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RESUMEN 

 

El presente trabajo de investigación tuvo como objetivo fundamental estudiar la existencia y 

la unicidad de la solución polinómica aproximada de una ecuación diferencial parcial no 

lineal en dos variables independientes en el espacio de Sobolev. El método utilizado fue 

deductivo demostrativo, porque permitió elaborar soluciones aproximadas en un espacio de 

dimensión finita, hacer las estimativas en los espacios de funciones correspondientes, hacer 

el paso al límite de estas soluciones y utilizando técnicas multiplicativas. Finalmente, bajo 

apropiadas condiciones y restricciones sobre los datos y utilizando el método de Faedo- 

Galerkin, y el método estándar de la energía, se demostró la existencia y unicidad de las 

soluciones polinómicas aproximadas para la ecuación diferencial.  
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ABSTRACT 

 

The main objective of this research work was to study the existence and uniqueness of the 

approximate polynomial solution of a nonlinear partial differential equation in two 

independent variables in the Sobolev space. The method used was demonstrative deductive, 

because it allowed elaborating approximate solutions in a finite-dimensional space, making 

estimates in the corresponding function spaces, making the passage to the limit of these 

solutions and using multiplicative techniques. Finally, under appropriate conditions and 

restrictions on the data and using the Faedo-Galerkin method, and the standard energy 

method, the existence and uniqueness of the approximate polynomial solutions for the 

differential equation were proved. 
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INTRODUCCIÓN 

 

Aunque la importancia de las Ecuaciones Diferenciales Parciales (EDP) ha sido 

reconocida desde hace varios años entre los temas de la aplicación de la matemática, el 

aumento de la complejidad de la tecnología actual requiere que matemáticos, ingenieros 

y científicos conozcan el tema. Es tal la influencia de las EDP que se puede afirmar que 

no hay rama de las ciencias que no las utilice. El éxito de las EDP radica en su capacidad 

de modelar una enorme variedad de fenómenos físicos, químicos, biológicos, de la 

ingeniería, de la economía, etc. Mas aun, las EDP no solo son importantes por sus 

aplicaciones, sino que tienen importancia en sí mismas y son objeto de exhaustiva 

investigación científica hoy por hoy. 

   

Una ecuación diferencial en derivadas parciales puede describirse como una relación 

donde aparece una función incógnita 𝑢 = 𝑢(𝑥 , 𝑡)  de una o más variables independientes. 

𝐺 ( 𝑥 , 𝑡 , 𝑢 , 𝑢𝑥1
 , 𝑢𝑥2

 , . . .  , 𝑢.𝑥𝑛
, .  .  .  , 𝑢𝑥1

𝑚1  𝑥2
𝑚2  ..  .  .  𝑥𝑛

𝑚𝑛   ) = 0          (1) 

, donde 𝑢 = 𝑢(𝑥 , 𝑡 ) depende de la variable espacial 𝑥 = ( 𝑥1 , 𝑥2 , .   .  . , 𝑥𝑛)𝜖ℝ𝑛 y la 

variable tiempo 𝑡. La ecuación (1) establece una relación entre la función incógnita 𝑢, sus 

derivadas parciales y los puntos (𝑥 , 𝑡). 

 

Las EDP de segundo orden, que expone los conocimientos que consideramos básicos para 

el estudiante de ciencias o de ingeniería, pueda entender sin grandes problemas, son las 

ecuaciones clásicas, que modelan el problema calor, de onda y de Laplace.:  

1. Ecuación de calor:           𝑢𝑡 −  ∆𝑢 = 

2. Ecuación de calor:           𝑢𝑡 −  ∆𝑢 = 0 

3. Ecuación de Laplace:   − ∆𝑢 + 𝑢 = 0 

Estos tres ejemplos, y con desarrollos de mayor sofisticación permitirán estudiar las EDP 

de segundo orden lineales e incluso algunos problemas no lineales. 

 



X 
 

 

En este trabajo de tesis se estudia la existencia y unicidad de solución polinómica 

aproximada de ecuación estacionaria de calor, modelada por: 

 −∆𝑢 −  
𝜕

𝜕𝑥
( 𝑢 |  

𝜕𝑢

𝜕𝑥
 |

2

) −  
𝜕

𝜕𝑦
( 𝑢 |  

𝜕𝑢

𝜕𝑦
 |

2

) = 𝑓(𝑥 , 𝑦)                                (2) 

, donde 𝑢 = 𝑢(𝑥 , 𝑦 , 𝑡) es la función incógnita y representa la transmisión de calor en un 

punto (𝑥 , 𝑦 , 𝑡) de una región Ω𝜖ℝ𝑛, 𝑓(𝑥, 𝑦) es una fuente de calor interna. 

Esta ecuación (2), modela el flujo de calor en estado estacionario en una región plana o 

bien problema que se relacionan con potenciales gravitacionales, potenciales 

electrostáticos, potenciales de flujo de fluidos incomprensibles, etc. 

 

La estructura de la presente investigación, es la siguiente: 

 

Capitulo I. Comprende Planteamiento y fundamentación del problema de investigación, 

Antecedentes de la investigación, formulación del problema de investigación, 

delimitación del estudio, justificación e importancia de la investigación objetivos de la 

investigación. 

Capitulo II. Se expone el marco teórico, fundamentos teóricos de la investigación, así 

como el marco conceptual necesarios para el desarrollo del trabajo de investigación. 

Capitulo III.  Se formula la hipótesis de investigación, variables e indicadores de 

investigación, el método y el diseño de la investigación, así como también la población y 

muestra del estudio realizado. 

Capitulo IV. Se presenta los resultados y discusión de la investigación realizada: Prueba 

de resultado de existencia de solución polinómica aproximada y prueba de resultado de 

unicidad de la solución polinómica aproximada del problema planteado.    

Capitulo V. Se enuncia las conclusiones y recomendaciones del trabajo de investigación.  

 

Al final del trabajo se encuentra las referencias bibliográficas de libros y artículos   

científicos que se relacionan y que se han tomado en cuenta para la investigación. 
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                            CAPITULO I 

 

PROBLEMA DE INVESTIGACION 

 

1.1   Planteamiento y fundamentación del problema de investigación   

 

Las Ecuaciones Diferenciales Parciales (EDP), es aquella área de la matemática que, desde 

el punto de vista moderno, tienen una más clara motivación en las aplicaciones porque 

muchos problemas de las ciencias aplicadas y la ingeniería están descritos por estas 

ecuaciones que implican funciones desconocidas que dependen de al menos dos variables 

independientes.  

Las ecuaciones diferenciales parciales no lineales de segundo orden, se encuentran en una 

posición central porque ellas modelan una gran variedad  de fenómenos complejos, tales 

como: Movimiento, difusión, oscilaciones de cuerdas elásticas, vibraciones de vigas o 

membranas, transmisión de calor, entre otros, donde debido a la presencia de términos no 

lineales, las funciones involucradas no tienen derivadas clásicas, lo que afecta notoriamente 

la existencia  de solución única, razón por la cual se recurre a funciones  con derivadas en 

el sentido de las distribuciones, derivadas que permiten tratar el estudio de las EDP en 

espacios de funciones apropiados, tal como son los espacios de Sóbolev. 

En esta investigación se considera la ecuación no lineal de la forma: 

 {
− ∆𝑢 −

𝜕

𝜕𝑥
(𝑢 | 

𝜕𝑢

 𝜕𝑥
 |
2

) −
𝜕

𝜕𝑦
(𝑢 | 

𝜕𝑢

𝜕𝑦
 |
2

) = 𝑓( 𝑥 , 𝑦 )         𝑒𝑛    Ω        

𝑢 > 0                                                                                        𝑒𝑛  Ω    
𝑢 = 𝑔                                                                                        𝑒𝑛  𝜕Ω

            

, donde Ω es una región abierta acotada y conexa de ℝ𝑛, 𝑛 ≥ 1,  y con frontera 𝜕Ω.   

Ahora como ésta es una ecuación diferencial parcial no lineal de segundo orden, nos 

abocaremos a estudiar la existencia y unicidad de su solución. 
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1.2 Antecedentes de la investigación  

Durante las tres últimas décadas hasta la fecha se estudia con bastante interés problemas que 

implican ecuaciones diferenciales parciales no lineales, sobre dominios abiertos, acotados Ω 

de ℝ𝑛 , 𝑛 ≥ 1 , con condiciones de frontera de diversas ramas de la ciencia, tal como: física, 

química, biología, ingeniería, etc. En particular el estudio del fenómeno físico de transmisión 

estacionaria de calor por conducción, modelado por la ecuación lineal,  

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
=  𝛼2∆𝑢(𝑥, 𝑡) + 𝐹(𝑥, 𝑡)  en Ω⊂ ℝ𝑛                                            (1) 

, donde 𝛼2 es la difusividad térmica (constante), y se ha obtenido soluciones analíticas 

mediante diferentes métodos conocidos,  

Una simple modificación de (1), conduce a la conocida ecuación lineal de Poisson  

  
𝜕

𝜕𝑥
( 𝐾𝑥

𝜕𝑢

𝜕𝑥
 ) + 

𝜕

𝜕𝑦
( 𝐾𝑦  

𝜕𝑢

𝜕𝑦
 ) + 𝑄( 𝑥 , 𝑦 ) =  0                                         (2) 

         Donde, 𝑢(𝑥, 𝑦) es la temperatura, 𝐾𝑥  𝑦 𝐾𝑦 son las conductividades en las direcciones, 

𝑥 − 𝑦, y no son constantes pues dependen de la función temperatura. 

Morales (2,015), en su tesis de doctorado; Existencia y Unicidad de solución de una 

ecuación no lineal de tipo elíptico,    

 
𝜕

𝜕𝑥
( |

𝜕𝑢

𝜕𝑥
|
2 𝜕𝑢

𝜕𝑥
 ) +

𝜕

𝜕𝑦
( | 

𝜕𝑢

𝜕𝑦
 |
2 𝜕𝑢

𝜕𝑦
 ) = −𝑓(𝑥, 𝑦)     𝑒𝑛  Ω                         (3) 

 , demuestra la existencia única de la solución de la ecuación (3).   
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1.3 Formulación del problema de investigación  

Sea Ω una placa o lamina delgada del plano ℝ2 con frontera Г = 𝜕Ω , se plantea la siguiente 

ecuación diferencial parcial no lineal, 

∆𝑢 −
𝜕

𝜕𝑥
(𝑢 | 

𝜕𝑢

 𝜕𝑥
 |
2

) −
𝜕

𝜕𝑦
(𝑢 | 

𝜕𝑢

𝜕𝑦
 |
2

) = 𝑓( 𝑥 , 𝑦 )   𝑒𝑛   Ω                (1.1) 

, donde la función 𝑢 no varia con el tiempo, por lo que sólo es función de (𝑥 , 𝑦)𝜖 Ω ,  

      𝑢(𝑥, 𝑦) > 0                   en   Ω                                                           (1.2) 

, y además la condición siguiente,  

     𝑢( 𝑥 , 𝑦 ) = 𝑔(𝑥, 𝑦)      en  𝜕Ω  la frontera de Ω                             (1.3)  

Formulación del problema 

¿Existe una única Solución Polinómica Aproximada para el problema (1.1) – (1.3) en el 

espacio de Sobolev?  

Es decir, se limita nuestra atención a la existencia y unicidad del modelo no lineal de 

transmisión estacionaria de calor, representada en forma breve por el sistema:  

{
 
 

 
 
 − [∑

𝜕2𝑢

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑥𝑖

2

𝑖=1

(𝑢 | 
𝜕𝑢

𝜕𝑥𝑖
 |
 2

)] = 𝑓        𝑒𝑛  Ω     (1.1)

  𝑢 > 0                                                      𝑒𝑛 Ω              (1.2)
   𝑢 = 𝑔                                                    𝑒𝑛 𝜕Ω              (1.3)

 

 , donde ∆ denotará el laplaciano con ∆𝑢(𝑥1, 𝑥2) =  
𝜕2𝑢

𝜕𝑥1
2 + 

𝜕2𝑢

𝜕𝑥2
2  , Ω es un conjunto abierto 

convexo del plano y 𝑢|𝜕Ω = 𝑔 es la función valuada en la frontera de Ω, y que para la cual 

no se puede aplicar métodos conocidos, como: separación de variables, diferencias finitas, 

elementos finitos, o series y transformadas de Fourier, etc. 
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1.4 Delimitación del estudio  

El presente trabajo de investigación se ha centrado fundamentalmente en los espacios de 

Sobolev 𝐻1(Ω) , los espacios de las distribuciones 𝒟′(Ω), los espacios de Lebesgue 𝐿𝑝(Ω), 

los espacios de las funciones de prueba 𝒟((Ω), y el algebra de polinomios en dos variables 

independientes, 𝒫(Ω̅). 

1.5 Justificación e importancia de la investigación  

La justificación del presente trabajo de investigación radica que la ecuación (1.1), modela la 

transmisión estacionaria de calor por conducción, es uno de los modelos más relevantes que 

se expresa mediante EDP. Así, la ecuación de calor modela no solo el proceso físico de 

transmisión de calor por conducción, sino también el fenómeno químico de difusión, o el 

fenómeno biológico de movimiento browniano, etc.  

Esta investigación tiene una importancia teórica y práctica, puesto que los resultados 

obtenidos pueden ser aplicados por especialistas en otras ramas de la ciencia, cuyos trabajos 

se relacionen con este estudio.  

1.6    Objetivos de la investigación 

Objetivo General 

Estudiar la existencia y unicidad de las soluciones polinómicas aproximadas del problema 

(1.1) -(1.3)  

Objetivos Específicos 

1. Demostrar la existencia de solución polinómica aproximada del problema (1.1) - (1.3) 

2. Demostrar la unicidad de solución polinómica aproximada del problema (1.1) - (1.3). 
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                               CAPITULO II 

 

MARCO TEORICO 

 

2.1 Fundamentos teóricos de la investigación 

En esta sección se presenta definiciones, propiedades y resultados apropiados que se 

utilizó, en la demostración de existencia y unicidad de solución polinómica aproximada 

de la EDPNL. 

