	29.20	208.58	208.78	208.67	208.85	0.008517	0.43	36.34	228.85	0.42
QUEBRADA CASCAJA	780	TR= 50 AÑOS	29.20	207.88	208.56	208.45	208.74	0.031304	1.80	15.69	44.16	0.99
QUEBRADA CASCAJA	760	TR= 50 AÑOS	29.20	207.02	207.74	207.79	207.99	0.044376	2.23	13.10	36.44	1.19
QUEBRADA CASCAJA	740	TR= 50 AÑOS	29.20	207.70	208.64	208.75	208.88	0.028803	2.17	13.48	28.28	1.01
QUEBRADA CASCAJA	720	TR= 50 AÑOS	29.20	208.97	209.68	209.52	209.78	0.033142	1.31	21.18	100.18	0.93
QUEBRADA CASCAJA	700	TR= 50 AÑOS	29.20	209.68	209.92	209.85	210.03	0.025388	0.91	21.97	99.72	0.78
QUEBRADA CASCAJA	680	TR= 50 AÑOS	29.20	210.17	210.54	210.65	210.62	0.045390	1.23	23.70	164.53	1.04


011555454 0400444	222	TD 50 4000		212.27	212.00	244.24	044.0=	0.040=00	4.0=	20.00	440.00	4.00
QUEBRADA CASCAJA	660	TR= 50 AÑOS	29.20	210.67	210.99	211.04	211.07	0.042736	1.27	23.06	146.88	1.02
QUEBRADA CASCAJA	640	TR= 50 AÑOS	29.20	211.06	211.32	211.44	211.40	0.040951	1.29	22.93	141.07	1.01
QUEBRADA CASCAJA	620	TR= 50 AÑOS	29.20	211.19	211.53	211.67	211.61	0.041714	1.22	23.97	158.93	1.01
QUEBRADA CASCAJA	600	TR= 50 AÑOS	29.20	211.40	206.27	206.75	206.45	0.031763	2.01	15.73	45.15	1.01
QUEBRADA CASCAJA	580	TR= 50 AÑOS	29.20	211.91	212.16	212.24	212.23	0.045956	1.15	25.47	198.78	1.02
QUEBRADA CASCAJA	560	TR= 50 AÑOS	29.20	212.16	212.47	212.58	212.54	0.046304	1.15	25.43	199.23	1.03
QUEBRADA CASCAJA	540	TR= 50 AÑOS	29.20	212.47	212.79	212.83	212.86	0.046411	1.18	24.82	187.72	1.03
QUEBRADA CASCAJA	520	TR= 50 AÑOS	29.20	212.84	213.12	213.25	213.19	0.043824	1.20	24.41	173.64	1.02
QUEBRADA CASCAJA	500	TR= 50 AÑOS	29.20	213.22	207.39	207.13	207.58	0.030751	0.52	15.03	39.36	0.42
QUEBRADA CASCAJA	480	TR= 50 AÑOS	29.20	213.59	213.83	213.74	213.90	0.019180	0.83	28.75	160.66	0.68
QUEBRADA CASCAJA	460	TR= 50 AÑOS	29.20	213.97	214.12	214.03	214.22	0.012285	0.58	28.51	150.36	0.53
QUEBRADA CASCAJA	440	TR= 50 AÑOS	29.20	214.35	214.60	214.69	214.68	0.041801	1.26	23.20	146.75	1.01
QUEBRADA CASCAJA	420	TR= 50 AÑOS	29.20	214.74	215.02	215.15	215.10	0.043008	1.24	23.51	154.97	1.02
