UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

Análisis de la altura normal y crítica en conductos cerrados rugosos a flujo parcial y con diferentes secciones geométricas

TESIS PARA OBTENER EL TITULO PROFESIONAL DE INGENIERO MECÁNICO

AUTORES:

Bach. Castañeda Llanos, José Jhordan Bach. Peña Hilario, Christian Arturo

ASESOR:

MSc. Risco Ojeda, Rusber Alberto

Nuevo Chimbote – Perú 2022

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

HOJA DE CONFORMIDAD DEL ASESOR

El presente informe de Tesis titulado:

"ANÁLISIS DE LA ALTURA NORMAL Y CRÍTICA EN CONDUCTOS CERRADOS RUGOSOS A FLUJO PARCIAL Y CON DIFERENTES SECCIONES GEOMÉTRICAS"

Elaborado por los bachilleres: **CASTAÑEDA LLANOS JOSÉ JHORDAN y PEÑA HILARIO CHRISTIAN ARTURO**, para optar el Título Profesional de Ingeniero Mecánico, ha contado con el asesoramiento de quien deja constancia de su aprobación, por tal motivo, firmo el presente trabajo en calidad de asesor.

> MG. Ing. RUSBER ALBERTO RISCO OJEDA COD.ORCID.0000-0003-0194-169X DNI:32903454 Asesor

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA

HOJA DE CONFORMIDAD DEL JURADO EVALUADOR

El presente informe de Tesis titulado:

"ANÁLISIS DE LA ALTURA NORMAL Y CRÍTICA EN CONDUCTOS CERRADOS RUGOSOS A FLUJO PARCIAL Y CON DIFERENTES SECCIONES GEOMÉTRICAS"

Elaborado por los bachilleres: CASTAÑEDA LLANOS JOSÉ JHORDAN y PEÑA HILARIO CHRISTIAN ARTURO, para optar el Título Profesional de Ingeniero Mecánico.

Fue revisado y aprobado por el siguiente Jurado Evaluador

DR. SERAPIO A. QUILLOS RUIZ COD. ORCID:0000-0002-4498-0034 DNI:08597503 PRESIDENTE

MG. NELVER J. ESCALANTE ESPINOZA COD. ORCID:0000-0001-8586-3021 DNI:32763819 SECRETARIO MG. RUSBER A. RISCO OJEDA COD.ORCID.0000-0003-0194-169X DNI:32903454 INTEGRANTE

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL INGENIERÍA MECÁNICA epim@uns.edu.pe

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 16 días del mes de agosto del año dos mil veintidós, siendo las 10:45 a.m., el Jurado Evaluador designado mediante Resolución № 300-2022-UNS-CFI, integrado por los docentes: Dr.Serapio Agapito Quillos Ruiz (Presidente), Msc.Nelver Javier Escalante Espinoza (Secretario) y el Msc. Rusber Alberto Risco Ojeda (Integrante), y de expedito según Resolución Decanal N°527-2022-UNS-FI, y en concordancia a lo dispuesto en Oficio Múltiple N° 034-2022-UNS-CU-SG, el Jurado Evaluador, titular, da inicio a la sustentación de la Tesis titulada: **" ANÁLISIS DE LA ALTURA NORMAL Y CRÍTICA EN CONDUCTOS CERRADOS RUGOSOS A FLUJO PARCIAL Y CON DIFERENTES SECCIONES GEOMÉTRICAS"**, perteneciente a los bachilleres: CASTAÑEDA LLANOS JOSE JHORDAN, con código de matrícula N° 0201216013 y PEÑA HILARIO CHRISTIAN ARTURO, con código de matrícula N°0201116015, quienes fueron asesorados por el Msc. Risco Ojeda Rusber Alberto, según Resolución Decanal Nº 419-2020-UNS-FI.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General de Grados y Títulos, vigente, declaran aprobar:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
CASTAÑEDA LLANOS JOSE JHORDAN	17-	BUEND

Siendo las 11:30 a m del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, setiembre 16 de 2022

Dr. Serapio Agapito Quillos Ruiz

PRESIDENTE

Msc. Nelver Javier Escalante Espinoza SECRETARIO

Msc. Rusber Alberto Risco Ojeda INTEGRANTE

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL INGENIERÍA MECÁNICA epim@uns.edu.pe

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 16 días del mes de agosto del año dos mil veintidós, siendo las 10:45 a.m., el Jurado Evaluador designado mediante Resolución Nº 300-2022-UNS-CFI, integrado por los docentes: Dr.Serapio Agapito Quillos Ruiz (Presidente), Msc.Nelver Javier Escalante Espinoza (Secretario) y el Msc. Rusber Alberto Risco Ojeda (Integrante), y de expedito según Resolución Decanal N°527-2022-UNS-FI, y en concordancia a lo dispuesto en Oficio Múltiple N° 034-2022-UNS-CU-SG, el Jurado Evaluador, titular, da inicio a la sustentación de la Tesis titulada: **" ANÁLISIS DE LA ALTURA NORMAL Y CRÍTICA EN CONDUCTOS CERRADOS RUGOSOS A FLUJO PARCIAL Y CON DIFERENTES SECCIONES GEOMÉTRICAS"**, perteneciente a los bachilleres: CASTAÑEDA LLANOS JOSE JHORDAN, con código de matrícula N° 0201216013 y PEÑA HILARIO CHRISTIAN ARTURO, con código de matrícula N°0201116015, quienes fueron asesorados por el Msc. Risco Ojeda Rusber Alberto, según Resolución Decanal Nº 419-2020-UNS-FI.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General de Grados y Títulos, vigente, declaran aprobar:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
PEÑA HILARIO CHRISTIAN ARTURO	16	REGULAR

Siendo las 11:30 a m del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, setiembre 16 de 2022

the

Msc. Rusber Alberto Risco Ojeda INTEGRANTE

Dr. Serapio Agapito Quillos Ruiz PRESIDENTE Msc. Nelver Javier Escalante Espinoza SECRETARIO

DEDICATORIA

Dedico de una manera especial a mi madre quien siempre me apoyo para poder llegar a estas instancias de mis estudios, a mi hermano que siempre fue un ejemplo a seguir y a toda mi familia que siempre estuvo de manera incondicional en este largo camino.

Arturo Peña Hilario

A mis padres siendo mi razón de ser e inspiración de superación cada día porque están de manera constante brindándome su apoyo de manera incondicional, a todos mis seres amados por su apoyo sincero y paciencia en cada etapa de mi vida, con mi más sincero amor, en especial a mi señora madre Patricia Llanos Puscan jamás dejo de creer en mí.

Jose Jhordan Castañeda Llanos

AGRADECIMIENTO

Cada paso dado con mis compañeros, cada experiencia en esta carrera universitaria me formo y me dio la actitud necesaria para ser el profesional que siempre anhele.

En primer lugar, doy gracias a Dios por permitirme tener estas experiencias, a mi familia por el apoyo y estimulo constante a lo largo de los años, gracias a cada maestro por las enseñanzas, a la universidad por permitirme ser lo que me apasiona y a todas las personas que de una u otra forma me ayudaron a realizar este trabajo.

Arturo Peña Hilario

A Dios por darme la sabiduría y conocimiento para tomar las decisiones adecuadas en mi vida, a todas las personas que en el trayecto convivieron conmigo. Agradecer a mis amigos los cuales no veré por mucho tiempo y al apoyo de ellos para conmigo, a nuestros docentes por todas las palabras y recomendaciones brindadas a lo largo de nuestra vida universitaria dentro de la escuela de Ingeniería Mecánica, y por una buena formación ética y profesional.

Jose Jhordan Castañeda Llanos

Dedicatoriavi	i
Agradecimiento	ii
Índice general vi	iii
Resumen xi	iii
Abstractxi	iv
Capítulo I: INTRODUCCIÓN	1
1.1 Antecedentes	1
1.2 Formulación del problema	3
1.3 Objetivos de la investigación	3
1.3.1 Objetivo general	3
1.3.2 Objetivos específicos	3
1.4 Formulación de la hipótesis	4
1.5 Importancia de la investigación	4
Capítulo II. MARCO TEÓRICO	5
2.1 Fundamentos teóricos	5
2.1.1 Propiedades de los canales abiertos	5
2.1.2 Características de los canales	6
2.1.3 Elementos geométricos de una sección de canal	6
2.1.4 Tipos de flujo	8
2.1.5 Flujo uniforme en canales prismáticos	10
2.1.6 Ecuación o fórmula de Manning	11
2.2 Geometría de canales	13
2.2.1 Canal rectangular	13
2.2.2 Canal triangular	14
2.2.3 Canal trapezoidal	14
2.2.4 Canal parabólico	15
2.3 Análisis del flujo uniforme en conductos	16
2.3.1 Ecuación de Manning	16
2.3.2 Ecuación de Darcy-Weisbach	16
2.3.3 Ecuación de Colebrook-White	16
2.3.4 Algunas características hidráulicas	16
2.3.4.1 Número de Froude	16
2.3.4.2 Pendiente crítica	16

ÍNDICE GENERAL

2.4 Parámetros h	idráulicos	17
2.4.1 Anális	is de profundidad normal, profundidad crítica y pendiente crítica	17
Capítulo III. MA	TERIALES Y MÉTODOS	21
3.1 Metodología	de la investigación	21
3.1.1 Tipo d	e investigación	21
3.1.2 Diseño	o de la investigación	21
3.1.3 Procee	limiento de la investigación	21
3.1.4 Poblac	ión	22
3.1.5 Variab	les de estudio	22
3.1.6 Propue	esta aplicada	22
3.2 Métodos		23
3.3 Técnica		23
3.4 Instrumentos		23
3.5 Medios y ma	teriales	23
Capítulo IV. RE	SULTADOS Y DISCUSIÓN	24
4.1 Profundidad	normal	24
4.2 Profundidad	crítica	33
4.3 Pendiente cri	ítica	35
CONCLUSION	ES Y RECOMENDACIONES	42
Conclusiones		42
Recomendacion	es	44
REFERENCIAS	BIBLIOGRÁFICAS	45
Apéndice		47
Apéndice A1	Profundidad normal en canal rectangular ($z = 0$) y trapezoidal	
	(z > 0) desde fórmula de Manning	48
Apéndice A2	Profundidad normal en rectangular ($z = 0$) y trapezoidal ($z > 0$)	
	desde fórmula de Darcy (n=0.015	50
Apéndice A3	Profundidad normal en canal rectangular ($z = 0$) y trapezoidal	
	(z > 0) desde fórmula de Darcy (n=0.035	52
Apéndice A4	Profundidad crítica en canal rectangular y trapezoidal	54
Apéndice A5	Pendiente crítica en rectangular ($z = 0$) y trapezoidal ($z > 0$)	
	desde fórmula de Manning	56
Apéndice A6	Pendiente crítica en canal rectangular ($z = 0$) y trapezoidal	
	(z > 0) desde fórmula de Darcy (n=0.015	58

Apéndice A7	Profundidad normal en canal rectangular ($z = 0$) y trapezoidal	
	(z > 0) desde fórmula de Darcy (n=0.035	60
Apéndice A8	Profundidad normal en canal triangular desde fórmula de	
	Manning	62
Apéndice A9	Profundidad normal en canal triangular desde fórmula de Darcy	
	(n=0.015	64
Apéndice A10	Profundidad normal en canal triangular desde fórmula de Darcy	
	(n=0.035	66
Apéndice A11	Profundidad crítica en canal triangular	68
Apéndice A12	Pendiente crítica en canal triangular desde fórmula de Manning	70
Apéndice A13	Pendiente crítica en canal triangular desde fórmula de Darcy	
	(n=0.015	72
Apéndice A14	Pendiente crítica en canal triangular desde fórmula de Darcy	
	(n=0.035	74
Apéndice A15	Profundidad normal en canal parabólico desde fórmula de	
	Manning	76
Apéndice A16	Profundidad normal en canal parabólico desde fórmula de Darcy	
	(n=0.015	78
Apéndice A17	Profundidad normal en canal parabólico desde fórmula de Darcy	
	(n=0.035	80
Apéndice A18	Profundidad crítica en canal parabólico	82
Apéndice A19	Pendiente crítica en canal parabólico desde fórmula de Manning	84
Apéndice A20	Pendiente crítica en canal parabólico desde fórmula de Darcy	
	(n=0.015	86
Apéndice A21	Pendiente crítica en canal parabólico desde fórmula de Darcy	
r	(n=0.035	88
	`	

Figura 1	Geometría para flujo en canal abierto: (a) vista lateral; (b) sección
	transversal8
Figura 2	Clasificación de flujo tipo I10
Figura 3	Esquema del flujo uniforme en canales abiertos11
Figura 4	Canal de sección rectangular13
Figura 5	Canal de sección triangular14
Figura 6	Canal de sección trapezoidal14
Figura 7	Canal de sección parabólica15
Figura 8	Profundidad normal vs factor de sección (según Manning y Darcy
	Weisbach): canal trapezoidal y rectangular ($z = 0$), para $n = 0.015$ 24
Figura 9	Profundidad normal vs factor de sección (según Darcy Weisbach):
	canal rectangular ($z = 0$) y Canal Trapezoidal ($z > 0$), para
	n = 0.015, 0.03525
Figura 10	Profundidad normal vs factor de sección modificado (según Darcy-
	Weisbach): canal rectangular ($z = 0$) y Canal Trapezoidal ($z > 0$)27
Figura 11	Profundidad normal vs factor de sección (según Manning y Darcy
	Weisbach): canal triangular, para $n = 0.015$
Figura 12	Profundidad normal vs factor de sección (según Darcy Weisbach):
	canal triangular, para $n = 0.015, 0.035$
Figura 13	Profundidad normal vs factor de sección modificado (según Darcy-
	Weisbach): canal triangular
Figura 14	Profundidad normal vs factor de sección (según Manning y Darcy
	Weisbach): canal parabólico, para $n = 0.015, 0.035$
Figura 15	Profundidad normal vs factor de sección modificado (según Darcy
	Weisbach): canal parabólico
Figura 16	Profundidad crítica vs factor de sección crítico: canal rectangular
	(z = 0) y canal trapezoidal $(z > 0$
Figura 17	Profundidad crítica vs factor de sección crítico: canal triangular34
Figura 18	Profundidad crítica vs factor de sección crítico: canal parabólico35
Figura 19	Profundidad crítica vs pendiente crítica (según Manning y Darcy -
	Weisbach): canal rectangular ($z = 0$) y canal trapezoidal ($z > 0$

Figura 20	Profundidad crítica vs pendiente crítica (según Darcy-Weisbach):	
	canal rectangular ($z = 0$) y canal trapezoidal ($z > 0$), para $n =$	
	0.015, 0.035	37
Figura 21	Profundidad crítica vs pendiente crítica (según Manning y Darcy -	
	Weisbach): canal triangular	38
Figura 22	Profundidad crítica vs pendiente crítica (según Darcy-Weisbach):	
	canal triangular, para $n = 0.015, 0.035$	39
Figura 23	Profundidad crítica vs pendiente crítica (según Manning y Darcy-	
	Weisbach): canal parabólico, para $n = 0.015, 0.035$	40

RESUMEN

En el presente trabajo de investigación se realiza el análisis de la profundidad normal y crítica en las diferentes secciones geométricas de manera adimensional y no para un fluido en específico. Además de realizar diagramas en función de un nuevo factor de sección modificado (Zm) la cual nos muestra el comportamiento de la profundidad para las diferentes secciones. Así como, el comportamiento de la profundidad crítica respecto al factor de sección, observando un comportamiento cuasi lineal para las distintas secciones a excepción de la triangular la cual presento un comportamiento independiente del factor de sección.

También analizaremos el comportamiento de la pendiente critica (Sc) respecto a las ecuaciones Darcy-Weisbach y Manning.

Palabras clave: factor de sección, pendiente critica, ecuación de Manning, ecuación de Darcy-Weisbach.

ABSTRACT

In the present research work, the analysis of the normal and critical depth in the different geometric sections is carried out dimensionless and not for a specific fluid. In addition to making diagrams based on a new modified section factor (Zm) which shows us the behavior of the depth for the different sections. As well as, the behavior of the critical depth with respect to the section factor, observing a quasi-linear behavior for the different sections, except for the triangular one, which presented an independent behavior of the section factor.

We will also analyze the behavior of the critical slope (Sc) with respect to the Darcy-Weisbach and Manning equations.

Keywords: section factor, critical slope, Manning equation, Darcy-Weisbach equation.

Capítulo I

INTRODUCCIÓN

1.1. Antecedentes

Con el propósito de conocer el estado del arte de las investigaciones realizadas, desarrollaremos una síntesis de los trabajos más importantes abordados hasta la actualidad.

