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CAPITULO I

PROBLEMA DE INVESTIGACION

1.

Planteamiento y fundamentacion del problema de investigacién
Las Ecuaciones Diferenciales Parciales (EDP), es aquella drea de la matemitica que, desde
el punto de vista moderno, tienen una mds clara motivacién en las aplicaciones porque
muchos problemas de las ciencias aplicadas y la ingenieria estdn descritos por estas
ecuaciones que implican funciones desconocidas que dependen de al menos dos variables
independientes.
Las ecuaciones diferenciales parciales no lineales de segundo orden, se encuentran en una
posicion central porque ellas modelan una gran variedad de fenémenos complejos, tales
como: Movimiento, difusién, oscilaciones de cuerdas eldsticas, vibraciones de vigas o
membranas, transmision de calor, entre otros, donde debido a la presencia de términos no
lineales, las funciones involucradas no tienen derivadas cldsicas, lo que afecta notoriamente
la existencia de soluci6n unica, razén por la cual se recurre a funciones con derivadas en
el sentido de las distribuciones, derivadas que permiten tratar el estudio de las EDP en
espacios de funciones apropiados, tal como son los espacios de Sobolev.
En esta investigacion se considera la ecuacién no lineal de la forma:
a2 |22 |Z[)=rxy) en 0

u>0 en Q

u=0 en 0Q
, donde £ es una regién abierta acotada y conexa de R™, n = 1, con frontera dQ.
Ahora como esta es una ecuacion diferencial parcial no lineal de segundo orden, nos

abocaremos a estudiar la existencia y unicidad de su solucién.

Derechos de autor 2022 Turnitin. Todos los derechos reservados.
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RESUMEN

El presente trabajo de investigacién tuvo como objetivo fundamental estudiar la existencia y
la unicidad de la solucién polindmica aproximada de una ecuacion diferencial parcial no
lineal en dos variables independientes en el espacio de Sobolev. EI método utilizado fue
deductivo demostrativo, porque permitio elaborar soluciones aproximadas en un espacio de
dimension finita, hacer las estimativas en los espacios de funciones correspondientes, hacer
el paso al limite de estas soluciones y utilizando técnicas multiplicativas. Finalmente, bajo
apropiadas condiciones y restricciones sobre los datos y utilizando el método de Faedo-
Galerkin, y el método estandar de la energia, se demostré la existencia y unicidad de las
soluciones polindmicas aproximadas para la ecuacion diferencial.

N_2 (4
axz

ou

6x1

ou |?
axz

Au—i(u

6x1

>=f(x1,x2) en ()

Palabras claves: Solucion polindmica aproximada, ecuacion diferencial parcial no Lineal,
Método de Faedo Galerkin, método estandar de la energia, Espacios de

Sobolev.



The main objective of this research work was to study the existence and uniqueness of the
approximate polynomial solution of a nonlinear partial differential equation in two
independent variables in the Sobolev space. The method used was demonstrative deductive,
because it allowed elaborating approximate solutions in a finite-dimensional space, making
estimates in the corresponding function spaces, making the passage to the limit of these
solutions and using multiplicative techniques. Finally, under appropriate conditions and
restrictions on the data and using the Faedo-Galerkin method, and the standard energy
method, the existence and uniqueness of the approximate polynomial solutions for the

differential equation were proved.

A 0 ou
v 0x, v 0x,

N 0 ou %\ ( ) en 0
o, u o, = f(x1,x;) en

Keywords: Approximate polynomial solution, differential partial not linear stationary
equation, method Faedo-Galerkin, standart method of the energy, Sobolev

space.
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INTRODUCCION

Aunque la importancia de las Ecuaciones Diferenciales Parciales (EDP) ha sido
reconocida desde hace varios afios entre los temas de la aplicacion de la matemaética, el
aumento de la complejidad de la tecnologia actual requiere que matematicos, ingenieros
y cientificos conozcan el tema. Es tal la influencia de las EDP que se puede afirmar que
no hay rama de las ciencias que no las utilice. El éxito de las EDP radica en su capacidad
de modelar una enorme variedad de fendmenos fisicos, quimicos, bioldgicos, de la
ingenieria, de la economia, etc. Mas aun, las EDP no solo son importantes por sus
aplicaciones, sino que tienen importancia en si mismas y son objeto de exhaustiva

investigacion cientifica hoy por hoy.

Una ecuacién diferencial en derivadas parciales puede describirse como una relacion

donde aparece una funcion incognita u = u(x,t) de una o mas variables independientes.

G(x,t,u,uxl,uxz,... Uiy se v o pUygmayma ): 0 (1)

n

, donde u = u(x,t) depende de la variable espacial x = (x;,x,,. . .,x,)eR™ y la
variable tiempo t. La ecuacion (1) establece una relacion entre la funcion incognita u, sus

derivadas parciales y los puntos (x, t).

Las EDP de segundo orden, que expone los conocimientos que consideramos basicos para
el estudiante de ciencias o de ingenieria, pueda entender sin grandes problemas, son las

ecuaciones clasicas, que modelan el problema calor, de onda y de Laplace.:

1. Ecuacion de calor: U Au =
2. Ecuacion de calor: U Au=20

3. Ecuacion de Laplace: —Au+u=20

Estos tres ejemplos, y con desarrollos de mayor sofisticacion permitiran estudiar las EDP

de segundo orden lineales e incluso algunos problemas no lineales.



En este trabajo de tesis se estudia la existencia y unicidad de solucion polindmica

aproximada de ecuacion estacionaria de calor, modelada por:

0 u
—Au— = au
u ax u ax

2>_%<”|Z_;2)=f(x,30 (2)

, donde u = u(x,y,t) es la funcién incégnita y representa la transmision de calor en un

punto (x,y,t) de una region QeR™, f(x,y) es una fuente de calor interna.

Esta ecuacion (2), modela el flujo de calor en estado estacionario en una regién plana o
bien problema que se relacionan con potenciales gravitacionales, potenciales

electrostaticos, potenciales de flujo de fluidos incomprensibles, etc.
La estructura de la presente investigacion, es la siguiente:

Capitulo 1. Comprende Planteamiento y fundamentacion del problema de investigacion,
Antecedentes de la investigacion, formulacién del problema de investigacion,
delimitacion del estudio, justificacion e importancia de la investigacion objetivos de la
investigacion.

Capitulo I1. Se expone el marco teorico, fundamentos tedricos de la investigacion, asi
como el marco conceptual necesarios para el desarrollo del trabajo de investigacion.
Capitulo I1l.  Se formula la hipotesis de investigacion, variables e indicadores de
investigacion, el método y el disefio de la investigacion, asi como también la poblacién y
muestra del estudio realizado.

Capitulo IV. Se presenta los resultados y discusion de la investigacion realizada: Prueba
de resultado de existencia de solucion polindmica aproximada y prueba de resultado de
unicidad de la solucion polinémica aproximada del problema planteado.

Capitulo V. Se enuncia las conclusiones y recomendaciones del trabajo de investigacion.

Al final del trabajo se encuentra las referencias bibliograficas de libros y articulos

cientificos que se relacionan y que se han tomado en cuenta para la investigacion.



CAPITULO |

PROBLEMA DE INVESTIGACION

1.1 Planteamiento y fundamentacion del problema de investigacion

Las Ecuaciones Diferenciales Parciales (EDP), es aquella &rea de la matematica que, desde
el punto de vista moderno, tienen una mas clara motivacion en las aplicaciones porque
muchos problemas de las ciencias aplicadas y la ingenieria estdn descritos por estas
ecuaciones que implican funciones desconocidas que dependen de al menos dos variables
independientes.

Las ecuaciones diferenciales parciales no lineales de segundo orden, se encuentran en una
posicion central porque ellas modelan una gran variedad de fendmenos complejos, tales
como: Movimiento, difusion, oscilaciones de cuerdas elasticas, vibraciones de vigas o
membranas, transmision de calor, entre otros, donde debido a la presencia de términos no
lineales, las funciones involucradas no tienen derivadas clasicas, lo que afecta notoriamente
la existencia de solucién Unica, razén por la cual se recurre a funciones con derivadas en
el sentido de las distribuciones, derivadas que permiten tratar el estudio de las EDP en
espacios de funciones apropiados, tal como son los espacios de Sobolev.