QUEBRADA CASCAJA	400	TR= 50 AÑOS	29.20	215.12	213.79	213.61	213.94	0.034142	1.14	17.09	58.67	0.77
QUEBRADA CASCAJA	380	TR= 50 AÑOS	29.20	215.50	215.77	215.86	215.84	0.046157	1.15	25.47	199.50	1.02
QUEBRADA CASCAJA	360	TR= 50 AÑOS	29.20	215.89	216.10	216.24	216.16	0.044646	1.14	25.71	199.34	1.01
QUEBRADA CASCAJA	340	TR= 50 AÑOS	29.20	216.38	216.64	216.79	216.71	0.045948	1.14	25.53	200.01	1.02
QUEBRADA CASCAJA	320	TR= 50 AÑOS	29.20	216.91	217.08	217.01	217.20	0.010723	0.43	24.66	130.98	0.46
QUEBRADA CASCAJA	300	TR= 50 AÑOS	29.20	217.43	211.26	211.36	211.45	0.032165	1.81	15.44	43.54	1.02
QUEBRADA CASCAJA	280	TR= 50 AÑOS	29.20	217.90	216.92	216.98	217.31	0.026697	1.15	10.51	13.47	1.01
QUEBRADA CASCAJA	260	TR= 50 AÑOS	29.20	218.21	217.48	217.57	217.80	0.027306	1.15	11.68	18.68	1.02
QUEBRADA CASCAJA	240	TR= 50 AÑOS	29.20	218.79	217.94	217.99	218.25	0.027549	1.18	11.90	19.63	1.03
QUEBRADA CASCAJA	220	TR= 50 AÑOS	29.20	219.37	218.92	218.97	219.32	0.026908	1.20	10.31	12.60	1.03
QUEBRADA CASCAJA	200	TR= 50 AÑOS	29.20	219.66	216.32	216.21	216.46	0.034394	0.62	17.65	63.93	0.42
QUEBRADA CASCAJA	180	TR= 50 AÑOS	29.20	219.95	219.71	219.78	220.01	0.028210	2.01	12.09	20.66	1.01
QUEBRADA CASCAJA	160	TR= 50 AÑOS	29.20	220.18	220.42	220.57	220.49	0.043402	1.20	24.42	171.52	1.01
QUEBRADA CASCAJA	140	TR= 50 AÑOS	29.20	220.35	220.61	220.69	220.68	0.044724	1.16	25.16	189.10	1.02
QUEBRADA CASCAJA	120	TR= 50 AÑOS	29.20	220.53	220.77	220.83	220.84	0.043380	1.19	24.58	174.30	1.01
QUEBRADA CASCAJA	100	TR= 50 AÑOS	29.20	220.69	219.53	219.62	219.69	0.033170	1.51	16.78	54.90	1.01
QUEBRADA CASCAJA	80	TR= 50 AÑOS	29.20	220.87	221.09	221.18	221.16	0.045093	1.14	25.51	196.78	1.02
QUEBRADA CASCAJA	60	TR= 50 AÑOS	29.20	221.04	221.20	221.35	221.26	0.043791	1.13	25.73	196.82	1.01
QUEBRADA CASCAJA	40	TR= 50 AÑOS	29.20	221.11	221.26	221.38	221.33	0.043557	1.13	25.77	196.77	1.01
QUEBRADA CASCAJA	20	TR= 50 AÑOS	29.20	221.18	221.35	221.42	221.42	0.044001	1.14	25.69	196.74	1.01
QUEBRADA CASCAJA	0	TR= 50 AÑOS	29.20	221.29	221.46	221.57	221.52	0.044305	1.14	25.65	196.91	1.01

