

TÍTULO DE TESIS: "ANÁLISIS SÍSMICO COMPARATIVO DEL DISEÑO DEL HOSPITAL DE PACASMAYO CON AISLAMIENTO ELASTOMÉRICO LRB, Y AISLAMIENTO PENDULAR FPS-TRIPLE"

PRESENTADO POR: Bach. ESTEBAN KORAFI APONTE

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

TOMO I

ASESOR: Ms. FELIPE E. VILLAVICENCIO GONZÁLEZ

Chimbote – Perú 2019

TÍTULO DE TESIS: "ANÁLISIS SÍSMICO COMPARATIVO DEL DISEÑO DEL HOSPITAL DE PACASMAYO CON AISLAMIENTO ELASTOMÉRICO LRB, Y AISLAMIENTO PENDULAR FPS-TRIPLE"

PRESENTADO POR: Bach. ESTEBAN KORAFI APONTE

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

> **ASESOR:** Ms. FELIPE E. VILLAVICENCIO GONZÁLEZ

> > Chimbote – Perú 2019

TÍTULO DE TESIS: "ANÁLISIS SÍSMICO COMPARATIVO DEL DISEÑO DEL HOSPITAL DE PACASMAYO CON AISLAMIENTO ELASTOMÉRICO LRB, Y AISLAMIENTO PENDULAR FPS-TRIPLE"

PRESENTADO POR: Bach. ESTEBAN KORAFI APONTE

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

REVISADO POR:

Ms. Felipe Eleuterio Villavicencio González ASESOR

TÍTULO DE TESIS: "ANÁLISIS SÍSMICO COMPARATIVO DEL DISEÑO DEL HOSPITAL DE PACASMAYO CON AISLAMIENTO ELASTOMÉRICO LRB, Y AISLAMIENTO PENDULAR FPS-TRIPLE"

PRESENTADO POR: Bach. ESTEBAN KORAFI APONTE

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Sustentada y aprobada ante el siguiente jurado evaluador:

Ms. Janet Verónica Saavedra Vera PRESIDENTE

Ms. Iván Eliseo León Malo SECRETARIO

Ms. Felipe Eleuterio Villavicencio González IN TEGRANTE

"Año de la lucha contra la corrupción e la impunidad"

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 31 días del mes de diciembre del año dos mil diecinueve, siendo las once horas de la mañana, en el Pabellón de la Escuela Profesional de Ingeniería Civil, Campus Universitario de la Universidad Nacional del Santa, se instaló el Jurado Evaluador designado mediante Resolución N° 632-2019-UNS-CFI, integrado por los docentes Ms. Janet Verónica Saavedra Vera (Presidente), Ms. Iván Eliseo León Malo (Secretario), Ms. Felipe Eleuterio Villavicencio González (Integrante) y el Ms. Atilio Rubén López Carranza (Accesitario) y en base a la Resolución Decanal N° 822-2019-UNS-FI, se da inicio a la sustentación de la Tesis titulada: "ANÁLISIS SÍSMICO COMPARATIVO DEL DISEÑO DEL HOSPITAL DE PACASMAYO CON AISLAMIENTO ELASTOMÉRICO LRB, Y AISLAMIENTO PENDULAR FPS-TRIPLE" presentado por el Bachiller KORAFI APONTE ESTEBAN, quien fue asesorado por el Ms. Felipe Eleuterio Villavicencio González, según lo establece la T. Resolución Decanal N° 860-2018-UNS-FI.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN	
KORAFI APONTE ESTEBAN	18	MUY BUENO	

Siendo las doce horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 31 de diciembre de 2019

Ms. Janet Verónica Saavedra Vera Presidente

Ms. Iván Eliseo León Malo Secretario

Ms. Felipe Eleuterio Villavicencio González Integrante

UNIVERSIDAD NACIONAL DEL SANTA Rectorado: Av. Pacífico Nº 508 – Urb. Buenos Aires Campus Universitario: Av. Universitaria s/n – Urb. Bellamar Central telefónica: (51)-43-310445 - Nuevo Chimbote – Ancash – Perú

www.uns.edu.pe

DEDICATORIA

A la memoria de mi Señora abuela Isabel Luján de Korafi

v

AGRADECIMIENTO

A Dios nuestro Señor, por haberme dado la oportunidad de estudiar esta profesión y de realizar este trabajo de investigación. A mis padres Mahomed y Kemberli por su ardua labor hecha en mí, y a mis hermanos Esdras y Eunice, que siempre están presentes.