2.1.1    Espacios de funciones continuas  

Definición 1. (Soporte de una función) 

Sea  Ω ⊆ ℝ2  un conjunto abierto y acotado, f : Ω →  ℝ  una función real. El 

Soporte de 𝑓, denotado Supp(f), es la clausura del conjunto { 𝑥𝜖Ω / 𝑓(𝑥) ≠ 0 } . 

Es decir, el soporte de 𝑓 es el complemento del conjunto abierto más grande donde 

𝑓 se anula, lo que se representa, como:  𝑆𝑢𝑝𝑝(𝑓) =  { 𝑥𝜖Ω  𝑓(𝑥) ≠ 0 } 
  Ω

.  

Ejemplo 1. Sea la función 

        𝑓(𝑥) =  {
𝑒𝑥𝑝 (

1

𝑥2 −  1
)    𝑠𝑖  |𝑥| < 1

0                    𝑠𝑖     |𝑥| ≥ 1
 

, donde 𝑆𝑢𝑝𝑝(𝑓) = [−1 , 1 ] 

Definición 2. (Funciones de Prueba) 

Las funciones test o funciones de prueba, son funciones de decrecimiento rápido, 

es decir, tienden a cero más rápidamente que el inverso de cualquier polinomio. 

Definición 3.  (Espacio de funciones de prueba) 

Sea Ω un conjunto abierto de ℝ𝑛 , 𝑛 ≥ 1, el espacio de las funciones de prueba se 

denota 𝒟(Ω) , y define por:   

    𝒟(Ω) = { 𝜑: Ω  ⟶  ℝ / 𝜑𝜖𝒞0
∞(Ω), (𝜑𝑛)𝑛𝜖ℕ  ⟶ 0  } 
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, donde 𝒞0
∞ con la noción de convergencia es un espacio vectorial. 

Este espacio se compone de funciones “que se comportan bien”, lo que permite 

en particular la definición generalizada y de cualquier orden de la derivada en el 

caso de las distribuciones. 

Definición 4.  (Espacio de funciones acotadas) 

a) Sea Ω un conjunto abierto de ℝ𝑛 , 𝑛 ≥ 1 . Se denota 𝒞0(Ω), el espacio de todas 

las funciones continuas 𝜑, definidas en Ω con valores en ℝ, y define como:    

𝒞0(Ω) = { 𝜑:Ω  ⟶  ℝ / 𝜑 𝑒𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎 𝑒𝑛 Ω } 

b) Sea Ω un conjunto abierto de ℝ2. Se denota con 𝒞0(Ω̅),  el espacio de todas 

las funciones continuas que son acotadas y uniformemente continuas en Ω, y 

define por: 

      𝒞0(Ω̅) = { 𝜑:Ω ⟶  ℝ /𝜑 𝑒𝑠 𝑎𝑐𝑜𝑡𝑎𝑑𝑎 𝑦 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒𝑛𝑡𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎 𝑒𝑛 Ω } 

   . donde Ω̅ es la clausura de Ω, esto es, Ω̅ =  Ω ∪ 𝜕Ω. 

c) El conjunto Ƥ(Ω̅) , denota el algebra de todos los polinomios en las 

coordenadas 𝑥1 y 𝑥2 (o variables independientes 𝑥1 , 𝑥2). 

Teorema 1 (Teorema de Stone-Weierstrass 

Toda función de 𝐶𝑜(Ω̅) puede ser aproximada por polinomios en Ƥ(Ω̅) 

Demostración Ver en (Young: 2, 006) 

Definición 5.  (Funcional Lineal) 

Se llama Funcional lineal, a una función numérica 𝑓, definida sobre un espacio 

vectorial. Un funcional no es más que una función definida sobre un espacio de 

funciones, tal como, 𝑇: 𝒟(Ω)  →   ℝ.  
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Sea Ω⊂ ℝ𝑛 un conjunto abierto y 𝑇: 𝒟(Ω)  →   ℝ ,un funcional lineal. Se dice que 

𝑇 es un funcional continuo sobre 𝒟(Ω), si y sólo si, ∀{𝜑𝑛} ⊂ 𝒟(Ω) y 𝜑𝜖𝒟(Ω), 

entonces:𝑇(𝜑𝑛)  → 𝑇(𝜑)  en ℝ  (convergencia puntual) 

Definición 6.  (Espacio Dual) 

Sea 𝐸 un espacio topológico, dotado de las operaciones de la adición y la 

multiplicación por números. El espacio dual de 𝐸, denotado 𝐸∗, está conformado 

por todas las funcionales lineales continuas, definidas sobre el espacio topológico 

lineal 𝐸, es decir:  

𝐸∗ =  { 𝑓𝜖𝐸 / 𝑓 𝑒𝑠 𝑓𝑢𝑛𝑐𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑒𝑎𝑙 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎 } 

Además, en el espacio dual 𝐸∗ se puede definir diferentes topologías. 

Definición 7.  (Espacio Dual a un espacio normado) 

Para funcionales lineales continuas, definidas sobre un espacio normado, se 

introduce el concepto de norma, definida por: 

‖ 𝒇 ‖ =  Sup
𝑥≠0

| 𝑓(𝑥) |

‖ 𝑥 ‖
 

Esta norma verifica todas las condiciones contenidas en la definición de espacio 

normado, es decir: 

1) ‖ 𝑓 ‖ ≥ 0 , para cualquier funcional lineal no nula 𝑓. 

2) ‖ 𝛼𝑓 ‖ = |𝛼|‖𝑓‖ 

3) ‖𝑓1 + 𝑓2‖ = Sup
𝑥≠0

| 𝑓1+ 𝑓2|

‖ 𝑥 ‖
≤ Sup

𝑥≠0

| 𝑓1|

‖ 𝑥 ‖
+ Sup

𝑥≠0

|  𝑓2|

‖ 𝑥 ‖
≤ ‖ 𝑓1 ‖ + ‖ 𝑓2 ‖ 

Teorema 2.  El espacio dual ( 𝐸∗ , ‖ . ‖ ) es completo. 

Demostración Ver en (Kolmogorov: 1,975) 
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2.1.2   Espacios de Banach   

Entre los espacios topológicos lineales constituyen una clase importante los 

espacios normados. La teoría de estos espacios fue desarrollada por Stefan Banach 

y otros autores.  Acá haremos una breve introducción de estos espacios. 

Definición 8.  (Espacio vectorial normado)  

Se dice que 𝑉, es un Espacio Normado, si existe una función ‖  .  ‖ ∶  𝑽 ⟶ ℝ, 

tal que para todo 𝑥 , 𝑦 𝜖 𝑉  se satisface lo siguiente: 

1) ‖ 𝑥 ‖ ≥ 0  𝑦  ‖ 𝑥 ‖ = 0, si y sol si 𝑥 = 0  (Positividad) 

2) ‖ 𝛼𝑥 ‖ =  |𝛼|‖ 𝑥 ‖ para cualquier 𝛼𝜖ℝ  (Cambio de escala) 

3) ‖ 𝑥 + 𝑦 ‖ ≤  ‖ 𝑥 ‖ + ‖ 𝑦 ‖  (Desigualdad triangular) 

Un espacio vectorial normado 𝑉,  se denota mediante el par ( 𝑉 , ‖ . ‖ ). La norma 

de un elemento 𝑥𝜖𝑉 se denota con el simbolo ‖ 𝑥 ‖. 

Definición 9.  (Distancia entre dos puntos)  

La distancia que separa 𝑥 y 𝑦,  se denota y define como: 𝑑( 𝑥 , 𝑦) =  ‖ 𝑥 − 𝑦 ‖. 

Es evidente que todo espacio normado es un espacio métrico, si para 

cualesquiera dos elementos 𝑥, 𝑦𝜖𝑉 se cumple que: 𝑑(𝑥 , 𝑦 ) = ‖ 𝑥 − 𝑦 ‖  

Ejemplos de espacios normados 

1. En el espacio 𝒞[ 𝑎 ,𝑏 ] de funciones continuas sobre el intervalo [ 𝑎 , 𝑏 ] si se 

define la norma mediante: ‖ 𝑓 ‖ =  Max
𝑎≤𝑡≤𝑏

| 𝑓(𝑡) |, en donde la distancia 

correspondiente a esta norma es, 𝑑(𝑓) = Max
𝑎≤𝑡≤𝑏

| 𝑓 (𝑡)|.  
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2. Sea Ȿ un espacio de sucesiones numéricas acotadas, 𝑥 = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛 , . . . ) 

Si se define, ‖ 𝑥 ‖ =  Sup
𝑛𝜖ℕ

| 𝑥𝑛 |, entonces las condiciones 1), 2) y 3) de la 

definición de norma se satisfacen. 

Definición 10.   Sea 𝑿 un espacio normado. Se dice que 𝑋 es, un espacio completo, 

si, toda sucesión de Cauchy en 𝑋 es convergente, es decir: 

       ∀(𝑥𝑛) ⊆ 𝑋 ∶   Lim
𝑛,𝑚 →∞

‖ 𝑥𝑛 − 𝑥𝑚 ‖ = 0  ⟹  ∃ Lim
𝑛 → ∞

𝑥𝑛 = 𝑥𝜖𝑋 

Definición 11. (Espacio de Banach) 

Se dice que, 𝑋 es un espacio de Banach, si  𝑋 es un espacio normado completo. 

Definición 12. (Operador Lineal) 

Sea 𝑋, 𝑌 dos espacios vectoriales sobre el campo ℝ. Un Operador Lineal  𝑇, es 

una función,  𝑇:𝑋 ⟶ 𝑌, tal que para 𝑥, 𝑧𝜖𝑋 y  𝛼 , 𝛽 escalares se cumple que:  

𝑇( 𝛼𝑥 +  𝛽𝑧 ) =  𝛼 𝑇(𝑥) +  𝛽 𝑇(𝑧). 

Definición 13.  Sean 𝑋, 𝑌 dos espacios vectoriales normados. Un Operador 

Lineal, 𝑇:𝑋 ⟶ 𝑌 es Acotado si existe una constante 𝑀 > 0  tal que: 

               ‖ 𝑇𝑥 ‖𝑌 ≤ 𝑀 ‖ 𝑥 ‖𝑋 , para todo 𝑥𝜖𝑋. 

Teorema 3.  Un operador lineal es acotado si, y solo si, él es continuo. 

Demostración Ver en (Kolmogorov: 1,975) 

Definición 14.  (Inmersión de espacios) 

Sea 𝑋, 𝑌 dos espacios normados. Se dice que 𝑋 está inmerso continuamente en 

𝑌, lo que se denota,  𝑋 ↪ 𝑌, 𝑠𝑖: 

1)  𝑋 es un subespacio vectorial de 𝑌 

2)  El operador identidad I definido sobre X es continuo. 
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Definición 15.  (Producto escalar o producto interno) 

Sea 𝑋 un espacio vectorial sobre un cuerpo 𝛫. El producto escalar o producto 

interno definido sobre 𝑋 es la aplicación 〈 .  , . 〉 ∶ 𝑋 × 𝑋 ⟶  𝛫 tal satisface los 

siguientes axiomas: 

1) 〈 𝑢 + 𝑣 , 𝑤 〉 =  〈 𝑢 , 𝑤 〉 + 〈 𝑣 , 𝑤 〉  , ∀ 𝑢 , 𝑣 , 𝑤 𝜖 𝑋 (Aditiva) 

2) 〈 𝛼𝑢 , 𝑣 〉 =  𝛼 〈 𝑢 , 𝑣 〉  , ∀ 𝑢, 𝑣 𝜖 𝑋 y todo 𝛼𝜖𝛫 (Homogénea) 

3) 〈 𝑢 , 𝑣 〉 =  〈 𝑣 , 𝑢 ̅̅ ̅̅ ̅̅  〉  , ∀𝑢 , 𝑣 𝜖 𝑋  (Hermítica) 

4) 〈 𝑢 , 𝑢 〉 ≥ 0 y 〈 𝑢 , 𝑢 〉 = 0 si y solo si 𝑢 = 0 (Positiva 

Definición 16. (Sucesión Convergente)  

Una sucesión {𝑓𝑛 }𝑛𝜖ℕ en un espacio normado 𝑉, se dice que Converge a un 

elemento  𝑓, si para cada  𝜀 > 0, existe una  𝑁𝜖ℕ tal que sí, 𝑛 > 𝑁 se cumple que: 

‖ 𝑓 − 𝑓𝑛 ‖ < 𝜀. 

Si 𝑓𝑛 converge a 𝑓, entonces escribimos: 𝑓 =  Lim
𝑛 → ∞

𝑓𝑛  o   𝑓𝑛   ⟶   𝑓. 

2.1.3 Espacios 𝑳𝒑(Ω) 

Definición 17.  (Exponentes Conjugados) 

Sean 𝑝 , 𝑞 𝜖[1,∞),  se dice que 𝑝 y 𝑞 son exponentes conjugados si,  
1

𝑝
+

1

𝑞
= 1.  

Definición 18.  (Espacio 𝑳𝒑(Ω))   

Sea Ω un abierto en ℝ𝑛 y 1 ≤ 𝑝 < ∞. El espacio de todas las clases de 

equivalencia de funciones medibles 𝑓 definidas en Ω con valores en  ℝ, se 

denota y define por 

Lp(Ω) = {  𝑓: Ω →  ℝ𝑛 / ∫
Ω
|  𝑓(𝑥) | 𝑝𝑑𝜇 < ∞ } 
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Definición 19.  (Norma en 𝑳𝒑(Ω))   

 Para todo elemento 𝑓𝜖 𝑳𝒑(Ω) . La norma en 𝐿𝑝(Ω) se denota y define por: 

             ‖ 𝒇 ‖𝑳𝒑(Ω) =  [∫
Ω
| 𝒇(𝒙)|𝒑 𝒅𝝁 ]

 
𝟏

𝒑
 

, siempre que 𝑝 < ∞. 