En esta investigacion se considera la ecuacion no lineal de la forma:

a au |? ) ou |2
_Au—a(u|a >—£<u|£ )—f(x,y) en
u>0 en ()
u=g en 0Q

, donde Q es una region abierta acotada y conexa de R™, n > 1, y con frontera (.
Ahora como ésta es una ecuacion diferencial parcial no lineal de segundo orden, nos

abocaremos a estudiar la existencia y unicidad de su solucion.



1.2 Antecedentes de la investigacion
Durante las tres Gltimas décadas hasta la fecha se estudia con bastante interés problemas que
implican ecuaciones diferenciales parciales no lineales, sobre dominios abiertos, acotados Q
de R",n > 1, con condiciones de frontera de diversas ramas de la ciencia, tal como: fisica,
quimica, biologia, ingenieria, etc. En particular el estudio del fenémeno fisico de transmision

estacionaria de calor por conduccion, modelado por la ecuacion lineal,

ou(x,t)

— a’?Au(x, t) + F(x,t) en Qc R" (1)

, donde a? es la difusividad térmica (constante), y se ha obtenido soluciones analiticas

mediante diferentes métodos conocidos,

Una simple modificacion de (1), conduce a la conocida ecuacion lineal de Poisson

"(Kxi—z)+ %(Kyz—;%(z(x,y):o )

ox
Donde, u(x,y) es la temperatura, K, y K,, son las conductividades en las direcciones,
X — Y, Yy no son constantes pues dependen de la funcion temperatura.

Morales (2,015), en su tesis de doctorado; Existencia y Unicidad de solucion de una

ecuacion no lineal de tipo eliptico,

9
0x

, demuestra la existencia Unica de la solucion de la ecuacion (3).

ou

axzau>+%(|a—uzz—§)=—f(x,y) en Q 3)

5 ady




1.3 Formulacion del problema de investigacion
Sea Q una placa o lamina delgada del plano R? con fronteraI' = 9(), se plantea la siguiente

ecuacion diferencial parcial no lineal,

0 u
A —_ futhad)
u ax u ax

2)—%<u|g—;2)=f(x,y) en Q (1.1)

, donde la funcién u no varia con el tiempo, por lo que sélo es funcion de (x,y)e Q,
u(x,y) >0 en Q (1.2)

, y ademas la condicion siguiente,
u(x, y)=g(,y) en 0Q lafrontera de Q (1.3)

Formulacién del problema

¢Existe una Unica Solucion Polindmica Aproximada para el problema (1.1) — (1.3) en el
espacio de Sobolev?
Es decir, se limita nuestra atencion a la existencia y unicidad del modelo no lineal de

transmisidn estacionaria de calor, representada en forma breve por el sistema:

iaZqu o ( ou?\]| 0 1
ox}  0x; u ox; =/ en (11

1
0 en () (1.2)
g en Q) (1.3)

. : 92 | 92 . .
, donde A denotaré el laplaciano con Au(x;, x,) = ﬁ + ﬁ , Q es un conjunto abierto
1 2

convexo del plano y ulq = g es la funcion valuada en la frontera de Q, y que para la cual
no se puede aplicar métodos conocidos, como: separacion de variables, diferencias finitas,

elementos finitos, o series y transformadas de Fourier, etc.



1.4 Delimitacion del estudio
El presente trabajo de investigacion se ha centrado fundamentalmente en los espacios de
Sobolev H1(Q) , los espacios de las distribuciones D’ (), los espacios de Lebesgue L? (),
los espacios de las funciones de prueba D((Q), y el algebra de polinomios en dos variables
independientes, P ().

1.5  Justificacién e importancia de la investigacion

La justificacion del presente trabajo de investigacion radica que la ecuacién (1.1), modela la
transmision estacionaria de calor por conduccion, es uno de los modelos mas relevantes que
se expresa mediante EDP. Asi, la ecuacion de calor modela no solo el proceso fisico de
transmision de calor por conduccion, sino también el fendmeno quimico de difusion, o el

fendmeno biologico de movimiento browniano, etc.

Esta investigacion tiene una importancia tedrica y practica, puesto que los resultados
obtenidos pueden ser aplicados por especialistas en otras ramas de la ciencia, cuyos trabajos

se relacionen con este estudio.

1.6 Objetivos de la investigacion

Objetivo General

Estudiar la existencia y unicidad de las soluciones polindmicas aproximadas del problema

(1.1) -(L.3)

Obijetivos Especificos
1. Demostrar la existencia de solucion polindmica aproximada del problema (1.1) - (1.3)

2. Demostrar la unicidad de solucién polinémica aproximada del problema (1.1) - (1.3).



CAPITULO 11

MARCO TEORICO

2.1 Fundamentos tedricos de la investigacion
En esta seccidn se presenta definiciones, propiedades y resultados apropiados que se
utilizd, en la demostracién de existencia y unicidad de solucion polindmica aproximada
de la EDPNL.
2.1.1 Espacios de funciones continuas
Definicion 1. (Soporte de una funcion)
Sea Q S R? un conjunto abierto y acotado, f: 2 - R una funcion real. El
Soporte de f, denotado Supp(f), es la clausura del conjunto { xeQ / f(x) # 0} .

Es decir, el soporte de f es el complemento del conjunto abierto méas grande donde

Q
f se anula, lo que se representa, como: Supp(f) = {xeQ f(x) #0} .

Ejemplo 1. Sea la funcién

£(x) = {exp (x2—1—1) si x| <1
0

si |x| =1
, donde Supp(f) = [-1,1]
Definicién 2. (Funciones de Prueba)
Las funciones test o funciones de prueba, son funciones de decrecimiento rapido,
es decir, tienden a cero mas rapidamente que el inverso de cualquier polinomio.
Definicién 3. (Espacio de funciones de prueba)
Sea Q un conjunto abierto de R™,n > 1, el espacio de las funciones de prueba se

denota D(Q) , y define por:

D) = {(P:'Q — R/ @eCy’ (), (@lnen — 0}



, donde C4° con la nocién de convergencia es un espacio vectorial.

Este espacio se compone de funciones “que se comportan bien”, lo que permite

en particular la definicion generalizada y de cualquier orden de la derivada en el

caso de las distribuciones.

Definicion 4. (Espacio de funciones acotadas)

a) Sea Q un conjunto abierto de R®, n > 1. Se denota C°((2), el espacio de todas
las funciones continuas ¢, definidas en Q con valores en R, y define como:
') ={p:Q — R/ @escontinuaenQ}

b) Sea Q un conjunto abierto de R?. Se denota con C°(£)), el espacio de todas
las funciones continuas que son acotadas y uniformemente continuas en Q, y

define por:
C°(Q) ={¢:0 — R/ esacotada y uniformente continua en Q }
. donde Q es la clausura de Q, esto es, 2 = Q U 9Q.

c) El conjunto P(Q)) , denota el algebra de todos los polinomios en las

coordenadas x, Y x, (0 variables independientes x; , x,).
Teorema 1 (Teorema de Stone-Weierstrass
Toda funcion de €°(Q) puede ser aproximada por polinomios en P ()
Demostracion Ver en (Young: 2, 006)

Definicién 5. (Funcional Lineal)
Se llama Funcional lineal, a una funcion numeérica f, definida sobre un espacio
vectorial. Un funcional no es mas que una funcion definida sobre un espacio de

funciones, tal como, T: D(Q)) » R.



Sea Qc R™ un conjunto abiertoy T: D(©2) — R ,un funcional lineal. Se dice que
T es un funcional continuo sobre D(Q), si y solo si, V{g,} € D(Q) y peD(Q),
entonces:T(¢,) — T(¢) enR (convergencia puntual)

Definicion 6. (Espacio Dual)

Sea E un espacio topologico, dotado de las operaciones de la adicion y la
multiplicacion por nameros. El espacio dual de E, denotado E*, esta conformado
por todas las funcionales lineales continuas, definidas sobre el espacio topoldgico

lineal E, es decir:
E* = { feE / f es funcional lineal continua }
Ademas, en el espacio dual E* se puede definir diferentes topologias.

Definicion 7. (Espacio Dual a un espacio normado)
Para funcionales lineales continuas, definidas sobre un espacio normado, se

introduce el concepto de norma, definida por:

1fll = sup | f() |

v20 Nx]

Esta norma verifica todas las condiciones contenidas en la definicién de espacio
normado, es decir:

1) |l f 1l =0, para cualquier funcional lineal no nula f.