A mi Señora abuela Genoveva Gómez de Aponte y mi tío Clever Aponte, por su apoyo incondicional durante mi formación universitaria.

A los Ingenieros Jorge Salvador, Jhon Choque, Iván León, y Felipe Villavicencio por la información, asesoramiento y aprendizaje recibido.

A la familia Ticona-Choque por su generosa hospitalidad en los últimos meses del desarrollo de mi tesis. Y a todos aquellos, familiares, amigos y conocidos, que me alentaron a no desistir de este objetivo.

INDICE GENERAL

ESUMEN	XXXIX
BSTRACT	XL
APÍTULO I: INTRODUCCIÓN	
1 ANTECEDENTES DEL PROBLEMA	
2 FORMULACIÓN DEL PROBLEMA	
1.2.1 PROBLEMA GENERAL	
1.2.2 PROBLEMAS ESPECÍFICOS	
3 OBJETIVOS	
1.3.1 OBJETIVO GENERAL	
1.3.2 OBJETIVOS ESPECÍFICOS	
4 FORMULACIÓN DE LA HIPÓTESIS	
1.4.1 HIPÓTESIS GENERAL	
1.4.1 HIPOTESIS ESPECÍFICAS	
5 JUSTIFICACIÓN	
6 LIMITACIONES DEL TRABAJO	
APÍTULO II: MARCO TEÓRICO	
1 ANTECEDENTES DE LA INVESTIGACIÓN	
2.1.1 ANTECEDENTES INTERNACIONALES	
2.1.2 ANTECEDENTES NACIONALES	
2 BASE TEÓRICA	
2.2.1 TEORÍA LINEAL DEL AISLAMIENTO SÍSMICO	
a. SISTEMA DE DOS GRADOS DE LIBERTAD CON A	AISLAMIENTO EN LA
BASE	
b. SISTEMA DE VARIOS GRADOS DE LIBERTAD CO	ON AISLAMIENTO EN
LA BASE	
2.2.2 AISLAMIENTO ELASTOMERICO REFORZADO	
a. CARACTERISTICAS MECÀNICAS DE I	LOS AISLADORES
ELASTOMERICOS	

		b.	MODELAMIENTO	BI-LINEAL	PARA	AISLADORES
			ELASTOMÉRICOS		••••••	60
		c.	PANDEO Y ESTABILID	AD DE AISLADORE	S ELASTOMÍ	ÉRICOS 64
	2.2.3	AISI	AMIENTO DE PÉNDUL	O DE FRICCIÓN	••••••	
		a.	AISLADOR DE SIMPLE	PÉNDULO DE FRIC	CIÓN (SFP)	
		b.	AISLADOR DE TRIPLE	PÉNDULO DE FRIC	CIÓN (FPT)	
2.3	DEFI	NICI	ÓN DE TÉRMINOS			
CA	PÍTUI	DI	II: MATERIALES Y MÉ	TODOS	••••••	
3.1	TIPO	DE I	NVESTIGACIÓN			
3.2	DISE	ÑO I	DE INVESTIGACIÓN		•••••	
3.3	UNID	AD	DE ANÁLISIS			
3.4	UBIC	ACI	ÓN		•••••	
3.5	POBL	ACI	ÓN Y MUESTRA		•••••	
	3.5.1	PO	BLACIÓN			
	3.5.2	Μ	JESTRA		•••••	
3.6	VARI	ABL	ES			
	3.6.1	VA	RIABLE DEPENDIENTE			
	3.6.2	VA	RIABLE INDEPENDIEN	ГЕ		
	3.6.3	MA	ATRIZ DE CONSISTENCI	A		
	3.6.4	OP	ERACIONALIZACIÓN D	E VARIABLES		
3.7	INSTI	RUM	IENTOS			
	3.7.1	INS	STRUMENTOS DE RECO	LECCIÓN DE DATO	S	
	3.7.2	INS	STRUMENTOS DE PROC	ESAMIENTO DE DA	TOS	
3.8	PROC	EDI	MIENTOS		•••••	
	3.8.1	CO	NSIDERACIONES GENE	RALES PARA EL DIS	SEÑO SISMOI	RRESISTENTE
					•••••	
		a.	INTRODUCCIÓN		•••••	
		b.	UBICACIÓN DE LA ED	IFICACIÓN		
		c.	DESCRIPCIÓN DE LA E	EDIFICACIÓN		
		d.	CARACTERÍSTICAS	ESTRUCTURALES	GENERAL	ES DE LA
			EDIFICACIÓN		•••••	
		e.	CARACTERÍSTICAS DI	E LOS MATERIALES		
		f.	CARGAS POR GRAVED	DAD		