En el caso que 𝑝 = ∞, entonces 𝐿∞(Ω), denota el espacio de funciones medibles 

𝑓 que son esencialmente acotadas:  La norma en  𝐿∞(Ω), se denota y define como: 

              ‖ 𝑢 ‖𝐿∞(Ω) = 𝐼𝑛𝑓{ 𝐶 / | 𝑢(𝑥)| ≤ 𝐶 ,   𝑐. 𝑠 𝑒𝑛 Ω }   

, donde 𝑐. 𝑠 significa casi siempre en Ω. 

Proposición 1. 

1) Si 1 ≤ 𝑝 ≤ ∞, entonces 𝐿𝑝(Ω) es un espacio de Banach, cuya norma es:  

‖ 𝑢 ‖𝐿𝑝(Ω) =  [∫
Ω
| 𝑢(𝑥)|𝑝 𝑑𝑥 ]

 
1
𝑝
 

2) Si 𝑝 = 2, entonces 𝐿2(Ω) es un espacio de Hilbert con producto interno 

definido por: 

〈 𝑢 , 𝑣 〉 = ∫
Ω
𝑢(𝑥)𝑣(𝑥)𝑑𝑥 y la norma: ‖ 𝑢 ‖𝐿2(Ω) = [∫

Ω
| 𝑢(𝑥)|2𝑑𝑥]

 
1

2
 

 Demostración Ver en (Brezis:1,987) 

Proposición 2.  (Desigualdad integral de Hölder) 

Si 𝑢𝜖𝐿𝑝(Ω) y 𝑣𝜖𝐿𝑞(Ω) donde 𝑝 𝑦 𝑞 son exponentes conjugados, con 1 ≤ 𝑝 ≤ ∞  , 

𝑓𝑔𝜖 𝐿1(Ω), entonces se cumple que: 

                ∫
Ω
| 𝑢𝑣 | ≤ ‖ 𝑢 ‖𝐿𝑝(Ω)‖ 𝑣 ‖𝐿𝑞(Ω) 

Demostración Ver en (Gatica: 2,011) 
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Teorema 4. (Desigualdad de Minkowski)  

Si 1 ≤ 𝑝 < ∞, entonces  ‖ 𝑢 + 𝑣 ‖𝐿𝑝(Ω) ≤ ‖ 𝑢 ‖𝐿𝑝(Ω) + ‖ 𝑣 ‖𝐿𝑞(Ω) 

Teorema 5. 𝐿𝑝(Ω) es un espacio separable para 1 ≤ 𝑝 < ∞ 

Teorema 6.  (Teorema de la representación de Riesz) 

Si 𝜑𝜖(𝐿𝑝(Ω))
′
 , 𝑝 y 𝑞 son exponentes conjugados con, 1 ≤ 𝑝 < ∞,   entonces 

existe una única,  𝑢𝜖𝐿𝑞(Ω), tal que:  

         〈 𝑢 , 𝑣 〉 = ∫
Ω
𝑢(𝑥)𝑣(𝑥)𝑑𝑥 , ∀𝑣𝜖𝐿𝑝(Ω) 𝑦 ‖ 𝑢 ‖𝐿𝑞(Ω) = ‖ 𝜑‖

(𝐿𝑝(Ω))
′ . 

Demostración Ver en (Brezis: 1,987)  

2.1.4 Teoría de las Distribuciones   

En análisis funcional, una distribución o función generalizada se dice que es un 

objeto matemático que generaliza la noción de función y la de medida.  Además, 

la noción de distribución sirve para extender el concepto de derivada a todas las 

funciones localmente integrables y a entes aún más generales. 

Definición 20.  (Conjunto Continuamente Compacto) 

Si 𝐺 ⊂ ℝ𝑛 es un subconjunto no vacío, entonces se dice que 𝐺 es continuamente 

compacto en Ω, lo que se denota, 𝐺 ⋐ Ω, si 𝐺̅  ⊂ Ω y además  𝐺̅ es compacto. 

Definición 21.  (Sucesión Convergente) 

Sea Ω un conjunto abierto y acotado de ℝ𝑛. Una sucesión de funciones, { 𝜙𝑗}𝑗𝜖ℕ  

de 𝒞0
∞(Ω) se dice que, converge a la función 𝜙𝜖 𝒞0

∞(Ω) si satisface las siguientes 

condiciones: 

i)   Existe Κ⋐ Ω tal que: 𝑆𝑢𝑝𝑝( 𝜙𝑗 −  𝜙 ) ⊂ 𝛫 para cada 𝑗. 

ii)  Lim
𝑗 ⟶ ∞

𝐷𝛼𝜙𝑗(𝑥) = 𝐷
𝛼𝜙(𝑥) uniformemente en Κ para cada 𝛼𝜖ℕ𝑛. 
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Definición 22.  (Espacio de Distribuciones) 

El espacio de distribuciones sobre Ω, se denota, Ɗ′(Ω) o  𝒟∗(Ω) y define 

mediante:  

Ɗ′(Ω) = { 𝑇:  Ɗ(Ω)  ⟶  ℕ / 𝑇 𝑒𝑠 𝑙𝑖𝑛𝑒𝑎𝑙 𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎 } 

Así para 𝑆, 𝑇𝜖 Ɗ′(Ω) , 𝛼𝜖ℝ y 𝜙𝜖Ɗ(Ω) se cumple lo siguiente:  

i) ( 𝑆 + 𝑇 )(𝜙) = 𝑆(𝜙) + 𝑇(𝜙) 

ii) ( 𝛼 𝑇)(𝜙) =  𝛼 𝑇(𝜙) 

Definición 23.  (Convergencia en el sentido de las distribuciones) 

Se dice que, una sucesión { 𝑇𝑛 }𝑛𝜖ℕ converge en el sentido de las distribuciones a 

𝑇𝜖 Ɗ′(Ω), si 𝑇𝑛(𝜙)  ⟶ 𝑇(𝜙) en ℝ para toda  𝜙𝜖Ɗ(Ω).  

Una función 𝑢 definida en casi todas partes (c.t.p) en Ω, se dice que es localmente 

integrable en Ω y de denota con 𝑢𝜖𝐿𝑙𝑜𝑐
1 (Ω), si 𝑢𝜖𝐿1(𝒰) para cada abierto 𝒰⋐Ω. 

Ejemplo 1. Sea 𝑢𝜖𝐿𝑙𝑜𝑐
1 (Ω), entonces 𝑇𝑢 ∶  Ɗ(Ω)  ⟶ ℝ  es el funcional definido 

por:  

𝑇𝑢(Ω) ≔ ∫
Ω
𝑢(𝑥)𝜙(𝑥)𝑑𝑥 , para 𝜙𝜖Ɗ(Ω),                                                  (A) 

es una distribución. Demuestre que 𝑇𝑢 es lineal. 

Solución: 

 𝜙1 , 𝜙2𝜖 Ɗ(Ω) y 𝛽𝜖ℂ, entonces: 

         𝑇𝑢( 𝜙1 +  𝛽𝜙2) = ∫
Ω
𝑢(𝑥)( 𝜙1 +  𝛽𝜙2)(𝑥)𝑑𝑥 

                                   =  ∫
Ω
𝑢(𝑥) ( 𝜙1(𝑥) +  𝛽𝜙2(𝑥)) 𝑑𝑥 
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                                   =  ∫
Ω
𝑢(𝑥)𝜙1(𝑥)𝑑𝑥 +  𝛽 ∫

Ω
𝑢(𝑥)𝜙2(𝑥)𝑑𝑥  

           = 𝑇𝑢(𝜙1) +  𝛽𝑇𝑢(𝜙2) 

Por lo tanto 𝑇𝑢 es lineal. 

Observación: Debe tenerse presente que, no todas las distribuciones 𝑇𝜖 Ɗ′(Ω) 

tienen la forma dada en (A) (ejemplo 1, para algún  𝑢𝜖𝐿𝑙𝑜𝑐
1 (Ω). 

En efecto, sea 𝛿 ∶  Ɗ(Ω)  ⟶  ℝ definida por: 𝛿(𝜙) = 𝜙(0), para toda 𝜙𝜖Ɗ(Ω). 

Sean 𝜙1 ,   𝜙2𝜖 Ɗ(Ω) y 𝛽𝜖ℂ, entonces: 

 𝛿( 𝜙1 +  𝛽𝜙2) = ( 𝜙1 +  𝛽𝜙2)(0) = 𝛿(𝜙1) +  𝛽𝛿(𝜙2)  

Por lo tanto, es lineal. 

Por otro lado, si {𝜙𝑗}𝑗𝜖ℕ es una sucesión en Ɗ(Ω) tal que 𝜙𝑗  ⟶  𝜙 en el 

sentido Ɗ(Ω), entonces existe Κ⋐Ω tal que el 𝑆𝑢𝑝𝑝 ⊂ 𝛫 para cada 𝑗 y  

Lim
𝑗 ⟶ ∞

𝐷𝛼𝜙𝑗(𝑥) = 𝐷
𝛼𝜙(𝑥) uniformemente en Κ para cada multi-índice 𝛼. Por 

lo tanto:     | 𝛿(𝜙𝑗) −  𝜙(𝜙) | = | 𝜙𝑗(0) −  𝜙(0) |  ⟶ 0, cuando 𝑗 ⟶  ∞. 

Consecuentemente, 𝛿𝜖 Ɗ′(Ω). 

Pero se comprueba que, 𝛿(0) es una distribución que no satisface(A). En 

efecto supóngase que 𝛿(0) satisface (A), entonces existe una función 

𝑢𝜖𝐿𝑙𝑜𝑐
1 (Ω) de tal manera que: 

        𝜙(0) = ∫
Ω
𝑢(𝑥)𝜙(𝑥)𝑑𝑥, para todo 𝜙𝜖Ɗ(Ω).                                          (B) 

Considérese la función prueba 𝜙𝑎 , definida por: 
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𝜙𝑎(𝑥) = {𝑒
𝑎2

‖ 𝑥 ‖2− 𝑎2  , 𝑠𝑖 ‖𝑥‖ < 𝑎
  0       ,        𝑠𝑖  ‖𝑥‖ > 𝑎

 

Con 𝑎 > 0, notamos que: 

𝜙𝑎(0) = 𝑒
−1 > 0 

|𝜙𝑎(𝑥)| ≤ 𝑒
−1 

| ∫
ℝ𝑛
𝑢(𝑥)𝜙(𝑥) 𝑑𝑥 | ≤  ∫

ℝ𝑛
|𝑢(𝑥)||𝜙𝑎(𝑥)|𝑑𝑥 

    =  ∫
‖𝑥‖<𝑎

|𝑢(𝑥)||𝜙𝑎(𝑥)|𝑑𝑥 

                                            ≤   ∫
‖𝑥‖<𝑎

|𝑢(𝑥)| 𝑒−1𝑑𝑥 

                                            ≤   𝑒−1∫
‖𝑥‖<𝑎

|𝑢(𝑥)|𝑑𝑥 

𝑆𝑖 𝑢 es localmente integrable entonces  Lim
𝑎 ⟶0

∫
‖𝑥‖<𝑎

|𝑢(𝑥)|𝑑𝑥 = 0 , lo cual 

contradice (B).   

Definición 24.  (𝜶-ésima derivada distribucional) 

Sea Ω un conjunto abierto de ℝ𝑛 y 𝑇𝜖Ɗ′(Ω) una distribucion.  Si 𝛼,es un multi-

índice, entonces la 𝛼-ésima derivada de 𝑇, denotada 𝐷𝛼𝑇 se define por: 

𝐷𝛼𝑇(𝜙) = (−1)| 𝛼 |𝑇(𝐷𝛼𝜙) , para todo 𝜙𝜖Ɗ′(Ω) 

Ejemplos 

1. Si 0𝜖Ω y 𝛿𝜖Ɗ′(Ω) es la distribución de Dirac, entonces,  𝐷𝛼𝛿 esta dada por,  

          𝐷𝛼𝛿(𝜙) = (−1)| 𝛼 |𝐷𝛼𝛿(0)  

2. Si Ω = ℝ y  𝐻𝜖𝐿𝑙𝑜𝑐
1 (Ω) es la función de Heaviside definida por,  
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         𝐻(𝑥) = {
1  ,   𝑥 ≥ 0
0  , 𝑥 < 0

 

Hallar la derivada 𝐻′ en Ɗ′(ℝ). 

Solución: 

Sea 𝜙𝜖Ɗ(Ω) con soporte compacto en [−𝑎 , 𝑎 ], entonces: 

            ( 𝑇𝐻 )
′𝜙 =  (−1)| 𝛼 | 𝑇𝐻( 𝜙′ ) 

        = − 𝑇𝐻( 𝜙′ ) 

        = − ∫
ℝ
𝐻(𝑥)𝜙′(𝑥)𝑑𝑥 

        = − ∫ 𝐻(𝑥)𝜙′(𝑥)
𝑎

−𝑎
𝑑𝑥 

              = −∫ 𝐻(𝑥)𝜙′(𝑥)𝑑𝑥
0

−𝑎
− ∫ 𝐻(𝑥)𝜙′(𝑥)𝑑𝑥

𝑎

0
 

        = − ∫ 𝐻(𝑥)𝜙′(𝑥)𝑑𝑥
𝑎

0
 

        = −∫ 𝜙′(𝑥)𝑑𝑥
𝑎

0
 

        = −𝜙(𝑥)|0
𝑎 

        = −(𝜙(𝑎) −  𝜙(0)) 

                   =  𝜙(0) 

            =  𝛿(𝜙) 

Por lo tanto, (𝑇𝐻)′ es la distribución de Dirac por lo que (𝑇𝐻)′ es una distribución. 