2) laf Il = lallifl

3) IIfy + foll = Sup B < sup Lt sup < I £y 1+ 11 £
xiO x|l xz0 %I yzo llX

Teorema 2. El espacio dual (E*, || .|| ) es completo.

Demostracion Ver en (Kolmogorov: 1,975)



2.1.2 Espacios de Banach

Entre los espacios topologicos lineales constituyen una clase importante los
espacios normados. La teoria de estos espacios fue desarrollada por Stefan Banach
y otros autores. Acé haremos una breve introduccion de estos espacios.
Definicion 8. (Espacio vectorial normado)

Se dice que V, es un Espacio Normado, si existe una funcién || . || : V — R,
tal que paratodo x ,y € V' se satisface lo siguiente:

1) [x[l=0y |lx]|l=0,siysolsix =0 (Positividad)

2) |lax || = lalll x || para cualquier aeR (Cambio de escala)

3) llx+yll< llxll+ lyll (Desigualdad triangular)

Un espacio vectorial normado V, se denota mediante el par (V, || .|| ). Lanorma

de un elemento xeV se denota con el simbolo || x ||.
Definicion 9. (Distancia entre dos puntos)
La distancia que separa x y y, se denota y define como: d(x,y) = |lx—y]||.

Es evidente que todo espacio normado es un espacio meétrico, si para

cualesquiera dos elementos x, yeV se cumple que: d(x,y) =[x — v ||

Ejemplos de espacios normados

1. En el espacio Cp, p de funciones continuas sobre el intervalo [a,b ] si se

define la norma mediante: || f || = Mé»%lf(t) |, en donde la distancia
asts<

correspondiente a esta norma es, d(f) = CM%I f @®l.



2. Sea [ un espacio de sucesiones numéricas acotadas, x = (xq,X3,..., Xp,...)

Si se define, || x || = Sup| x,, |, entonces las condiciones 1), 2) y 3) de la

neN

definicidon de norma se satisfacen.
Definicion 10. Sea X un espacio normado. Se dice que X es, un espacio completo,
si, toda sucesion de Cauchy en X es convergente, es decir:

Vix,) €X: Lim|[x,— x,||=0 = 3 Lim x,, = xeX
n,m —oo n- oo

Definicion 11. (Espacio de Banach)
Se dice que, X es un espacio de Banach, si X es un espacio normado completo.
Definicion 12. (Operador Lineal)
Sea X, Y dos espacios vectoriales sobre el campo R. Un Operador Lineal T, es
una funcién, T:X — Y, tal que para x,zeX y a,f escalares se cumple que:
T(ax+ Bz) = aT(x)+ BT(2).
Definicion 13. Sean X,Y dos espacios vectoriales normados. Un Operador
Lineal, T: X — Y es Acotado si existe una constante M > 0 tal que:

I Tx |ly < M| x|y, paratodo xeX.
Teorema 3. Un operador lineal es acotado si, y solo si, él es continuo.
Demostracion Ver en (Kolmogorov: 1,975)
Definicién 14. (Inmersion de espacios)
Sea X, Y dos espacios normados. Se dice que X esta inmerso continuamente en
Y, lo que se denota, X oY, si:
1) X es un subespacio vectorial de Y

2) El operador identidad I definido sobre X es continuo.



2.1.3

Definicion 15. (Producto escalar o producto interno)

Sea X un espacio vectorial sobre un cuerpo K. El producto escalar o producto
interno definido sobre X es la aplicacién (., .) : X X X — K tal satisface los
siguientes axiomas:

1) (u+v,w)=(u,w)+(v,w),Vu,v,weX (Aditiva)

2) (au,v)= a{u,v), Vu,veXytodo aeK (Homogénea)

3) (u,v)= (v, u), Vu,veX (Hermitica)

4) (u,u)=0y(u,u)=0siysolosiu = 0 (Positiva
Definicion 16. (Sucesion Convergente)

Una sucesion {f;, },ev €n un espacio normado V, se dice que Converge a un

elemento f, siparacada € > 0, existe una NeN tal que si, n > N se cumple que:

I f=fall<e.

Si f,, converge a f, entonces escribimos: f = Lim f, o f, — f.
n— oo

Espacios L? ()

Definiciéon 17. (Exponentes Conjugados)

Sean p,q €[1, ), se dice que p y g son exponentes conjugados si, %+ é =1.
Definicion 18. (Espacio LP(Q))

Sea Q un abiertoen R™ y 1 < p < oo. El espacio de todas las clases de

equivalencia de funciones medibles f definidas en Q con valores en R, se

denota y define por

@ ={ f:0 - R"/ {1 F) 1P < o0 |
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Definicion 19. (Norma en LP(Q))

Para todo elemento fe LP(Q) . La norma en L? () se denota y define por:

1 f oy = |1 £COP ape|”

, siempre que p < oo.

En el caso que p = oo, entonces L* (), denota el espacio de funciones medibles

f que son esencialmente acotadas: Lanormaen L* (), se denotay define como:
lullpe@ =Inf{C/lu(x)|<C, c.senQ}

, donde c. s significa casi siempre en Q.

Proposicion 1.
1) Sil1l < p < o, entonces L? () es un espacio de Banach, cuya norma es:

ey = [g GOl dx |

2) Si p =2, entonces L?(Q) es un espacio de Hilbert con producto interno
definido por:
(u,v)=J ulx)v(x)dxylanorma: || u 20y = [f | u(x)Ide] i
Q Q
Demostracion Ver en (Brezis:1,987)

Proposicion 2. (Desigualdad integral de Holder)

SiuelP (Q) y veL1(Q) donde p y g son exponentes conjugados, con1 <p < o ,

fge L1(Q), entonces se cumple que:

gluvl < ullpp@ll v Lo

Demostracion Ver en (Gatica: 2,011)

11
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Teorema 4. (Desigualdad de Minkowski)
Sil<p<ooentonces [[u+vllpgn < lullpq + vl
Teorema 5. LP (Q) es un espacio separable paral < p < o

Teorema 6. (Teorema de la representacion de Riesz)

Si pe(LP (Q))' , P Y g son exponentes conjugados con, 1 < p < oo, entonces

existe una Unica, ueLi(Q), tal que:
(u,v) = [ uv)dx, vvel? (@ y lullia@ = 1ol gy

Demostracion Ver en (Brezis: 1,987)

Teoria de las Distribuciones

En analisis funcional, una distribucion o funcion generalizada se dice que es un
objeto matematico que generaliza la nocion de funcién y la de medida. Ademas,
la nocion de distribucidn sirve para extender el concepto de derivada a todas las
funciones localmente integrables y a entes ain méas generales.

Definicion 20. (Conjunto Continuamente Compacto)

Si G < R™ es un subconjunto no vacio, entonces se dice que G es continuamente
compacto en Q, lo que se denota, G € Q, si G < Q yademas G es compacto.
Definicion 21. (Sucesion Convergente)

Sea Q un conjunto abierto y acotado de R™. Una sucesion de funciones, { qu}jeN
de Cy° () se dice que, converge a la funcion ¢e Cy° () si satisface las siguientes
condiciones:

i) Existe K€ Q tal que: Supp( ¢; — ¢ ) < K para cada j.

i) Lim D%¢;(x) = D*¢(x) uniformemente en K para cada aeN"™.
j— oo

12



Definicion 22. (Espacio de Distribuciones)
El espacio de distribuciones sobre Q, se denota, D'(Q) o D*(Q) y define
mediante:
D'(Q) ={T: D(Q) — N /T eslineal y continua }
Asipara §,Te D'(Q) , aeR y ¢peD(Q) se cumple lo siguiente:
) (S+T)(@) =5(¢) +T(¢)
i) CaT)(¢p) = aT($)

Definicion 23. (Convergencia en el sentido de las distribuciones)

Se dice que, una sucesion { T,, },,n converge en el sentido de las distribuciones a

Te D'(Q), si T,,(¢p) — T(¢) en R paratoda ¢peD(Q).