Anexo 29. CALCULOS ESTADISTICOS DE DISTRIBUCONES

ESTACION BUENA VISTA

CALCULO DE DISTRIBUCION POR EL METODO DE GUMBEL



CALCULO DE DISTRIBUCION POR EL METODO DE GUMBEL

m	x	P(x)	Media (x)	S (x)	μ	α	f(x)	F(x)	Δ
1	0.00	0.0476					0.0146	0.3489	0.3013
2	0.00	0.0952					0.0146	0.3489	0.2537
3	0.01	0.1429					0.0146	0.3493	0.2065
4	0.01	0.1905					0.0146	0.3493	0.1589
5	0.01	0.2381					0.0146	0.3493	0.1112
6	0.01	0.2857					0.0146	0.3493	0.0636
7	0.01	0.3333					0.0146	0.3493	0.0160
8	0.40	0.3810					0.0153	0.3648	0.0161
9	1.50	0.4286					0.0171	0.4085	0.0201
10	1.70	0.4762	5.82	11.8681	0.4769	9.2535	0.0174	0.4164	0.0598
11	2.00	0.5238	3.02	11.0001	0.4703	9.2333	0.0179	0.4282	0.0956
12	2.50	0.5714					0.0187	0.4477	0.1237
13	3.60	0.6190					0.0205	0.4899	0.1291
14	4.00	0.6667					0.0211	0.5049	0.1617
15	4.70	0.7143					0.0222	0.5307	0.1836
16	5.00	0.7619					0.0226	0.5415	0.2204
17	5.30	0.8095					0.0231	0.5522	0.2573
18	5.60	0.8571					0.0235	0.5628	0.2944
19	39.00	0.9048					0.0412	0.9846	0.0798
20	41.00	0.9524					0.0413	0.9875	0.0352

0.3013	<	0.3041
	SE AJUSTA	

Δ teorico	0.3013
Δtabular	0.3041
n	20

1.COLOCAR LOS DATOS DE PRECIPITACION

2.CALCULAR PROBABILIDAD EMPIRICA P(x)

m	×
1	0.00
2	0.00
3	0.01
4	0.01
5	0.01
6	0.01
7	0.01
8	0.40
9	1.50
10	1.70
11	2.00
12	2.50
13	3.60
14	4.00
15	4.70
16	5.00
17	5.30
18	5.60
19	39.00
20	41.00

$$P(x) = \frac{M}{N+1}$$

3.CALCULAR LOS DATOS ESTADISTICOS

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = 5.82$$

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$
 = 11.8681

4.ESTIMACION DE PARAMETROS DE GUMBEL

$$\alpha = \frac{\sqrt{6}}{\pi} S_x = 9.2535$$
 $\mu = \overline{X} - 0.45 S_x = 0.4769$

$$\mu = \overline{X} - 0.45 \, S_x = 0.4769$$

5.CALCULAR LA FUNCION ACUMULADA F(x)

				$(x-\mu)$
F(x)	=	e	-е	α

F(x)
0.3489
0.3489
0.3493
0.3493
0.3493
0.3493
0.3493
0.3648
0.4085
0.4164
0.4282
0.4477
0.4899
0.5049
0.5307
0.5415
0.5522
0.5628
0.9846
0.9875

PRUEBA DE BONDAD DE AJUSTE

Calcular
$$\Delta = |P(x) - F(x)| = 0.3013$$

Obtener
$$\Delta_0$$
 Para un α = 0.05
$$\Delta_0 = \frac{1.36}{\sqrt{N}} = 0.3041$$

Comparar
$$\Delta$$
 y Δ_0 $\Delta < \Delta o \Rightarrow$ Ajuste bueno
$$0.3013 < 0.3041$$

CALCULO DE LA PRECIPITACION MAXIMA

1. CALCULAR LOS DATOS ESTADISTICOS

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = 5.82$$

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$
 = 11.8681

2 ESTIMACION DE PARAMETROS DE GUMBEI

$$\alpha = \frac{\sqrt{6}}{\pi} S_x = 9.2535$$

$$\mu = \overline{X} - 0.45 \, S_x = 0.4769$$

3.CALCULO DE LA VARIABLE REDUCIDA

$$Y_t = -\ln(\ln\left(\frac{T}{T-1}\right))$$
 donde T= periodo de retorno

para T= 25 años
$$Y_t = -\ln(\ln\left(\frac{T}{T-1}\right))$$
 = 3.1985

para T= 50 años
$$Y_t = -\ln(\ln\left(\frac{T}{T-1}\right)) = 3.9019$$

4.CALCULO DE LA PRECIPITACION MAXIMA

$$X_t = \mu + Y_t * \alpha$$

para T= 25 años
$$X_t = \mu + Y_t * lpha = 30.07$$
mm

para T= 50 años
$$X_t = \mu + Y_t * \alpha$$
 = 36.58mm

ESTACION SIHUAS

CALCULO DE DISTRIBUCION GAMMA 3 PARAMETROS

m	x		
1	20.60		
2	21.70		
3	23.30		
4	23.60		
5	25.00		
6	25.20		
7	25.80		
8	26.90		
9	26.90		
10	27.70		
11	31.00		
12	31.80		
13	34.30		
14	34.40		
15	34.60		
16	35.30		
17	38.30		
18	46.90		
19	52.50		
20	68.30		