La conducción o transporte de fluidos líquidos es un tópico de gran importancia y de aplicación continua en ingeniería hidráulica, ya que a menudo es necesario identificar el tipo de flujo que se tiene en un determinado tramo de su recorrido, el cual asimismo nos permitirá identificar primero si el movimiento de sus partículas líquidas es en forma ordenada o desordenada (flujo laminar o turbulento) y el lugar donde se tiene el control del flujo y de ésta forma saber dónde realizar la medición de las características hidráulicas y a partir de ellas poder calcular el comportamiento del flujo, ya sea hacia aguas arriba o hacia aguas abajo, así como el caudal que se transporta.

"Las tuberías forzadas son tuberías de gran diámetro, usualmente de acero o concreto, empleados para transportar agua desde el sistema de regulación hasta la casa de máquinas. Se diseñan en lugares que posean una predominante pendiente para generar la mayor cantidad de electricidad con una menor pérdida por fricción." Rodrigo Vásquez Ortega y Marcelo Rayme Chalco. (2018). *OPTIMIZACIÓN DEL DIÁMETRO, DISEÑO PRELIMINAR Y SIMULACIÓN FLUIDO-DINÁMICA DE LA TUBERÍA FORZADA DE LA MINICENTRAL HIDROELÉCTRICA HYDRIKA 4.* [Tesis para alcanzar el título de ingeniero civil, PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ].

"El alcantarillado sanitario o red de drenaje es un sistema de estructuras y tuberías usado para la recolección y transporte de las aguas residuales, aguas industriales y aguas de lluvias de una población desde el lugar en que se generan hasta algún cuerpo de agua, corriente o punto de descarga donde pueda ser tratada. Para el cálculo de la velocidad se utiliza la fórmula de manning ya que es las más recomendables por su sencillez y por sus resultados satisfactorios" Enriques Berrios Benavides y Esther Cervantes Morales. (2015). *PROPUESTA DE DISEÑO DEL SISTEMA DE ALCANTARILLADO SANITARIO CONDOMINIAL PARA LA TERCERA ETAPA DEL BARRIO NUEVA VIDA EN EL MUNICIPIO DE CIUDAD SANDINO, DEPARTAMENTO DE MANAGUA, CON PERIODO DE DISEÑO DE 20 AÑOS (2018 – 2038).* [Tesis para alcanzar el título de ingeniero civil, UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA, MANAGUA].

"El transporte de fluidos se presenta a través de conductos cerrados como túneles y tuberías, así también se puede dar a través de conductos o cauces abiertos naturales como ríos, arroyos, zanjas; así como artificiales por medio de canales, canalones, etc. Poseyendo una superficie libre soportando presión atmosférica" (Chaudhry, 2008, p.2).

"Dentro de los perfiles o secciones transversales de los canales tenemos de forma trapezoidal, rectangular u ovalados; siendo el primero el más difundido por la estabilidad de sus taludes y su facilidad en la construcción" (Pashkov y Dolqachev, 1985, p150). Asimismo, los canales abiertos trapezoidales son ampliamente usados en drenaje, irrigación, aguas pluviales urbanas y transmisión de agua. "Los canales con secciones transversales parabólicas son a menudo una muy buena aproximación de la geometría real de ríos naturales" (Vatankhah, 2013, p84).

Además, "Las profundidades normales y críticas son parámetros que juegan un rol importante en el diseño hidráulico eficiente, operación y mantenimiento de canales abiertos y en el análisis de flujos gradualmente variados" (Vatankhah y Easa, 2011, p.183), razón por la cual muchas investigaciones se han realizado sobre este tema.

1.2. Formulación del Problema

¿Cuál será el comportamiento de la altura normal y crítica en conductos cerrados rugosos a flujo parcial con secciones geométricas al considerar el factor de fricción en lugar del coeficiente de Manning como medida de la rugosidad de las superficies?

1.3. Objetivos de la Investigación

1.3.1. Objetivo General:

Analizar el comportamiento de la altura normal y crítica en conductos cerrados rugosos a flujo parcial con diferentes secciones geométricas.

1.3.2. Objetivos Específicos:

- Analizar la profundidad Normal (y_n) en forma adimensional en términos del factor de sección aplicando las fórmulas de Manning y Darcy-Weisbach.
 - a) Analizar la profundidad Normal en canales rectangulares y trapezoidales.
 - b) Analizar la profundidad Normal en canales triangulares y parabólicos.
- ✤ Construir diagramas de diseño en términos de un nuevo factor de sección modificado (Z_m) para cálculos del flujo parcial en cada uno de los conductos a estudiar.
- Analizar la Profundidad Crítica en forma adimensional en función del factor de sección crítico, usando la condición $F_r = 1$ en las Formulas de Manning y Darcy-

Weisbach.

Análisis de la Pendiente Crítica en diferentes condiciones del flujo uniforme para cada uno de los conductos analizados.

1.4. Formulación de la Hipótesis

La altura normal y crítica de canales rugosos de diferentes secciones geométricas se analiza considerando el factor de fricción en lugar del coeficiente de Manning.

1.5. Importancia de la Investigación

El desarrollo del presente trabajo se propone analizar las alturas normal y crítica, las cuales serán de gran importancia en el diseño y análisis de flujos en conductos cerrados a flujo parcial. La cual se caracterizará por ser diferente a las propuestas hasta la actualidad, las cuales se basan fundamentalmente en la fórmula clásica de Manning.

Asimismo, la metodología de cálculo será de gran relevancia en la aplicación práctica del diseño hidráulico de conductos y canales en general, porque tomará en cuenta otros factores que no tiene en cuenta el coeficiente de Manning (n) como son el tipo de fluido, la forma y las características del flujo.

Finalmente, el desarrollo de este trabajo motivará y enriquecerá la generación de futuros trabajos en este campo, como son por ejemplo evaluar flujo en conductos cerrados a flujo parcial o canales abiertos en las zonas hidráulicamente lisa y de transición, así como de tratar de encontrar soluciones explícitas o directas.

Capítulo II

MARCO TEÓRICO

2.1. Fundamentos teóricos

El análisis del flujo en conductos cerrados a flujo parcial es semejante al análisis de los flujos en canales abiertos por lo cual pasaremos a describir las propiedades y características de estos últimos.

2.1.1. Propiedades de los canales abiertos

Un canal abierto es un conducto en el que el agua fluye con una superficie libre.

Canal natural.

Son todos los que existen de manera natural en la tierra: arroyuelos, arroyos, ríos, estuarios de mareas, entre otros. Las propiedades hidráulicas de un canal natural son muy complejas, para su estudio se hacen suposiciones razonables para tratarlos con los principios de la hidráulica teórica. Los estudia la Hidráulica Fluvial.

Canal artificial.

Son todos los construidos mediante esfuerzo humano: Canales de navegación, canales de centrales hidroeléctricas, canales y canaletas de irrigación, cunetas de drenaje, vertederos, canales de desborde, cunetas de carreteras, canales de laboratorio, etc. Las propiedades hidráulicas de estos canales pueden ser controladas hasta un nivel deseado o diseñadas para cumplir requisitos determinados. El canal artificial es un canal largo con pendiente suave, construido sobre el suelo, que puede ser no revestido o revestido con roca, concreto, madera o materiales bituminosos, entre otros.

2.1.2. Características de los canales

- El flujo en canales abiertos involucra el flujo de un líquido en un canal o conducto que no es completamente llenado.
- Hay una superficie libre entre el fluido que pasa por el canal (usualmente agua) y el fluido por encima de éste (usualmente aire).
- En las condiciones de flujo completamente desarrollado la componente del peso del fluido en dirección del flujo es balanceada con la fuerza cortante entre el fluido y la superficie del canal.
- No existen fuerzas de presión a lo largo del canal.
- En las condiciones de flujo completamente desarrollado la fuerza de presión en el interior del fluido es meramente hidrostática.

2.1.3. Elementos geométricos de una sección de canal

Los elementos son muy importantes para el cálculo del flujo. En un canal artificial se definen en términos de la profundidad de flujo y las dimensiones de la sección; en canales naturales se determinan curvas que representen la relación entre los elementos y la profundidad del flujo.

- Área (A). Es el área mojada o área de la sección transversal del flujo, perpendicular a la dirección de flujo.
- Perímetro mojado (P). Es la longitud de la línea de intersección de la superficie de canal mojada y de un plano transversal perpendicular a la dirección de flujo.
- Radio hidráulico (R_h). Es la relación del área mojada con respecto a su perímetro mojado.
- Ancho superficial (T). Es el ancho de la sección del canal en la superficie libre.
- Profundidad hidráulica (D). Es la relación entre el área mojada y el ancho en la superficie.
- Profundidad de flujo (y). Es la distancia vertical desde el punto más bajo de una sección del canal hasta la superficie libre.
- Nivel. Es la elevación o distancia vertical desde un nivel de referencia hasta la superficie libre.
- ✤ Factor de sección (Z=AR^{2/3}). Es el producto del área mojada y el radio hidráulico elevado a la potencia (2/3).

Figura 1. Geometría para flujo en canal abierto: (a) vista lateral; (b) sección transversal.

Nota: Todos estos parámetros son constantes en flujo uniforme.

Fuente: Fluid Mechanics (p.700), por F. M. White, 2002, McGraw Hill.

2.1.4. Tipos de flujo

- A) Clasificación tipo I
 - > Flujo uniforme (UF): La profundidad del flujo no varía a lo largo del canal, entonces dy/dx = 0.
 - Flujo no uniforme:
 - * Flujo Rápidamente Variado (RVF): El flujo cambia considerablemente sobre una corta distancia $dy/dx \sim 1$.
 - * Flujo Gradualmente Variado (GVF): El flujo cambia lentamente con la distancia $dy/dx \ll 1$.

B) Clasificación tipo II

Se realiza en función del número de Reynolds, $Re = VR_h/v$

• Flujo laminar: Re < 500

Cuando el gradiente de velocidad es bajo, la fuerza de inercia es mayor que la de fricción, las partículas se desplazan, pero no rotan, o lo hacen, pero con muy poca energía, el resultado final es un movimiento en el cual las partículas siguen trayectorias definidas, y todas las partículas que pasan por un punto en el campo del flujo siguen la misma trayectoria. Las partículas se desplazan en forma de capas o láminas.

- Flujo de transición: 500 < Re < 2000.
- Flujo turbulento: Re > 2000.

Al aumentar el gradiente de velocidad se incrementa la fricción entre partículas vecinas al fluido y adquieren una energía de rotación apreciable; la viscosidad pierde su efecto y debido a la rotación las partículas cambian de trayectoria las partículas chocan entre sí y cambian de rumbo en forma errática.

C) Clasificación tipo III

Se realiza en función del número de Froude, $Fr = V/\sqrt{gD}$

> Flujo subcrítico o lento: Fr < 1

- > Flujo crítico: Fr = 1
- > Flujo supercrítico o rápido: Fr > 1

Nota: En la figura muestra la clasificación del flujo tipo I.

Fuente: Fundamentals of Fluid Mechanics (p.624), por B.R. Munson et al., 2009,

Wiley&Sons.

2.1.5. Flujo uniforme en canales prismáticos

En el flujo uniforme se verifica que la profundidad, el área mojada, la velocidad y el caudal en cada sección del canal son constantes. La línea de energía, la superficie del agua y el fondo del canal son paralelos (pendientes de la línea de energía, del agua y del fondo del canal son iguales: $S_f = S_w = S_o = S$). Cuando el flujo ocurre en un canal abierto, el agua encuentra resistencia a medida que fluye aguas abajo, la cual es compensada por las componentes de las fuerzas gravitacionales que actúan sobre el cuerpo de agua en la dirección del movimiento. Luego, el flujo uniforme se alcanzará si la resistencia se equilibra con las fuerzas gravitacionales. Y a la profundidad del flujo uniforme se conoce también como *profundidad o altura normal*.

Figura 3. Esquema del flujo uniforme en canales abiertos.

Nota: En la figura muestra el esquema del flujo uniforme en canales abiertos.

Fuente: Fundamentals of Open Channel Flow (p.121), por G.E. Moglen, 2015, CRC Press.

2.1.6. Ecuación o fórmula de Manning

Esta fórmula nos permite calcular la velocidad (m/s) en un canal abierto conociendo ciertos parámetros del canal, y se expresa como,

$$V = \frac{1}{n} R_h^{2/3} S_o^{1/2}$$
¹

Donde V es la velocidad media, R_h es el radio hidráulico, S_o es la pendiente de la línea de energía y n es el coeficiente de rugosidad, específicamente conocido como coeficiente de rugosidad de Manning. "La ecuación de Manning es más utilizada por la sencilla razón de que la n de Manning es independiente de las unidades" (G.E. Moglen, 2015, p.110).

Esta ecuación fue desarrollada a partir de siete ecuaciones diferentes, basada en los datos experimentales de Bazin y además verificada mediante 170 observaciones. Debido a la simplicidad de su forma y los resultados satisfactorios que arroja en aplicaciones prácticas, la ecuación de Manning se ha convertido en la más utilizada de todas las ecuaciones de flujo uniforme para cálculos en canales abiertos.

El valor del coeficiente de rugosidad de Manning es muy variable y depende de varios factores. Entre los factores que afectan el coeficiente de rugosidad de Manning tenemos: la rugosidad superficial, vegetación, irregularidad del canal, alineamiento del canal, sedimentación y socavación, obstrucción, tamaño y forma del canal, nivel y caudal, cambio estacional, material en suspensión y carga de lecho. Al expresar la fórmula de Manning en términos de caudal (m3/s), tenemos:

$$Q = \frac{1}{n} A R_h^{2/3} S_o^{1/2}$$
 2

Despejando los términos de área y radio hidráulico a un lado de la ecuación tenemos el denominado factor de sección (adimensional).

$$Z = AR_h^{2/3} = \frac{Qn}{S_o^{1/2}}$$
3

2.2. Geometría de canales

Las secciones transversales de canales pueden considerarse regulares o irregulares.

Una sección regular es aquella cuya forma no varía a lo largo de la longitud de un canal, mientras que una sección irregular tendrá cambios en su geometría. A continuación, se muestran tres geometrías comunes.

2.2.1. Canal rectangular

Nota: En la figura muestra el canal de sección rectangular. Fuente: Elaboración propia.

a) Ancho de la superficie Libre (*B*)

$$B = b$$

b) Área de la sección transversal (A)

$$A = b.y$$

c) Perímetro de la sección transversal (P)

$$P = B + 2y$$

Figura 5. Canal de sección triangular.

Nota: En la figura muestra el canal de sección triangular.

Fuente: Elaboración propia.

a) Ancho de la superficie libre (*T*)

$$T = 2y.z$$

b) Área de la sección transversal (A)

$$A = y^2 \cdot z$$

c) Perímetro de la sección transversal (P)

$$P = 2y\sqrt{1+z^2}$$

2.2.3. Canal trapezoidal

Figura 6. Canal de sección trapezoidal.