	g.	NORMATIVIDAD EMPLEADA111
3.8.2	NC	ORMA NTE E.030 DISEÑO SISMORRESISTENTE: APLICACIÓN A
	ES	TRUCTURAS CON AISLAMIENTO SÍSMICO EN LA BASE112
	a.	FILOSOFÍA Y PRINCIPIOS DEL DISEÑO SISMORRESISTENTE 112
	b.	PELIGRO SÍSMICO113
	c.	CATEGORÍA, SISTEMA ESTRUCTURAL Y REGULARIDAD DE LAS
		EDIFICACIONES118
	d.	MODELOS PARA EL ANÁLISIS Y ESTIMACIÓN DEL PESO (P) 123
	e.	CONTROL DE DESPLAZAMIENTOS LATERALES 125
3.8.3	CA	PÍTULO 17 – ASCE/SEI 7-16: REQUISITOS DE DISEÑO SÍSMICO PARA
	ES	TRUCTURAS SISMICAMENTE AISLADAS (SEISMIC DESIGN
	RE	QUIREMENTS FOR SEISMICALLY ISOLATED STRUCTURES) 125
	a.	PROPIEDADES DEL SISTEMA DE AISLAMIENTO 125
	b.	CRITERIOS DE MOVIMIENTO SÍSMICO131
	c.	MODELOS DE ANÁLISIS
	d.	PROCEDIMIENTO DE ANÁLISIS: FUERZA LATERAL EQUIVALENTE
		(ELF)
	e.	PROCEDIMIENTO DE ANÁLISIS DINÁMICO: HISTORIA DE
		RESPUESTA
3.8.4	ES	TANDAR DE AISLAMIENTO SÍSMICO PARA LA FUNCIONALIDAD
	CC	NTINUA – SISCF Y SISTEMA DE CALIFICACIÓN REDi TM 147
3.8.5	M	DVIMIENTOS SÍSMICOS PARA EL ANÁLISIS 157
	a.	PELIGRO SÍSMICO157
	b.	ESPECTROS DE PELIGRO UNIFORME MCE y DBE 158
	c.	REGISTROS SÍSMICOS SELECCIONADOS
	d.	MÉTODO DEL AJUSTE ESPECTRAL 175
3.8.6	EV	ALUACIÓN DEL DISEÑO SÍSMICO CON AISLAMIENTO
	EL	ASTOMÉRICO CON NÚCLEO DE PLOMO LRB (LEAD BEARING
	RU	UBBER)
	a.	MODELO MATEMÁTICO DE MASAS Y RIGIDECES 209
	b.	ANÁLISIS MODAL – VECTORES DE RITZ 244
	c.	ANÁLISIS DINÁMICO TIEMPO-HISTORIA NO-LINEAL FNA 246
	d.	COMBINACIÓN PROMEDIO DE LOS CASOS DE ANÁLISIS DINÁMICO
		TIEMPO-HISTORIA FNA