1.COLOCAR LOS DATOS DE PRECIPITACION 2.CALCULAR PROBABILIDAD EMPIRICA P(x)

m	×	P(x)
1	20.60	0.0476
2	21.70	0.0952
3	23.30	0.1429
4	23.60	0.1905
5	25.00	0.2381
6	25.20	0.2857
7	25.80	0.3333
8	26.90	0.3810
9	26.90	0.4286
10	27.70	0.4762
11	31.00	0.5238
12	31.80	0.5714
13	34.30	0.6190
14	34.40	0.6667
15	34.60	0.7143
16	35.30	0.7619
17	38.30	0.8095
18	46.90	0.8571
19	52.50	0.9048
20	68.30	0.9524

$$P(x) = \frac{M}{N+1}$$

3.CALCULAR LOS DATOS ESTADÍSTICOS X, S, y C,

$$X, S, yC_s$$

$$\pi = \frac{\sum_{i=1}^{n} x_i}{n} = 32.7050$$

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{8} (x_i - \vec{x})^2}{n-1}} = 11.7113$$

$$C_{Sx} = 1.8021$$

METODO DE MAXIMA VEROSIMILITUD γ, β y X₀

$$\Upsilon = \frac{4}{C_{Sx}^{2}} = 1.2316$$
 $\beta = \frac{C_{Sx} * S_{x}}{2} = 10.5527$
 $X_{0} = \mathbf{X} - \frac{2S_{x}}{C_{Sx}} = 19.7079$

5.CALCULAR LA FUNCION ACUMULADA F(x)

$$f(x) = \frac{\left(x - x_0\right)^{\gamma - 1} e^{\frac{-\left(x - x_0\right)}{\beta}}}{\beta^{\gamma} \Gamma_{(\gamma)}}$$

$$F(x) = \int_{X_0}^0 f(x) dx$$

f(x)	F(x)
0.0540	0.0406
0.0586	0.1032
0.0577	0.1969
0.0571	0.2141
0.0537	0.2918
0.0532	0.3025
0.0515	0.3339
0.0482	0.3887
0.0482	0.3887
0.0458	0.4263
0.0363	0.5614
0.0342	0.5895
0.0282	0.6672
0.0279	0.6700
0.0275	0.6756
0.0260	0.6943
0.0204	0.7636
0.0099	0.8885
0.0061	0.9322
0.0015	0.9837

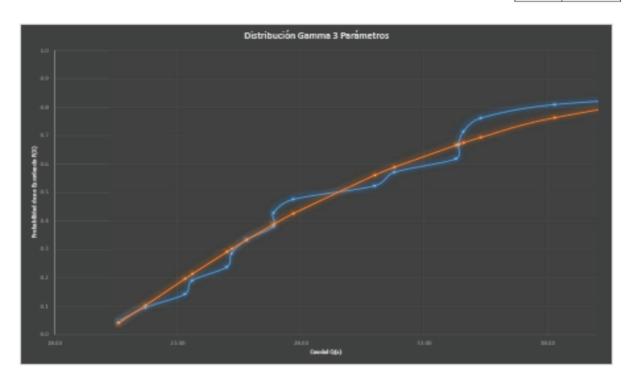
PRUEBA DE BONDAD DE AJUSTE DE KOLMOGOROV-SMIRNOF