Nota: En la figura muestra el canal de sección trapezoidal. Fuente: Elaboración propia.

a) Ancho de la superficie libre (*T*)

$$T = B + 2y.z$$

b) Área de la sección transversal (A)

$$A = (B + y.z)y$$

c) Perímetro de la sección transversal (P)

$$P = B + 2y\sqrt{1 + z^2}$$

2.2.4. Canal parabólico

Nota: En la figura muestra el canal de sección parabólica. Fuente: Elaboración propia.

a) Ancho de la superficie libre (*T*)

$$T = 2\sqrt{\frac{y}{c}}$$

b) Área de la sección transversal (A)

$$A = \frac{4}{3} \frac{y^{3/2}}{\sqrt{c}}$$

c) Perímetro de la sección transversal (P)

$$P = \frac{s\sqrt{1+s} + \ln(s+\sqrt{1+s})}{2c}$$

donde: $s = \sqrt{4c.h}$

2.3. Análisis del flujo uniforme en conductos

2.3.1. Ecuación de Manning

$$Q = \frac{1}{n} \cdot A \cdot R^{2/3} \cdot S^{1/2}$$

El factor de sección

$$Z = A. R^{2/3}$$
 5

2.3.2. Ecuación de Darcy-Weisbach

$$\Lambda H = f \cdot \frac{L}{D} \cdot \frac{V^2}{2g} \tag{6}$$

El factor de sección modificado

$$Z_m = A.R^{1/2} 7$$

2.3.3. Ecuación de Colebrook-White

$$\frac{1}{\sqrt{f}} = -2Log\left[\frac{e/D}{3,71} + \frac{2,51}{R_e\sqrt{f}}\right]$$
8

2.3.4. Algunas características hidráulicas

2.3.4.1. Número de Froude

$$F_r = \frac{V}{\sqrt{g.D}}$$

Condición crítica: $F_r = 1$

Factor de sección crítica:

$$Z_c = \frac{A^{3/2}}{T^{1/2}}$$
 10

2.3.4.2. Pendiente crítica

a. Según ecuación de Manning

$$S_c = n^2 \cdot g \cdot \frac{P^{4/3}}{T \cdot A^{1/3}}$$
 11

b. Según ecuación de Darcy Weisbach

$$S_c = \frac{f}{8} \cdot \frac{P}{T}$$
 12

2.4. Parámetros hidráulicos

* Factor de sección modificado (Z_m)

$$Z_m = A \cdot R_h^{0.5} \tag{13}$$

***** Factor de sección critico (Z_c)

$$Z_C = \frac{A^{1.5}}{T^{0.5}} = \frac{Q}{\sqrt{g}}$$
 14

2.4.1. Análisis de profundidad normal, profundidad crítica y pendiente crítica

- a) Profundidad normal (y δy_n)
 - A. Canal rectangular

A.1. Según ecuación de Manning

$$\frac{z}{B^{1/2}} = \frac{h}{B} \left(\frac{h/B}{1+2h/B}\right)^{2/3}$$
¹⁵

A.2. Según ecuación de Darcy-Weisbach

$$\frac{z}{B} = \sqrt{\frac{B \cdot g}{f}} \cdot \frac{n}{B^{1/2}} \cdot \frac{h}{B} \left(\frac{h/B}{1+2h/B}\right)^{1/2}$$
 16

- B. Canal triangular
 - B.1. Según ecuación de Manning

$$\frac{z}{T_c} = \frac{(2z.h/T_c)}{B.z[z(1+z^2)]^{1/2}}$$
17

B.2. Según ecuación de Darcy-Weisbach

$$\frac{z}{T_c^{1/3}} = \sqrt{\frac{B.g}{f}} \cdot \frac{n}{B.z(1+z^2)^{1/4}} \cdot \frac{\left(\frac{2z.h}{T_c}\right)^{5/2}}{T_c^{1/6}}$$
18

- C. Canal trapezoidal
 - C.1. Según ecuación de Manning

$$\frac{z}{B^{8/3}} = \frac{\left[(1+h.z/B)h/B\right]^{5/3}}{\left(1+\frac{2h}{B}.\sqrt{1+z^2}\right)^{2/3}}$$
19

C.2. Según ecuación de Darcy-Weisbach

$$\frac{z}{B^{8/3}} = \sqrt{\frac{8.g}{f}} \cdot n \cdot \frac{\left[\left(1 + \frac{h.z}{B}\right)\frac{h}{B}\right]^{3/2}}{\left[1 + \frac{2h}{B} \cdot \sqrt{1 + z^2}\right]^{1/2}} \cdot \frac{1}{B^{1/6}}$$
20

- D. Canal parabólico
 - D.1. Según ecuación de Manning

$$z. c^{8/3} = \frac{2,564}{D^{2/3}} (c.h)^{5/2}$$
²¹

D.2. Según ecuación de Darcy-Weisbach

$$z. c^{8/3} = 2,177. \sqrt{\frac{8.g}{f}}. n.c. \frac{(h.c)^{9/4}}{D^{1/2}}$$
 22

b) Profundidad crítica (y_c)

A. Canal rectangular

$$\frac{z}{B^{5/2}} = \left(\frac{h.c}{B}\right)^{3/2}$$
23

B. Canal triangular

$$\frac{z_c}{T_c^{5/2}} = \frac{1}{8.\,z^{3/2}}$$

C. Canal trapezoidal

$$\frac{z_c}{B^{5/2}} = \frac{\left[\left(1 + \frac{h_c}{B} - z\right) \cdot \frac{h_c}{B}\right]^{3/4}}{\left[1 + 2\frac{h_c}{B} \cdot z\right]^{1/2}}$$
25

D. Canal parabólico

$$z_c. c^{5/2} = 1,089(h_c. c)^2$$
 26

c) Pendiente critica (S_c)

- A. Canal rectangular
 - A.1. Según ecuación de Manning

$$S_{c} = n^{2} \cdot g \cdot \frac{1}{B^{1/3}} \cdot \frac{\left(1 + \frac{2h_{c}}{B}\right)^{4/3}}{\left(\frac{h_{c}}{B}\right)^{1/3}}$$
 27

A.2. Según ecuación de Darcy-Weisbach

$$S_c = \frac{f}{8} \left(1 + \frac{2h_c}{B} \right) \tag{28}$$

- B. Canal triangular
 - B.1. Según ecuación de Manning

$$S_c = \frac{n^2 \cdot g}{T_c^{1/3}} \cdot \frac{1}{\left(\frac{h}{T_c}\right)^{1/3}} \cdot \left(1 + \frac{1}{z^2}\right)^{2/3}$$
²⁹

B.2. Según ecuación de Darcy-Weisbach

$$S_c = \frac{f}{8} \cdot \frac{\sqrt{1+z^2}}{z}$$
 30

C. Canal trapezoidal

C.1. Según ecuación de Manning

$$S_{c} = \frac{n^{2} \cdot g}{B^{1/3}} \cdot \frac{\left(1 + \frac{2h}{B} \cdot \sqrt{1 + z^{2}}\right)^{4/3}}{\left(1 + \frac{2h}{B} \cdot z\right) \left[\left(1 + \frac{h}{B} \cdot z\right) \frac{h}{B}\right]^{1/3}}$$
31

C.2. Según ecuación de Darcy-Weisbach

$$S_{c} = \frac{f}{8} \cdot \frac{1 + \frac{2h}{B} \cdot \sqrt{1 + z^{2}}}{1 + \frac{2h}{B} \cdot z}$$
32

- D. Canal parabólico
 - D.1. Según ecuación de Manning

$$S_c = 0,180. n^2. \frac{D^{4/3}}{n_c. c^{2/3}}$$
33

D.2. Según ecuación de Darcy-Weisbach

$$S_c = \frac{f}{32} \cdot \frac{D}{(h_c \cdot c)^{1/2}}$$
 34

Capítulo III

MATERIALES Y MÉTODOS

3.1. Metodología de la investigación

3.1.1. Tipo de estudio

Investigación No Experimental.

3.1.2. Diseño de la investigación

Cualitativo-Correlacional.

El diseño de investigación adoptado para la contrastación de la hipótesis está constituido por un análisis comparativo de los resultados obtenidos con aquellos dados por otros métodos ya sean explícitos y/o experimentales disponibles en la literatura de flujos en conducto cerrados y/o canales abiertos.

3.1.3. Procedimiento de la investigación

Para poder lograr los objetivos planteados en esta investigación fue necesario ejecutar el:

- a) Análisis de metodologías de cálculo de la profundidad normal y crítica de flujo en canales abiertos.
- b) Cálculo iterativo de las profundidad normal y crítica a partir de la relación de las ecuaciones de Darcy-Weisbach y la fórmula de Manning.
- c) Comparación de resultados obtenidos con los disponibles en la literatura.
- d) Graficar los resultados obtenidos en el Software Excel para comparar las tendencias de las ecuaciones en análisis.

e) Discutir y analizar la información por medio de graficas obtenidas en el software Excel.

f) Discutir y analizar los resultados para comprobar la hipótesis

g) Redactar el informe de investigación.

3.1.4. Población

La población está constituida por el conjunto de conductos cerrados con perfiles de diferentes formas geométricas.

La muestra está conformada por dos tipos de conductos cerrados, uno de sección transversal rectangular y otro triangular, en las cuales se analizará la altura normal y crítica a diferentes condiciones de descarga, rugosidad, etc.

3.1.5. Variables de Estudio

a) Variables Independientes

Parámetros geométricos de la sección del conducto, pendiente.

b) Variables Dependientes

Altura o profundidad del flujo, energía y fuerza.

3.1.6. Propuesta aplicada

Se propone un nuevo método de determinación de las profundidades normal y crítica, así como la pendiente crítica en canales prismáticos cerrados a flujo parcial uniforme completamente rugoso con diferentes secciones geométricas, teniendo en cuenta el factor de fricción (f) el cual es habitualmente calculado mediante la ecuación de Darcy-Weisbach, en lugar del coeficiente de Manning (n).
3.2. Métodos

En este trabajo de investigación se utiliza la síntesis bibliográfica a través de la búsqueda de la información, así como métodos matemáticos.

3.3. Técnica

Para la recolección de los datos se aplicará la metodología planteada en el 3.1.3.

3.4. Instrumentos

Se utilizaron instrumentos estadísticos de tipo descriptivo como son distribución de frecuencias a través histogramas, cuadros y gráficos comparativos. Asimismo, se recurrió a medidas de tendencia central con los cuales se procederá al análisis cuantitativo.

Parámetros adimensionales a partir de los parámetros de diseño en canales.

3.5. Medios y materiales

- Laptop (computadora) Workstation
- Software Excel
- Software Word
- Calculadora
- Tesis y bibliografía relacionada al tema en investigación.

Capítulo IV

RESULTADOS Y DISCUSIÓN

4.1. Profundidad Normal

A) Canal Rectangular y Trapezoidal

Las Figs. 8 y 9 describen el comportamiento de la profundidad normal en función del factor de sección en su forma adimensional de un canal rectangular y trapezoidal en escala log-log para diferentes valores de pendiente lateral del canal (*z*). Recordar que el comportamiento del canal rectangular se obtiene cuando z = 0.

Figura 8. Profundidad normal vs factor de sección (según Manning y Darcy Weisbach):

canal trapezoidal y rectangular (z = 0), para n = 0.015.

Nota: En la figura muestra la profundidad normal vs factor de sección (según Manning y Darcy Weisbach): canal trapezoidal y rectangular (z = 0), para n = 0.015.

En la Fig. 8 se puede apreciar como es este comportamiento según las formulaciones de Manning y Darcy-Weisbach, respectivamente, para un coeficiente de Manning (*n*) de 0.015, observándose ligera discrepancia entre ellos. Asimismo, se verifica que para factores de sección adimensional hasta aproximadamente 0.01 la profundidad normal es prácticamente independiente de la pendiente lateral del canal, existiendo divergencia en los valores de ésta a partir de este punto. Mientras en la Fig. 9 se aprecia claramente que al aumentar el coeficiente de Manning de 0.015 a 0.035 la discrepancia entres curvas con la misma pendiente lateral se vuelve notoria, disminuyendo su valor para un factor de sección del canal determinado.

Figura 9. Profundidad normal vs factor de sección (según Darcy Weisbach): canal

rectangular (z = 0) y canal trapezoidal (z > 0), para n = 0.015, 0.035.

Nota: En la figura muestra la profundidad normal vs factor de sección (según Darcy Weisbach): canal rectangular (z = 0) y canal trapezoidal (z > 0), para n = 0.015, 0.035. Fuente: Elaboración propia.

Es claramente visto que de acuerdo con la fórmula de Darcy-Weisbach el coeficiente Manning (n) tiene influencia en el cambio de la profundidad normal para un determinado factor de sección, lo cual no es previsto desde la fórmula de Manning donde la relación entre estos parámetros (profundidad normal-factor de sección) son independientes del coeficiente de Manning (n).

En la Fig. 10 se muestra el comportamiento de la profundidad normal y el factor de sección modificado ambos en forma adimensional. En este caso el factor de sección modificado se obtiene a partir de la inclusión de la fórmula de Darcy-Weisbach en la determinación de la velocidad promedio en la sección de un canal trapezoidal para un flujo uniforme. A diferencia del obtenido de la fórmula de Manning es que en este caso el comportamiento entre los parámetros analizados es independiente del coeficiente de fricción (f) en lugar del coeficiente de Manning (n), lo cual otorga un comportamiento más realista y preciso ya que este último coeficiente se obtiene de manera empírica, mientras que el coeficiente de fricción lo podemos obtener por la fórmula de Colebrook-White de amplia aplicación en flujos en conductos cerrados.

Nota: En la figura muestra la profundidad normal vs factor de sección modificado (según Darcy- Weisbach): canal rectangular (z = 0) y canal trapezoidal (z > 0).

B) Canal Triangular

En las Figs. 11 y 12 se observa el comportamiento de la profundidad normal en función del factor de sección adimensional de un canal triangular en escala log-log. Se puede observar que este comportamiento es lineal según las formulaciones de Manning y Darcy-Weisbach para coeficientes de Manning (n) de 0.015 y 0.035, respectivamente. Notamos que al comparar la profundidad normal según ambas formulaciones para un coeficiente de Manning (n) de 0.015, la discrepancia entre ellos es mínima.

Figura 11. Profundidad normal vs factor de sección (según Manning y Darcy Weisbach):

canal triangular, para n = 0.015.

Nota: En la figura muestra la profundidad normal vs factor de sección (según Manning y Darcy Weisbach): canal triangular, para n = 0.015.

Figura 12. Profundidad normal vs factor de sección (según Darcy Weisbach): canal

triangular, para n = 0.015, 0.035.

Nota: En la figura muestra la profundidad normal vs factor de sección (según Darcy Weisbach): canal triangular, para n = 0.015, 0.035.

F	F11 '/	•
Huente.	Haboracion	nronia
i ucinte.	Liaboración	propia

Se aprecia claramente que al aumentar el coeficiente de Manning de 0.015 a 0.035 la discrepancia entres curvas no es despreciable, disminuyendo la profundidad normal su valor para un factor de sección del canal determinado. Asimismo, en la Fig. 13 se muestra el comportamiento de la profundidad normal y el factor de sección modificado ambos en forma adimensional, siendo el comportamiento entre ambos parámetros también lineal, verificándose al igual que en canales de tipo trapezoidal la influencia del coeficiente de Manning (*n*).

Nota: En la figura muestra la profundidad normal vs factor de sección modificado (según Darcy - Weisbach): canal triangular.

C) Canal Parabólico

En las Figs. 14 y 15 se observa el comportamiento de la profundidad normal en función del factor de sección adimensional de un canal parabólico en escala log-log. En la Fig. 14 se puede apreciar como es este comportamiento es lineal según las fórmulas de Manning y Darcy-Weisbach respectivamente para coeficientes de Manning (*n*) de 0.015 y 0.035, se aprecia claramente que al aumentar el coeficiente de Manning de 0.015 a 0.035 la discrepancia entres curvas no es despreciable, disminuyendo la profundidad normal su

valor para un factor de sección del canal determinado. Mientras en la Fig. 15 se muestra el comportamiento de la profundidad normal y el factor de sección modificado, siendo el comportamiento entre ambos parámetros también lineal, verificándose al igual que en canales trapezoidales y triangulares la influencia del coeficiente de Manning (n).

Figura 14. Profundidad normal vs factor de sección (según Manning y Darcy Weisbach): canal parabólico, para n = 0.015, 0.035.

Nota: En la figura muestra la profundidad normal vs factor de Sección (según Manning y Darcy Weisbach): canal parabólico, para n = 0.015, 0.035.

canal parabólico.

4.2. Profundidad Crítica

Figura 16. Profundidad crítica vs factor de sección crítico: canal rectangular (z = 0) y

canal trapezoidal (z > 0).

Nota: En la figura muestra la profundidad crítica vs factor de sección crítico: canal rectangular (z = 0) y canal trapezoidal (z > 0).

Figura 17. Profundidad crítica vs factor de sección crítico: canal triangular.

Nota: En la figura muestra la profundidad crítica vs factor de sección crítico: canal triangular.

Figura 18. Profundidad crítica vs factor de sección crítico: canal parabólico.

Nota: En la figura muestra la profundidad crítica vs factor de sección crítico: canal parabólico. Fuente: Elaboración propia.

Las Figs. 16, 17 y 18 muestran el comportamiento de la profundidad critica en función del factor de sección crítico, ambos en forma adimensional para canal rectangular, trapezoidal, triangular y parabólico respectivamente. A diferencia de la profundidad normal, estas curvas no dependen ni de la fórmula de Manning ni de la fórmula de Darcy-Weisbach ya que solo dependen de la condición de flujo crítico, es decir cuando $F_r = 1$. Los comportamientos en este caso muestran comportamientos similares que el de la profundidad normal, excepto para el canal de sección triangular.

4.3. Pendiente Crítica

A) Canal Rectangular y Trapezoidal

Las Figs. 19 y 20 presentan el comportamiento de la pendiente crítica (S_c) del canal es decir la pendiente que debería tener el canal para que el flujo que lo atraviesa se encuentre en estado crítico $(F_r = 1)$ a cierta profundidad crítica (y_c) en un canal trapezoidal. La Fig. 19 compara la pendiente crítica calculada a partir de la fórmula de Manning y Darcy-Weisbach respectivamente para un coeficiente de Manning (n) de 0.015, verificándose que existen ligera discrepancia para el caso rectangular el cual representa un caso límite de canal trapezoidal (z = 0), y a medida que la pendiente lateral del canal (z)aumenta las discrepancias también lo hacen. Mientras que la Fig. 20 exhibe la pendiente crítica para coeficientes de Manning de 0.015 y 0.035, siendo las diferencias notables, pero en la misma tendencia. Asimismo, se aprecia que un tramo de profundidad no mayor a 0.1 los valores de la pendiente crítica es independiente de la pendiente lateral del canal.

Figura 19. Profundidad crítica vs pendiente crítica (según Manning y Darcy -Weisbach): canal rectangular (z = 0) y canal trapezoidal (z > 0).

Nota: En la figura muestra la profundidad crítica vs pendiente crítica (según Manning y Darcy -Weisbach): canal rectangular (z = 0) y canal trapezoidal (z > 0). Fuente: Elaboración propia.