Definición 25.  (𝜶-ésima derivada débil) 

Sea Ω un conjunto abierto de ℝ𝑛 , 𝑢𝜖𝐿𝑙𝑜𝑐
1 (Ω) y 𝛼 un multi-índice. Si existe una 

función 𝑣𝑎𝜖𝐿𝑙𝑜𝑐
1 (Ω) tal que:   

              𝑇𝑣𝑎(𝜙) = 𝐷
𝛼𝑇𝑢(𝜙) para todo 𝜙𝜖Ɗ(Ω), 

, entonces 𝑣𝑎 se llama  𝜶-ésima derivada débil de 𝑇𝑢 . 
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2.1.5 Espacio de Sóbolev 

Un espacio de Sóbolev, está conformado por funciones reales o complejas de 

varias variables, integrables en el sentido de Lebesgue y diferenciables en el 

sentido de las distribuciones, es decir, débilmente diferenciables. La estructura 

vectorial de los espacios de Sóbolev está íntimamente ligada al espacio de 

Lebesgue 𝐿𝑝 . ( Figueroa:1986). 

Definición 26.  (Espacio de Sóbolev de orden m) 

Sea Ω un conjunto abierto y acotado de ℝ𝑛  , 𝑛 ≥ 1,  1 ≤ 𝑝 ≤ ∞ y  𝑚 un número 

entero positivo. Un espacio de Sóbolev de orden 𝑚 sobre Ω, se denota 𝑊𝑚,𝑝(Ω), 

y define por: 

           Wm ,p (Ω) =  {  uϵLp(Ω) / DαuϵLp(Ω), ∀αϵℕ , con | α | ≤ m }  

, donde 𝐷𝛼 es la derivada en el sentido de las distribuciones de orden | 𝛼 | ≤ 𝑚. 

En el caso particular que: 

1)    𝑚 = 0 →  𝑊0 ,𝑝(Ω) = 𝐿𝑝(Ω) 

2) 𝑚 = 1  →  𝑊1 ,𝑝(Ω) = { 𝑢 𝜖 𝐿𝑝(Ω) /  
𝜕𝑢

𝜕𝑥𝑖
 𝜖 𝐿𝑝(Ω)  , ∀ 𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 } 

3) 𝑚 = 2  →  𝑊2 ,𝑝(Ω) = { 𝑢𝜖𝐿𝑝(Ω) /  
𝜕𝑢

𝜕𝑥𝑘
𝜖𝐿𝑝(Ω) ,

𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
𝜖𝐿𝑝(Ω) , ∀ 𝑖 , 𝑗 , 𝑘𝜖ℕ𝑛 } 

4) 𝑊𝑚,𝑝(Ω)  ↪ 𝐶𝑘(Ω̅)  , 0 ≤ 𝑚 − 
𝑛

𝑝
− 𝑘 < 1 

Observación: 

1) 𝑊𝑚,2(Ω) =  𝐻𝑚(Ω) 

Definición 27. (Norma en 𝐖𝐦 ,𝐩 (Ω)) 

Para 𝑢𝜖𝑊𝑚 ,𝑝 (Ω) , la Norma para 𝑢, denotado ‖𝑢‖𝑊𝑚 ,𝑝 (Ω)
𝑝

  es el funcional, 
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‖ 𝑢 ‖𝑚,𝑝 = ( ∑ ‖ 𝐷𝛼𝑢 ‖𝑝
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

 , 𝑑𝑜𝑛𝑑𝑒 1 ≤ 𝑝 < ∞ 

 

De esta manera 𝑊𝑚 ,𝑝 (Ω) es: un espacio normado, ‖ 𝑢 ‖𝑚,𝑝 ≥ 0,  además si 

‖ 𝑢 ‖𝑚,𝑝 = 0  entonces implica que:                     

                       ( ∑ ‖ 𝐷𝛼𝑢 ‖𝑝
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

= 0  

, y en consecuencia ‖ 𝐷𝛼𝑢 ‖𝑚
𝑝
= 0, para todo 0 ≤ |𝛼| ≤ 𝑚. En particular para 

𝛼 = 0 se tiene que: ‖ 𝐷𝛼𝑢 ‖𝑝
𝑝
=  ‖ 𝐷0𝑢 ‖𝑝

𝑝
= ‖ 𝑢 ‖𝑝

𝑝
= 0, lo cual implica que 

𝑢 = 0. 

La homogeneidad de este funcional se verifica, ya que la derivada y la norma 

satisfacen dicha propiedad: 

En efecto: 

‖ 𝛽𝑢 ‖𝑚,𝑝 =  ( ∑ ‖ 𝐷𝛼(𝛽𝑢) ‖𝑝
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

 

= ( ∑ ‖ 𝛽𝐷𝛼𝑢 ‖𝑝
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

 

= ( ∑ ‖ |𝛽|𝑝𝐷𝛼𝑢 ‖𝑝
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

 

= |𝛽| ( ∑ ‖ 𝐷𝛼𝑢 ‖𝑚
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

 

, y además, la desigualdad de Hölder, garantiza que el funcional satisface la 

desigualdad triangular:   
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              ‖ 𝑢 + 𝑣 ‖𝑚,𝑝 = ( ∑ ‖ 𝐷𝛼(𝑢 + 𝑣) ‖𝑝
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

 

= ( ∑ ‖ 𝐷𝛼𝑢 + 𝐷𝛼𝑣  ‖𝑝
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

 

≤  ( ∑ ‖ 𝐷𝛼𝑢 ‖𝑝
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

+ ( ∑ ‖ 𝐷𝛼𝑣 ‖𝑝
𝑝
 

0 ≤|𝛼|≤𝑚

)

1
𝑝

 

    ≤ ‖ 𝑢 ‖𝑚,𝑝 + ‖ 𝑣 ‖𝑚,𝑝  

Observación: 

a) La formulación variacional del problema de Dirichlet-Poisson: −∆𝑢 = 𝑓  en 

Ω ⊂ ℝ𝑛  , 𝑢 = 0 𝑒𝑛 𝛤 = 𝜕Ω ( 𝜕Ω frontera de Ω), se realiza en el espacio 

𝐿2(Ω). 

b) El problema de Dirichlet Poisson correspondiente a, ∆2 el operador 

biarmónico se realiza en el espacio  𝐻2(Ω). 

c) Desde el punto de vista del análisis numérico, interesa conocer 𝐻1(Ω) y 

𝐻2(Ω) para poder construir subespacios de dimensión finita incluidos en ellos 

d) Esencialmente las demostraciones para los espacios  𝐻1 y 𝐻2 sirven para los 

espacios 𝐻𝑚 . Por lo demás el delicado problema de la traza sobre el borde 

se ve sobre 𝐻1 y el de la derivada normal o convencional sobre 𝐻2. 

Teorema 7.   Wm ,p (Ω) es un espacio de Banach. 

Demostración Ver en (Medeiros: 1,999)  

Proposición 3.  Sea 𝛼 un multi-índice, {𝑢𝑛}𝑛𝜖ℕ ⊆ 𝐿
𝑝(Ω) y 𝑢, 𝑣𝛼𝜖𝐿

𝑝(Ω) tal que  

𝑢𝑛  ⟶ 𝑢  y   𝐷𝛼𝑢𝑛  ⟶ 𝑣𝛼en  𝐿𝑝(Ω), entonces 𝑣𝛼 =  𝐷𝛼𝑢. 
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Demostración Ver en (Medeiros: 1,999)  

Teorema 8.  Sea Ω un conjunto abierto y acotado de ℝ𝑛, 𝑚 ≥ 1 un número 

entero y 1 ≤ 𝑝 < ∞, entonces se tiene: 

1) Wm ,p (Ω) es un espacio reflexivo si 𝑝𝜖( 0 , 𝑝 ) 

2) Wm ,p (Ω) es un espacio separable si [ 1 ,∞ ) 

Demostración Ver en (Adams: 2,003)  

Definición 28.  Sea 𝑚 ≥ 1 un entero y 1 ≤ 𝑝 < ∞.  𝑊0
𝑚,𝑝(Ω) es la clausura del 

espacio Ɗ(Ω) en  Wm ,p (Ω), es decir: 

𝑊0
𝑚,𝑝(Ω) = Ɗ(Ω)

 ‖  .  ‖ 𝑚 ,𝑝
 

, y cuya norma es: 

∑ | 𝐷𝛼𝑢 |𝑝
𝑝 = ‖ 𝑊 ‖𝑚 ,𝑝

𝑝

|𝛼 |=𝑚

 

Teorema 9. (Desigualdad de Poincaré)  

Sea Ω un abierto acotado de ℝ𝑛 con frontera 𝜕Ω bien regular, entonces existe  

𝐶∗ > 0  tal que: 

‖ 𝑢 ‖𝑝 ≤ 𝐶∗  (∑| 
𝜕𝑢

𝜕𝑥𝑖
 |
𝑝

𝑑𝑥

∞

𝑖=1

)

1
𝑝

 , ∀𝑢𝜖𝑊0
1,𝑝(Ω)  ∶ 1 < 𝑝 < ∞ 

                                           = ‖  ∇𝑢 ‖𝑝 

            Si 𝑝 = 2, entonces 𝑊0
1 ,2 (Ω) =  𝐻0

1(Ω) por el teorema de Poincaré. 
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                        ‖ 𝑢 ‖2  ≤ ‖ ∇𝑢 ‖2  , ∀ 𝑢𝜖𝐻0
1(Ω) .  

                       Demostración Ver en (Brezis:1,987) 

           Definición 29. (Espacio 𝑯𝒎(Ω) ) 

Sea 𝑚𝜖ℕ. Se denota con 𝐻𝑚(Ω) al espacio vectorial de todas las funciones 𝑢𝜖𝐿2(Ω) 

tales que para todo |𝛼| ≤ 𝑚 , 𝐷𝛼𝑢 𝜖𝐿2(Ω), donde 𝐷𝛼𝑢 es la derivada en el sentido de 

las distribuciones. 

Definición 30.  (Espacio de Sóbolev 𝑯𝟏(Ω))  

Un espacio de Sóbolev de orden 1 sobre el abierto Ω, se denota y define por: 

𝐻1(Ω) = { 𝑣𝜖𝐿2(Ω) / 
𝜕𝑣

𝜕𝑥𝑖
𝜖𝐿2(Ω)  ,1 ≤ 𝑖 ≤ 𝑛 } 

En  𝐻1(Ω) el Producto escalar, denotado 〈 𝑢 , 𝑣 〉1 ,Ω se define como: 

〈 𝑢 , 𝑣 〉1 ,Ω = ∫
Ω
(∑

𝜕𝑢

𝜕𝑥𝑖

𝜕𝑣

𝜕𝑥𝑖
+ 𝑢𝑣

𝑛

𝑖=1

)𝑑𝑥 

Asimismo, en 𝐻1(Ω) la Norma, denotada ‖ 𝒗 ‖𝟏 ,Ω y definida como: 

 ‖ 𝒗 ‖𝟏 ,Ω = 〈 𝑣 , 𝑣 〉1 ,Ω
1/2

 

𝑻𝒆𝒐𝒓𝒆𝒎𝒂 𝟏𝟎.  𝐻1(Ω) es un espacio de Hilbert con respecto al producto escalar, 

dado por la definición 30. 

Demostración Ver en (Figueroa: 1,986 
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𝑻𝒆𝒐𝒓𝒆𝒎𝒂 𝟏𝟏.  𝐻1(Ω) es un espacio separable, esto es, existe un conjunto 

numerable denso en   𝑯𝟏(Ω). 

Demostración Ver en (Figueroa: 1,986) 

Definición 31.  Sea un entero  𝑚 ≥ 1 ,  [ 1 ,∞ ) y 𝑯𝟎
𝟏(Ω) ⊂ 𝐻1(Ω)( subespacio 

de funciones nulas). Se define,  𝐻0
1(Ω) como la clausura del espacio Ɗ(Ω) en  

H1(Ω), es decir:  𝐻0
1(Ω) = Ɗ(Ω)

  𝐻1(Ω)
   

Proposición 4.  (Formula de Green) Sea Ω ⊂ ℝ𝑛 un conjunto abierto acotado 

bien regular. Si 𝑢 , 𝑣 𝜖𝐻1(Ω), entonces para cada 1 ≤ 𝑖 ≤ 𝑛 se tiene que: 

       ∫
𝝏𝒖

𝝏𝒙𝒊
 
𝝏𝒗

𝝏𝒙𝒊
 𝒅𝒙 =  − ∫

𝝏𝟐𝒖

𝝏𝒙𝒊
𝟐  𝒗 𝒅𝒙 + ∫

𝝏𝒖

𝝏𝒙𝒊
𝒗 𝝂𝒊ГΩΩ

   

, donde 𝜈 =  (𝜈1 , 𝜈2 , .  . , 𝜈𝑛) denota el vector normal exterior de Г. Si 𝑢𝜖𝐻2(Ω) 

y 𝑣𝜖𝐻1(Ω),   entonces   ∫ ∇𝑢 . ∇𝑣 𝑑𝑥 =  ∫ (−∆𝑢)𝑣 𝑑𝑥 + ∫ 𝑣 
𝜕𝑢

𝜕𝜈
 𝑑Г

ГΩΩ
, donde  

𝜕𝑢

𝜕𝜈
 es la derivada distribucional en la dirección del vector 𝜈 

Demostración Ver en (Kesavan: 1,989). 