Calcular
$$\Delta = |P(x) - F(x)| = 0.0678$$

Obtener
$$\Delta_0$$

Para un α = 0.05 $\Delta_0 = \frac{1.36}{\sqrt{N}} = 0.3041$

0.0678 < 0.3041



AJUSTE DE DISTRIBUCION GAMMA 3 PARAMETROS

m	х	P(x)	Media (x)	s	Cs	XO	(x-X0)	β	Υ	f(x)	F(x)	Δ
1	20.60	0.0476					0.8921			0.0540	0.0406	0.0070
2	21.70	0.0952					1.9921			0.0586	0.1032	0.0080
3	23.30	0.1429					3.5921			0.0577	0.1969	0.0540
4	23.60	0.1905					3.8921			0.0571	0.2141	0.0236
5	25.00	0.2381					5.2921			0.0537	0.2918	0.0537
6	25.20	0.2857					5.4921			0.0532	0.3025	0.0168
7	25.80	0.3333					6.0921			0.0515	0.3339	0.0006
8	26.90	0.3810					7.1921			0.0482	0.3887	0.0078
9	26.90	0.4286					7.1921			0.0482	0.3887	0.0398
10	27.70	0.4762	32.7050	11.7113	1.8021	19.7079	7.9921	10.5527	1.2316	0.0458	0.4263	0.0499
11	31.00	0.5238	32.7030	11.7110	1.0021	15.7075	11.2921	10.5527	1.2310	0.0363	0.5614	0.0375
12	31.80	0.5714					12.0921			0.0342	0.5895	0.0181
13	34.30	0.6190					14.5921			0.0282	0.6672	0.0482
14	34.40	0.6667					14.6921			0.0279	0.6700	0.0033
15	34.60	0.7143					14.8921			0.0275	0.6756	0.0387
16	35.30	0.7619					15.5921			0.0260	0.6943	0.0676
17	38.30	0.8095					18.5921			0.0204	0.7636	0.0460
18	46.90	0.8571					27.1921			0.0099	0.8885	0.0313
19	52.50	0.9048					32.7921			0.0061	0.9322	0.0274
20	68.30	0.9524					48.5921			0.0015	0.9837	0.0313

0.0678	<	0.3041
9	SE AJUSTA	

∆ teorico	0.06780
∆ tabular	0.3041
n	20

CALCULO DE LA PRECIPITACION MAXIMA

1.CALCULAR LOS DATOS ESTADISTICOS

$$\tilde{x} = \frac{\sum_{i=1}^n x_i}{n} = 32.71$$

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{8} (x_i - \bar{x})^2}{n-1}} = 11.71$$
 k= 0.30

$$k = 0.30$$

2 CALCULO DE PARAMETROS

Dist.N (p)

3.CALCULO DE LA PRECIPITACION

$$x = \bar{x} + \kappa_T s_y$$

CALCULO DE DISTRIBUCION GAMMA 3 PARAMETROS

1.COLOCAR LOS DATOS DE PRECIPITACION

m	x		
1	19.20		
2	19.50		
3	20.70		
4	20.80		
5	21.20		
6	21.60		
7	24.00		
8	24.00		
9	25.30		
10	26.00		
11	26.50		
12	26.70		
13	28.60		
14	29.60		
15	34.10		
16	35.20		
17	37.70		
18	41.30		
19	47.10		
20	51.20		

2.CALCULAR PROBABILIDAD EMPIRICA P(x)

m	×	P(x)
1	19.20	0.0385
2	19.50	0.0769
3	20.70	0.1154
4	20.80	0.1538
5	21.20	0.1923
6	21.60	0.2308
7	24.00	0.2692
8	24.00	0.3077
9	25.30	0.3462
10	26.00	0.3846
11	26.50	0.4231
12	26.70	0.4615
13	28.60	0.5000
14	29.60	0.5385
15	34.10	0.5769
16	35.20	0.6154
17	37.70	0.6538
18	41.30	0.6923
19	47.10	0.7308
20	51.20	0.7692

$$P(x) = \frac{M}{N+1}$$

3.CALCULAR LOS DATOS ESTADÍSTICOS X, S, y C S,

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = 29.015$$

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = 9.2755$$

$$c_{Sx} = 1.1381$$

METODO DE MAXIMA VEROSIMILITUD γ, β y X₀

$$\Upsilon = \frac{4}{C_0^2} = 3.088$$

$$\beta = \frac{C_{Sx} * S_x}{2} = 5.278$$

$$\Upsilon = \frac{4}{{C_{Sx}}^2} = 3.088$$
 $\beta = \frac{C_{Sx} * S_x}{2} = 5.2783$ $X_0 = \overline{X} - \frac{2S_x}{C_{Sx}} = 12.7156$