Nota: En la figura muestra la profundidad crítica vs pendiente crítica (según Darcy-Weisbach): canal rectangular (z = 0) y canal trapezoidal (z > 0), para n = 0.015, 0.035.

B) Canal Triangular

Figura 21. Profundidad crítica vs pendiente crítica (según Manning y Darcy -Weisbach):

canal triangular.

Nota: En la figura muestra la profundidad crítica vs pendiente crítica (según Manning y

Darcy -Weisbach): canal triangular.

Figura 22. Profundidad crítica vs pendiente crítica (según Darcy-Weisbach): canal

triangular, para n = 0.015, 0.035.

Nota: En la figura muestra la profundidad crítica vs pendiente crítica (según Darcy-Weisbach): canal triangular, para n = 0.015, 0.035.

C) Canal Parabólico

Figura 23. Profundidad crítica vs pendiente crítica (según Manning y Darcy-Weisbach):

canal parabólico, para n = 0.015, 0.035.

Nota: En la figura muestra la profundidad crítica vs pendiente crítica (según Manning y Darcy-Weisbach): canal parabólico, para n = 0.015, 0.035.

Fuente: Elaboración propia.

Las Figs. 21 y 22 muestran el comportamiento de la pendiente crítica (S_c) del canal para un canal triangular. La Fig. 21 compara la pendiente crítica calculada a partir de la fórmula de Manning y Darcy-Weisbach respectivamente para un coeficiente de Manning (n) de 0.015, verificándose que para profundidades críticas no mayores a 1 existen pequeñas discrepancias para pendientes laterales entre 0.5 y 2, y a medida que la pendiente lateral del canal (*z*) aumenta las discrepancias también lo hacen. Mientras que la Fig. 22 muestra la pendiente crítica para coeficientes de Manning de 0.015 y 0.035 según la fórmula de Darcy-Weisbach, siendo las diferencias cada vez mayor, a medida que aumenta el coeficiente Manning, así como la pendiente lateral del canal.

Finalmente, la Fig. 23 revela el comportamiento de la pendiente crítica para un canal parabólico, obtenido también a partir de las fórmulas de Manning y Darcy-Weisbach respectivamente. Se observa claramente que, para coeficientes de Manning menores, las discrepancias son menores y a medida que este aumenta las discrepancias lo hacen de manera notable. De estos resultados se puede inducir que para profundidades criticas adimensionales menores a aproximadamente 0.1 la pendiente critica estimada con la fórmula de Manning es menor a la obtenida con la de Darcy-Weisbach, mientras que para profundidades criticas adimensionales mayores a 0.1 el comportamiento es inverso.

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- 1. Se analizó el comportamiento de la profundidad normal adimensional en los canales:
 - 1.1. Se verificó que el comportamiento de la profundidad normal adimensional en los canales rectangular (z = 0) y trapezoidal (z > 0) tienen un comportamiento cuasi lineal en escala log-log respecto al factor de sección adimensional. Asimismo, se observó que el comportamiento estimado según Darcy-Weisbach resulta similar al obtenido según Manning cuando el coeficiente de rugosidad de Manning es 0.015 y valores cercanos a este. Además, se aprecia que el coeficiente de Manning tiene influencia sobre el comportamiento antes mencionado, desprendiéndose que la estimación a partir de la ecuación de Darcy-Weisbach resulta en concordancia con la realidad.
 - 1.2. Asimismo, para el caso del canal triangular, así como del canal parabólico el comportamiento de los parámetros mencionados fue de tipo lineal en escala loglog. Sin embargo, el coeficiente de Manning muestra un efecto similar al caso de los canales rectangulares y trapezoidales, mientras que en los canales parabólicos se observan discrepancias incluso en n = 0.015 y valores cercanos a este del coeficiente de rugosidad de Manning.
- 2. Se propusieron diagramas de diseño tanto para canales rectangulares, trapezoidales, triangulares, así como parabólicos definiendo un nuevo factor de sección denominado factor de sección modificado dado como $Z_m = A \cdot R_h^{0.5}$ obtenido al relacionar la ecuación de Darcy-Weisbach con la ecuación que modela el flujo uniforme a través de un canal. Que a diferencia del obtenido de la ecuación de Manning dado por $Z = A \cdot$

 $R_h^{2/3}$, el primero incluye el efecto de la geometría de la sección sin incluir el efecto geométrico del coeficiente de fricción (f) mientras que el segundo incluye la influencia geométrica de la sección sin incluir el efecto geométrico debido al coeficiente de rugosidad de Manning (n); donde tanto f como n dependen de la geometría del canal, como es sabido.

- 3. La profundidad critica (adimensional) mostró un comportamiento muy similar al de la profundidad normal para canales rectangulares, trapezoidales y parabólicos, respectivamente. Asimismo, se verifica que para valores de profundidad critica inferiores a 0.1, esta no depende de la pendiente lateral para el caso de canales trapezoidales. Sin embargo, se observa que, en el caso de canales triangulares, el factor de sección critico es independiente de la profundidad critica; y a cuanto menor es la pendiente lateral mayor será el factor de sección crítico.
- 4. La pendiente crítica muestra una sensibilidad al valor del coeficiente de rugosidad de Manning, observándose mayores discrepancias en los valores obtenidos según Manning y Darcy-Weisbach cuando la pendiente lateral (z) incrementa su valor para el caso de canales trapezoidales, y también cuando la pendiente lateral (z) disminuye su valor para el caso de canales triangulares. Además, se aprecia en estos últimos que la curva de la pendiente crítica obtenida según la ecuación de Manning es prácticamente tangente a la curva obtenida según la ecuación de Darcy-Weisbach cuando n = 0.015. Mientras que para el caso de canales menores a aproximadamente 0.1 la pendiente crítica estimada según Manning es menor a la obtenida según Darcy-Weisbach, mientras que para profundidades críticas adimensionales críticas adimensionales mayores a 0.1 el comportamiento es, al contrario.

RECOMENDACIONES

- Para efectos de validar los resultados obtenidos a partir de la ecuación de Darcy-Weisbach, sería conveniente llevar a cabo la corroboración experimental tanto para canales rectangulares, trapezoidales, triangulares, así como parabólicos en una siguiente etapa de la investigación. Sin embargo, asumimos la fiabilidad de los resultados alcanzados en vista que la ecuación de Darcy – Weisbach ha sido validada experimentalmente muy ampliamente en el tiempo.
- A fin de expandir la aplicación de esta nueva formulación, se recomienda caracterizar el flujo uniforme en otros tipos de sección de canales como la circular, en U, elíptica, ovoide, compuesta, etc.
- 3. Asimismo, se sugiere llevar a cabo en una próxima etapa de la investigación, un análisis realizado con la ayuda de software de simulación numérica CFD como ANSYS-Fluent, COMSOL u otro similar, ya que permitiría también corroborar los resultados mientras se analiza el flujo en toda su complejidad.

REFERENCIAS BIBLIOGRÁFICAS

Chaudhry, M.H. (2008). Open Channel Flow. (2nd ed.). New York: Springer.

Liu, J.L. *et al.* (2012). Explicit equations for critical depth in open channels with complex compound cross sections, *Flow measurement and Instrumentation*, 24(1):13-18.

Moglen, G.E. (2015). Fundamentals of Open Channel Flow. Boca Raton: CRC Press

- Munson, B.R. et al. (2009). Fundamentals of Fluid Mechanics. (6th ed). NJ: Wiley&Sons.
- Pashkov, N.N.; Dolgachev, F.M. & Merchevski, V. A. (1985). *Hidráulica y Máquinas Hidráulicas*, Moscú: Ed. MIR.
- Raikar, R.V. *et al.* (2010). Normal and critical depth computations for egg-shaped conduit sections, *Flow measurement and Instrumentation*, 21(1):367-372.
- Ranga Raju, K. G. (1993). *Flow through Open Channels*. (2nd ed.).New Delhi: Tata McGraw-Hill.
- Shames, I. H. (1995). *Mecánica de Fluidos*. (4ta ed.). Bogotá: McGraw-Hill Interamericana.
- Srivastava, R. (2008). Flow through Open Channels. (1st ed.). New Delhi: Oxford Press.

Subramanya, K. (2009). Flow in open Channels. (3rd ed.). New Delhi: Tata McGraw-Hill.

- Valiani, A. & V. Caleffi. (2008). Depth-energy and depth-force relationships in open channel flows: Analytical findings, *Advances in Water Resources*. 31(1):447-454.
- Valiani, A. & V. Caleffi. (2009). Depth-energy and depth-force relationships in open channel flows II: Analytical findings for power-law cross-sections, *Advances in Water Resources*. 32(1):213-224.

- Valiani, A. & V. Caleffi. (2009). Analytical findings for power law cross-sections:Uniform flow depth, *Advances in Water Resources*. 32(1):1404-1412.
- Vatankhah, A.R. (2013). Explicit solutions for critical and normal depths in trapezoidal and parabolic open channels, *Ain Shams Engineering Journal*. 4(1):17-23.
- Vatankhah, A.R. and S.M. Easa. (2011). Explicit solutions for critical and normal depths in channels with different shapes, *Flow measurement and Instrumentation*. 22(1):43-49.

White, F.M. (2002). Fluid Mechanics. (4th ed.). New York: McGraw-Hill.

APÉNDICE

V/B			Z/B^(8/3)		
1/D	z = 0	z = 0.5	z = 1	z = 2	z = 5
0.01	0.00045807	0.00046118	0.00046323	0.00046594	0.00047192
0.02	0.00143558	0.00145519	0.0014682	0.00148583	0.00152626
0.03	0.00278611	0.00284346	0.00288193	0.00293491	0.0030602
0.04	0.00444444	0.004567	0.00465004	0.00476605	0.0050468
0.05	0.00636827	0.00658877	0.00673961	0.00695307	0.00747884
0.06	0.00852655	0.0088824	0.00912804	0.0094797	0.01035783
0.07	0.01089499	0.01142775	0.0117987	0.01233533	0.01368996
0.08	0.01345379	0.01420881	0.01473888	0.01551299	0.01748415
0.09	0.01618637	0.01721248	0.01793857	0.01900818	0.02175096
0.1	0.01907857	0.02042777	0.02138974	0.02281814	0.02650204
0.2	0.05465518	0.0626637	0.06874098	0.0782729	0.10348759
0.3	0.0982778	0.12052542	0.13821557	0.16687395	0.24329137
0.4	0.14675232	0.19219855	0.22972453	0.29192431	0.45860379
0.5	0.19842513	0.27702018	0.34402102	0.45707582	0.76130158
0.6	0.25233082	0.3748097	0.48216097	0.66598831	1.16255432
0.7	0.30786187	0.48562402	0.64532314	0.9222473	1.672952
0.8	0.3646149	0.60964846	0.83473577	1.22934407	2.30260403
0.9	0.42231077	0.74714211	1.05164291	1.59067454	3.06121391
1	0.48074986	0.89840813	1.29728801	2.00954393	3.95813649
2	1.08576705	3.24585214	5.59851335	10.0373255	22.4120553
3	1.70531023	7.36433114	14.0368157	26.9853124	63.4353363
4	2.32954791	13.6014982	27.6348692	55.3399186	133.783419
5	2.95588965	22.2821525	47.3235523	97.3376443	239.492153
6	3.58335511	33.7117033	73.9675157	155.043266	386.114481

Apéndice A1. Profundidad normal en canal rectangular (z = 0) y trapezoidal (z > 0) desde fórmula de Manning.(Figura N°8)

7	4.21149117	48.1798061	108.380683	230.393082	578.846515
8	4.84005946	65.9630913	151.336376	325.222031	822.605045
9	5.46892266	87.3271943	203.57437	441.282121	1122.07956
10	6.09799602	112.528302	265.80605	580.25568	1481.76934
11	6.72722445	141.81436	338.718319	743.765292	1906.01104
12	7.35657055	175.426035	422.97666	933.381478	2398.99999
13	7.98600806	213.597495	519.22758	1150.62881	2964.80699
14	8.615518	256.557062	628.100602	1396.99086	3607.39194
15	9.24508629	304.527749	750.209924	1673.91429	4330.61502
16	9.87470229	357.727722	886.155809	1982.81227	5138.24604
17	10.5043578	416.370697	1036.52577	2325.06738	6033.97236
18	11.1340464	480.66628	1201.89559	2702.0341	7021.40565

Nota: Se muestra la profundidad normal en canal rectangular (z = 0) y trapezoidal (z > 0) desde fórmula de Manning. Fuente: Elaboración propia.

f Z/B^(8/3) Y/B z = 5 z = 5 z = 0z = 0.5z = 1 z = 2z = 0 z = 0.5 z = 1 z = 20.04055762 0.04059561 0.04065457 0.01 0.04056918 0.04100385 0.00049939 0.00050279 0.00050501 0.00050795 0.00051435 0.02 0.03248387 0.03242881 0.03244326 0.03255748 0.03300975 0.00156376 0.00158503 0.00159923 0.00161861 0.00166335 0.03 0.02888366 0.02881361 0.02882931 0.02896363 0.02948024 0.00301772 0.00307935 0.00312112 0.00317945 0.00331877 0.04 0.02671958 0.02663558 0.02665143 0.02680055 0.02735932 0.00478563 0.00491624 0.00500589 0.00513327 0.00544497 0.05 0.02523097 0.02513365 0.02514884 0.02530901 0.02589541 0.00681973 0.00705301 0.00721494 0.00744837 0.0080299 0.02419686 0.06 0.02412482 0.02401459 0.02402847 0.02480077 0.00908577 0.00945982 0.0097221 0.01010495 0.0110718 0.07 0.02326054 0.02313772 0.02314975 0.02332412 0.02393822 0.01155741 0.01211422 0.01250831 0.01308992 0.01457436 0.08 0.02256099 0.02242578 0.02243553 0.02261409 0.02323295 0.01421355 0.01499861 0.0155591 0.01639438 0.01854434 0.09 0.02197973 0.02183232 0.02183941 0.02202067 0.02264023 0.01703677 0.01809872 0.01886311 0.0200123 0.02299042 0.0214869 0.02132743 0.02133151 0.02151426 0.02213143 0.1 0.02001236 0.02140275 0.02241131 0.02393967 0.02792243 0.2 0.01881579 0.01854023 0.01850376 0.01866414 0.01918941 0.05600097 0.06401561 0.07019567 0.10644523 0.08007 0.3 0.01765334 0.0172668 0.01718227 0.0172956 0.01771357 0.09935375 0.12123654 0.13887351 0.16792282 0.24614052 0.01698091 0.01648762 0.01635492 0.01641887 0.01674792 0.4 0.14704459 0.191214 0.22808888 0.29012817 0.45800361 0.01653704 0.01594113 0.01576279 0.01578104 0.01603955 0.19755446 0.27325608 0.33834769 0.44967537 0.75215394 0.5 0.01622022 0.01528282 0.01552573 0.0153052 0.01548535 0.25001316 0.36713979 0.47045503 0.64955724 1.13796255 0.6 0.01598194 0.01519281 0.01503335 0.7 0.01493368 0.01487573 0.3038802 0.47286785 0.62533397 0.89268757 1.6241948 0.01491583 0.0146216 0.8 0.01579585 0.01453264 0.01465376 0.35880014 0.59056281 0.80395319 1.18188266 2.21911917 0.9 0.01564629 0.01467898 0.01435288 0.72041511 0.01423691 0.01432798 0.41452885 1.00729463 1.51986139 2.93058837 1 0.01552338 0.01447216 0.01411714 0.01397759 0.01404363 0.47089276 0.86265508 1.23633783 1.90925091 3.76610089 2 0.01492846 0.01318694 0.01265266 0.01238627 0.01233317 1.05203014 3.02632299 5.14608769 9.15627674 20.4129278 23.9712678 3 0.01471223 0.01246561 0.01185428 0.01154437 0.01145424 1.64539186 6.73339826 12.5975184 56.1760645 0.01460014 0.01196094 0.01131332 0.01098624 4 0.0108807 2.24267341 12.2483739 24.3518077 48.1843111 116.016269 5 0.01453151 0.01157412 0.01090913 0.01057542 0.0104626 2.84170558 19.813408 41.0836478 83.39274 204.225664 0.01058931 6 0.01448516 0.01126193 0.01025381 0.01013741 3.44167073 29.6522462 63.4066847 131.037752 324.659071 7 0.01445175 0.01100133 0.01032643 0.00999155 0.00987347 4.04219191 41.973922 91.8886026 192.445889 480.854459 8 0.01442653 0.01077847 0.01010437 0.00977138 0.00965264 4.64307112 56.975463 127.060823 268.854627 676.105716 9 0.01440681 0.01058439 0.00991292 0.00958246 0.00946367 5.24419442 74.8438752 169.425172 361.429515 913.510789 10 0.01439097 0.01041293 0.00974517 0.00941757 0.0092991 5.84549158 95.7576372 219.458704 471.276368 1196.00558 11 0.01437797 0.0102597 0.00959629 0.0092717 0.00915376 6.44691696 119.887855 277.617318 599.450297 1526.38891 12 0.01436711 0.01012144 0.00946274 0.0091412 0.00902392 7.0484396 147.399175 344.338564 746.962644 1907.34157 13 0.01435789 0.00999568 0.00934189 2341.44128 0.00902336 0.00890683 7.65003777 178.450522 420.04387 914.786438 14 0.01434998 0.00988052 0.00923168 0.00891613 0.00880038 8.25169577 213.195703 505.140341 1103.86079 2831.17463

Apéndice A2. Profundidad normal en rectangular (z = 0) y trapezoidal (z > 0) desde fórmula de Darcy (n=0.015). (Figura N°9)

15	0.01434311	0.00977442	0.00913054	0.00881787	0.00870293	8.85340196	251.783915	600.022247	1315.09448	3378.94691
16	0.01433709	0.00967617	0.0090372	0.00872733	0.00861319	9.45514755	294.360164	705.072258	1549.36898	3987.09021
17	0.01433177	0.00958478	0.00895062	0.00864345	0.00853012	10.0569258	341.065636	820.662502	1807.54094	4657.87027
18	0.01432703	0.00949942	0.00886997	0.0085654	0.00845287	10.6587313	392.038001	947.155455	2090.44437	5393.49226

Nota: Se muestra la profundidad normal en rectangular (z = 0) y trapezoidal (z > 0)

desde fórmula de Darcy (n=0.015). Fuente: Elaboración propia.