𝟐.𝟐     Marco Conceptual   

a) “Un conjunto abierto Ω⊂ ℝ𝑛 , 𝑛 ≥ 1 se dice “Bien Regular” si su frontera 

Г = 𝜕Ω es una variedad de clase 𝒞∞ de dimensión 𝑛 − 1, y Ω está 

localmente de un mismo lado de Ω”. 

b) “Cuando una propiedad es válida en un conjunto 𝐸 excepto en un 

subconjunto de 𝐸 con medida nula, se dice que la propiedad se cumple casi 

siempre (c.s)”. 
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                                                               CAPITULO III 

MARCO METODOLOGICO 

3.1    Hipótesis de la investigación 

 Hipótesis general 

  Existe una única solución polinómica aproximada del problema (1.1) - (1.3) 

  Hipótesis específicas 

a) Existe una solución polinómica aproximada del problema (1.1) – (1.3) 

b) Existe única solución polinómica aproximada del problema (1.1) – (1.3) 

3.2    Variables e Indicadores de la investigación  

3.2.1   Variables 

Variables dependientes  

a) La temperatura en un punto (𝑥, 𝑦), 𝑢(𝑥, 𝑦) 

b) Termino independiente de la ecuación (1.1), 𝑓(𝑥, 𝑦)𝜖𝐿2(Ω) 

Variables independientes  

a) Variable espacial: (𝑥 , 𝑦)𝜖Ω 

b) Espacios de funciones: 𝐿𝑝(Ω) , 𝐻𝑚(Ω) , Ƥ(Ω̅) (algebra de polinomios en 𝑥 , 𝑦. 

3.2.2 Indicadores de la investigación 

Variable Dimensiones Indicador 

 

𝑢(𝑥, 𝑦) 

Existencia Base en el espacio 𝐻0
1(Ω) 

Método de Faedo - Galerkin 

Unicidad Tomar dos soluciones que satisfacen (1.2) 

Método estándar de energía 
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3.3   Método de la investigación  

 El método de la investigación fue deductivo-demostrativo. Para demostrar primero la 

existencia de soluciones polinómicas aproximadas para ecuaciones diferenciales parciales 

no lineales en dos variables independientes, que consistió en proyectar el sistema original 

a espacios de dimensión finita, 𝑊0
1 ,4(Ω) ∩  𝒫(Ω̅) , se utilizó el método de Faedo-

Galerkin;  y se hizo el paso al límite de las soluciones aproximadas, mientras que para 

demostrar  la unicidad de la solución polinómica aproximada del mismo sistema se supuso 

dos soluciones y se aplicó el método estándar de la energía.     

3.4   Diseño de la investigación  

 La presente de investigación corresponde a una investigación básica y cuantitativa, 

mientras que su finalidad fue producir nuevos conocimientos, para ampliar y profundizar 

la ecuación (1.2).  

 El diseño utilizado fue descriptivo demostrativo pues a partir de llevar el problema a un 

espacio finito dimensional, estudiar el resultado de existencia y unicidad en el espacio 

proyectado, y luego mediante estimaciones previas, para la solución a un espacio 

adecuado. 

3.5   Población y muestra  

 Población 

La población fue el conjunto de las funciones 𝑢𝜖𝐿2(Ω), cuyas derivadas en el sentido de 

las distribuciones están generadas por funciones 𝑢𝛼𝜖𝐿
2(Ω), es decir, el espacio de 

Sóbolev orden m. 
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 Muestra 

 La muestra fue el conjunto de las funciones medibles, 𝑢: Ω  →   ℝ𝑛 , tales que satisfacen:  

         ∫ | 𝑢(𝑥) |𝑝𝑑𝑥 < ∞
Ω

 

 , es decir los espacios de 𝐿𝑝(Ω), 

 3.6   Actividades del proceso investigativo 

 Las actividades se iniciaron con la recopilación y análisis obtenida en textos y revistas 

especializadas de matemática. Para lograr los objetivos de la investigación se utilizó el 

método de Faedo.Galerkin, resultados propios del análisis funcional, el algebra de 

polinomios en dos variables. 

3.7   Técnicas e instrumentos de la investigación 

 Para recabar la información se utilizó la técnica de análisis documental que permitió la 

búsqueda, análisis, e interpretación de la información registrada por otros investigadores 

en revistas científicas impresas y electrónicas y que gracias a la confiabilidad brindo el 

marco conceptual necesario para nuestra investigación.  

3.8    Técnicas de procesamiento de análisis de los datos 

 Puesto que no se contó con datos estadísticos u otros que se puedan requerir mediante 

observaciones o mediciones de tipo experimental, no se realizó algún tipo de análisis ni.  

Procesamiento de datos. experimentales 
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CAPITULO IV 

RESULTADOS Y DISCUSION 

4.1   Solución polinómica aproximada  

 En la presente sección se va a demostrar la existencia y la unicidad de la solución 

polinómica aproximada para el problema (1.1) - (1.3), para lo cual se utiliza el método de 

Faedo-Galerkin,, porque es el método más apropiado para sistemas que están en presencia 

de términos no lineales como es él, se presenta en este trabajo. y para la unicidad se 

utilizará el método estándar de la energía.   

  

4.1.1 Existencia de solución polinómica aproximada  

 En esta subsección, demostramos la existencia de solución polinómica aproximada 

del problema ((1.1) -(1.3) mediante el método de Faedo Galerkin, sin pérdida de 

generalidad, mediante traslación se puede considerar 𝑢|𝜕Ω = 0.  

Para demostrar la existencia de soluciones polinómicas aproximadas, las 

funciones 𝑓 y 𝑔 = 𝑢|𝜕Ω, son tales que:  𝑓𝜖𝑊−1 ,   
4

3 (Ω)  y  𝑔𝜖𝑊 
3

4
 ,   4(Ω) , entonces 

existe una única función, 𝑢 𝜖 𝑊0
1 ,4(Ω) ∩ Ƥ(Ω̅)  tal que satisface el problema no 

lineal estacionario: 

− [ ∑
𝜕2𝑢

𝜕𝑥𝑖
2  +  

𝜕

𝜕𝑥𝑖
( 𝑢 | 

𝜕𝑢

𝜕𝑥𝑖
 |
2

 )

2

𝑖=1

 ] = 𝑓(𝑥1 , 𝑥2)    , 𝑢|𝜕Ω                    (4.1) 
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4.1.2 Prueba de resultado de existencia de solución polinómica aproximada 

Supongamos que  𝑣𝜖𝑊0
1 ,4 (Ω) ∩ Ƥ(Ω̅) tal que,  𝑣|𝜕Ω = 𝑔  y  ∇𝑔 = 0 , y además 

considerando, 𝑣 = 𝑢 −  𝑔   de tal manera que (4.1) se puede escribir en la forma: 

− ∑
𝜕2(𝑣 + 𝑔)

𝜕𝑥𝑖
2

2

𝑖=1

+
𝜕

𝜕𝑥𝑖
[(𝑣 + 𝑔) |

𝜕(𝑣 + 𝑔)

𝜕𝑥𝑖
|

2

] = 𝑓(𝑥1, 𝑥2)  , 𝑣𝜖𝑊
1 ,4 (Ω)  }   ( 4.2) 

Es decir, se debe resolver el problema de Dirichlet homogéneo de la forma: 

−∑ [ 
𝜕2𝑣

𝜕𝑥𝑖
2  +  

𝜕

𝜕𝑥𝑖
 ( 𝑣 |  

𝜕𝑣

𝜕𝑥𝑖
  |
2

) ]

2

𝑖=1

= 𝑓 (𝑥1, 𝑥2)    

𝑣|𝜕Ω = 0                                                 

}                                  (4.3) 

Para por último hacer la sustitución:  𝑢 = 𝑣 +  𝑔 

 En este sentido planteamos el problema aproximado sobre un espacio finito 

dimensional sobre el cual hallaremos su solución polinómica aproximada para 

luego extender vía la densidad de los espacios vectoriales. 

Sea, 𝑉𝑚 = [ 𝑤1 , 𝑤2 , .  .  .  , 𝑤𝑚  ] el espacio finito dimensional de 𝐻1(Ω) generado 

por los 𝑚 vectores de la base hilbertiana. 

Consideremos  { 𝑤1 , 𝑤2 , 𝑤3 , .  .  .  , 𝑤𝑚 } una base de 𝑊0
1 ,4(Ω) ∩ Ƥ(Ω̅) ⊂ 𝐶0(Ω̅)  

y  con inyección continua. Sin pérdida de generalidad, sea: 

𝑣𝑚 𝜖 { 𝑤1 , 𝑤2 , 𝑤3 , .  .  .  , 𝑤𝑚  } , de tal manera que: 

        ⟨−∑
𝜕2𝑣𝑚
𝜕𝑥𝑖

2 +
𝜕

𝜕𝑥𝑖
( 𝑣𝑚  |

𝜕𝑣𝑚
𝜕𝑥𝑖

|
2

) ,𝑤𝑗

2

𝑖=1

⟩ =  〈 𝑓 ,  𝑤𝑗 〉   ,   1 ≤ 𝑗 ≤ 𝑚 

    ∑ ⟨ 
𝜕2𝑣𝑚
𝜕𝑥𝑖

2  + (𝑣𝑚  | 
𝜕𝑣𝑚
𝜕𝑥𝑖

 |
2

) ,
𝜕𝑤𝑗
𝜕𝑥𝑖

  ⟩ =  〈 𝑓 ,  𝑤𝑗  〉

2

𝑖=1

 , 1 ≤ 𝑗 ≤ 𝑚 , 

 la cual es una derivada distribucional. 
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          Como  𝑣𝑚𝜖{ 𝑤1 , 𝑤2 , 𝑤3 , .  .  , 𝑤𝑚 }, entonces  𝑣𝑚, es la combinación lineal: 

     𝑣𝑚 =  ∑𝜆𝑗𝑤𝑗

𝑚

𝑗=1

, 𝑑𝑒 𝑑𝑜𝑛𝑑𝑒 𝑠𝑒 𝑡𝑖𝑒𝑛𝑒 𝑞𝑢𝑒: 

             ∑ ⟨ 
𝜕2𝑣𝑚
𝜕𝑥𝑖

2  +  (𝑣𝑚  | 
𝜕𝑣𝑚
𝜕𝑥𝑖

 |
2

) ,
𝜕𝑣𝑚
𝜕𝑥𝑖

 ⟩ =  〈 𝑓 , 𝑣𝑚 〉

2

𝑖=1

 

             ∑∫ | 
𝜕𝑣𝑚
𝜕𝑥𝑖

 |
4

𝑑𝑥 = ∫ 𝑓 𝑣𝑚𝑑𝑥 ≤  ‖𝑓‖𝑉′  ‖𝑣𝑚‖𝑉
ΩΩ

2

𝑖=1

  , 𝑑𝑒𝑠𝑖𝑔𝑢𝑎𝑙𝑑𝑎𝑑 𝑑𝑒 𝐻𝑜𝑙𝑑𝑒𝑟 

       En donde:  𝑉 = 𝑊0
1 ,4(Ω)  y   𝑉′ = 𝑊−1 ,4/3(Ω) 

       Ahora como: 

   ‖ 𝑣𝑚 ‖𝑉
4 ≤  𝛼 ∑∫ | 

𝜕𝑣𝑚
𝜕𝑥𝑖

 |
4

𝑑𝑥            𝐷𝑒𝑠𝑖𝑔𝑢𝑎𝑙𝑑𝑎𝑑 𝑑𝑒 𝑃𝑜𝑖𝑛𝑐𝑎𝑟𝑒 

Ω

2

𝑖=1

 

       , entonces:   ‖ 𝑣𝑚‖𝑉 ≤ 𝐶. 

       Por otro lado, como  la función  𝑣𝜖 𝑊0
1 ,4(Ω) ∩ Ƥ(Ω̅) , entonces se obtiene  

∑∫ | 
𝜕𝑣𝑚
𝜕𝑥𝑖

 |
2

 
𝜕𝑣𝑚
𝜕𝑥𝑖

 
𝜕𝑣

𝜕𝑥𝑖Ω

2

𝑖=1

 𝑑𝑥 ≤  ∑∫ | 
𝜕𝑣𝑚
𝜕𝑥𝑖

 |
3

| 
𝜕𝑣

𝜕𝑥𝑖
 | 𝑑𝑥

Ω

2

𝑖=1

 

≤ ∑[∫ |
𝜕𝑣𝑚
𝜕𝑥𝑖

|
4

𝑑𝑥 
Ω

]

 
3
4

 

2

𝑖=1

[∫ | 
𝜕𝑣

𝜕𝑥𝑖
 |
4 

𝑑𝑥  
Ω

]

1
4

         𝐷𝑒𝑠𝑖𝑔𝑢𝑎𝑙𝑑𝑎𝑑 𝑑𝑒 𝐻𝑜𝑙𝑑𝑒𝑟 

≤ ∑[∫ |
𝜕𝑣𝑚
𝜕𝑥𝑖

|
4

𝑑𝑥 
Ω

]

 
3
4
 2

𝑖=1

[∫ | 
𝜕𝑣

𝜕𝑥𝑖
 |
4 

𝑑𝑥  
Ω

]

1
4

=  ‖ 𝑣𝑚 ‖𝑉′
3  ‖ 𝑣 ‖ 

    , de donde resulta 

| ∑
𝜕2𝑣𝑚
𝜕𝑥𝑖

2  +  
𝜕

𝜕𝑥𝑖
(𝑣𝑚 | 

𝜕𝑣𝑚
𝜕𝑥𝑖

 |
2

 )

2

𝑖=1

 | ≤ ‖ 𝑣𝑚 ‖
3  ≤  𝐶3 , 𝑎𝑐𝑜𝑡𝑎𝑑𝑎 𝑐𝑜𝑛 𝐶 ∶ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 
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               Puesto que 𝑉 es un espacio reflexivo, entonces existe una sub-sucesión { 𝑣𝑟} de { 𝑣𝑚 }  

tal que: 𝑣𝑟   →   𝑢  débilmente en 𝑊0
1,4(Ω) 

−∑
𝜕2𝑣𝑟
𝜕𝑥𝑖

2 + 
𝜕

𝜕𝑥𝑖
(𝑣𝑟 | 

𝜕𝑣𝑟
𝜕𝑥𝑖

 |
2

)   →   𝛾

2

𝑖=1

   , 𝑑é𝑏𝑖𝑙 𝑒𝑛 𝑊−1 ,4/3(Ω)   