	0	ANÁLISIS E	στάτισο		DE	
	C.			NO-LINEAL	DL	
• • •			_ES			
3.8.7	/ DI	SENO SISMICO	CON AIS	LAMIENTO I	DE TRIPI	LE PENDULO DE
	FR	ICCION FPT (TR	PLE FRICTI	ON PENDULU	M)	
	a.	MODELO MAT	EMÁTICO D	E MASAS Y RI	GIDECES	
	b.	ANÁLISIS MOE	OAL – VECT	ORES DE RITZ		
	c.	ANÁLISIS DINA	ÁMICO TIEN	IPO-HISTORIA	NO-LINI	EAL FNA 307
	d.	COMBINACIÓN	PROMEDIO	D DE LOS CAS	OS DE AN	IÁLISIS DINÁMICO
		TIEMPO-HISTO	RIA FNA			
CAPÍTU	JLOI	V: RESULTADO	S Y DISCUS	SIÓN		
4.1 ANA	ÁLISI	S E INTERPRETA	CIÓN DE RI	ESULTADOS		
4.1.1	1 EV	ALUACIÓN E	EL DISE	ÑO SÍSMIC	O CON	AISLAMIENTO
	EL	ASTOMÉRICO (CON NÚCL	EO DE PLON	IO LRB	(LEAD BEARING
	RI	BBER)				
	a.	FUERZA SÍSMI	CA QUE IN	GRESA A LA	ESTRUC	TURA CONTANDO
		CON LAS PROP	IEDADES D	E LÍMITE SUP	ERIOR	
	b.	PROPIEDADES	DINÁMICA	s de la est	RUCTURA	A PARA EL SISMO
		"DE" Y LAS PR	OPIEDADES	DE LÍMITE SU	JPERIOR	
	C	EVALUACIÓN	DE LOS	MÓDULOS	ESTRU	ICTURALES OUE
	0.	CONFORMANI	A SUPERES	TRUCTURA	Lonce	322
	d	EVALUACIÓN			FORMAC	TIÓN DEL SISTEMA
	u.					277
	0		$\frac{10 \text{ LKD } \dots}{10 \text{ LKD } \dots}$	ΛΡΟΙΠΤΕΛΤΛΙ		
	e.		DE DANOS	ARQUITECTU	NICO, ES	INUCIURAL I DE
4.1.4		CONTENIDO PO	JK SISMO			
4.1.2	2 DI	SENU SISMICU	CON AIS	LAMIENIO I		LE PENDULO DE
	FR	ICCION FPT (TR	PLE FRICTI	ON PENDULU	M)	
	a.	FUERZA SISMI	CA QUE IN	GRESA A LA	ESTRUC	TURA CONTANDO
		CON LAS PROP	IEDADES D	E LIMITE SUP	ERIOR	
	b.	PROPIEDADES	DINÁMICA	S DE LA EST	RUCTURA	A PARA EL SISMO
		"DE" Y LAS PR	OPIEDADES	DE LÍMITE SU	JPERIOR	
	c.	DISEÑO DE LA	A SUPERES	TRUCTURA T	OMANDO	D EN CUENTA EL
		SISMO "DE" Y	LAS PROPIE	DADES DE LÍN	MITE SUP	ERIOR 394

	d.	DETERMINACIÓ	N DEL	SISTEMA	ESTRUCTURA	L DE I	LA
		SUPERESTRUCT	URA Y ESO	CALAMIENTO	D DE RESULTAD	OS 4	23
	e.	VERIFICACIÓN	DE LA	CAPACIDAD	DE DEFORM	ACIÓN DI	EL
		SISTEMA DE AIS	LAMIENT	O FPT		4	-26
	f.	DISEÑO DE ELEN	IENTOS E	E CONCRETO	O ARMADO INC	ORPORADO	C
		Y MODIFICADOS	• • • • • • • • • • • • • • • • • • • •			4	.33
	g.	ESTIMACIÓN DE	DAÑOS A	ARQUITECTÓ	NICO, ESTRUC	FURAL Y I	ЭE
		CONTENIDO POR	SISMO			4	.44
CAP	ÍTULO V	: CONCLUSIONE	S Y RECO	MENDACION	NES	4	48
5.1 (CONCLUS	SIONES				4	49
5.2 F	RECOME	NDACIONES				4	53
REF	ERENCIA	AS BIBLIOGRÁFI	CAS	•••••	••••••	4	54
ANE	XOS		•••••	•••••	••••••	4	58

INDICE DE TABLAS

CAPÍTULO II. MARCO TEÓRICO

Tabla II-1. Resumen del comportamiento de aisladores de triple péndulo de fricción FPT 93