Apéndice A3. Profundidad normal en canal rectangular (z = 0) y trapezoidal (z > 0) desde fórmula de Darcy (n=0.035). (Figura N°10)

Y/B			f			Z/B^(8/3)				
112	z = 0	z = 0.5	z = 1	z = 2	z = 5	z = 0	z = 0.5	z = 1	z = 2	z = 5
0.01	0.04059561	0.04055762	0.04056918	0.04065457	0.04100385	0.001165233	0.001173176	0.001178365	0.001185217	0.001200155
0.02	0.03248387	0.03242881	0.03244326	0.03255748	0.03300975	0.003648774	0.0036984	0.003731528	0.003776765	0.00388114
0.03	0.02888366	0.02881361	0.02882931	0.02896363	0.02948024	0.00704134	0.007185148	0.007282622	0.007418716	0.007743796
0.04	0.02671958	0.02663558	0.02665143	0.02680055	0.02735932	0.011166468	0.011471217	0.011680407	0.011977619	0.012704938
0.05	0.02523097	0.02513365	0.02514884	0.02530901	0.02589541	0.015912712	0.016457033	0.01683486	0.017379531	0.018736427
0.06	0.02412482	0.02401459	0.02402847	0.02419686	0.02480077	0.021200122	0.022072915	0.022684898	0.023578226	0.025834211
0.07	0.02326054	0.02313772	0.02314975	0.02332412	0.02393822	0.026967286	0.028266525	0.029186062	0.030543138	0.034006845
0.08	0.02256099	0.02242578	0.02243553	0.02261409	0.02323295	0.033164957	0.034996765	0.036304558	0.038253545	0.043270136
0.09	0.02197973	0.02183232	0.02183941	0.02202067	0.02264023	0.039752468	0.042230357	0.044013934	0.046695368	0.053644304
0.1	0.0214869	0.02132743	0.02133151	0.02151426	0.02213143	0.046695506	0.049939746	0.052293056	0.05585922	0.065152347
0.2	0.01881579	0.01854023	0.01850376	0.01866414	0.01918941	0.130668925	0.149369764	0.163789905	0.18683	0.248372201
0.3	0.01765334	0.0172668	0.01718227	0.0172956	0.01771357	0.231825405	0.282885257	0.324038192	0.391819911	0.574327876
0.4	0.01698091	0.01648762	0.01635492	0.01641887	0.01674792	0.343104033	0.446165999	0.532207398	0.676965726	1.06867508
0.5	0.01653704	0.01594113	0.01576279	0.01578104	0.01603955	0.460960403	0.63759751	0.789477942	1.049242537	1.755025851
0.6	0.01622022	0.01552573	0.0153052	0.01528282	0.01548535	0.583364039	0.856659521	1.097728412	1.515633563	2.655245949
0.7	0.01598194	0.01519281	0.01493368	0.01487573	0.01503335	0.7090538	1.10335831	1.459112591	2.08293766	3.789787872
0.8	0.01579585	0.01491583	0.0146216	0.01453264	0.01465376	0.837200325	1.377979898	1.875890783	2.757726205	5.17794473
0.9	0.01564629	0.01467898	0.01435288	0.01423691	0.01432798	0.967233979	1.68096858	2.350354134	3.546343246	6.838039526
1	0.01552338	0.01447216	0.01411714	0.01397759	0.01404363	1.098749769	2.012861863	2.884788277	4.454918785	8.787568745
2	0.01492846	0.01318694	0.01265266	0.01238627	0.01233317	2.45473699	7.061420303	12.00753795	21.36464572	47.63016483
3	0.01471223	0.01246561	0.01185428	0.01154437	0.01145424	3.839247679	15.71126261	29.3942097	55.9329583	131.0774839
4	0.01460014	0.01196094	0.01131332	0.01098624	0.0108807	5.232904631	28.5795391	56.82088474	112.4300592	270.7046277
5	0.01453151	0.01157412	0.01090913	0.01057542	0.0104626	6.630646343	46.23128528	95.86184483	194.58306	476.5265495
6	0.01448516	0.01126193	0.01058931	0.01025381	0.01013741	8.030565047	69.18857438	147.948931	305.7547535	757.5378317
7	0.01445175	0.01100133	0.01032643	0.00999155	0.00987347	9.431781114	97.93915131	214.4067393	449.0404082	1121.993737
8	0.01442653	0.01077847	0.01010437	0.00977138	0.00965264	10.83383261	132.942747	296.4752531	627.3274621	1577.580004
9	0.01440681	0.01058439	0.00991292	0.00958246	0.00946367	12.23645364	174.6357088	395.3254021	843.3355354	2131.525174
10	0.01439097	0.01041293	0.00974517	0.00941757	0.0092991	13.63948035	223.4344869	512.0703097	1099.644859	2790.679682
11	0.01437797	0.0102597	0.00959629	0.0092717	0.00915376	15.04280623	279.7383282	647.7737418	1398.71736	3561.574113
12	0.01436711	0.01012144	0.00946274	0.0091412	0.00902392	16.44635906	343.9314079	803.4566498	1742.912837	4450.46366
13	0.01435789	0.00999568	0.00934189	0.00902336	0.00890683	17.85008813	416.3845503	980.1023636	2134.501689	5463.362976
14	0.01434998	0.00988052	0.00923168	0.00891613	0.00880038	19.2539568	497.4566404	1178.660796	2575.675173	6606.07413

15	0.01434311	0.00977442	0.00913054	0.00881787	0.00870293	20.65793792	587.4958007	1400.051909	3068.553792	7884.209454
16	0.01433709	0.00967617	0.0090372	0.00872733	0.00861319	22.06201096	686.8403834	1645.168603	3615.194288	9303.210494
17	0.01433177	0.00958478	0.00895062	0.00864345	0.00853012	23.46616009	795.819817	1914.879172	4217.595531	10868.36396
18	0.01432703	0.00949942	0.00886997	0.0085654	0.00845287	24.87037293	914.7553354	2210.029395	4877.703532	12584.81528

Nota: Se muestra la profundidad normal en canal rectangular ($\mathbf{z} = \mathbf{0}$) y trapezoidal ($\mathbf{z} > \mathbf{0}$)

desde fórmula de Darcy (n=0.035). Fuente: Elaboración propia.

Vc/R			Zc/B^(5/2)		
ICD	z = 0	z = 0.5	z = 1	z = 2	z = 5
0.01	0.001	0.00100251	0.00100504	0.00101014	0.00102586
0.02	0.00282843	0.00284267	0.00285712	0.00288658	0.00297881
0.03	0.00519615	0.00523555	0.00527576	0.00535836	0.00562027
0.04	0.008	0.00808116	0.00816447	0.00833675	0.00888787
0.05	0.01118034	0.0113226	0.01146945	0.0117748	0.01275776
0.06	0.01469694	0.01492209	0.01515572	0.01564383	0.01722193
0.07	0.01852026	0.01885236	0.01919863	0.01992505	0.02228041
0.08	0.02262742	0.02309261	0.02357988	0.02460566	0.02793771
0.09	0.027	0.02762644	0.02828541	0.02967682	0.03420101
0.1	0.03162278	0.0324405	0.03330415	0.0351324	0.04107919
0.2	0.08944272	0.09419837	0.09936944	0.11043349	0.14605935
0.3	0.16431677	0.17772846	0.19254707	0.2242077	0.32475953
0.4	0.25298221	0.28105922	0.31235308	0.37888906	0.58787754
0.5	0.35355339	0.40343577	0.45927933	0.57735027	0.94510802
0.6	0.464758	0.54460536	0.63415513	0.8224726	1.40529611
0.7	0.58566202	0.70456855	0.83794366	1.11704874	1.97660931
0.8	0.71554175	0.88346791	1.07166011	1.46376163	2.66666667
0.9	0.85381497	1.08153099	1.33633441	1.86518492	3.4826337
1	1	1.29903811	1.63299316	2.32379001	4.43129368
2	2.82842712	4.61880215	6.57267069	10.5409255	22.5177179
3	5.19615242	10.269798	15.7116881	26.6905342	59.7284176
4	8	18.5903201	29.8142397	52.387695	120.233918
5	11.1803399	29.8869397	49.5433694	89.0090953	207.553442
6	14.6969385	44.4393648	75.4922309	137.77547	324.791383
7	18.5202592	62.5058747	108.20228	199.795154	474.757284
8	22.627417	84.3274043	148.174778	276.090455	660.036961
9	27	110.130548	195.878588	367.615067	883.038859

Apéndice A4. Profundidad crítica en canal rectangular y trapezoidal. (Figura N°16)

10	31.6227766	140.12981	251.75574	475.266292	1146.02628
11	36.4828727	174.529337	316.225566	599.894009	1451.14089
12	41.5692194	213.524274	389.687875	742.307489	1800.42045
13	46.8721666	257.301848	472.525445	903.280719	2195.81266
14	52.3832034	306.042263	565.106032	1083.55665	2639.18613
15	58.0947502	359.919425	667.78401	1283.85067	3132.33933
16	64	419.10156	780.901732	1504.85344	3677.00791
17	70.0927956	483.751737	904.790678	1747.23332	4274.8709
18	76.3675324	554.02831	1039.77243	2011.63838	4927.55589

Nota: Se muestra la profundidad crítica en canal rectangular y trapezoidal. Fuente:

Elaboración propia.

Apéndice A5. Pendiente crítica en rectangular (z = 0) y trapezoidal (z > 0) desde fórmula de Manning. (Figura N°19)

Vc/B			Sc		
IGB	z = 0	z = 0.5	z = 1	z = 2	z = 5
0.01	0.0061517	0.00609944	0.00607629	0.00606683	0.00609964
0.02	0.00501067	0.00492582	0.00488819	0.0048718	0.004916875
0.03	0.00448982	0.00437615	0.00432577	0.00430265	0.004353882
0.04	0.00418222	0.00404154	0.00397928	0.00394946	0.004003357
0.05	0.00397858	0.00381193	0.00373833	0.00370182	0.003756141
0.06	0.00383503	0.00364301	0.00355844	0.00351527	0.003568517
0.07	0.00372994	0.00351295	0.0034177	0.0033679	0.003419034
0.08	0.00365126	0.00340951	0.00330382	0.00324743	0.003295749
0.09	0.00359162	0.00332525	0.00320931	0.00314641	0.00319141
0.1	0.00354625	0.00325533	0.0031293	0.00305997	0.003101321
0.2	0.00345692	0.00291686	0.00269734	0.00256945	0.002571246
0.3	0.0036084	0.00280684	0.00250508	0.00233016	0.002300022
0.4	0.00383594	0.0027603	0.00238637	0.00217443	0.002121094
0.5	0.00409806	0.00273771	0.00230062	0.00205951	0.001989349
0.6	0.004379	0.00272523	0.0022329	0.00196866	0.001886126
0.7	0.00467137	0.00271711	0.00217639	0.0018937	0.001801923
0.8	0.00497122	0.00271072	0.00212754	0.00183002	0.001731253
0.9	0.00527624	0.00270479	0.00208428	0.00177477	0.001670666
1	0.005585	0.00269872	0.0020453	0.00172608	0.00161786
2	0.00875948	0.00261374	0.0017791	0.00142358	0.001303007
3	0.01198446	0.00251026	0.00161722	0.00126276	0.001144356
4	0.01522293	0.00241136	0.00150243	0.00115676	0.001042584
5	0.01846695	0.00232226	0.00141474	0.00107937	0.00096948
6	0.02171379	0.00224303	0.00134457	0.00101929	0.000913352
7	0.02496226	0.00217257	0.00128656	0.00097072	0.000868316
8	0.02821175	0.00210958	0.00123744	0.00093026	0.000831027

9	0.03146194	0.00205295	0.00119506	0.00089581	0.000799418
10	0.03471261	0.0020017	0.00115795	0.00086596	0.000772128
11	0.03796363	0.00195505	0.00112507	0.00083973	0.000748221
12	0.04121492	0.00191235	0.00109563	0.00081641	0.000727024
13	0.04446641	0.00187307	0.00106905	0.00079549	0.000708042
14	0.04771807	0.00183678	0.00104487	0.00077656	0.0006909
15	0.05096985	0.00180309	0.00102275	0.00075932	0.000675305
16	0.05422174	0.00177172	0.00100238	0.00074351	0.00066103
17	0.05747372	0.00174239	0.00098355	0.00072894	0.000647889
18	0.06072576	0.0017149	0.00096606	0.00071545	0.000635736

Nota: Se muestra la pendiente crítica en rectangular (z = 0) y trapezoidal (z > 0) desde fórmula de Manning. Fuente: Elaboración propia.

Apéndice A6. Pendiente crítica en canal rectangular (z = 0) y trapezoidal (z > 0) desde fórmula de Darcy (n=0.015). (Figura N°19)

Vc/B			Sc		
I C/D	z = 0	z = 0.5	z = 1	z = 2	z = 5
0.01	0.00517594	0.00513175	0.00511233	0.00510489	0.00513471
0.02	0.0042229	0.00415185	0.00412002	0.00410527	0.00413984
0.03	0.00382709	0.00373137	0.00368816	0.00366624	0.00370187
0.04	0.00360714	0.00348773	0.00343365	0.00340461	0.00343927
0.05	0.00346926	0.00332663	0.00326198	0.00322586	0.00325829
0.06	0.00337747	0.00321185	0.00313686	0.00309371	0.00312312
0.07	0.00331463	0.00312609	0.00304092	0.00299079	0.00301668
0.08	0.00327134	0.00305989	0.00296467	0.00290765	0.00292968
0.09	0.00324201	0.00300757	0.00290242	0.00283859	0.00285658
0.1	0.00322303	0.0029655	0.00285052	0.00277998	0.00279382
0.2	0.00329276	0.00279497	0.0025867	0.00245541	0.00243034
0.3	0.00353067	0.00277401	0.0024814	0.00230114	0.00224708
0.4	0.0038207	0.0027888	0.00242072	0.00220144	0.00212666
0.5	0.00413426	0.00281365	0.00237842	0.00212786	0.00203803
0.6	0.00446056	0.00284029	0.0023454	0.00206952	0.00196853
0.7	0.00479458	0.00286569	0.00231775	0.00202119	0.00191173
0.8	0.00513365	0.00288876	0.00229358	0.00197995	0.00186396
0.9	0.0054762	0.0029092	0.00227185	0.001944	0.00182292
1	0.00582127	0.00292706	0.00225194	0.00191218	0.00178706
2	0.00933029	0.0030067	0.00210567	0.00171073	0.00157072
3	0.0128732	0.00300273	0.00200788	0.00160027	0.00145922
4	0.01642515	0.00297357	0.00193485	0.00152584	0.00138637
5	0.01998082	0.00293701	0.00187713	0.00147053	0.00133322
6	0.02353838	0.00289923	0.00182977	0.00142696	0.00129186
7	0.02709704	0.00286249	0.00178983	0.00139128	0.00125828
8	0.03065638	0.00282763	0.00175544	0.00136122	0.00123018
9	0.03421618	0.00279489	0.00172536	0.00133537	0.00120613
10	0.0377763	0.00276424	0.00169869	0.00131276	0.00118518
----	------------	------------	------------	------------	------------
11	0.04133666	0.00273557	0.0016748	0.00129272	0.00116668
12	0.0448972	0.00270873	0.00165319	0.00127477	0.00115014
13	0.04845788	0.00268356	0.00163351	0.00125854	0.00113523
14	0.05201867	0.00265991	0.00161546	0.00124376	0.00112168
15	0.05557954	0.00263764	0.00159882	0.0012302	0.00110927
16	0.05914048	0.00261663	0.00158339	0.0012177	0.00109784
17	0.06270148	0.00259675	0.00156902	0.00120611	0.00108726
18	0.06626253	0.00257792	0.00155559	0.00119532	0.00107742

Nota: Se muestra la pendiente crítica en canal rectangular (z = 0) y trapezoidal (z > 0)

desde fórmula de Darcy (n=0.015). Fuente: Elaboración propia.