             Pasando al límite cuando 𝑟 →  ∞ el problema aproximado se reduce a  

     ⟨− ∑
𝜕2𝑣𝑟
𝜕𝑥𝑖

2 + 
𝜕

𝜕𝑥𝑖
 (𝑣𝑟  |  

𝜕𝑣𝑟
𝜕𝑥𝑖

 |
2 

) ,𝑤𝑗

2

𝑖=1

 ⟩ =  〈 𝑓 , 𝑤𝑗  〉 

       〈  𝛾 , 𝑤𝑗 〉 =  〈 𝑓 , 𝑤𝑗 〉   , ∀𝑗 , 1 ≤ 𝑗 ≤ 𝑚 

     , de donde implica que: 𝛾 = 𝑓                                                                       ( 4.4 ) 

    Además, se tiene que: 

 ⟨− ∑
𝜕2𝑣𝑟
𝜕𝑥𝑖

2 + 
𝜕

𝜕𝑥𝑖
(𝑣𝑟 |  

𝜕𝑣𝑟
𝜕𝑥𝑖

 |
2 

) , 𝑣𝑟  

2

𝑖=1

⟩ =  〈 𝑓 , 𝑣𝑟  〉 

   Y pasando nuevamente al límite cuando 𝑟 → ∞  se obtiene 

 ⟨− ∑
𝜕2𝑣𝑟
𝜕𝑥𝑖

2 + 
𝜕

𝜕𝑥𝑖
(𝑣𝑟 |  

𝜕𝑣𝑟
𝜕𝑥𝑖

 |
2 

) , 𝑣𝑟  

2

𝑖=1

⟩   →  〈 𝑓 , 𝑢 〉 =  〈𝛾 , 𝑢 〉 

Por otro lado  

〈 𝐴𝑣𝑟 − 𝐴𝑣 , 𝑣𝑟 −  𝑣 〉 ≥ 0  , ∀𝑣𝜖𝑉 

⟨− ∑
𝜕2𝑣𝑟
𝜕𝑥𝑖

2 + 
𝜕

𝜕𝑥𝑖
(𝑣𝑟 |  

𝜕𝑣𝑟
𝜕𝑥𝑖

 |
2 

) +∑
𝜕2𝑣

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑥𝑖
(𝑣 | 

𝜕𝑣

𝜕𝑥𝑖
 |
2

)

2

𝑖=1

 , 𝑣𝑟 −  𝑣

2

𝑖=1

⟩ ≥ 0 

 Luego pasando al límite cuando, 𝑟 →  ∞ se obtiene  
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⟨ 𝛾 + ∑
𝜕2𝑣

𝜕𝑥𝑖
2 + 

𝜕

𝜕𝑥𝑖
(𝑣 |  

𝜕𝑣

𝜕𝑥𝑖
 |
2 

) , 𝑢 −  𝑣 

2

𝑖=1

⟩  ≥ 0 .  ∀𝑣𝜖𝑉                              ( 4.5 ) 

Haciendo: 𝑣 = 𝑢 −  𝜆𝑤 , 𝜆 > 0 , 𝑤𝜖𝑉 y sustituyéndolo en (4.5) se obtiene: 

𝜆 ⟨ 𝛾 + ∑
𝜕2(𝑢 −  𝜆𝑤)

𝜕𝑥𝑖
2 + 

𝜕

𝜕𝑥𝑖
((𝑢 − 𝜆𝑤) |  

𝜕(𝑢 −  𝜆𝑤)

𝜕𝑥𝑖
 |

2 

) ,𝑤 

2

𝑖=1

⟩ ≥ 0  

⇒ ⟨ 𝛾 + ∑
𝜕2(𝑢 −  𝜆𝑤)

𝜕𝑥𝑖
2 + 

𝜕

𝜕𝑥𝑖
((𝑢 − 𝜆𝑤) |  

𝜕(𝑢 −  𝜆𝑤)

𝜕𝑥𝑖
 |

2 

) ,𝑤 

2

𝑖=1

⟩ ≥ 0  

Pasando al límite cuando 𝜆 → 0 , se obtiene: 

 ⟨ 𝛾 + ∑
𝜕2𝑢

𝜕𝑥𝑖
2 + 

𝜕

𝜕𝑥𝑖
(𝑢 |  

𝜕𝑢

𝜕𝑥𝑖
 |
2 

) , 𝑤 

2

𝑖=1

⟩ ≥ 0  , ∀𝑤𝜖𝑉  

𝛾 = −∑
𝜕2𝑢

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑥𝑖
(𝑢 | 

𝜕𝑢

𝜕𝑥𝑖
 |
2

)

2

𝑖=1

                                                                       ( 4.6) 

Por lo tanto, de (4.4) y (4.6) se concluye que:  

−∑
𝜕2𝑢

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑥𝑖
(𝑢 | 

𝜕𝑢

𝜕𝑥𝑖
 |
2

)

2

𝑖=1

= 𝑓(𝑥1 , 𝑥2)                                               (4.7) 

Así de esta manera se ha demostrado que existe solución polinómica aproximada del 

problema no lineal estacionario: 

       −∆𝑢 −
𝜕

𝜕𝑥1
(𝑢 | 

𝜕𝑢

𝜕𝑥1
 |
2

) − 
𝜕

𝜕𝑥2
(𝑢 | 

𝜕𝑢

𝜕𝑥2
 |
2

) = 𝑓(𝑥1, 𝑥2)               
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4.1.3 Unicidad de la solución polinómica aproximada 

De manera similar a como se hace con una ecuación diferencial ordinaria, se 

puede definir un operador asociado a las ecuaciones diferenciales parciales, y se 

puede distinguir los operadores lineales de los no lineales. Así, por ejemplo, con 

la ecuación, 
𝜕𝑢

𝜕𝑡
−

𝜕2𝑢

𝜕𝑥2
= cos 𝑥, se asocia el operador lineal: 𝐴𝑢 =

𝜕𝑢

𝜕𝑡
−

𝜕2𝑢

𝜕𝑥2
  y con 

la ecuación de Burger, 𝑈𝑡 + 𝑢 𝑢𝑥 = 0, se asocia el operador no lineal,  

𝐴𝑢 =  𝑢𝑡 + 𝑢 𝑢𝑥 

En esta subsección planteamos las hipótesis y algunos resultados necesarios para 

el desarrollo del problema en estudio.  

En la prueba de la unicidad de la solución polinómica aproximada se utilizó el 

método estándar de la energía. 

Teorema 1.  Sea 𝑉 un espacio de Banach reflexivo, separable y en donde el 

operador 𝐴, está definido como;   

                         𝐴 ∶  𝑉 →   𝑉 ′  tal que se satisface: 

            i)     𝐴 es acotado y 𝜆𝜖ℝ , entonces 〈 𝐴 (𝑢 +  𝜆𝑣) , 𝑤 〉𝜖ℝ es continua, esto es: 

     Lim
𝜆 → 𝜆0

〈 𝐴 (𝑢 +  𝜆𝑣 ) , 𝑤 〉 =  〈 𝐴 ( 𝑢 + 𝜆0𝑣 ) , 𝑤〉  

                     ii)    𝐴 es monótono, es decir:  〈 𝐴 ( 𝑢 +  𝜆𝑣 ) , 𝑤 〉 ≥ 0 , ∀ 𝑢 , 𝑣 𝜖 𝑉 

iii)  
〈 𝐴𝑢  ,   𝑢 〉

‖ 𝑢 ‖
 →  ∞ ; donde ‖ 𝑢 ‖  → 0 por coercitividad del operador 𝐴 

         Por lo tanto, 𝐴 ∶  𝑉 →  𝑉 ′  es sobreyectivo, es decir, ∀ 𝑓𝜖 𝑉′ , ∃ 𝑢𝜖𝑉 , tal que        

𝐴𝑢 = 𝑓                
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 Consideremos de nuevo el problema no lineal estacionario (4.1) 

− [ ∑
𝜕2𝑢

𝜕𝑥𝑖
2  +  

𝜕

𝜕𝑥𝑖
( 𝑢 | 

𝜕𝑢

𝜕𝑥𝑖
 |
2

 )

2

𝑖=1

 ] = 𝑓(𝑥1 , 𝑥2)    , 𝑢|𝜕Ω 

                     , donde Ω es una región plana convexa, y el primer miembro es un operador 

diferencial, que lo denotaremos con 𝐴, de manera que esta ecuación toma la 

forma:  

      𝐴𝑢 = 𝑓                                                                                          (4.8) 

Para ello supongamos que 𝑢 𝑦 𝑣 son dos soluciones polinómicas aproximadas no 

nulas y diferentes del problema no lineal estacionario (1.1) – (1.3), entonces se 

cumplen que:  

                {
  𝐴𝑢 =  𝑓    ;    𝑢|𝜕Ω =  𝑔

  𝐴𝑣 =  𝑓  ∶    𝑣|𝜕Ω = 𝑔
   →   {

 𝐴𝑢 −  𝐴𝑣   =   𝑓 − 𝑓 = 0

𝑢|𝜕Ω − 𝑣|𝜕Ω =  𝑔 − 𝑔 = 0
 

                                                            →    𝐴𝑢 −   𝐴𝑣 = 𝑢 −   𝑣 

                      O bien:     〈 𝐴𝑢 −  𝐴𝑣  , 𝑢 −   𝑣 〉                                                   ( 4.9 )  

                      , en donde: 

𝐴𝑢 = −∑ [
𝜕2𝑢

𝜕𝑥𝑖
2 + 

𝜕

𝜕𝑥𝑖
( 𝑢 | 

𝜕𝑢

𝜕𝑥𝑖
 |
2

 )]                                           ( 4.10 )

2

𝑖=1

 

            Sustituyendo (4.10) en (4.9), se obtiene:  

〈 𝐴𝑢 − 𝐴𝑣 , 𝑢 −  𝑣 〉 =  〈−∑ 
𝜕2𝑢

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑥𝑖
(𝑢 | 

𝜕𝑢

𝜕𝑥𝑖
 |
2

)

2

𝑖=1

+∑
𝜕2𝑣

𝜕𝑥𝑖
2 +

𝜕

𝜕𝑥𝑖
(𝑣 | 

𝜕𝑣

𝜕𝑥𝑖  
|
2

) , 𝑢 − 𝑣 

2

𝑖=1

〉 

                                      =  〈 ∑−
𝜕2𝑢

𝜕𝑥𝑖
2 +

𝜕2𝑣

𝜕𝑥𝑖
2 + 

𝜕

𝜕𝑥𝑖
[− (𝑢 |

𝜕𝑢

𝜕𝑥𝑖
|
2

+ 𝑣 |
𝜕𝑣

𝜕𝑥𝑖
|
2

)]

2

𝑖=1

 , 𝑢 − 𝑣 〉 
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                                     =   ∑〈  
𝜕2𝑣

𝜕𝑥𝑖
2 − 

𝜕2𝑢

𝜕𝑥𝑖
2 + 

𝜕

𝜕𝑥𝑖
[𝑢 |

𝜕𝑢

𝜕𝑥𝑖
|
2

− 𝑣 |
𝜕𝑣

𝜕𝑥𝑖
|
2

] ,
𝜕

𝜕𝑥𝑖
(𝑢 − 𝑣) 〉

2

𝑖=1

 

Como 𝑢𝜖𝑊1 ,4(Ω)  →  𝑉 = 𝑊1 ,4 (Ω) 

Por otro lado, 

 〈 𝐴𝑣 − 𝐴𝑢 , 𝑣 − 𝑢 〉 =  〈 𝐴𝑢 − 𝑓 , 𝑣 − 𝑢 〉 + 〈 𝐴𝑣 − 𝐴𝑢 , 𝑣 − 𝑢 〉              

=   〈 𝐴𝑣 − 𝐴𝑢 , 𝑣 − 𝑢 〉 ≥ 0 , por ser un operador monótono 

Por tanto, se tiene que:  〈 𝐴𝑢 − 𝑓 , 𝑣 − 𝑢 〉 ≥ 0 , ∀𝑣𝜖𝑉. 

Ahora, construyamos un subespacio cerrado 𝐸 en el espacio 𝑉: 

∀𝑣𝜖𝑉 , sea la sucesión: 𝑆𝑣 =  { 𝑢𝜖𝑉 ∶   〈 𝐴𝑣 − 𝑓 , 𝑣 − 𝑢 〉 ≥ 0  , 𝐴𝑢 = 𝑓 } 

 𝐸 = ∩
𝑣 𝜖 𝑉

𝑆𝑣       

𝐸 es cerrado y convexo, además   𝐸 = { 𝑢𝜖𝑉 /  𝐴𝑢 =  𝑓 } , es conjunto de soluciones de 

la ecuación (4.8). 

Suponga que la norma en 𝑉 es la función,  ‖  . ‖ ∶ 𝑉  →  ℝ ,  convexa en forma estricta  

sobre la esfera unitaria de 𝑉 y que:  

  ‖ 𝐴𝑢 ‖ = ‖ 𝐴𝑣 ‖   →   ‖ 𝑢 ‖ =  ‖ 𝑣 ‖  y como 𝑢 satisface la ecuación (4.8), entonces: 

𝐸 ⊂ { 𝑢𝜖 𝑉 /  ‖𝑢‖ = 𝑆 , 𝐴𝑢 = 𝑓 } , para una conveniente 𝑆. 