CAPÍTULO III. MATERIALES Y MÉTODOS

Tabla III-01. Matriz de consistencia de la investigación
Tabla III-02. Matriz de operacionalización de variables
Tabla III-03: Área techada del Bloque-A Hospital de Pacasmayo108
Tabla III-04: Tabla Nº 1 E.030 Factores de zona "Z" 113
Tabla III-05: Tabla Nº 2 E.030 Clasificación de los perfiles de suelo
Tabla III-06a: Tabla Nº 3 E.030 Factor de suelo "S"
Tabla III-06b: Tabla Nº 4 E.030 Periodos "TP" y "TL" 117
Tabla III-07: Tabla Nº 5 E.030 Categoría de las edificaciones y factor "U" 118
Tabla III-08: Tabla Nº 6 E.030 Categoría y sistema estructural 121
Tabla III-09: Tabla Nº 7 E.030 Sistemas estructurales
Tabla III-10a: Tabla Nº 8 E.030 Irregularidades estructurales en altura
Tabla III-10b: Tabla Nº 9 E.030 Irregularidades estructurales en planta
Tabla III-11: Tabla Nº 10 E.030 Categoría y regularidad de las edificaciones 122
Tabla III-12: Tabla Nº 11 Límites para la distorsión de entrepiso
Tabla III-13: Tabla C17.2-6 Multiplicadores predeterminados de límite superior e inferior para
fabricantes desconocidos
Tabla III-14: Tabla C17.2-7 Multiplicadores predeterminados de límite superior e inferior para
fabricantes calificados
Tabla III-15: Factores de importancia (I), indicados en ASCE/SEI 7-16 y equivalentes en NTE
E.030
Tabla III-16: Tabla 1.5-1 ASCE/SEI 7-16 Categoría de riesgo
Tabla III-17: Coeficientes de modificación de respuesta (R) para sistemas a base concreto
armado, indicados en ASCE/SEI 7-16 y equivalentes en NTE E.030 134
Tabla III-18 y 19: Irregularidades estructurales para sistemas con aislamiento en la base,
indicadas en ASCE/SEI 7-16 y equivalentes en NTE E.030
Tabla III-20: Tabla 17.5-1 Coeficiente de amortiguamiento, BM 140
Tabla III-21: Tabla 1.3-2 Objetivos de confiabilidad para la inestabilidad estructural causada
por terremotos, Probabilidad condicional de falla por sismo

Tabla III-22: Tabla C.3-1 Límites de criterios de resiliencia para las categorías de diseño de
estructuras
Tabla III-23: Tabla C.3-2 Contribuciones al daño arquitectónico y estructural del edificio 150
Tabla III-24: Espectro de peligro uniforme MCE y DE
Tabla III-25: Localización del evento – Sismo del 17.10.1966
Tabla III-26: Localización del evento – Sismo del 31.05.1970 162
Tabla III-27: Localización del evento – Sismo del 03.10.1974
Tabla III-28: Localización del evento – Sismo del 23.06.2001 166
Tabla III-29: Localización del evento – Sismo del 15.08.2007
Tabla III-30: Localización del evento – Sismo del 27.02.2010 170
Tabla III-31: Localización del evento – Sismo del 16.04.2016 173
Tabla III-32: Movimientos sísmicos utilizados para el análisis
Tabla III-33: Movimientos sísmicos ajustados espectralmente al sismo MCE203Tabla III-34a:
Cuadro de columnas – Edificación principal aislada
Tabla III-34a: Cuadro de columnas – Edificación principal aislada
Tabla III-34b: Cuadro de columnas – Edificación principal aislada
Tabla III-35: Secciones de los extremos de vigas del 1er. piso de los bloques A1-A2. Definición
como elementos frame en ETABS 17
Tabla III-36: Secciones de los extremos de vigas del 2do. y 3er. piso de los bloques A1-A2.
Definición como elementos frame en ETABS 17 219
Tabla III-37: Secciones de los extremos de vigas del 4to. piso de los bloques A1-A2. Definición
como elementos frame en ETABS 17
Tabla III-38: Secciones de los extremos de vigas del 1er3er. piso del bloque A3. Definición
como elementos frame en ETABS 17
Tabla III-39: Secciones de los extremos de vigas del 4to. piso del bloque A3. Definición como
elementos frame en ETABS 17 219
Tabla III-40: Secciones de los extremos de vigas del 1er. piso del bloque A4. Definición como
elementos frame en ETABS 17 219
Tabla III-41: Secciones de los extremos de vigas del 2do3er. piso del bloque A4. Definición
como elementos frame en ETABS 17 220
Tabla III-42: Secciones de los extremos de vigas del 2do3er. piso del bloque A4. Definición
como elementos frame en ETABS 17
Tabla III-43: Secciones de los extremos de vigas del 4to. piso del bloque A4. Definición como
elementos frame en ETABS 17