Una funcion u definida en casi todas partes (c.t.p) en Q, se dice que es localmente

integrable en Q y de denota con ueL?},.(Q), si ueL*(U) para cada abierto U€Q.

loc

Ejemplo 1. Sea ueLl,.(Q), entonces T, : D(Q) — R es el funcional definido

por:

T,(Q) = [ u(x)¢p(x)dx , para peD(1), (A)
Q

es una distribucion. Demuestre que T;, es lineal.
Solucion:

b1, P, D(Q) y BeC, entonces:

(1 + Bd,) = f u(x)( ¢, + Bp)(x)dx

Q

= .!1 u(x) (¢1(x) + Bpo(x)) dx

13



= éu(x)¢1(x)dx+ B £ u(x) ¢, (x)dx

= Tu(d)l) + IBTu(d)Z)
Por lo tanto T;, es lineal.

Observacion: Debe tenerse presente que, no todas las distribuciones Te D'(Q2)

tienen la forma dada en (A) (ejemplo 1, para algin ueLl, ().

loc

En efecto, sea § : D(Q2) — R definida por: 6(¢p) = ¢(0), para toda ¢peD(Q).

Sean ¢, ¢,e D(Q) y BeC, entonces:

§(h1 + Bdr) = (P + BP2)(0) = 6(d1) + BS(P2)

Por lo tanto, es lineal.

Por otro lado, si {qu} es una sucesion en D(Q) tal que ¢; — ¢ en el

jeN

sentido D((), entonces existe KEQ tal que el Supp € K paracadajy

]Iirrolo D%*¢;(x) = D*¢(x) uniformemente en K para cada multi-indice a. Por
lo tanto: | 6((],’)]-) — ¢(¢) | = | $;(0) — ¢(0) | — 0,cuandoj — oo,
Consecuentemente, 6 D' ().

Pero se comprueba que, 6(0) es una distribucién que no satisface(A). En

efecto supdongase que &(0) satisface (A), entonces existe una funcion

1

uel,.(Q) de tal manera que:

$(0) = [ u(x)p(x)dx, para todo peD(C). (B)
Q

Considérese la funcién prueba ¢,, definida por:

14



a?

Ba(x) = el xlF-a* siflx]| < a
0 , sillxll>a

Con a > 0, notamos que:
ba (0) = e >0

|¢a(x)| <e!

[ u()p(x) dx | < ﬂ{nlu(X)||¢a(X)|dx

]RTL

[ 1) dg (x)|dx

lxll<a

IA

[ lu(x)| e tdx

lxll<a

< e Y Ju(x)|dx

lxll<a

Siu es localmente integrable entonces Lirr(l) f lu(x)|dx =0 , lo cual
a0 x]|<a

contradice (B).

Definicién 24. (a-ésima derivada distribucional)

Sea Q un conjunto abierto de R" y TeD’'(Q) una distribucion. Si a,es un multi-

indice, entonces la a-ésima derivada de T, denotada D*T se define por:

D*T(¢) = (D! *IT(D*¢) , paratodo ¢peD'(Q)

Ejemplos

1. Si0eQ y 6eD'(Q) es la distribucion de Dirac, entonces, D*§ esta dada por,
De5(¢) = (=1!*1D*5(0)

2. SiQ =Ry HeLj, (Q) es la funcién de Heaviside definida por,

15



1, x=0
0,x<0

H(x) = {
Hallar la derivada H' en D'(R).
Solucién:
Sea ¢peD(Q) con soporte compacto en [—a , a ], entonces:

(TH )’({b = (—1)| «l TH( ¢’)
—Ty(¢")

= — é H(x)¢p'(x)dx

=— f_aa H(x)¢'(x) dx

= [° HGO @dx — [*HGO (W)dx

= — [JHGO)¢ (0)dx
= — [ ¢'(x)dx

= —¢()I5

= —(¢(a) — ¢(0))
= ¢(0)

= 6(¢)

Por lo tanto, (T})’ es la distribucién de Dirac por lo que (Ty)’ es una distribucion.
Definicion 25. (a-ésima derivada débil)
Sea Q un conjunto abierto de R", ueL},.(2) y @ un multi-indice. Si existe una
funcién v,eLi, . (Q) tal que:

T,,(¢) = DT, (¢) para todo ¢peD(Q),

, entonces v, se llama a-ésima derivada débil de T,,.

16



2.1.5 Espacio de So6bolev
Un espacio de Sébolev, esta conformado por funciones reales o complejas de
varias variables, integrables en el sentido de Lebesgue y diferenciables en el
sentido de las distribuciones, es decir, débilmente diferenciables. La estructura
vectorial de los espacios de Sobolev esta intimamente ligada al espacio de
Lebesgue LP. ( Figueroa:1986).
Definicion 26. (Espacio de S6bolev de orden m)
Sea Q un conjunto abierto y acotado de R ,n > 1, 1 < p < coy m un nimero
entero positivo. Un espacio de Sébolev de orden m sobre Q, se denota W™P((),
y define por:

WP (Q) = { ueLP(Q) / D*uelP (Q),VaeN, con|a| <m}

, donde D¢ es la derivada en el sentido de las distribuciones de orden | « | < m.
En el caso particular que:
1) m=0 - W°P(Q) =LP(Q)

2) m=1- wr@={uelP(@)/ el , vi:1<i<n)}

9%u
axiaxj

3) m=2 - W2P(Q) ={u€Lp(Q)/ 2 e1p (@), ELP(Q),Vi,j,keN"}

4) WwmP(Q) o Cck(Q), 0<m-— g—k <1

Observacion:

1) wm2(Q) = H™(Q)
Definicion 27. (Norma en W™ P (Q))

Para ueW™? (Q) , la Norma para u, denotado ||u||€vm,p @ ©S el funcional,

17



1
P

Il [l =< z | Du |I§> ,donde1 < p <

0 <lalsm

De esta manera W™ P (Q) es: un espacio normado, || u ||, ,, = 0, ademas si
| ullmp =0 entonces implica que:

( > ||Dau||g)5=o

0 <[alsm
, 'y en consecuencia || D%u ||?, = 0, para todo 0 < |a| < m. En particular para
a =0 se tiene que: || D*u |y = [ D°ulll = [[ull} =0, lo cual implica que
u=20.

La homogeneidad de este funcional se verifica, ya que la derivada y la norma

satisfacen dicha propiedad:

En efecto:
1
14
Il Bu ||m,p=< > Ipew ||§)
0 <la|sm
1
p
=< > ||ﬁD“u||§)
0 <lalsm
1
14
=< > llgPpeu ||§)
0 <|alsm

S|~

IBI( > ||D“u||fn)
0 <lalsm

, y ademas, la desigualdad de Hoélder, garantiza que el funcional satisface la

desigualdad triangular:

18



1
4
||u+v||m,p=< > ||D“<u+v>||§>

0 <lalsm

1
P

( Z || D%u + D%v |I§)
0 <|a|sm

( > ||Dau||g)5+< > ||Dav||§>

0 |lalsm 0 <|a|]sm

IA
=

< llu ”m,p +1lv ”m,p

Observacion:

a) La formulacion variacional del problema de Dirichlet-Poisson: —Au = f en
QcR* ,u=0enl =0Q (00 frontera de Q), se realiza en el espacio
L*(Q).

b) El problema de Dirichlet Poisson correspondiente a, A? el operador
biarménico se realiza en el espacio H?(Q).

c) Desde el punto de vista del analisis numérico, interesa conocer H(Q) y
H?(Q) para poder construir subespacios de dimensidn finita incluidos en ellos

d) Esencialmente las demostraciones para los espacios H' y H? sirven para los
espacios H™. Por lo demas el delicado problema de la traza sobre el borde

se ve sobre H! y el de la derivada normal o convencional sobre H?2.
Teorema 7. W™P () es un espacio de Banach.
Demostracion Ver en (Medeiros: 1,999)

Proposicion 3. Sea a un multi-indice, {u, },en € LP(Q) y u, v, eLP (Q) tal que

u, —uy D%u, — vgen LP(Q), entonces v, = D%u.
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Demostracion Ver en (Medeiros: 1,999)

Teorema 8. Sea Q un conjunto abierto y acotado de R™, m = 1 un nimero

enteroy 1 < p < oo, entonces se tiene:

1) W™P (Q) es un espacio reflexivo si pe(0,p)

2) W™P(Q) esunespacio separablesi[1,)
Demostracion Ver en (Adams: 2,003)

Definicion 28. Seam > 1 unenteroy 1 < p < oo. W,""(Q) es la clausura del

espacio D(Q) en W™ P (), es decir:

Mmp

WP (@) = D)

, Y Cuya norma es:

a,, |P — p
|D ulp_ ||W”m,p

la [=m
Teorema 9. (Desigualdad de Poincaré)
Sea Q un abierto acotado de R™ con frontera € bien regular, entonces existe

C. > 0 tal que:

|~

2 u P D
lull, <C. Z|E| dx ,Vuewol’p(ﬂ) l<p<o
i=1 t

= |l Vull,

Sip = 2, entonces W, ** () = HE(Q) por el teorema de Poincaré.