Por tanto, el subespacio 𝐸 se reduce a un conjunto unitario, es decir 𝑢 = 𝑣,  lo que significa 

que la solución polinómica aproximada del problema (1.1) -(1.3), es Única.                     
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4.2  DISCUSION DE LOS RESULTADOS 

 Con respecto a la hipótesis general de investigación” existe una única solución 

polinómica aproximada para la ecuación diferencial parcial no lineal en dos variables 

independientes en el espacio de Sóbolev”, representada por el modelo no lineal 

estacionario,  

− ∆𝑢 −
𝜕

𝜕𝑥1
(𝑢 |

𝜕𝑢

𝜕𝑥1
|
2

) − 
𝜕

𝜕𝑥2
(𝑢 |

𝜕𝑢

𝜕𝑥2
|
2

) = 𝑓(𝑥1, 𝑥2)   𝑒𝑛 Ω ⊂ ℝ2    

 Los resultados obtenidos y que se muestran en las secciones 4.1.2 y 4.1.3 confirman que 

existe una única solución polinómica aproximada para el problema (1.1) – (1.3).  Por lo 

que se puede garantizar que la citada hipótesis ha sido respaldada. 

 Por otra parte, estos resultados no hacen más que ratificar que las aproximaciones hechas 

en la sección 4.1.2, permitieron acotar las soluciones aproximadas y con el paso al límite 

determinar la convergencia, probando así la existencia de soluciones polinómicas 

aproximadas en el problema (1.1) – (1.3). 

  En lo que respecta a las hipótesis específicas, las condiciones 𝑓𝜖𝑊−1,4/3(Ω) y  

𝑔𝜖𝑊3/4 ,4 (Ω) son las necesarias para establecer la existencia de la solución polinómica 

aproximada en el problema (1.1) – (1.3). 

 Para la unicidad de la solución polinómica aproximada se consideró dos soluciones 

aproximadas diferentes para el problema (1.1) - (1.3) y mediante el método estándar de 

la energía son las necesarias para establecer que ambas soluciones son iguales, 

demostrando así la unicidad de las soluciones polinómicas aproximadas del problema 

planteado.   
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                          CAPITULO V 

 

  CONCLUSIONES Y RECOMENDACIONES 

5.1    Conclusiones 

   Al culminar la investigación, se arribó a las siguientes conclusiones: 

a) Mediante aplicación del método de Faedo-Galerkin, se demostró de manera 

exhaustiva y detallada la existencia de solución polinómica aproximada del 

problema (1.1) – (1.3) 

b) Suponiendo 𝑢 y 𝑣 dos soluciones polinómicas aproximadas diferentes y 

utilizando el método estándar de la energía, se demostró que 𝑢 = 𝑣, la unicidad 

de solución polinómica aproximada del problema (1.1) – (1.3) 

5.2    Recomendaciones 

a) Estudiar la existencia de soluciones polinómicas aproximadas del problema 

(1.1) – (1.3) en dominios no acotados de ℝ𝑛 y trabajando en espacios de 

Sóbolev de exponente variable. 

b) Se recomienda complementar esta investigación estudiando el 

comportamiento asintótico de las soluciones aproximadas del problema (1.1) 

– (1.3). 

c)  Dentro de un trabajo ambicioso como lo es este, siempre se desea que haya 

una mejora continua del mismo, por lo tanto, se recomiendas a futuros 

investigadores que tengan interés en la línea de investigación respecto de la 

existencia de solución regular o débil para ecuaciones diferenciales parciales 

no lineales. 
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ANEXO A 

 
A1.   Espacios vectoriales  

 

  Definición A.1.1   Un espacio vectorial sobre el cuerpo ℝ, es el conjunto 𝑉,  dotado de 

dos leyes de composición: una interna +: 𝑉 × 𝑉 ⟶ 𝑉 y otra externa . ∶  ℝ × 𝑉⟶ V, tales 

que para todo 𝑥 , 𝑦 , 𝑧 𝜖𝑉 y todo 𝜆1, 𝜆2𝜖ℝ se satisface los siguientes axiomas:  

  (1)    𝑥 + 𝑦 = 𝑦 + 𝑥  , 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 

(2)   ∃! 0𝜖𝐸 ∶   𝑥 + 0 = 𝑥  

(3)   ∃! − 𝑥𝜖𝐸 ∶   𝑥 + (−𝑥) = 0 

(4)   ∃1𝜖ℝ ∶ 1𝑥 = 𝑥  y  𝜆1, 𝜆2𝜖ℝ :  𝜆1(𝜆2𝑥) =  (𝜆1, 𝜆2)𝑥 

(5)   𝜆1(𝑥 + 𝑦) =  𝜆1𝑥 + 𝜆1𝑦    y   (𝜆1 + 𝜆2)𝑥 =  𝜆1𝑥 + 𝜆2𝑥 

Los elementos de 𝐸 sin precisar su naturaleza podrán ser: vectores geométricos, números 

reales o complejos, matrices, polinomios, funciones, etc. 

          Definición A.1.2 Sea Ω un conjunto abierto de ℝ. Se designa con 𝓒𝟎(Ω) al espacio de 

todas las funciones continúas definidas en Ω con valores en ℝ. 

        𝓒𝟎(Ω) =  { 𝜑: Ω ⟶  ℝ / 𝜑  𝑒𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎 𝑒𝑛 Ω 𝑦 𝑣𝑎𝑙𝑜𝑟 𝑟𝑒𝑎𝑙 } 

 

 Son subespacios de 𝒞0(Ω) los siguientes: 

 𝓒𝒎(Ω) = { 𝜑𝜖 𝒞0(Ω) ;  𝐷𝛼𝜑𝜖𝒞0(Ω) , ∀ |𝛼| ≤ 𝑚  } 

 𝓒∞(Ω) = ⋂ 𝓒𝒎(Ω)∞
𝒎=𝟎  

 𝓒𝟎(Ω) = {  𝜑𝜖 𝒞
0(Ω) ; 𝑠𝑜𝑝𝑜𝑟𝑡𝑒 𝑑𝑒 𝜑 𝑒𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜 𝑒𝑛 Ω }  

 𝓒𝟎
𝒎(Ω) = 𝓒𝒎(Ω) ∩ 𝓒𝟎(Ω) 

 Sobre 𝓒∞(Ω) , la norma de convergencia uniforme, se define como: 

 ‖𝜑‖∞ ≔ Sup
𝑥𝜖∩

| 𝜑(𝑥) | 

 Definición A.1.3 Sea Ω un conjunto abierto de ℝ𝑛. Se designa con 𝓒𝒎(Ω̅) al espacio 

vectorial de todas las funciones continuas que son acotadas y uniformemente continuas 

en Ω. 

        𝓒𝒎(Ω̅) =  { 𝜑: Ω ⟶  ℝ / 𝜑 𝑒𝑠 𝑎𝑐𝑜𝑡𝑎𝑑𝑎 𝑦 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑒𝑛𝑡𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎 𝑒𝑛 ∩ } 
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 Definición A.1.4 Un espacio vectorial normado es aquel espacio al que se ha dotado una 

función, ‖ . ‖: 𝐸 ⟶  ℝ, llamada Norma, tal que satisface lo siguiente: 

i) ‖ 𝑥 ‖ ≥ 0  , 𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝑥 ≠ 0 𝑦 ‖ 0 ‖ = 0 

ii) ‖ 𝜆𝑥 ‖ =  |𝜆|‖ 𝑥 ‖ 

iii) ‖ 𝑥 + 𝑦 ‖ ≤  ‖ 𝑥 ‖ + ‖ 𝑦 ‖ 

Proposición A.1.1 Una norma sobre un espacio 𝐸 induce una métrica dada por: 

𝑑( 𝑥, 𝑦 ) = ‖ 𝑥 − 𝑦 ‖, la cual induce una topología sobre 𝐸. Las topologías inducidas por 

una métrica se denominan topologías metrizables. 

Definición A.1.5 (Dual de un espacio de Banach) Sea 𝐸 un espacio de Banach, El 

espacio dual de 𝐸, denotado 𝐸∗está formado por todas las aplicaciones 𝑓: 𝐸 ⟶  ℝ 

(funcionales) lineales continuas.   

La norma estándar de 𝐸∗ es: 

  ‖ 𝑓 ‖𝐸∗ = Sup
‖𝑥 ‖≤1 ,𝑥𝜖𝐸

| 𝑓(𝑥)| = Max
‖ 𝑥 ‖≤1 ,𝑥𝜖𝐸

| 𝑓(𝑥)| = Max
‖ 𝑥 ‖=1 ,𝑥𝜖𝐸

| 𝑓(𝑥)| =  Max
𝑥𝜖 𝐸

|  𝑓(𝑥)| 

‖ 𝑥 ‖
  

Proposición A.1.2 Una función lineal, 𝑓: 𝐸 ⟶ 𝐹 entre espacios de Banach, es continua 

si y solo si es acotada, esto es: 

           ‖ f ‖F = C ‖x‖E 

Proposición A.1.3 Un subespacio 𝐹 ⊂ 𝐸 de un espacio de Banach cerrado en 𝐸es un 

espacio de Banach. 

  A2.  Subespacio vectorial  

Un subconjunto no vacío, 𝐹 de un espacio vectorial 𝐸, se llama sub-espacio, cuando se 

deduce que, 𝛼𝑥 +  𝛽𝑦 𝜖𝐹 cualquiera que sean 𝛼 y 𝛽. 

Por ejemplo, los polinomios forman un subespacio (de dimensión infinita al igual que 

todo el 𝒞[ 𝑎,𝑏 ]). Al mismo tiempo todo el espacio 𝒞[ 𝑎,𝑏 ] puede ser considerado como un 

subespacio de un espacio más amplio de todas las funciones, tanto continuas como 

discontinuas sobre el intervalo [ 𝑎, 𝑏 ]. 

 



  
  

41 
 

ANEXO B 

 

B1. Espacios con Producto Escalar 

Definición B.1.1 (Espacio de Medida) 

Sea Ω un conjunto abierto. Un espacio de medida, es una terna ( Ω, ∑, 𝜇 ) donde 

(1) ℳ es una 𝜎 −algebra, una familia de subconjuntos de Ω tales que: 

i) ∅𝜖ℳ 

ii) Si 𝐴𝜖ℳ, entonces 𝐴𝑐𝜖ℳ 

iii) ⋃ 𝐴𝑛𝜖ℳ
∞
𝑛=1  , ∀𝐴𝑛𝜖ℳ  

(2)  𝜇 es una medida, esto es, una función, 𝜇: ℳ ⟶ [0 ,∞ ) talque verifica: 

i) 𝜇(∅) = 0 

ii) ∀{𝐴𝑛}𝑛𝜖ℕ ⊂ℳ de conjuntos disjuntos 

𝜇 (⋃𝐴𝑛

8

𝑛=1

) = ∑𝜇(𝐴𝑛)

∞

𝑛=1

 

Llamamos a los elementos de ℳconjuntos medibles y a los elementos 𝐴𝜖ℳ tales que: 

𝜇(𝐴) = 0 conjuntos de medida nula. 

Definición B.1.2 Sean  Ω ⊂ ℝ𝑛 y 𝜇 una medida de Lebesgue. El espacio denotado,  

𝐻1(Ω) es el espacio de todas las funciones integrables Lebesgue de Ω en ℝ .   

Por comodidad se utiliza la notación ∫
Ω
𝑓 en lugar de ∫

Ω
𝑓 𝑑𝜇, o ∫ 𝑓 cuando no haya 

confusión. En adelante, diremos que 𝑓 es medible para referirnos que 𝑓 es medible 

Lebesgue. 
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Definición B.1.3 (Espacio de Lebesgue) 

Sea Ω ⊂ ℝ𝑛, definimos el espacio 𝐿𝑝(Ω) de funciones medibles de Ω en ℝ para, 

1 < 𝑝 < ∞, como: 

  𝐿𝑝(Ω) = {  𝑓: Ω ⟶  ℝ / | 𝑓 |𝑝𝜖𝐻1(Ω) } 

Dotamos a 𝐿𝑝(Ω) de la norma:  

 ‖ 𝑓 ‖𝐿𝑝(Ω) = ‖ 𝑓 ‖𝐿𝑝 = ‖ 𝑓 ‖𝑝 = (∫
Ω
| 𝑓 |𝑝)

1/𝑝

 

Definición B.1.4 (Espacio de Lebesgue) 

Si Ω ⊂ ℝ𝑛, entonces definimos el espacio 𝐿∞(Ω) de funciones medibles de Ω en ℝ𝑛 

para, 1 ≤ 𝑝 ≤ ∞, como: 

  𝐿∞(Ω) = {  𝑓: Ω ⟶  ℝ / | 𝑓(𝑥)| ≤ 𝐶   𝑝. 𝑐. 𝑡. 𝑝  } 

, en donde c.t.p se refiere a casi todo punto. 