Apéndice A7. Profundidad normal en canal rectangular (z = 0) y trapezoidal (z > 0) desde fórmula de Darcy (n=0.035). (Figura N°20)

Yc/B			Sc		
- •, -	z = 0	z = 0.5	z = 1	z = 2	z = 5
0.01	0.01904798	0.01886911	0.01880265	0.01881158	0.01907152
0.02	0.01291719	0.01268373	0.01259068	0.01257869	0.01281742
0.03	0.01076683	0.01048032	0.01036276	0.01033368	0.01056104
0.04	0.00964276	0.00930494	0.0091641	0.00911886	0.00933453
0.05	0.00895011	0.00856209	0.00839877	0.0083378	0.00854077
0.06	0.0084838	0.00804623	0.00786101	0.00778458	0.00797414
0.07	0.00815264	0.00766586	0.00745919	0.00736757	0.00754329
0.08	0.00790937	0.00737354	0.0071458	0.00703922	0.00720096
0.09	0.00772686	0.00714199	0.00689349	0.00677221	0.00692002
0.1	0.00758829	0.00695429	0.00668534	0.00654962	0.00668369
0.2	0.00724654	0.00610754	0.00564712	0.0053827	0.00540004
0.3	0.00753958	0.00586406	0.00523385	0.00486813	0.0048061
0.4	0.00801608	0.00577505	0.00499512	0.00455038	0.00443444
0.5	0.00857249	0.00574194	0.00483049	0.00432373	0.0041701
0.6	0.00917123	0.00573168	0.00470475	0.00414882	0.00396813
0.7	0.00979524	0.00573085	0.00460238	0.00400712	0.00380651
0.8	0.01043556	0.00573342	0.00451549	0.00388846	0.00367293
0.9	0.01108705	0.00573655	0.00443959	0.00378672	0.00355985
1	0.01174653	0.00573891	0.00437194	0.00369791	0.00346232
2	0.01852458	0.00568637	0.00392185	0.0031618	0.00289857
3	0.02540745	0.00556249	0.00365374	0.00288546	0.00262409
4	0.03231787	0.00542801	0.00346481	0.00270567	0.00245051
5	0.03923955	0.00530043	0.00332084	0.00257525	0.00232673
6	0.04616693	0.00518378	0.00320572	0.00247437	0.00223204
7	0.0530976	0.00507817	0.00311055	0.00239294	0.00215622
8	0.06003034	0.0049826	0.0030299	0.00232517	0.00209349
9	0.06696446	0.00489586	0.00296027	0.00226746	0.00204032

10	0.07389955	0.00481679	0.00289923	0.00221744	0.00199439
11	0.08083535	0.00474438	0.00284506	0.00217345	0.00195413
12	0.08777168	0.00467776	0.0027965	0.00213432	0.0019184
13	0.09470843	0.00461621	0.0027526	0.00209916	0.00188637
14	0.10164549	0.0045591	0.00271261	0.00206732	0.0018574
15	0.10858282	0.00450592	0.00267595	0.00203827	0.00183101
16	0.11552036	0.00445622	0.00264217	0.0020116	0.00180682
17	0.12245807	0.00440963	0.00261087	0.00198699	0.00178453
18	0.12939592	0.00436582	0.00258176	0.00196417	0.00176387

Nota: Se muestra la profundidad normal en canal rectangular ($\mathbf{z} = \mathbf{0}$) y trapezoidal ($\mathbf{z} > \mathbf{0}$)

desde fórmula de Darcy (n=0.035). Fuente: Elaboración propia.

V/Te	Z/B^(8/3)									
1/10	z = 0.2	z = 0.5	z = 1	z = 2	z = 5					
0.01	1.97402E-07	8.54988E-07	2.32079E-06	5.42884E-06	1.44302E-05					
0.02	1.25343E-06	5.42884E-06	1.47361E-05	3.4471E-05	9.1626E-05					
0.03	3.69552E-06	1.6006E-05	4.3447E-05	0.000101632	0.000270144					
0.04	7.95876E-06	3.4471E-05	9.35686E-05	0.000218877	0.000581789					
0.05	1.44302E-05	0.0000625	0.000169651	0.00039685	0.001054854					
0.06	2.34651E-05	0.000101632	0.000275871	0.000645322	0.001715308					
0.07	3.53954E-05	0.000153304	0.000416132	0.000973423	0.00258742					
0.08	5.0535E-05	0.000218877	0.000594123	0.001389782	0.00369413					
0.09	6.91829E-05	0.000299645	0.000813361	0.001902626	0.005057302					
0.1	9.1626E-05	0.00039685	0.001077217	0.002519842	0.006697904					
0.2	0.000581789	0.002519842	0.006839904	0.016	0.042529037					
0.3	0.001715308	0.007429336	0.020166321	0.047173345	0.125389809					
0.4	0.00369413	0.016	0.043430682	0.101593667	0.270042552					
0.5	0.006697904	0.02900993	0.078745066	0.184201575	0.489619725					
0.6	0.01089153	0.047173345	0.128048159	0.299532071	0.796175657					
0.7	0.016429096	0.071157625	0.193151511	0.451822757	1.200974172					
0.8	0.023456264	0.101593667	0.27576764	0.645079578	1.714663327					
0.9	0.032111868	0.13908278	0.377528749	0.883120608	2.347391815					
1	0.042529037	0.184201575	0.5	1.169607095	3.108891466					
2	0.270042552	1.169607095	3.174802104	7.426542134	19.74023034					
3	0.796175657	3.448392446	9.360377204	21.89592718	58.20079362					
4	1.714663327	7.426542134	20.1587368	47.15560318	125.3426496					
5	3.108891466	13.46521681	36.55022173	85.49879733	227.2613449					
6	5.055400304	21.89592718	59.43469048	139.0304714	369.5520041					
7	7.625710654	33.02844387	89.6529899	209.7175462	557.4428305					

Apéndice A8. Profundidad normal en canal triangular desde fórmula de Manning. (Figura N°11)

8	10.88743348	47.15560318	128	299.4194164	795.8762154
9	14.90500895	64.55650808	175.2333228	409.9082753	1089.562764
10	19.74023034	85.49879733	232.0794417	542.8835233	1443.019592
11	25.45263266	110.2403287	299.2382903	699.9824551	1860.598734
12	32.09979105	139.0304714	377.3867608	882.7884661	2346.50896
13	39.73755622	172.1111258	467.1814718	1092.837528	2904.832982
14	48.42024446	209.7175462	569.2610019	1331.623414	3539.541342
15	58.20079362	252.079017	684.2477245	1600.601987	4254.503823
16	69.13089343	299.4194164	812.7493386	1901.194786	5053.498966
17	81.26109551	351.9576934	955.3601632	2234.792051	5940.222117
18	94.64090753	409.9082753	1112.662244	2602.75531	6918.292309

Nota: Se muestra la profundidad normal en canal triangular desde fórmula de Manning.

Fuente: Elaboración propia.

Apéndice A9. Profundidad normal en canal triangular desde fórmula de Darcy (n=0.015).

(Figura N°12)

Y/Tc	f Z/B^(8/3)									
	z = 0.2	z = 0.5	z = 1	z = 2	z = 5	z = 0.2	z = 0.5	z = 1	z = 2	z = 5
0.01	0.1138763	0.0578714	0.0413776	0.0332824	0.0274218	1.8859E-07	9.1130E-07	2.5288E-06	5.9177E-06	1.5571E-05
0.02	0.0786648	0.0441549	0.0328411	0.0270207	0.0226751	1.2836E-06	5.9017E-06	1.6057E-05	3.7152E-05	9.6867E-05
0.03	0.0651570	0.0382796	0.0290188	0.0241443	0.0204487	3.8866E-06	1.7466E-05	4.7072E-05	0.00010830	0.00028109
0.04	0.0575777	0.0347943	0.0266976	0.0223732	0.0190621	8.4873E-06	3.7608E-05	0.00010074	0.00023096	0.00059764
0.05	0.0525738	0.0324085	0.0250837	0.0211302	0.0180814	1.5516E-05	6.8075E-05	0.00018156	0.0004151	0.00107198
0.06	0.0489542	0.0306368	0.0238712	0.0201900	0.0173353	2.5364E-05	0.00011044	0.00029359	0.00066999	0.00172699
0.07	0.0461776	0.0292497	0.0229134	0.0194431	0.0167399	3.8395E-05	0.00016618	0.00044056	0.00100374	0.00258373
0.08	0.0439591	0.0281230	0.0221295	0.0188292	0.0162485	5.4947E-05	0.00023664	0.00062595	0.00142420	0.00366181
0.09	0.0421322	0.0271823	0.0214710	0.0183115	0.0158329	7.5343E-05	0.00032311	0.00085307	0.00193868	0.00497971
0.1	0.0405929	0.0263802	0.0209066	0.0178662	0.0154745	9.9890E-05	0.00042683	0.00112503	0.00255415	0.00655497
0.2	0.0322853	0.0218898	0.0176922	0.0153040	0.0133932	0.0006336	0.00265064	0.00691815	0.01561120	0.03985762
0.3	0.0285568	0.0197753	0.0161442	0.0140528	0.0123647	0.0018565	0.00768485	0.01995725	0.04489369	0.11431130
0.4	0.0262897	0.0184555	0.0151659	0.0132558	0.0117052	0.0039719	0.01632981	0.04226898	0.09488767	0.24117847
0.5	0.0247121	0.0175207	0.0144671	0.0126834	0.0112293	0.0071567	0.02927814	0.07560338	0.16946097	0.43015635
0.6	0.0235261	0.0168086	0.0139313	0.0122428	0.0108617	0.0115704	0.04715265	0.12153150	0.27208221	0.68993325
0.7	0.0225888	0.0162399	0.0135012	0.0118880	0.0105648	0.0173598	0.0705257	0.18149538	0.40593266	1.02847194
0.8	0.0218214	0.0157703	0.0131445	0.0115929	0.0103174	0.0246621	0.09993080	0.25683796	0.57397304	1.45317900
0.9	0.0211765	0.0153728	0.0128415	0.0113417	0.0101062	0.0336067	0.13587036	0.34882276	0.77898753	1.97101593
1	0.0206235	0.0150297	0.0125792	0.0111238	0.0099228	0.0443165	0.17882099	0.45864768	1.02361448	2.58857703
2	0.0174717	0.0130346	0.0110382	0.0098351	0.0088317	0.2723673	1.08622793	2.76969784	6.15812469	15.5214024
3	0.0159519	0.0120464	0.0102645	0.0091825	0.0082749	0.7854956	3.11364748	7.91479789	17.5624951	44.1875844
4	0.0149908	0.0114118	0.0097639	0.0087581	0.0079112	1.6633553	6.56699427	16.6588280	36.9155643	92.7701582
5	0.0143039	0.0109535	0.0094004	0.0084488	0.0076453	2.9747181	11.7095965	29.6591273	65.6585703	164.856640
6	0.0137770	0.0105993	0.0091182	0.0082081	0.0074379	4.7813168	18.7773406	47.5038735	105.080145	263.6525
7	0.0133540	0.0103130	0.0088895	0.0080125	0.0072690	7.1398111	27.9863847	70.7315931	156.359463	392.089406
8	0.0130031	0.0100743	0.0086982	0.0078487	0.0071274	10.102963	39.5377651	99.8427931	220.591943	552.889647
9	0.0127049	0.0098705	0.0085346	0.0077083	0.0070058	13.720414	53.6204194	135.307589	298.806092	748.608323
10	0.0124468	0.0096935	0.0083921	0.0075859	0.0068997	18.039224	70.4133042	177.571043	391.975278	981.662831
11	0.0122201	0.0095374	0.0082662	0.0074777	0.0068058	23.104272	90.0869490	227.057076	501.026368	1254.35446
12	0.0120184	0.0093981	0.0081538	0.0073809	0.0067217	28.958562	112.804638	284.171445	626.846283	1568.88482
13	0.0118373	0.0092727	0.0080523	0.0072935	0.0066458	35.643458	138.723336	349.304065	770.287125	1927.36864
14	0.0116732	0.0091588	0.0079601	0.0072140	0.0065765	43.198877	167.994426	422.830874	932.170274	2331.84399

15	0.0115235	0.0090547	0.0078757	0.0071411	0.0065131	51.663442	200.764315	505.115349	1113.28973	2784.28071
16	0.0113861	0.0089588	0.0077979	0.0070739	0.0064546	61.074615	237.174933	596.509760	1314.41489	3286.58724
17	0.0112592	0.0088702	0.0077259	0.0070117	0.0064003	71.468803	277.36415	697.356230	1536.29284	3840.61646
18	0.0111415	0.0087878	0.0076589	0.0069538	0.0063497	82.881449	321.466156	807.987628	1779.65039	4448.17065

Nota: Se muestra la profundidad normal en canal triangular desde fórmula de Darcy

(n=0.015). Fuente: Elaboración propia.

Apéndice A10. Profundidad normal en canal triangular desde fórmula de Darcy (n=0.035).

(Figura N°13)

У/Тс			f			Z/B^(8/3)				
	z = 0	z = 0.5	z = 1	z = 2	z = 3	z = 0	z = 0.5	z = 1	z = 2	z = 3
0.01	0.1138763	0.0578714	0.0413776	0.0332824	0.0274218	4.4005E-07	2.1263E-06	5.9006E-06	1.3808E-05	3.6333E-05
0.02	0.0786648	0.0441549	0.0328411	0.0270207	0.0226751	2.9950E-06	1.3770E-05	3.7467E-05	8.6689E-05	0.0002260
0.03	0.0651570	0.0382796	0.0290188	0.0241443	0.0204487	9.0687E-06	4.0755E-05	0.00010983	0.00025271	0.0006558
0.04	0.0575777	0.0347943	0.0266976	0.0223732	0.0190621	1.9803E-05	8.7754E-05	0.00023507	0.00053892	0.0013945
0.05	0.0525738	0.0324085	0.0250837	0.0211302	0.0180814	3.6204E-05	0.00015884	0.00042365	0.00096875	0.0025012
0.06	0.0489542	0.0306368	0.0238712	0.0201900	0.0173353	5.9184E-05	0.00025770	0.00068505	0.00156332	0.0040296
0.07	0.0461776	0.0292497	0.0229134	0.0194431	0.0167399	8.9588E-05	0.00038775	0.00102797	0.00234208	0.0060287
0.08	0.0439591	0.0281230	0.0221295	0.0188292	0.0162485	0.00012821	0.00055216	0.00146056	0.00332314	0.0085442
0.09	0.0421322	0.0271823	0.0214710	0.0183115	0.0158329	0.00017580	0.00075393	0.00199050	0.00452360	0.0116193
0.1	0.0405929	0.0263802	0.0209066	0.0178662	0.0154745	0.00023307	0.00099593	0.00262507	0.00595969	0.0152949
0.2	0.0322853	0.0218898	0.0176922	0.0153040	0.0133932	0.00147841	0.00618478	0.01614236	0.03642613	0.0930011
0.3	0.0285568	0.0197753	0.0161442	0.0140528	0.0123647	0.00433184	0.01793133	0.04656692	0.10475195	0.2667263
0.4	0.0262897	0.0184555	0.0151659	0.0132558	0.0117052	0.00926790	0.03810290	0.09862764	0.22140458	0.5627497
0.5	0.0247121	0.0175207	0.0144671	0.0126834	0.0112293	0.01669915	0.06831567	0.17640790	0.39540893	1.0036981
0.6	0.0235261	0.0168086	0.0139313	0.0122428	0.0108617	0.02699770	0.11002286	0.28357351	0.6348585	1.6098442
0.7	0.0225888	0.0162399	0.0135012	0.0118880	0.0105648	0.04050630	0.16455996	0.42348923	0.94717620	2.3997678
0.8	0.0218214	0.0157703	0.0131445	0.0115929	0.0103174	0.05754502	0.23317188	0.59928859	1.33927044	3.3907510
0.9	0.0211765	0.0153728	0.0128415	0.0113417	0.0101062	0.07841575	0.31703085	0.81391979	1.81763757	4.5990371
1	0.0206235	0.0150297	0.0125792	0.0111238	0.0099228	0.10340524	0.41724899	1.07017793	2.38843378	6.0400130
2	0.0174717	0.0130346	0.0110382	0.0098351	0.0088317	0.63552373	2.53453183	6.46262830	14.3689576	36.216605
3	0.0159519	0.0120464	0.0102645	0.0091825	0.0082749	1.83282328	7.26517747	18.4678617	40.9791553	103.10436
4	0.0149908	0.0114118	0.0097639	0.0087581	0.0079112	3.88116255	15.3229866	38.8705987	86.1363167	216.46370
5	0.0143039	0.0109535	0.0094004	0.0084488	0.0076453	6.94100892	27.3223920	69.2046305	153.203330	384.66549
6	0.0137770	0.0105993	0.0091182	0.0082081	0.0074379	11.1564059	43.8137947	110.842371	245.187004	615.18916
7	0.0133540	0.0103130	0.0088895	0.0080125	0.0072690	16.6595594	65.3015644	165.040384	364.838747	914.87528
8	0.0130031	0.0100743	0.0086982	0.0078487	0.0071274	23.5735823	92.2547854	232.966517	514.714535	1290.0758
9	0.0127049	0.0098705	0.0085346	0.0077083	0.0070058	32.0143014	125.114312	315.717708	697.214215	1746.7527
10	0.0124468	0.0096935	0.0083921	0.0075859	0.0068997	42.0915242	164.297709	414.332434	914.608983	2290.5466
11	0.0122201	0.0095374	0.0082662	0.0074777	0.0068058	53.9099702	210.202881	529.799845	1169.06152	2926.8270
12	0.0120184	0.0093981	0.0081538	0.0073809	0.0067217	67.5699800	263.210823	663.066705	1462.64132	3660.7312
13	0.0118373	0.0092727	0.0080523	0.0072935	0.0066458	83.1680707	323.687784	815.042818	1797.33662	4497.1934
14	0.0116732	0.0091588	0.0079601	0.0072140	0.0065765	100.797380	391.986994	986.605374	2175.06397	5440.9693

15	0.0115235	0.0090547	0.0078757	0.0071411	0.0065131	120.54803	468.450068	1178.60248	2597.67604	6496.6550
16	0.0113861	0.0089588	0.0077979	0.0070739	0.0064546	142.507436	553.408177	1391.85610	3066.96807	7668.7035
17	0.0112592	0.0088702	0.0077259	0.0070117	0.0064003	166.760541	647.183028	1627.16453	3584.68331	8961.4384
18	0.0111415	0.0087878	0.0076589	0.0069538	0.0063497	193.390048	750.087697	1885.30446	4152.51759	10379.064

Nota: Se muestra la profundidad normal en canal triangular desde fórmula de Darcy

(n=0.035). Fuente: Elaboración propia.