5.CALCULAR LA FUNCION ACUMULADA F(x)

$$f(x) = \frac{\left(x - x_0\right)^{\gamma - 1} e^{-\frac{\left(x - x_0\right)}{\beta}}}{\beta^{\gamma} \; \Gamma_{(\gamma)}}$$

$$F(x) = \int_{X_0}^0 f(x) dx$$

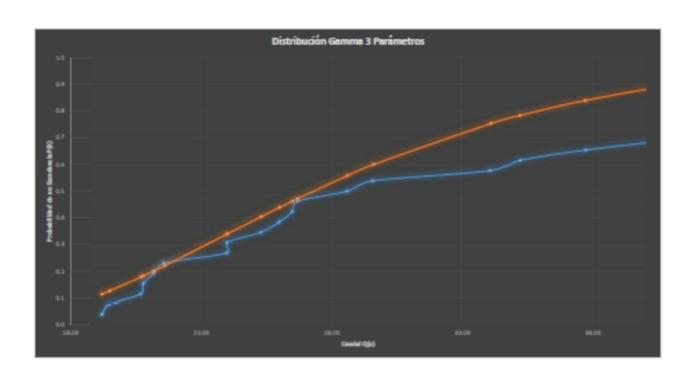
f(x)	F(x)
0.0392	0.1146
0.0407	0.1266
0.0456	0.1785
0.0459	0.1831
0.0471	0.2017
0.0481	0.2208
0.0502	0.3399
0.0502	0.3399
0.0493	0.4047
0.0484	0.4389
0.0475	0.4629
0.0471	0.4724
0.0429	0.5581
0.0403	0.5998
0.0282	0.7538
0.0254	0.7832
0.0197	0.8394
0.0132	0.8980
0.0065	0.9531
0.0038	0.9736

PRUEBA DE BONDAD DE AJUSTE DE KOLMOGOROV-SMIRNOF

$$\begin{array}{c} \text{Calcular} \\ \Delta = |P(x) - F(x)| \end{array} = 0.07809$$

Obtener
$$\Delta_0$$
 Para un α = 0.05
$$\Delta_0 = \frac{1.36}{\sqrt{N}} = 0.3041$$

Comparar
$$\Delta$$
 y Δ_0 $\Delta < \Delta_0 \Rightarrow$ Ajuste bueno
$$0.07809 < 0.3041$$



AJUSTE DE DISTRIBUCION GAMMA 3 PARAMETROS

m	x	P(x)	Media (x)	S	Cs	X0	(x-X0)	β	Υ	f(x)	F(x)	Δ
1	19.20	0.0385					6.4844			0.0392	0.1146	0.0761
2	19.50	0.0769					6.7844			0.0407	0.1266	0.0496
3	20.70	0.1154					7.9844			0.0456	0.1785	0.0632
4	20.80	0.1538					8.0844			0.0459	0.1831	0.0293
5	21.20	0.1923					8.4844			0.0471	0.2017	0.0094
6	21.60	0.2308			5 1.1381		8.8844			0.0481	0.2208	0.0100
7	24.00	0.2692				381 12.7156	11.2844		3.0880	0.0502	0.3399	0.0706
8	24.00	0.3077		29.0150 9.2755 1.1381 12.7156 11.2844 12.5844 13.2844 13.9844 15.8844 16.8844 16.8844			11.2844			0.0502	0.3399	0.0322
9	25.30	0.3462					12.5844	E 2702		0.0493	0.4047	0.0586
10	26.00	0.3846	20.0150				13.2844			0.0484	0.4389	0.0543
11	26.50	0.4231	29.0150				3.0660	0.0475	0.4629	0.0398		
12	26.70	0.4615					13.9844			0.0471	0.4724	0.0108
13	28.60	0.5000					15.8844			0.0429	0.5581	0.0581
14	29.60	0.5385					16.8844			0.0403	0.5998	0.0613
15	34.10	0.5769					21.3844			0.0282	0.7538	0.1768
16	35.20	0.6154					22.4844			0.0254	0.7832	0.1678
17	37.70	0.6538					24.9844			0.0197	0.8394	0.1855
18	41.30	0.6923					28.5844			0.0132	0.8980	0.2057
19	47.10	0.7308						34.3844			0.0065	0.9531
20	51.20	0.7692					38.4844			0.0038	0.9736	0.2044