20



lull, <llVully, VueHs(Q) .
Demostracion Ver en (Brezis:1,987)
Definicion 29. (Espacio H™ () )

Sea meN. Se denota con H™(Q) al espacio vectorial de todas las funciones ueL? ()
tales que para todo |a| < m, D%u eL?(Q), donde D%u es la derivada en el sentido de

las distribuciones.
Definicion 30. (Espacio de Sébolev H1(Q))

Un espacio de Sobolev de orden 1 sobre el abierto Q, se denota y define por:
av ]
HY(Q) = { Vel2(Q) / 5 el?(@) 1<i < n}
i

En H'(Q) el Producto escalar, denotado ( u, v ),  se define como:

o \ & 0x;0x;
=1

n
ou 0
(u,v) o= f( —u—v+uv)dx

Asimismo, en H*(Q) la Norma, denotada || v ||; o y definida como:

1/2
lvllio=(v,v)/

Teorema 10. H1(Q) es un espacio de Hilbert con respecto al producto escalar,

dado por la definicion 30.

Demostracion Ver en (Figueroa: 1,986
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2.2

Teorema 11. H'(Q) es un espacio separable, esto es, existe un conjunto

numerable denso en H1(Q).
Demostracion Ver en (Figueroa: 1,986)

Definicion 31. Seaunentero m > 1, [1,0)y H§(Q) c H*(Q)( subespacio

de funciones nulas). Se define, Hj(Q) como la clausura del espacio D(£) en

. —— HY(Q)
H(Q), es decir: HI(Q) = D(Q)

Proposicion 4. (Formula de Green) Sea (0 ¢ R™ un conjunto abierto acotado

bien regular. Si u, v eH*(Q), entonces para cada 1 < i < n se tiene que:

du Jdv
fﬂa—na—ndx':—fﬂazvd +f V;
,dondev = (v;,v,,. .,v,) denota el vector normal exterior de I'. Si ueH? ()

y veH'(£), entonces fQ Vu.Vvdx = f (—Auw)v dx+f v—dr‘ donde

0 . . . . . .,
% es la derivada distribucional en la direccion del vector v

Demostracion Ver en (Kesavan: 1,989).
Marco Conceptual

a) “Un conjunto abierto Qc R™ ,n > 1 se dice “Bien Regular” si su frontera
['=0Q es una variedad de clase C* de dimension n—1, y Q esta
localmente de un mismo lado de €.

b) “Cuando una propiedad es vélida en un conjunto E excepto en un
subconjunto de E con medida nula, se dice que la propiedad se cumple casi
siempre (C.9)”.
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CAPITULO Il

MARCO METODOLOGICO

3.1

3.2

Hipotesis de la investigacion

Hipétesis general

Existe una Unica solucién polinbmica aproximada del problema (1.1) - (1.3)
Hipotesis especificas

a) Existe una solucion polindbmica aproximada del problema (1.1) — (1.3)
b) Existe unica solucion polindbmica aproximada del problema (1.1) — (1.3)

Variables e Indicadores de la investigacion
3.2.1 Variables

Variables dependientes

a) Latemperatura en un punto (x,y), u(x,y)

b) Termino independiente de la ecuacion (1.1), f(x,y)eL?(£)

Variables independientes

a) Variable espacial: (x,y)eQ

b) Espacios de funciones: LP(Q) , H™(Q) , P(Q) (algebra de polinomiosen x , y.

3.2.2 Indicadores de la investigacion

Variable Dimensiones Indicador
Existencia Base en el espacio Hj (Q)
u(x,y) Método de Faedo - Galerkin
Unicidad Tomar dos soluciones que satisfacen (1.2)
Método estandar de energia
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3.3 Meétodo de la investigacion

El método de la investigacion fue deductivo-demostrativo. Para demostrar primero la
existencia de soluciones polinémicas aproximadas para ecuaciones diferenciales parciales
no lineales en dos variables independientes, que consistio en proyectar el sistema original
a espacios de dimension finita, WO1 A n P@Q) , se utilizd el método de Faedo-
Galerkin; y se hizo el paso al limite de las soluciones aproximadas, mientras que para
demostrar la unicidad de la solucion polindmica aproximada del mismo sistema se supuso

dos soluciones y se aplicd el método estandar de la energia.
3.4 Disefio de la investigacion

La presente de investigacion corresponde a una investigacion basica y cuantitativa,
mientras que su finalidad fue producir nuevos conocimientos, para ampliar y profundizar

la ecuacion (1.2).

El disefio utilizado fue descriptivo demostrativo pues a partir de llevar el problema a un
espacio finito dimensional, estudiar el resultado de existencia y unicidad en el espacio
proyectado, y luego mediante estimaciones previas, para la solucién a un espacio

adecuado.
3.5 Poblacion y muestra
Poblacién

La poblacién fue el conjunto de las funciones ueL?((2), cuyas derivadas en el sentido de
las distribuciones estan generadas por funciones u,eL?(Q), es decir, el espacio de

Sbébolev orden m.
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Muestra

La muestra fue el conjunto de las funciones medibles, u: O — R™, tales que satisfacen:
j | u(x) |Pdx < o
Q

, es decir los espacios de LP (),
3.6 Actividades del proceso investigativo

Las actividades se iniciaron con la recopilacion y andlisis obtenida en textos y revistas
especializadas de matematica. Para lograr los objetivos de la investigacion se utilizé el
método de Faedo.Galerkin, resultados propios del analisis funcional, el algebra de

polinomios en dos variables.
3.7 Técnicas e instrumentos de la investigacion

Para recabar la informacion se utilizo la técnica de analisis documental que permitio la
busqueda, analisis, e interpretacion de la informacion registrada por otros investigadores
en revistas cientificas impresas y electronicas y que gracias a la confiabilidad brindo el

marco conceptual necesario para nuestra investigacion.
3.8 Técnicas de procesamiento de analisis de los datos

Puesto que no se contd con datos estadisticos u otros que se puedan requerir mediante
observaciones o mediciones de tipo experimental, no se realizo algun tipo de analisis ni.

Procesamiento de datos. experimentales
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CAPITULO IV
RESULTADOS Y DISCUSION

4.1 Solucién polinémica aproximada
En la presente seccion se va a demostrar la existencia y la unicidad de la solucion
polinbmica aproximada para el problema (1.1) - (1.3), para lo cual se utiliza el método de
Faedo-Galerkin,, porque es el método mas apropiado para sistemas que estan en presencia
de terminos no lineales como es él, se presenta en este trabajo. y para la unicidad se

utilizara el método estandar de la energia.

4.1.1 Existencia de solucion polindmica aproximada

En esta subseccion, demostramos la existencia de solucion polinémica aproximada
del problema ((1.1) -(1.3) mediante el método de Faedo Galerkin, sin pérdida de
generalidad, mediante traslacién se puede considerar u|5q = 0.

Para demostrar la existencia de soluciones polindmicas aproximadas, las

4 3
funciones £y g = ul,q, son tales que: feW ™ 3 (Q) y geW = *(Q), entonces
existe una Unica funcién, u e I/I/O1 *(Q) N P(Q) tal que satisface el problema no

lineal estacionario:

2
z 0%u N 0 ou
£ ox} = Ox; u ox;

>] = f(xl 'xz) ’ Ulpa (41)
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4.1.2 Prueba de resultado de existencia de solucion polindmica aproximada
Supongamos que veW,'* (Q) N P(Q) tal que, vlgo =g y Vg = 0,y ademas
considerando, v = u — g de tal manera que (4.1) se puede escribir en la forma:

2

02 d
—Z$+a[“’+g>

i=1

o(v+g) 2

axi

= flxp,xp) ,veWH*(Q) ¢ (4.2)

Es decir, se debe resolver el problema de Dirichlet homogéneo de la forma:

2

Z 0%v N 0 ov | B
i=1 ox; = 0x; " ox, =/ (xa) (4.3)
V|gq =0

Para por ultimo hacer la sustitucion: u=v+ g

En este sentido planteamos el problema aproximado sobre un espacio finito
dimensional sobre el cual hallaremos su solucion polindmica aproximada para
luego extender via la densidad de los espacios vectoriales.