Vo/To	Zc/B^(5/2)									
1010	z = 0.2	z = 0.5	z = 1	z = 2	z = 5					
0.01	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.02	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.03	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.04	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.05	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.06	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.07	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.08	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.09	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.1	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.2	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.3	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.4	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.5	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.6	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.7	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.8	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
0.9	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
1	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
2	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
3	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
4	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
5	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
6	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
7	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
8	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					
9	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803					

Apéndice A11. Profundidad crítica en canal triangular. (Figura N°17)

10	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803
11	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803
12	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803
13	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803
14	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803
15	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803
16	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803
17	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803
18	1.3975425	0.3535534	0.1250000	0.0441942	0.0111803

Nota: Se muestra la profundidad crítica en canal triangular. Fuente: Elaboración propia.

Ve/Te			Sc		
ICIC	z = 0.2	z = 0.5	z = 1	z = 2	z = 5
0.01	0.0525828	0.0145855	0.0068932	0.0043867	0.0032307
0.02	0.0417350	0.0115765	0.0054711	0.0034817	0.0025642
0.03	0.0364589	0.0101130	0.0047795	0.0030415	0.0022400
0.04	0.0331251	0.0091883	0.0043424	0.0027634	0.0020352
0.05	0.0307506	0.0085296	0.0040312	0.0025653	0.0018893
0.06	0.0289374	0.0080267	0.0037935	0.0024141	0.0017779
0.07	0.0274881	0.0076247	0.0036035	0.0022932	0.0016889
0.08	0.0262914	0.0072927	0.0034466	0.0021933	0.0016153
0.09	0.0252792	0.0070120	0.0033139	0.0021089	0.0015532
0.1	0.0244068	0.0067700	0.0031995	0.0020361	0.0014996
0.2	0.0193717	0.0053733	0.0025395	0.0016161	0.0011902
0.3	0.0169227	0.0046940	0.0022184	0.0014118	0.0010397
0.4	0.0153753	0.0042648	0.0020156	0.0012827	0.0009447
0.5	0.0142732	0.0039591	0.0018711	0.0011907	0.0008769
0.6	0.0134316	0.0037257	0.0017608	0.0011205	0.0008252
0.7	0.0127588	0.0035391	0.0016726	0.0010644	0.0007839
0.8	0.0122034	0.0033850	0.0015998	0.0010181	0.0007498
0.9	0.0117336	0.0032547	0.0015382	0.0009789	0.0007209
1	0.0113286	0.0031423	0.0014851	0.0009451	0.0006960
2	0.0089915	0.0024941	0.0011787	0.0007501	0.0005524
3	0.0078548	0.0021788	0.0010297	0.0006553	0.0004826
4	0.0071366	0.0019796	0.0009356	0.0005954	0.0004385
5	0.0066250	0.0018377	0.0008685	0.0005527	0.0004070
6	0.0062344	0.0017293	0.0008173	0.0005201	0.0003830
7	0.0059221	0.0016427	0.0007763	0.0004940	0.0003639
8	0.0056643	0.0015712	0.0007425	0.0004725	0.0003480
9	0.0054462	0.0015107	0.0007140	0.0004543	0.0003346

Apéndice A12. Pendiente crítica en canal triangular desde fórmula de Manning.

10	0.0052583	0.0014585	0.0006893	0.0004387	0.0003231
11	0.0050939	0.0014129	0.0006678	0.0004249	0.0003130
12	0.0049482	0.0013725	0.0006487	0.0004128	0.0003040
13	0.0048180	0.0013364	0.0006316	0.0004019	0.0002960
14	0.0047004	0.0013038	0.0006162	0.0003921	0.0002888
15	0.0045935	0.0012742	0.0006022	0.0003832	0.0002822
16	0.0044958	0.0012470	0.0005894	0.0003751	0.0002762
17	0.0044058	0.0012221	0.0005776	0.0003676	0.0002707
18	0.0043227	0.0011990	0.0005667	0.0003606	0.0002656

Nota: Se muestra la pendiente crítica en canal triangular desde fórmula de Manning.

Fuente: Elaboración propia.

Ve/Te	Sc						
1010	z = 0.2	z = 0.5	z = 1	z = 2	z = 5		
0.01	0.0725822	0.0161756	0.0073146	0.0046514	0.0034956		
0.02	0.0501392	0.0123417	0.0058055	0.0037763	0.0028905		
0.03	0.0415296	0.0106995	0.0051298	0.0033743	0.0026067		
0.04	0.0366988	0.0097253	0.0047195	0.0031267	0.0024299		
0.05	0.0335094	0.0090585	0.0044342	0.0029530	0.0023049		
0.06	0.0312023	0.0085632	0.0042199	0.0028216	0.0022098		
0.07	0.0294326	0.0081756	0.0040506	0.0027173	0.0021339		
0.08	0.0280185	0.0078606	0.0039120	0.0026315	0.0020713		
0.09	0.0268541	0.0075977	0.0037956	0.0025591	0.0020183		
0.1	0.0258730	0.0073735	0.0036958	0.0024969	0.0019726		
0.2	0.0205779	0.0061184	0.0031276	0.0021388	0.0017073		
0.3	0.0182015	0.0055274	0.0028539	0.0019639	0.0015762		
0.4	0.0167565	0.0051585	0.0026810	0.0018526	0.0014921		
0.5	0.0157509	0.0048972	0.0025574	0.0017726	0.0014315		
0.6	0.0149950	0.0046982	0.0024627	0.0017110	0.0013846		
0.7	0.0143976	0.0045392	0.0023867	0.0016614	0.0013468		
0.8	0.0139085	0.0044079	0.0023236	0.0016202	0.0013152		
0.9	0.0134974	0.0042968	0.0022701	0.0015851	0.0012883		
1	0.0131450	0.0042009	0.0022237	0.0015546	0.0012649		
2	0.0111361	0.0036433	0.0019513	0.0013745	0.0011258		
3	0.0101674	0.0033671	0.0018145	0.0012833	0.0010548		
4	0.0095548	0.0031897	0.0017260	0.0012240	0.0010085		
5	0.0091170	0.0030616	0.0016618	0.0011808	0.0009746		
6	0.0087812	0.0029626	0.0016119	0.0011471	0.0009481		
7	0.0085115	0.0028826	0.0015715	0.0011198	0.0009266		
8	0.0082879	0.0028158	0.0015376	0.0010969	0.0009086		

Apéndice A13. Pendiente crítica en canal triangular desde fórmula de Darcy (n=0.015). (Figura N°21)

9	0.0080978	0.0027589	0.0015087	0.0010773	0.0008931
10	0.0079333	0.0027094	0.0014835	0.0010602	0.0008795
11	0.0077888	0.0026658	0.0014613	0.0010450	0.0008676
12	0.0076603	0.0026269	0.0014414	0.0010315	0.0008569
13	0.0075448	0.0025918	0.0014235	0.0010193	0.0008472
14	0.0074402	0.0025600	0.0014072	0.0010082	0.0008383
15	0.0073448	0.0025309	0.0013922	0.0009980	0.0008303
16	0.0072572	0.0025041	0.0013785	0.0009886	0.0008228
17	0.0071763	0.0024793	0.0013658	0.0009799	0.0008159
18	0.0071013	0.0024563	0.0013539	0.0009718	0.0008094

Nota: Se muestra la pendiente crítica en canal triangular desde fórmula de Darcy

(n=0.015). Fuente: Elaboración propia.

Ve/Te	Sc				
1010	z = 0.2	z = 0.5	z = 1	z = 2	z = 5
0.01	1.8474456	0.0881282	0.0273988	0.0144917	0.0095015
0.02	0.4505242	0.0492222	0.0179050	0.0101673	0.0070082
0.03	0.2681919	0.0373624	0.0144777	0.0084797	0.0059799
0.04	0.1985946	0.0313689	0.0126098	0.0075249	0.0053816
0.05	0.1617110	0.0276603	0.0113991	0.0068911	0.0049773
0.06	0.1387009	0.0250974	0.0105348	0.0064309	0.0046798
0.07	0.1228724	0.0231986	0.0098784	0.0060768	0.0044486
0.08	0.1112529	0.0217226	0.0093582	0.0057932	0.0042619
0.09	0.1023193	0.0205346	0.0089328	0.0055592	0.0041069
0.1	0.0952093	0.0195526	0.0085763	0.0053617	0.0039752
0.2	0.0626571	0.0145499	0.0066856	0.0042902	0.0032479
0.3	0.0508153	0.0124660	0.0058559	0.0038060	0.0029113
0.4	0.0443381	0.0112476	0.0053575	0.0035105	0.0027033
0.5	0.0401303	0.0104215	0.0050135	0.0033044	0.0025569
0.6	0.0371215	0.0098122	0.0047564	0.0031491	0.0024460
0.7	0.0348340	0.0093378	0.0045542	0.0030263	0.0023577
0.8	0.0330191	0.0089542	0.0043892	0.0029255	0.0022851
0.9	0.0315335	0.0086350	0.0042511	0.0028408	0.0022237
1	0.0302879	0.0083638	0.0041329	0.0027681	0.0021709
2	0.0236678	0.0068604	0.0034655	0.0023525	0.0018662
3	0.0207551	0.0061617	0.0031475	0.0021514	0.0017167
4	0.0190027	0.0057287	0.0029476	0.0020240	0.0016214
5	0.0177919	0.0054236	0.0028054	0.0019328	0.0015527
6	0.0168865	0.0051920	0.0026968	0.0018628	0.0014998
7	0.0161739	0.0050076	0.0026097	0.0018065	0.0014572
8	0.0155924	0.0048556	0.0025377	0.0017598	0.0014217

Apéndice A14. Pendiente crítica en canal triangular desde fórmula de Darcy (n=0.035). (Figura N°22)

9	0.0151051	0.0047273	0.0024766	0.0017200	0.0013915
10	0.0146883	0.0046167	0.0024238	0.0016856	0.0013653
11	0.0143260	0.0045200	0.0023775	0.0016554	0.0013422
12	0.0140068	0.0044344	0.0023364	0.0016285	0.0013216
13	0.0137225	0.0043577	0.0022995	0.0016043	0.0013031
14	0.0134669	0.0042885	0.0022661	0.0015824	0.0012863
15	0.0132353	0.0042256	0.0022356	0.0015624	0.0012709
16	0.0130240	0.0041679	0.0022077	0.0015441	0.0012568
17	0.0128302	0.0041148	0.0021820	0.0015271	0.0012438
18	0.0126513	0.0040657	0.0021581	0.0015114	0.0012317

Nota: Se muestra la pendiente crítica en canal triangular desde fórmula de Darcy

(n=0.035). Fuente: Elaboración propia.

C*Y	S	W	Z*C^(8/3)
0.01	0.2	0.477943377	4.19437E-05
0.02	0.28284271	0.667816193	0.00018984
0.03	0.34641016	0.811917935	0.000459247
0.04	0.4	0.932744577	0.000859461
0.05	0.4472136	1.038904698	0.001397309
0.06	0.48989795	1.134768746	0.002078219
0.07	0.52915026	1.222909915	0.0029067
0.08	0.56568542	1.304991388	0.003886612
0.09	0.6	1.382160004	0.00502133
0.1	0.63245553	1.455245165	0.006313845
0.2	0.89442719	2.05120962	0.028410986
0.3	1.09544512	2.519076825	0.068269525
0.4	1.26491106	2.922444818	0.126931804
0.5	1.41421356	3.285252353	0.205099157
0.6	1.54919334	3.619544318	0.303291483
0.7	1.67332005	3.932376237	0.421916405
0.8	1.78885438	4.228295868	0.561305644
0.9	1.8973666	4.510435318	0.721736476
1	2	4.781059512	0.903445421
2	2.82842712	7.099703639	3.926445102
3	3.46410162	9.037740529	9.211872362
4	4	10.77462176	16.8189925
5	4.47213595	12.38008446	26.78308666
6	4.89897949	13.89022066	39.12821626
7	5.29150262	15.32670286	53.87210708

Apéndice A15. Profundidad normal en canal parabólico desde fórmula de Manning. (Figura N°15)

8	5.65685425	16.70381114	71.02849419
9	6	18.03157589	90.60840909
10	6.32455532	19.31738041	112.6209533
20	8.94427191	30.69836721	467.8243529
30	10.9544512	40.54330365	1070.964483
40	12.6491106	49.52559853	1923.895641
50	14.1421356	57.92337386	3027.660198
60	15.4919334	65.88627324	4382.946654
70	16.7332005	73.50672318	5990.251808
80	17.8885438	80.84696651	7849.955031
90	18.973666	87.95149824	9962.357747
100	20	94.85355179	12327.70658

Nota: Se muestra la profundidad normal en canal parabólico desde fórmula de Manning.

Fuente: Elaboración propia.

C*Y	S	W	f	Zm*C^(5/2)	Z*C^(8/3)
0.01	0.2	0.47794338	0.049967952	0.000445476	7.74088E-05
0.02	0.29294271	0.66791610	0.029657201	0.002038132	0.000254150
0.02	0.20204271	0.00781019	0.038037201	0.002038132	0.000334139
0.03	0.34641016	0.81191793	0.033733244	0.004927154	0.000856174
0.04	0.4	0.93274458	0.030789749	0.009191978	0.001597257
0.05	0.4472136	1.0389047	0.028765575	0.014887321	0.002586916
0.06	0.48989795	1.13476875	0.02725777	0.022054636	0.003832354
0.07	0.52915026	1.22290991	0.026074859	0.030727045	0.005339327
0.08	0.56568542	1.30499139	0.025112464	0.040931948	0.007112596
0.09	0.6	1.38216	0.024308103	0.05269257	0.009156197
0.1	0.63245553	1.45524516	0.023621732	0.066028963	0.011473614
0.2	0.89442719	2.05120962	0.019773825	0.289151572	0.050244822
0.3	1.09544512	2.51907682	0.017963138	0.681662565	0.118450037
0.4	1.26491106	2.92244482	0.016835582	1.248838214	0.217006097
0.5	1.41421356	3.28525235	0.016038924	1.993741985	0.34644533
0.6	1.54919334	3.61954432	0.01543354	2.918360991	0.507113029
0.7	1.67332005	3.93237624	0.014951102	4.024064057	0.699247049
0.8	1.78885438	4.22829587	0.014553527	5.311828966	0.923017298
0.9	1.8973666	4.51043532	0.014217615	6.782369863	1.178547868
1	2	4.78105951	0.013928279	8.436214816	1.46593052
2	2.82842712	7.09970364	0.012255823	35.1062601	6.100287778
3	3.46410162	9.03774053	0.01143487	80.2113266	13.93803196
4	4	10.7746218	0.010910395	143.6720036	24.96536415
5	4.47213595	12.3800845	0.010532818	225.3755781	39.16269864
6	4.89897949	13.8902207	0.010241574	325.2076963	56.51016456
7	5.29150262	15.3267029	0.010006564	443.0596027	76.98886385
8	5.65685425	16.7038111	0.009810804	578.8296973	100.5811419

Apéndice A16. Profundidad normal en canal parabólico desde fórmula de Darcy (n=0.015). (Figura N°14)

9	6	18.0315759	0.009643839	732.4234657	127.2705752
10	6.32455532	19.3173804	0.00949881	903.7529319	157.0418766
20	8.94427191	30.6983672	0.008635352	3576.665014	621.5041365
30	10.9544512	40.5433037	0.008193031	7956.084497	1382.500012
40	12.6491106	49.5255985	0.00790286	14001.88189	2433.056348
50	14.1421356	57.9233739	0.007689919	21684.68594	3768.069405
60	15.4919334	65.8862732	0.007523201	30981.3217	5383.51216
70	16.7332005	73.5067232	0.007387032	41872.65377	7276.059521
80	17.8885438	80.8469665	0.007272447	54342.39196	9442.880801
90	18.973666	87.9514982	0.007173861	68376.35943	11881.51254
100	20	94.8535518	0.007087574	83962.01138	14589.77488

Nota: Se muestra la profundidad normal en canal parabólico desde fórmula de Darcy

(n=0.015). Fuente: Elaboración propia.