0.0781	<	0.3041						
	SE AJUSTA							

Δ teorico	0.07809
∆ tabular	0.3041
n	20

CALCULO DE LA PRECIPITACION MAXIMA

1.CALCULAR LOS DATOS ESTADISTICOS

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 = 29.02 Cs= 1.14

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = 9.28$$
 k= 0.19

2.CALCULO DE PARAMETROS

Dist.N (p)

3.CALCULO DE LA PRECIPITACION

$$x = \bar{\chi} + K_T s_y$$

ESTACION TALLA GUADALUPE

CALCULO DE DISTRIBUCION LOG PEARSON TIPO III

1.COLOCAR LOS DATOS DE PRECIPITACION

m	×
1	3.90
2	4.20
3	4.40
4	5.00
5	5.30
6	6.10
7	7.00
8	7.10
9	7.60
10	8.40
11	8.40
12	8.50
13	8.90
14	10.90
15	11.90
16	15.40
17	16.60
18	20.90
19	21.80
20	63.00

2. OBTENER Y = Ln(x)

Ln(x)
1.361
1.435
1.482
1.609
1.668
1.808
1.946
1.960
2.028
2.128
2.128
2.140
2.186
2.389
2.477
2.734
2.809
3.040
3.082
4.143

3.CALCULAR PROBABILIDAD EMPIRICA P(x)

$$P(x) = \frac{M}{N+1}$$

m	x	P(x)		
1	3.90	0.048		
2	4.20	0.095		
3	4.40	0.143		
4	5.00	0.190		
5	5.30	0.238		
6	6.10	0.286		
7	7.00	0.333		
8	7.10	0.381		
9	7.60	0.429		
10	8.40	0.476		
11	8.40	0.524		
12	8.50	0.571		
13	8.90	0.619		
14	10.90	0.667		
15	11.90	0.714		
16	15.40	0.762		
17	16.60	0.810		
18	20.90	0.857		
19	21.80	0.905		
20	63.00	0.952		

4.CALCULAR LOS DATOS ESTADISTICOS

 $(\overline{Ln X}, S_{Lnx} y C_{SLnx})$

$$\Upsilon = \frac{4}{C_{SLnx}^2} = 2.7802$$

$$\beta = \frac{C_{SLnx} * S_{Lnx}}{2} = 0.4074$$

$$X_0 = \overline{Ln\,X} - \frac{2S_{Ln\,x}}{C_{SLn\,x}} = 1.0949$$

5.CALCULAR LA FUNCION ACUMULADA F(x)

$$\mathrm{f}(\mathrm{x}) = \frac{(\ln x - x_0)^{\gamma - 1} e^{-\frac{(\ln x - x_0)}{\beta}}}{\beta^{\gamma} \, \Gamma_{(\gamma)}}$$

$$F(x) = \int_{X_0}^0 f(x) dx$$

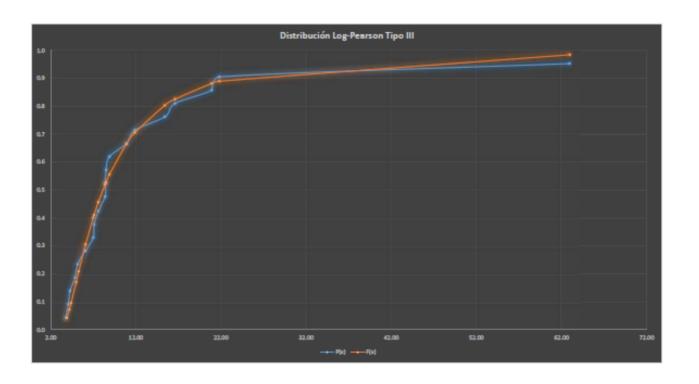
F(x)					
0.042					
0.073					
0.096					
0.171					
0.209					
0.306					
0.401					
0.411					
0.457					
0.521					
0.521					
0.528					
0.556					
0.665					
0.706					
0.803					
0.825					
0.881					
0.890					
0.984					