Dotamos a 𝐿∞(Ω) de la norma:  

 ‖ 𝑓 ‖𝐿∞(Ω) = ‖ 𝑓 ‖𝐿∞ =  ‖ 𝑓 ‖∞ = 𝐼𝑛𝑓 { 𝐶 /  | 𝑓(𝑥)| ≤ 𝐶 } 

Nota.  Los espacios 𝐿𝑝  se definen como espacios cociente mediante la relación de 

equivalencia, 

𝑓~𝑔  ⇔   𝑓 = 𝑔  𝑒. 𝑝. 𝑐. 𝑡, 𝑒𝑠 𝑑𝑒𝑐𝑖𝑟 ‖ 𝑓 − 𝑔 ‖𝑝 = 0  

B2.   Resultados básicos de la teoría de la medida y espacios 𝑳𝒑 

 

 Teorema B.2.1 (Convergencia monótona) 

 Sea {𝑓𝑛} ⊂ 𝐻
1(Ω)  una sucesión de funciones, tal que se cumpla: 

1) 𝑓1 < 𝑓2 <  .  .  .  .  en casi todo punto 

2) Sup
𝑛𝜖ℕ

∫ 𝑓𝑛 < ∞ 

Entonces,  

𝑓𝑛(𝑥) converge en casi todo punto a un limite 𝑓(𝑥)𝜖𝐻1(Ω) 𝑦  ‖ 𝑓𝑛 − 𝑓‖ ⟶ 0 
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Teorema B.2.2 (Convergencia dominada) 

Sea {𝑓𝑛} ⊂ 𝐻
1(Ω)  una sucesión de funciones, tal que se cumpla: 

1) 𝑓𝑛(𝑥)  ⟶ 𝑓(𝑥) en casi todo punto 

2) ∃𝑔𝜖𝐿1(Ω) tal que todo 𝑛 ,  | 𝑓𝑛(𝑥) | ≤ 𝑔(𝑥)  en casi todo punto 

Entonces,  

𝑓𝜖𝐻1(Ω)  𝑦  ‖ 𝑓𝑛 − 𝑓 ‖1 ⟶ 0 

 

Lema B..1.1 (Lema de Fatiou) 

Sea {𝑓𝑛} una sucesión de funciones en 𝐿1(Ω) que cumple lo siguiente: 

1) 𝑓𝑛  ≥ 0 

2) Sup
𝑛𝜖ℕ

∫
Ω
𝑓𝑛 < ∞ 

Denotando con 𝑓 = Lim
𝑛 ⟶∞

𝐼𝑛𝑓 =  𝑓𝑛 (𝑥) p.c.t 𝑥𝜖Ω, entonces  ∫
Ω
𝑓 ≤ Lim

𝑛→∞
𝐼𝑛𝑓 ∫

Ω
𝑓𝑛 

Teorema B.1.5 (Teorema de Tonelli) 

Sea 𝐹(𝑥, 𝑦): Ω1 × Ω2  ⟶  ℝ una función medible talque: 

1) ∫
Ω2

| 𝐹(𝑥, 𝑦)|𝑑𝑦 < ∞ para casi todo punto 𝑥𝜖Ω1 

2) ∫
Ω1

∫
Ω2

| 𝐹(𝑥, 𝑦) |𝑑𝑦 𝑑𝑥 < ∞ 

Entonces,  𝐹 𝜖 𝐿1(Ω1 × Ω2) 

Teorema B.1.6 (Teorema de Fubini) 

Si 𝐹(𝑥, 𝑦): Ω1 × Ω2  ⟶  ℝ con 𝐹𝜖𝐿1(Ω1 × Ω2) , entonces para casi todo punto 𝑥𝜖Ω1  

𝐹(𝑥, 𝑦)𝜖𝐿1(Ω2)  y  ∫
Ω2

𝐹(𝑥, 𝑦)𝑑𝑦𝜖𝐿1(Ω1) (Análoga para casi toda 𝑦). Además: 

     ∫
Ω1

∫
Ω2

| 𝐹(𝑥, 𝑦) |𝑑𝑦 𝑑𝑥 = ∫
Ω2

∫
Ω1

| 𝐹(𝑥, 𝑦) |𝑑𝑥 𝑑𝑦 = ∫
Ω1×Ω2

𝐹(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

Teorema B.1.7 (Desigualdad de Hölder) 

Si  𝑓𝜖𝐿𝑝(Ω) y  𝑔𝜖𝐿𝑝′(Ω), entonces: 

              𝑓𝑔𝜖𝐿1(Ω) y  ∫
Ω
| 𝑓𝑔 | ≤ ‖ 𝑓 ‖𝑝‖ 𝑔 ‖𝑝′ 
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ANEXO C 

 

C1.  Espacios separables 

 La separabilidad es una propiedad topológica importante para trabajar con espacios de 

Banach. En esta sección 𝑋 denota un espacio topológico.  

 Definición C.1.1 Un espacio topológico es separable si y solio si existe un conjunto 

contable 𝐸 ⊂ 𝑋 denso en 𝑋 , esto es, 𝐸̅ denota la clausura de 𝐸. 

 Proposición C.1.1 Todo subconjunto   𝐴 ⊂ 𝑋 de un espacio separable métrico 𝑋 es 

separable.  

Teorema C1.1 Sea 𝑋 un espacio de Banach tal que 𝑋∗ es separable. La implicación 

reciproca no es cierta, como contraejemplo tenemos 𝐿1(Ω) (separable), cuyo dual 

𝐿∞(Ω) (no separable). 

Definición C.1.2 Un conjunto 𝐵 ⊂ 𝐸 es convexo si para todo 𝑥, 𝑦𝜖𝐵, el punto 

[𝑥(1 −   𝑡) + 𝑦𝑡 ]𝜖𝐵  para todo 𝑡𝜖[ 0 , 1 ]   

C2.  Espacios reflexivos 

 Sea 𝑋 es un espacio normado, el espacio vidual o segundo dual de 𝑋, es el espacio 

denotado por, 𝑋∗∗ ≔ (𝑋∗)∗ = 𝐿( 𝑋∗, ℝ ),  con norma:  

 ( 𝑋∗∗ ) ≔ 𝑆𝑢𝑝 { | 𝑋∗∗(𝑋∗)| /  𝑥∗ 𝜖 𝑋∗ }   

                    = 𝑀𝑖𝑛 { 𝐾 > 0 |𝑋∗∗(𝑋∗)| ≤ 𝐾/ | 𝑋∗|  𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝑥∗𝜖𝑋∗ } 
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ANEXO  D 

E1. Espacios de Sóbolev 

1. Los espacios de Sóbolev, son los de orden entero positivo ( 𝑊𝑚 ,𝑝  con 𝑚, 𝑝 𝜖ℤ+). 

Enseguida se extiende la noción de tal manera de considerar valores no enteros de 

𝑚. Posteriormente se consideran espacios con otras normas en el espacio de 

Lebesgue, 𝐿𝑝 . 

Sin embargo, el tipo de espacios de Sóbolev más importantes son los de funciones 

de cuadrado integrable, es decir, los 𝑊𝑚,2  los que serán denotados por 𝐻𝑚 . Estos 

espacios son espacios de Hilbert separables. 

Entre los espacios 𝐻𝑚  los más importantes son 𝐻1 y 𝐻2. Por ejemplo, la 

formulación variacional del clásico problema de Dirichlet-Poisson: 

         −∆𝑢 = 𝑓 en  Ω ⊂ ℝ𝑛,  𝑢 = 0  en  𝜕Ω  se realiza en 𝐻1(Ω) 

El problema de Dirichlet-Poisson correspondiente al operador biharmónico  ∆2 se 

realiza en el espacio 𝐻2(Ω). 

En análisis numérico, interesa conocer  𝐻1(Ω) y 𝐻2(Ω) para poder construir 

subespacios de dimensión finita incluido en ellos. 

Por otro lado, en las demostraciones para los espacios 𝐻1 y 𝐻2 sirven para los 

espacios 𝐻𝑚 . Por lo demás el delicado problema de la traza sobre el borde se ve sobre 

𝐻1 y el de la derivada normal sobre  𝐻2. 
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Estas razones son las que motivan que una presentación relativamente fácil y 

completa, además de útil, pueda hacerse sin pérdida de generalidad tratando a fondo  

𝐻1 y 𝐻2, después 𝐻𝑚  extendiendo los resultados. 

Definición 1. Un espacio de Sóbolev de orden 1 sobre Ω es el definido por: 

                      𝐻1(Ω) = { 𝑢𝜖𝐻2(Ω) / 
𝜕𝑢

𝜕 𝑥𝑖
𝜖𝐿2(Ω) , 1 ≤ 𝑖 ≤ 𝑛 }   

Definición 2. Producto escalar en 𝐻1(Ω)     

Se define en  H1(Ω) el producto escalar de las funciones 𝑢 𝑦 𝑣, denotado     〈𝑢 , 𝑣〉1,Ω, 

como: 〈𝑢 , 𝑣〉1,Ω = ∫ ( ∑
𝜕𝑢

𝜕𝑥𝑖
 
𝜕𝑣

𝜕𝑥𝑖
+ 𝑢𝑣 𝑛

𝑖=1 ) 𝑑𝑥
Ω

 

Y la norma correspondiente se denota por:  ‖𝑢‖1,Ω = 〈𝑣 , 𝑣〉1 ,Ω
1/2

 

Definición 3. ( 𝐻0
1(Ω): subespacio de  𝐻1(Ω) de las funciones “nulas” sobre  𝜕Ω). 

     Teorema 3. Ɗ(ℝ𝑛) es denso en 𝐻1(ℝ𝑛), es decir, 𝐻0
1(ℝ𝑛) = 𝐻1(ℝ𝑛).  

    Teorema 4.  (Teorema de representación de Riesz) 

Sea 1 ≤ 𝑝 ≤ ∞ y  𝜑𝜖(𝐿𝑝)∗, entonces existe una única función 𝑢𝜖𝐿𝑝 tal que: 

      𝜑(𝑓) = ∫𝑢𝑓   , ∀𝑓𝜖𝐿𝑝 . Mas aun,  ‖ 𝑢 ‖𝑝 = ‖ 𝜑 ‖(𝐿𝑞)∗. 
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ANEXO E 

Teoría de las Distribuciones 

E1. Notaciones 

       Ω      :  designa un conjunto abierto de ℝn de frontera ∂Ω = Γ 

      𝐿2(Ω):  Espacio de (clases) funciones reales cuyo cuadrado es integrable sobre Ω. 

      〈𝑓, 𝑔〉 = ∫ 𝑓𝑔
Ω

  , 𝑓, 𝑔𝜖𝐿2(Ω) , define en 𝐿2(Ω) una estructura Hilbertiana 

      ‖𝑓‖0,Ω = 〈𝑓, 𝑔〉1/2: la norma en 𝐿2(Ω) 

Definición 1. (Espacio de funciones Prueba) 

Se define el espacio 𝒟(Ω) como el espacio de las funciones infinitamente diferenciales 

con soporte compacto en Ω, esto es:  

𝒟(Ω) = {𝜑𝜖𝐶∞/  𝑠𝑢𝑝𝑝(Ω)  =  {𝑥𝜖Ω ∶  𝜑(𝑥) = 0}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,   𝑒𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑜 𝑒𝑛 Ω } 

Definición 2. (Espacio de las distribuciones) 

Se denota con,  𝒟′(Ω) el espacio de las distribuciones sobre Ω como el espacio dual de 

𝒟(Ω) , es decir, el espacio de las formas lineales continuas sobre 𝒟(Ω). Es decir, si 

〈. , . 〉 designa la dualidad entre 𝒟′(Ω) y 𝒟(Ω) entonces para 𝑇𝜖𝒟′(Ω), 𝜑 , 𝜑𝑖𝜖𝒟(Ω) y 

𝜆𝜖ℝ se tiene que: 〈𝑇 , 𝜆𝜑〉 = 𝜆〈𝑇 , 𝜑〉.  

Definición 3. (Pseudo topología en 𝓓′(Ω)) 

𝒟′(Ω) es una pseudo topología: si (𝑇𝑗) es una sucesión de 𝒟′(Ω) entonces se dirá que 

𝑇𝑗 converge a 𝑇 en 𝒟′(Ω) si para todo 𝜑𝜖 𝒟(Ω),  〈𝑇𝑗 , 𝜑 〉 →  〈𝑇 , 𝜑 〉. 
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Ejemplo 1.  (Masa de Dirac),  

Sea 𝑎𝜖Ω, se define la distribución “masa de Dirac 𝛿𝑎 en el punto 𝑎”, como: 

〈𝛿𝑎 , 𝜑〉 = 𝜑(𝑎). Es evidente que es una distribución sobre Ω, si 𝑎𝑚  → 𝑎 en Ω se 

cumple que: 𝛿𝑎𝑚 → 𝛿𝑎 en 𝒟′(Ω). 

Ejemplo 2. ( 𝐿2(Ω) es un subespacio de 𝒟′(Ω)) 

Se recuerda que 𝐿2(Ω) es un espacio de Hilbert y que 𝒟(Ω)es denso en 𝐿2(Ω). 

Dada una función 𝑓𝜖𝐿2(Ω) se le asocia la distribución 𝑇𝑓𝜖 𝒟′(Ω) definida por: 

〈𝑇𝑓, 𝜑〉 = ∫ 𝑓(𝑥)𝜑(𝑥)𝑑𝑥
Ω

 , ∀𝜑𝜖𝒟(Ω)   

Se observa que la aplicación 𝑓 →  𝑇𝑓 es inyectiva. En efecto si  𝑇𝑓 = 0 , ∀𝜑𝜖𝒟(Ω),  

∫ 𝑓(𝑥)𝜑(𝑥)𝑑𝑥
Ω

= 0 , entonces 𝑓 = 0 en virtud de la densidad de  𝒟(Ω) en 𝐿2(Ω). 

Luego 𝑇𝑓 ≠ 𝑇𝑔 si 𝑓 ≠ 𝑔 de manera que se puede identificar 𝑓 a 𝑇𝑓 lo que equivale a 

identificar 𝐿2(Ω) a un subespacio de 𝒟′(Ω). Esto es:  𝐿2(Ω) ⊂ 𝒟′(Ω). 

Por lo demás se tiene que la inclusión es “continua”: 

  𝑓𝑛  → 𝑓  en  𝐿2(Ω)  =    𝑓𝑛  → 𝑓 en 𝒟′(Ω) 

En efecto según la desigualdad de Cauchy-Schwartz: 

    ∀𝜑𝜖𝒟(Ω): |∫ (𝑓𝑛 − 𝑓)𝜑𝑑𝑥Ω
| ≤ ‖𝑓𝑛 − 𝑓‖0,Ω‖𝜑‖0,Ω 

Como, 𝑓𝑛 → 𝑓  en  𝐿2(Ω), ‖ 𝑓𝑛 − 𝑓 ‖0,Ω → 0, luego ∫ (𝑓𝑛 − 𝑓)𝜑Ω
𝑑𝑥 → 0 , ∀𝜑𝜖, 𝒟(Ω) 

de donde: ∫ 𝑓𝑛𝜑𝑑𝑥 →  ∫ 𝑓𝜑𝑑𝑥
Ω

,
Ω

esto es:  𝑓𝑛  → 𝑓en 𝒟′(Ω)     
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