Apéndice A17. Profundidad normal en canal parabólico desde fórmula de Darcy (n=0.035).

(Figura N°14)

C*Y	S	W	f	Zm*C^(5/2)	Z*C^(8/3)
0.01	0.2	0.47794338	0.22727896	9.95796E-05	8.46902E-05
0.02	0.28284271	0.66781619	0.13615187	0.000400726	0.00044033
0.03	0.34641016	0.81191793	0.10619313	0.000904951	0.001125951
0.04	0.4	0.93274458	0.09056081	0.001612917	0.002173124
0.05	0.4472136	1.0389047	0.08070304	0.002524952	0.003603717
0.06	0.48989795	1.13476875	0.07380281	0.003641204	0.005434394
0.07	0.52915026	1.22290991	0.06864209	0.004961715	0.007678548
0.08	0.56568542	1.30499139	0.06460167	0.00648645	0.010347317
0.09	0.6	1.38216	0.06133065	0.008215328	0.013450198
0.1	0.63245553	1.45524516	0.05861397	0.010148231	0.016995436
0.2	0.89442719	2.05120962	0.04459483	0.04066033	0.078067664
0.3	1.09544512	2.51907682	0.03867052	0.091360937	0.188370578
0.4	1.26491106	2.92244482	0.03518665	0.162039259	0.350246537
0.5	1.41421356	3.28525235	0.03281738	0.252497203	0.565128474
0.6	1.54919334	3.61954432	0.03106703	0.362553242	0.833996944
0.7	1.67332005	3.93237624	0.02970269	0.492041221	1.157567013
0.8	1.78885438	4.22829587	0.02859848	0.640808429	1.536382241
0.9	1.8973666	4.51043532	0.02767959	0.808713784	1.970868093
1	2	4.78105951	0.02689836	0.995626286	2.461364878
2	2.82842712	7.09970364	0.02256572	3.886474379	10.48995767
3	3.46410162	9.03774053	0.02055127	8.577314172	24.25909238
4	4	10.7746218	0.01930236	15.00694852	43.79552597
5	4.47213595	12.3800845	0.01842145	23.13018652	69.09709327
6	4.89897949	13.8902207	0.01775231	32.91123427	100.1519111

7	5.29150262	15.3267029	0.01721892	44.32049989	136.9443914
8	5.65685425	16.7038111	0.01677906	57.33279499	179.4576053
9	6	18.0315759	0.01640708	71.92621937	227.6743291
10	6.32455532	19.3173804	0.01608636	88.08142109	281.5775352
20	8.94427191	30.6983672	0.0142224	332.3672937	1129.989256
30	10.9544512	40.5433037	0.01329765	720.1478777	2532.076672
40	12.6491106	49.5255985	0.01270201	1244.739705	4478.007625
50	14.1421356	57.9233739	0.01227046	1901.577428	6960.271436
60	15.4919334	65.8862732	0.01193586	2687.20792	9972.798292
70	16.7332005	73.5067232	0.0116647	3598.864435	13510.49501
80	17.8885438	80.8469665	0.01143801	4634.245482	17568.97378
90	18.973666	87.9514982	0.01124405	5791.385231	22144.38035
100	20	94.8535518	0.01107512	7068.571091	27233.27819

Nota: Se muestra la profundidad normal en canal parabólico desde fórmula de Darcy

(n=0.035). Fuente: Elaboración propia.

Yc/B	S	W	Zc*C(5/2)
0.01	<u> </u>	0. 1770 10077	0.0001000
0.01	0.2	0.477943377	0.0001089
0.02	0.28284271	0.667816193	0.0004356
0.03	0.34641016	0.811917935	0.0009801
0.04	0.4	0.932744577	0.0017424
0.05	0.4472136	1.038904698	0.0027225
0.06	0.48989795	1.134768746	0.0039204
0.07	0.52915026	1.222909915	0.0053361
0.08	0.56568542	1.304991388	0.0069696
0.09	0.6	1.382160004	0.0088209
0.1	0.63245553	1.455245165	0.01089
0.2	0.89442719	2.05120962	0.04356
0.3	1.09544512	2.519076825	0.09801
0.4	1.26491106	2.922444818	0.17424
0.5	1.41421356	3.285252353	0.27225
0.6	1.54919334	3.619544318	0.39204
0.7	1.67332005	3.932376237	0.53361
0.8	1.78885438	4.228295868	0.69696
0.9	1.8973666	4.510435318	0.88209
1	2	4.781059512	1.089
2	2.82842712	7.099703639	4.356
3	3.46410162	9.037740529	9.801
4	4	10.77462176	17.424
5	4.47213595	12.38008446	27.225
6	4.89897949	13.89022066	39.204
7	5.29150262	15.32670286	53.361
8	5.65685425	16.70381114	69.696
9	6	18.03157589	88.209

Apéndice A18. Profundidad crítica en canal parabólico. (Figura N°18)

10	6.32455532	19.31738041	108.9
11	6.63324958	20.56685784	131.769
12	6.92820323	21.78442949	156.816
13	7.21110255	22.97364621	184.041
14	7.48331477	24.13741443	213.444
15	7.74596669	25.27815144	245.025
16	8	26.39789527	278.784
17	8.24621125	27.49838452	314.721
18	8.48528137	28.58111762	352.836

Nota: Se muestra la profundidad crítica en canal parabólico. Fuente: Elaboración propia.

Apéndice A19. Pendiente crítica en canal parabólico desde fórmula de Manning. (Figura N°23)

Vo/P	S	D	Sc	Sc
I C/B	3	D	n=0.015	n=0.035
0.01	0.2	0.477943377	0.025387268	0.138219569
0.02	0.28284271	0.667816193	0.019828657	0.107956021
0.03	0.34641016	0.811917935	0.017153087	0.093389029
0.04	0.4	0.932744577	0.015478814	0.084273543
0.05	0.4472136	1.038904698	0.014297002	0.077839233
0.06	0.48989795	1.134768746	0.013402092	0.072966947
0.07	0.52915026	1.222909915	0.012692347	0.06910278
0.08	0.56568542	1.304991388	0.012110653	0.065935779
0.09	0.6	1.382160004	0.011622047	0.063275588
0.1	0.63245553	1.455245165	0.01120372	0.060998032
0.2	0.89442719	2.05120962	0.008853142	0.04820044
0.3	1.09544512	2.519076825	0.007762137	0.042260526
0.4	1.26491106	2.922444818	0.00709658	0.038636938
0.5	1.41421356	3.285252353	0.006635938	0.036128998
0.6	1.54919334	3.619544318	0.006292665	0.034260068
0.7	1.67332005	3.932376237	0.006024062	0.032797669
0.8	1.78885438	4.228295868	0.005806457	0.031612932
0.9	1.8973666	4.510435318	0.005625522	0.03062784
1	2	4.781059512	0.005472002	0.02979201
2	2.82842712	7.099703639	0.004635227	0.025236235
3	3.46410162	9.037740529	0.004263235	0.023210946
4	4	10.77462176	0.004041942	0.022006129
5	4.47213595	12.38008446	0.003891427	0.021186656
6	4.89897949	13.89022066	0.003780724	0.020583942
7	5.29150262	15.32670286	0.003694999	0.020117216

8	5.65685425	16.70381114	0.003626142	0.019742329
9	6	18.03157589	0.0035693	0.019432858
10	6.32455532	19.31738041	0.00352137	0.019171904
11	6.63324958	20.56685784	0.003480262	0.018948093
12	6.92820323	21.78442949	0.003444512	0.018753454
13	7.21110255	22.97364621	0.00341306	0.018582215
14	7.48331477	24.13741443	0.003385117	0.01843008
15	7.74596669	25.27815144	0.003360082	0.018293779
16	8	26.39789527	0.003337489	0.018170771
17	8.24621125	27.49838452	0.003316969	0.018059051
18	8.48528137	28.58111762	0.003298226	0.017957011

Nota: Se muestra la pendiente crítica en canal parabólico desde fórmula de Manning.

Fuente: Elaboración propia.

Apéndice A20. Pendiente crítica en canal parabólico desde fórmula de Darcy (n=0.015). (Figura N°23)

Y/B	S	D	f	Sc
0.01	0.2	0.47794338	0.355284803	0.053064381
0.02	0.28284271	0.66781619	0.190654044	0.028134422
0.03	0.34641016	0.81191793	0.142530392	0.020878967
0.04	0.4	0.93274458	0.11865248	0.017292571
0.05	0.4472136	1.0389047	0.104044755	0.015106398
0.06	0.48989795	1.13476875	0.094032204	0.013613142
0.07	0.52915026	1.22290991	0.086660704	0.012517502
0.08	0.56568542	1.30499139	0.080960566	0.0116731
0.09	0.6	1.38216	0.076392372	0.010998592
0.1	0.63245553	1.45524516	0.072630434	0.010444913
0.2	0.89442719	2.05120962	0.053695168	0.00769627
0.3	1.09544512	2.51907682	0.045944807	0.006603394
0.4	1.26491106	2.92244482	0.041460747	0.00598692
0.5	1.41421356	3.28525235	0.038443505	0.005581575
0.6	1.54919334	3.61954432	0.036231629	0.005290737
0.7	1.67332005	3.93237624	0.03451785	0.005069905
0.8	1.78885438	4.22829587	0.03313755	0.004895429
0.9	1.8973666	4.51043532	0.03199355	0.004753458
1	2	4.78105951	0.031024291	0.004635281
2	2.82842712	7.09970364	0.025706398	0.004032891
3	3.46410162	9.03774053	0.023268244	0.003794136
4	4	10.7746218	0.021768079	0.003664732
5	4.47213595	12.3800845	0.020715346	0.003584106
6	4.89897949	13.8902207	0.019918731	0.00352976
7	5.29150262	15.3267029	0.019285626	0.00349127

8	5.65685425	16.7038111	0.018764827	0.003463101
9	6	18.0315759	0.018325326	0.003442026
10	6.32455532	19.3173804	0.017947054	0.003426032
11	6.63324958	20.5668578	0.01761635	0.003413796
12	6.92820323	21.7844295	0.01732353	0.003404411
13	7.21110255	22.9736462	0.017061506	0.003397235
14	7.48331477	24.1374144	0.016824948	0.003391802
15	7.74596669	25.2781514	0.016609754	0.003387762
16	8	26.3978953	0.016412709	0.003384851
17	8.24621125	27.4983845	0.01623125	0.003382865
18	8.48528137	28.5811176	0.0160633	0.003381643

Nota: Se muestra la pendiente crítica en canal parabólico desde fórmula de Darcy

(n=0.015). Fuente: Elaboración propia.

Y/B	S	D	f	Sc
0.01	0.2	0.47794338	2.05081745	0.30630457
0.02	0.28284271	0.66781619	135.9594	20.0632465
0.03	0.34641016	0.81191793	13.4371485	1.96837864
0.04	0.4	0.93274458	3.59904335	0.5245294
0.05	0.4472136	1.0389047	1.90659518	0.27682112
0.06	0.48989795	1.13476875	1.27648144	0.18479757
0.07	0.52915026	1.22290991	0.95934892	0.13857091
0.08	0.56568542	1.30499139	0.77147411	0.1112331
0.09	0.6	1.38216	0.64819544	0.09332394
0.1	0.63245553	1.45524516	0.56144162	0.08074038
0.2	0.89442719	2.05120962	0.26583137	0.03810231
0.3	1.09544512	2.51907682	0.1908	0.02742263
0.4	1.26491106	2.92244482	0.15559405	0.02246774
0.5	1.41421356	3.28525235	0.13474451	0.01956342
0.6	1.54919334	3.61954432	0.12076381	0.01763458
0.7	1.67332005	3.93237624	0.11063518	0.01624985
0.8	1.78885438	4.22829587	0.10289983	0.01520145
0.9	1.8973666	4.51043532	0.09676202	0.01437647
1	2	4.78105951	0.09174875	0.01370801
2	2.82842712	7.09970364	0.06707865	0.01052349
3	3.46410162	9.03774053	0.05724118	0.00933379
4	4	10.7746218	0.05160977	0.00868868
5	4.47213595	12.3800845	0.04784118	0.00827733
6	4.89897949	13.8902207	0.04508695	0.00798977
7	5.29150262	15.3267029	0.04295669	0.00777644
8	5.65685425	16.7038111	0.04124261	0.00761144

Apéndice A21. Pendiente crítica en canal parabólico desde fórmula de Darcy (n=0.035). (Figura N°23)

9	6	18.0315759	0.03982264	0.00747984
10	6.32455532	19.3173804	0.03861973	0.00737238
11	6.63324958	20.5668578	0.03758254	0.00728296
12	6.92820323	21.7844295	0.03667533	0.00720742
13	7.21110255	22.9736462	0.03587235	0.00714279
14	7.48331477	24.1374144	0.03515452	0.00708693
15	7.74596669	25.2781514	0.03450736	0.0070382
16	8	26.3978953	0.03391962	0.00699536
17	8.24621125	27.4983845	0.03338246	0.00695746
18	8.48528137	28.5811176	0.03288875	0.00692373

Nota: Se muestra la pendiente crítica en canal parabólico desde fórmula de Darcy

(n=0.035). Fuente: Elaboración propia.

turnitin 💭

Recibo digital

Este recibo confirma que su trabajo ha sido recibido por Turnitin. A continuación, podrá ver la información del recibo con respecto a su entrega.

La primera página de tus entregas se muestra abajo.

Autor de la entrega:	Jose Jhordán-christian Arturo Castañeda Llanos_peña Hilario
Título del ejercicio:	IFT. Castañeda Llanos-Peña Hilario
Título de la entrega:	IFT. Castañeda Llanos-Peña Hilario
Nombre del archivo:	IFTCasta_eda_Llanos-Pe_a_Hilario07_02_2022.pdf
Tamaño del archivo:	1.62M
Total páginas:	101
Word count:	19,963
Total de caracteres:	96,059
Fecha de entrega:	07-feb2022 10:10p. m. (UTC-0500)
Identificador de la entre	1757394041

Derechos de autor 2022 Turnitin. Todos los derechos reservados.

IFT. Castañeda Llanos-Peña Hilario

INFORME DE ORIGINALIDAD 7% % INDICE DE SIMILITUD FUENTES DE INTERNET PUBLICACIONES TRABAJOS DEL **ESTUDIANTE** FUENTES PRIMARIAS 1library.co 3% 1 Fuente de Internet repositorio.uns.edu.pe 1% 2 Fuente de Internet docplayer.es <1% 3 Fuente de Internet repositorio.ug.edu.ec <1% 4 Fuente de Internet kupdf.net <1% 5 Fuente de Internet dokumen.pub <1% 6 Fuente de Internet idoc.pub <1% 7 Fuente de Internet www.dspace.uce.edu.ec <1% 8 Fuente de Internet

doku.pub

9

<1%

10	repositorio.une.edu.pe Fuente de Internet	<1%
11	www.repositorio.usac.edu.gt	<1%
12	hdl.handle.net Fuente de Internet	<1%
13	Submitted to Universidad Nacional del Santa Trabajo del estudiante	<1%
14	qdoc.tips Fuente de Internet	<1%
15	repositorio.unap.edu.pe Fuente de Internet	<1%
16	repositorio.upao.edu.pe Fuente de Internet	<1%
17	Submitted to Universidad de Alicante Trabajo del estudiante	<1%
18	es.scribd.com Fuente de Internet	<1%
19	whitecandy.iespana.es Fuente de Internet	<1%

Apagado Activo