PRUEBA DE BONDAD DE AJUSTE DE KOLMOGOROV-SMIRNOF

Calcular
$$\Delta = |P(x) - F(x)| = 0.0681$$

Obtener
$$\Delta_0$$
 Para un α = 0.05 $\Delta_0 = \frac{1.36}{\sqrt{N}}$ = 0.3041

Comparar
$$\Delta$$
 y Δ_0 $\Delta < \Delta o \Rightarrow$ Ajuste bueno $0.0681 < 0.3041$



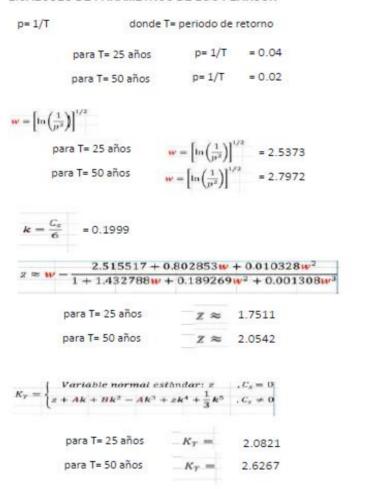
CALCULO DE DISTRIBUCION LOG PEARSON TIPO III

m	х	Ln(x)	P(x)	Media (Lnx)	S (Lnx)	Cs Lnx	xo	β	Y	Ln(x)-X0	f(x)	F(x)	Δ	
1	3.90	1.361	0.048							0.266	0.363	0.042	0.006	
2	4.20	1.435	0.095]						0.340	0.468	0.073	0.023	
3	4.40	1.482	0.143]						0.387	0.525	0.096	0.047	
4	5.00	1.609	0.190]						0.514	0.638	0.171	0.020	
5	5.30	1.668	0.238						ı	0.573	0.669	0.209	0.029	
6	6.10	1.808	0.286							0.713	0.700	0.306	0.020	
7	7.00	1.946	0.333]						0.851	0.684	0.401	0.068	
8	7.10	1.960	0.381							0.865	0.680	0.411	0.030	
9	7.60	2.028	0.429		0.6704	0.6794 1.1995	1.0949	0.4074	2.7802	0.933	0.659	0.457	0.028	
10	8.40	2.128	0.476	2.2277						1.033	0.618	0.521	0.044	
11	8.40	2.128	0.524	2.22//	0.0794		0.0794 1.1995	1.1993	0.4074	2.7602	1.033	0.618	0.521	0.003
12	8.50	2.140	0.571							1.045	0.612	0.528	0.043	
13	8.90	2.186	0.619							1.091	0.591	0.556	0.063	
14	10.90	2.389	0.667							1.294	0.486	0.665	0.002	
15	11.90	2.477	0.714							1.382	0.441	0.706	0.009	
16	15.40	2.734	0.762]						1.639	0.317	0.803	0.041	
17	16.60	2.809	0.810							1.714	0.286	0.825	0.016	
18	20.90	3.040	0.857							1.945	0.203	0.881	0.024	
19	21.80	3.082	0.905]						1.987	0.190	0.890	0.015	
20	63.00	4.143	0.952							3.048	0.030	0.984	0.032	

0.0681	<	0.3041					
	SE AJUSTA						

∆ teorico	0.0681
∆ tabular	0.3041
n	20

CALCULO DE LA PRECIPITACION MAXIMA


1.CALCULAR LOS DATOS ESTADISTICOS

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = 2.2277$$

$$C_{SLn \ x} = 1.1995$$

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = 0.6794$$

2.CALCULO DE PARAMETROS DE LOG PEARSON

3.CALCULO DE LA PRECIPITACION

$$y_T = \overline{y} + K_T S_y$$
 $x = 10^{y_T}$

para T= 25 años $x = 30.49 \text{ mm}$

para T= 50 años $x = 37.46 \text{ mm}$