Sea, V,, = [wy,w,,. .. ,w,, | elespacio finito dimensional de H(Q) generado
por los m vectores de la base hilbertiana.

Consideremos {w, ,w,,ws,. .. ,w,, }unabase de W,""*(Q) n P(Q) c C°(Q)
y con inyeccién continua. Sin pérdida de generalidad, sea:

vpef{w,, wy, wy,... , w,},detal manera que:

2
92v, 9 vy, |°
<— - < m>,wj>=(f,wj),1SjSm

+— v 22
£ 0x?  Ox;\ ™ |ox;
i=1 ! l l

2
azvm v, 2 aWj
_m _ ' cic<
Z(éxiz +<Um axi| " 0x; (fowj) 1<sj<sm,

=1
la cual es una derivada distribucional.
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Como v,e{w;, wy, ws,.. , wy }, entonces v,,, es la combinacion lineal:

Uy = z Ajwj,de donde se tiene que:
j=1

2
Z azvm oV,
dx? d0x;
2
Zf |6vm
0x;
Q

i=1

2\ o,
) ;a_xi>= (f!vm>

ffvmdx < Iflly lvwlly ,desigualdad de Holder

Endonde: V =W, *(Q) y V' = W-14/3(Q)

Ahora como:

vy, I3 < j

10

vy, |

Desigualdad de Poincare

, entonces: || v,lly < C.

Por otro lado, como la funcién ve W01 4(Q) N P(Q) , entonces se obtiene

2 2
S5l S
—Jg ;| 0x; axl

2
S ] )12

— la 0x; 0x;

4 1
avm 1 ,
ZU 0xl l U |a dx] = o I3 v

, de donde resulta

v, |2
d0x;

l Desigualdad de Holder

2

zazvm N 0 oy,
ox? ox; Vm ox;

i=1 t

<|lv, I? < C3,acotada con C : constante

)
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Puesto que V' es un espacio reflexivo, entonces existe una sub-sucesion { v,.} de { v, }
tal que: v, — u débilmente en W,"*()

Zazvr_l_ 0
Ly Ox}  Ox; vr

av,
6xl-

2 2
) - y ,débil en W=14/3(Q)
=1

Pasando al limite cuando r — oo el problema aproximado se reduce a

=02y, 2
- ﬁ-l_a_xi Uy wi )= (f,w;)
i=1 !

av,
Oxl-

, de donde implica que: y = f (4.4)

Ademas, se tiene que:

iazerr 9
ox? = Ox; vr

i=1

av,
axi

2
>:vr>= (f,v)

Y pasando nuevamente al limite cuando r — oo se obtiene
2
0%v, N 0
— —+ —|v
Ly 0x?  ox;\ "
=1

Por otro lado

av,

2
Ix >,vr> - (f,u)=(y,u)

(Av, —Av,v, — v) =0 ,VveV

202vr+ 9 2 +262v+6 v
£ dx? = Ox; vr L dx?  Ox; v ox;

Luego pasando al limite cuando, r — oo se obtiene

av,
6xi

2
>,vr—v>20

29



N : v 9 o
v Lox? " ox, Y ax;

Haciendo: v = u — Aw ,A > 0, weV y sustituyéndolo en (4.5) se obtiene:

2
),u—v>20.‘v’veV (4.5)

2
0%(u— Aw) 0 a(u— aw) |2
4 -~ 7 >
Aly+ 1_51 322 + ox, (u—Aw )‘ >0
2
0%(u— Aw) 0 O(u—
E _ 77 >
s\ 0x? T3 i )‘ W =0

+iazu+ 9 ou
Y L Ox}? axl dx;

_ N, 9 jou
V= Ly ox?  Ox; u ox;

Por lo tanto, de (4.4) y (4.6) se concluye que:

ou
0xl axl

2
),W>2 0 ,VwelV

2
) (4.6)

2
> fxq,x2) (4.7)

Asi de esta manera se ha demostrado que existe solucion polinGmica aproximada del

problema no lineal estacionario:

A 0 ou |* 9 u
v 0x, v 0x, dx, u 6x2

> f(xy,x3)

30



4.1.3 Unicidad de la solucién polinébmica aproximada
De manera similar a como se hace con una ecuacion diferencial ordinaria, se
puede definir un operador asociado a las ecuaciones diferenciales parciales, y se
puede distinguir los operadores lineales de los no lineales. Asi, por ejemplo, con
0?2 ou 9%u

la ecuacion, 2 — 2% = cos x, se asocia el operador lineal: Au = ——— ycon
"ot 9x2 ' ot  9xZ2

la ecuacién de Burger, U; + u u, = 0, se asocia el operador no lineal,

Au= u; +uu,

En esta subseccion planteamos las hipdtesis y algunos resultados necesarios para
el desarrollo del problema en estudio.

En la prueba de la unicidad de la solucion polindmica aproximada se utilizo el

método estandar de la energia.

Teorema 1. Sea V un espacio de Banach reflexivo, separable y en donde el

operador A, esta definido como;

A:V - V' talque se satisface:
i) Aesacotadoy AeR , entonces ( A (u + Av),w )eR es continua, esto es:

AL_i)rﬁl(A(u+ Av), w)=(A(u+ Aqv), w)

ii) A esmonétono, es decir: (A(u+ Av),w)=0, Vu,veV
ooy (Au, u) . e .
iii) BT donde || u || — 0 por coercitividad del operador A

Porlotanto, A: V — V' essobreyectivo, es decir, V fe V', 3 ueV , tal que

Au=f
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Consideremos de nuevo el problema no lineal estacionario (4.1)
Z ou
axl

, donde Q es una region plana convexa, y el primer miembro es un operador

>]=f@uh), ulag

diferencial, que lo denotaremos con A, de manera que esta ecuacion toma la

forma:

Para ello supongamos que u y v son dos soluciones polindmicas aproximadas no
nulas y diferentes del problema no lineal estacionario (1.1) — (1.3), entonces se

cumplen que:

{Au=f i Ulgn =g . {Au—Av = f—f =0
Av=f : vlgg g—9g=0

I
Q

- Au— Av=u— v
Obien: (Au — Av , u — v) (4.9)

, en donde:

u= — —+ —u|=— .
£ ox} = 0x; ox;

Sustituyendo (4.10) en (4.9), se obtiene:

(Au—Av,u—v)= (— Z

9 |6v2 \
o \Vlax | )47
2+ (?v 2 >
v axi ,u v
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i=1

52 62 d du
DR
axi axi

axL < axL




2 2
v d
- a_xl l’a_xi(”_v))

2
B z<62v 62u+ 0 ’811
B - ox} Ox?  0x; u 0x;
Como ueWt4(Q) - V=w1*(Q)

Por otro lado,

(Av—Au,v—u)= (Au—f,v—u)+(Av—Au,v—u)

= (Av—Au,v—u) = 0, por ser un operador monétono
Por tanto, se tiene que: (Au—f,v—u)=0,VveV.
Ahora, construyamos un subespacio cerrado E en el espacio V:

vveV , sea lasucesion: S, = {ueV: (Av—f,v—u)=0, Au=f}

E es cerrado y convexo, ademas E = {uelV / Au= f}, es conjunto de soluciones de

la ecuacion (4.8).
Suponga que la normaen V es la funcion, || .|| : V — R, convexaen forma estricta
sobre la esfera unitaria de V' y que:

|Aull =[|Av |l = |lull= |lv| ycomo u satisface la ecuacion (4.8), entonces:
Ec {ueV/ |lull=S, Au = f }, para una conveniente S.

Por tanto, el subespacio E se reduce a un conjunto unitario, es decir u = v, lo que significa

que la solucién polindmica aproximada del problema (1.1) -(1.3), es Unica.
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4.2 DISCUSION DE LOS RESULTADQOS

Con respecto a la hipotesis general de investigacion” existe una Unica solucidon
polindbmica aproximada para la ecuacion diferencial parcial no lineal en dos variables
independientes en el espacio de Soébolev”, representada por el modelo no lineal

estacionario,

_Au_i(u ou

6x1

-2 u|a—u2 = f(xy,x3) enQ c R?
6x1 axz axz 1,42

Los resultados obtenidos y que se muestran en las secciones 4.1.2 y 4.1.3 confirman que
existe una unica solucion polinbmica aproximada para el problema (1.1) — (1.3). Por lo

que se puede garantizar que la citada hipétesis ha sido respaldada.

Por otra parte, estos resultados no hacen mas que ratificar que las aproximaciones hechas
en la seccion 4.1.2, permitieron acotar las soluciones aproximadas y con el paso al limite
determinar la convergencia, probando asi la existencia de soluciones polinGmicas

aproximadas en el problema (1.1) — (1.3).

En lo que respecta a las hipdtesis especificas, las condiciones feW =1*/3(Q) vy
geW3/**(Q) son las necesarias para establecer la existencia de la solucion polindmica

aproximada en el problema (1.1) — (1.3).

Para la unicidad de la solucion polindmica aproximada se consideré dos soluciones
aproximadas diferentes para el problema (1.1) - (1.3) y mediante el método estandar de
la energia son las necesarias para establecer que ambas soluciones son iguales,
demostrando asi la unicidad de las soluciones polinémicas aproximadas del problema

planteado.
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CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

5.1

5.2

Conclusiones

Al culminar la investigacion, se arribo a las siguientes conclusiones:

a)

b)

Mediante aplicacion del método de Faedo-Galerkin, se demostr6 de manera
exhaustiva y detallada la existencia de solucion polinémica aproximada del
problema (1.1) — (1.3)

Suponiendo u y v dos soluciones polinémicas aproximadas diferentes y
utilizando el metodo estandar de la energia, se demostro que u = v, la unicidad

de solucion polindmica aproximada del problema (1.1) — (1.3)

Recomendaciones

a)

b)

Estudiar la existencia de soluciones polindmicas aproximadas del problema
(2.1) — (1.3) en dominios no acotados de R™ y trabajando en espacios de
Sobolev de exponente variable.

Se recomienda complementar esta investigacion estudiando el
comportamiento asintotico de las soluciones aproximadas del problema (1.1)
—(1.3).

Dentro de un trabajo ambicioso como lo es este, siempre se desea que haya
una mejora continua del mismo, por lo tanto, se recomiendas a futuros
investigadores que tengan interés en la linea de investigacion respecto de la
existencia de solucion regular o débil para ecuaciones diferenciales parciales

no lineales.
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ANEXO A

Al. Espacios vectoriales

Definicion A.1.1 Un espacio vectorial sobre el cuerpo R, es el conjunto V, dotado de
dos leyes de composicion: una interna +:V X V. — V yotraexterna.: R x V— V, tales
que paratodo x,y, z €V y todo 14, A,€R se satisface los siguientes axiomas:

Q) x+y=y+x ,x+@+z2)=x+y)+z

(2) F'0eE: x+0=x

(3) '—xeE: x+(—x)=0

(4) F1eR:1x=xy Ay, ,eR: A, (Ax) = (A4, 4,)x

B) 11x+y)=24x+ 4y y A+ )x= Ax+ Ax

Los elementos de E sin precisar su naturaleza podran ser: vectores geometricos, nimeros
reales o complejos, matrices, polinomios, funciones, etc.

Definicion A.1.2 Sea Q un conjunto abierto de R. Se designa con €°(€) al espacio de
todas las funciones continuas definidas en € con valores en R.

c’(Q) = {p:Q — R/ ¢ escontinuaen Q yvalor real }

Son subespacios de ¢°(Q) los siguientes:

c™(Q) ={peC’(Q); D*peC’(Q),V|al<m }

Cc”(Q) = Np-o C™(Q)

Co(Q) = { e C°(Q) ;soporte de ¢ es compacto en Q. }

€n(Q) = €™(Q) N Cy()

Sobre €*(Q) , la norma de convergencia uniforme, se define como:

llellw = Sup| @(x) |

XeEN

Definicién A.1.3 Sea Q un conjunto abierto de R™. Se designa con €™(Q) al espacio
vectorial de todas las funciones continuas que son acotadas y uniformemente continuas
en Q.

c"(Q) = {p:Q — R/ @ esacotada y uniformente continua en N}
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A2.

Definicion A.1.4 Un espacio vectorial normado es aquel espacio al que se ha dotado una

funcion, || .|: E — R, llamada Norma, tal que satisface lo siguiente:
i) x| =0 ,paratodox =0yl 0] =0

i) | 2 ([ = [A[ll x I

i) llx+yll<lxll+Iyll

Proposicion A.1.1 Una norma sobre un espacio E induce una métrica dada por:
d(x,y) =[x —y|l, lacual induce una topologia sobre E. Las topologias inducidas por

una métrica se denominan topologias metrizables.

Definicion A.1.5 (Dual de un espacio de Banach) Sea E un espacio de Banach, El
espacio dual de E, denotado E*esta formado por todas las aplicaciones f:E — R

(funcionales) lineales continuas.

La norma estandar de E* es:

Ifllee = Sup [fGI= Max |fGOl= Max |f()]= MaxS&

llx <1 xeE Il x lIs1,xeE |= xeE x|l

Proposicion A.1.2 Una funcién lineal, f: E — F entre espacios de Banach, es continua

si y solo si es acotada, esto es:

I flle = ClIxllg

Proposicion A.1.3 Un subespacio F c E de un espacio de Banach cerrado en Ees un

espacio de Banach.

Subespacio vectorial

Un subconjunto no vacio, F de un espacio vectorial E, se llama sub-espacio, cuando se

deduce que, ax + By €F cualquieraque sean a y .

Por ejemplo, los polinomios forman un subespacio (de dimension infinita al igual que
todo el C 4 1). Al mismo tiempo todo el espacio C; ;7 puede ser considerado como un
subespacio de un espacio mas amplio de todas las funciones, tanto continuas como

discontinuas sobre el intervalo [ a, b ].
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ANEXO B

B1. Espacios con Producto Escalar

Definicion B.1.1 (Espacio de Medida)
Sea Q un conjunto abierto. Un espacio de medida, es una terna ( Q, Y, u ) donde

(1) M esuna o —algebra, una familia de subconjuntos de € tales que:
1) QeM
i) SiAeM, entonces A°eM
i) Upey ApeM VA, eM
(2) u esuna medida, esto es, una funcion, u: M — [0, ) talque verifica:
i) u(@) =0
i) V{A, }hen © M de conjuntos disjuntos

I (0 An) = i u(4,)

n=

Llamamos a los elementos de M conjuntos medibles y a los elementos AeM tales que:

u(A) = 0 conjuntos de medida nula.

Definicién B.1.2 Sean Q c R™ y u una medida de Lebesgue. El espacio denotado,

H1(Q) es el espacio de todas las funciones integrables Lebesgue de Q en R .

Por comodidad se utiliza la notacion [ f en lugar de [ £ du, o [ f cuando no haya
Q Q

confusion. En adelante, diremos que f es medible para referirnos que f es medible

Lebesgue.
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Definicion B.1.3 (Espacio de Lebesgue)
Sea ) c R™, definimos el espacio LP (Q) de funciones medibles de Q en R para,
1 < p < o0, como:
P@={fQ—R/|fIPeH (D)}
Dotamos a L? () de la norma:

1/p

I f Neriay = £ llr = 0 F Wy = (£1£17)

Definicion B.1.4 (Espacio de Lebesgue)

Si Q c R"™, entonces definimos el espacio L* () de funciones medibles de Q en R™

para, 1 < p < oo, COMO:
L) ={fQ > R/|f(x)|<C p.ctp}
, en donde c.t.p se refiere a casi todo punto.

Dotamos a L* () de la norma:

I flloy =11 fllio = 1 fllw=Inf{C/ | f)I<C}

Nota. Los espacios LP se definen como espacios cociente mediante la relacion de

equivalencia,
f~9 © f=gep.ctesdecir|f—gl,=0
B2. Resultados béasicos de la teoria de la medida y espacios LP

Teorema B.2.1 (Convergencia monétona)
Sea {f,} € H1(Q) una sucesion de funciones, tal que se cumpla:

1) fi<f, <....encasitodo punto
2) Sup [ fp < oo
neN

Entonces,

f(x) converge en casi todo punto a un limite f(x)eH*( Q) y | /o = fIl = 0
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Teorema B.2.2 (Convergencia dominada)

Sea {f,} c€ H*(Q) una sucesion de funciones, tal que se cumpla:
1) f,(x) — f(x) en casitodo punto

2) dgel'(Q)talquetodon, | f,,(x) | < g(x) en casitodo punto
Entonces,

feH' Q@ y 1 fu = flls —0

Lema B..1.1 (Lema de Fatiou)

Sea {f,,} una sucesion de funciones en L1(2) que cumple lo siguiente:
1) f, =0

2) Sup [ fp < oo

neN Q

Denotando con f = Lim Inf = f, (x) p.c.t xeQ, entonces | f < LimInf [ f,
n —0o Q n—-oo Q

Teorema B.1.5 (Teorema de Tonelli)
Sea F(x,y):Q, X Q, — R una funciéon medible talque:

1) [ |F(x,y)|dy < oo para casi todo punto xe€),
Q,

2) QIQIIF(x,y)uydx < o

1 852

Entonces, F e L1(Q; X Q,)
Teorema B.1.6 (Teorema de Fubini)
Si F(x,y):Q, x Q, — RconFel'(Q, X Q,) , entonces para casi todo punto xeQ,

F(x,y)el*(Q,) y [ F(x,y)dyeL*(Q,) (Analoga para casi toda y). Ademas:
Qz

[ [1FGoy) ldydx=[ [IF(x,y)ldxdy = [ F(x,y)dxdy
01 Q 0, O

1 Q2 2 Q1xQz

Teorema B.1.7 (Desigualdad de Hdélder)

Si felP(Q)y geLP' (Q), entonces:

fgel'(Q)y glfg L < £ 1l g Il
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C1.

C2.

ANEXO C

Espacios separables

La separabilidad es una propiedad topoldgica importante para trabajar con espacios de

Banach. En esta seccion X denota un espacio topolégico.

Definicion C.1.1 Un espacio topoldgico es separable si y solio si existe un conjunto

contable E c X denso en X , esto es, E denota la clausura de E.

Proposicion C.1.1 Todo subconjunto A < X de un espacio separable métrico X es

separable.

Teorema C1.1 Sea X un espacio de Banach tal que X* es separable. La implicacion
reciproca no es cierta, como contraejemplo tenemos L () (separable), cuyo dual

L* () (no separable).

Definicién C.1.2 Un conjunto B < E es convexo si para todo x, yeB, el punto

[x(1— t)+ yt]eB paratodo te[ 0,1 ]
Espacios reflexivos

Sea X es un espacio normado, el espacio vidual o segundo dual de X, es el espacio

denotado por, X** :== (X*)* = L(X*,R), con norma:
(X)) = Sup {| X" (X / x" e X"}

=Min{K >0 |X*(X*)| < K/|X*| para todo x*eX* }
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ANEXO D

E1l. Espacios de Sébolev

1. Los espacios de Sobolev, son los de orden entero positivo ( W™ P con m,p €Z,).
Enseguida se extiende la nocion de tal manera de considerar valores no enteros de
m. Posteriormente se consideran espacios con otras normas en el espacio de

Lebesgue, LP.

Sin embargo, el tipo de espacios de S6bolev mas importantes son los de funciones
de cuadrado integrable, es decir, los W™2 los que seran denotados por H™. Estos

espacios son espacios de Hilbert separables.

Entre los espacios H™ los mas importantes son H' y H?. Por ejemplo, la

formulacion variacional del clasico problema de Dirichlet-Poisson:
—Au=fen QcR" u=0 en 00 serealizaen H*(Q)

El problema de Dirichlet-Poisson correspondiente al operador biharménico A? se

realiza en el espacio H? ().

En analisis numérico, interesa conocer H'(Q) y H?(Q) para poder construir

subespacios de dimensidn finita incluido en ellos.

Por otro lado, en las demostraciones para los espacios H! y H? sirven para los
espacios H™. Por lo demas el delicado problema de la traza sobre el borde se ve sobre

H' y el de la derivada normal sobre HZ2.
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Estas razones son las que motivan que una presentacion relativamente facil y
completa, ademas de til, pueda hacerse sin pérdida de generalidad tratando a fondo

H''y H?, después H™ extendiendo los resultados.

Definicion 1. Un espacio de Sobolev de orden 1 sobre Q es el definido por:

H' () = { ueH*(Q) / 22 el?(@), 1< i< n |

i
Definicion 2. Producto escalar en H ()

Se define en H*(Q) el producto escalar de las funciones u y v, denotado  (u, v), g,

. du adv
como: (u, v}y = J, ( =15, 9

+uv)dx

Y la norma correspondiente se denota por: [lull,q = (v,v);;

Definicion 3. ( Hy (£): subespacio de H! () de las funciones “nulas” sobre ).
Teorema 3. D(R™) es denso en H*(R™), es decir, H(R™) = H'(R™).
Teorema 4. (Teorema de representacion de Riesz)

Seal <p < ooy @e(LP)*, entonces existe una Unica funcion uel? tal que:

o(f)=[uf , VfelP.Masaun, lull, = Il @ llLa)
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ANEXO E

Teoria de las Distribuciones

E1. Notaciones
Q . designa un conjunto abierto de R™ de fronteradQ =T

L?(Q): Espacio de (clases) funciones reales cuyo cuadrado es integrable sobre Q.
(f.g)= [, fg ,f gel*(Q) , define en L*(Q1) una estructura Hilbertiana

flloq = (f, g)*/?: la norma en L2(Q)
Definicion 1. (Espacio de funciones Prueba)

Se define el espacio D(2) como el espacio de las funciones infinitamente diferenciales

con soporte compacto en €2, esto es:

D(Q) = {peC*®/ supp(Q) = {xeQ: ¢(x) =0}, es compactoenQ}
Definicion 2. (Espacio de las distribuciones)

Se denota con, D'(Q) el espacio de las distribuciones sobre Q como el espacio dual de
D(Q) , es decir, el espacio de las formas lineales continuas sobre D(Q). Es decir, si
(.,.) designa la dualidad entre D'(Q) y D(Q) entonces para TeD' (), ¢ ,p;eD(Q) y

A€R se tiene que: (T, Ap) = A(T , @).
Definicion 3. (Pseudo topologia en D'(£))

D'(Q) es una pseudo topologia: si (T]) es una sucesion de D'(Q) entonces se dira que

T; converge a T en D'(Q) si para todo e D(Q), (Tj, @) - (T, ).
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Ejemplo 1. (Masa de Dirac),
Sea ael), se define la distribucion “masa de Dirac §, en el punto a”, como:

(64, @) = @(a). Es evidente que es una distribucion sobre Q, si a,, = a en Q se

cumple que: 6,,, = &, en D'(Q).
Ejemplo 2. ( L?(Q) es un subespacio de D'((2))
Se recuerda que L?(Q) es un espacio de Hilbert y que D(Q)es denso en L?(().

Dada una funcion feL?() se le asocia la distribucion Tye D'(Q) definida por:

(Tr, ) = [, f)o(x)dx ,VeeD(Q)
Se observa que la aplicacion f — Ty es inyectiva. En efecto si T, = 0, VpeD(Q),

fQ f(x)p(x)dx = 0, entonces f = 0 en virtud de la densidad de D(Q) en L2((Q).
Luego Ty # Ty si f # g de manera que se puede identificar f a T lo que equivale a

identificar L?(Q) a un subespacio de D'(Q). Esto es: L?(Q) c D'(Q).
Por lo demas se tiene que la inclusion es “continua”:
fo=>fenl?2Q) = f, > fenD(Q)

En efecto segin la desigualdad de Cauchy-Schwartz:

vpeD(): |f, (o = Nedx| < IIf = flloalleloa

Como, f, = f en L*(Q), || f, — f lloq = 0, luego fn (fn — Hedx - 0,Vpe, D(Q)

de donde: [, fopdx — [, fodx,estoes: f, — fenD'(Q)
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