Tabla III-44: Secciones de los extremos de vigas del 1er3er. piso de los bloques A5-A6.
Definición como elementos frame en ETABS 17 220
Tabla III-45: Secciones de los extremos de vigas del 4to. piso de los bloques A5-A6. Definición
como elementos frame en ETABS 17
Tabla III-46: Propiedades Aislador Elastomérico LRB-B 225
Tabla III-47: Características histeréticas de aislador elastomérico LRB-B para el sismo DBE y
propiedades de límite superior
Tabla III-48: Características histeréticas de aislador elastomérico LRB-B para el sismo MCE y
propiedades de límite inferior
Tabla III-49: Propiedades Aislador Elastomérico LRB-C 229
Tabla III-50: Características histeréticas de aislador elastomérico LRB-C para el sismo DBE y
propiedades de límite superior230
Tabla III-51: Características histeréticas de aislador elastomérico LRB-C para el sismo MCE y
propiedades de límite inferior
Tabla III-52: Propiedades de deslizador de teflón Slider-A
Tabla III-53: Características histeréticas de deslizador de teflón Slider-A para el sismo DBE y
propiedades de límite superior
Tabla III-54: Características histeréticas de deslizador de teflón Slider-A para el sismo MCE y
propiedades de límite inferior
Tabla III-55: Carga equivalente de tabique, según su peso lineal
Tabla III-56: Casos de carga modal de tiempo-historia no-lineal FNA para el análisis dinámico,
con sus factores de escalas respectivos
Tabla III-57: Disposición de confinamiento en columnas para cada módulo estructural 261
Tabla III-58: Distribución de la fuerza sísmica en altura para el módulo A1
Tabla III-59: Distribución de la fuerza sísmica en altura para el módulo A2
Tabla III-60: Distribución de la fuerza sísmica en altura para el módulo A3
Tabla III-61: Distribución de la fuerza sísmica en altura para el módulo A4
Tabla III-62: Distribución de la fuerza sísmica en altura para el módulo A5
Tabla III-63: Distribución de la fuerza sísmica en altura para el módulo A6
Tabla III-64: Propiedades mecánicas y geométricas del aislador de triple péndulo de fricción
FPT8833/15-12R/10-6
Tabla III-65: Propiedades mecánicas y geométricas, y características histeréticas del prototipo
de aislador FPT-A

Tabla III-66a: Características histeréticas de la capacidad del prototipo de aislador FPT-A para
las propiedades de límite superior (Upper Bound)
Tabla III-66b: Características histeréticas de la capacidad del prototipo de aislador FPT-A para
las propiedades de límite inferior (Lower Bound)
Tabla III-67: Propiedades mecánicas y geométricas, y características histeréticas del prototipo
de aislador FPT-B
Tabla III-68a: Características histeréticas de la capacidad del prototipo de aislador FPT-B para
las propiedades de límite superior (Upper Bound)
Tabla III-68b: Características histeréticas de la capacidad del prototipo de aislador FPT-B para
las propiedades de límite inferior (Lower Bound)
Tabla III-69: Casos de carga modal de tiempo-historia no-lineal FNA para el análisis dinámico,
con sus factores de escalas respectivos

CAPÍTULO IV. RESULTADOS Y DISCUSIÓN

Tabla IV-01: Propiedades dinámicas del sistema de aislamiento LRB en el sismo DE y para las
propiedades de límite superior, correspondientes a la combinación promedio de casos
sísmicos PROM-TH
Tabla IV-02: Propiedades dinámicas de la superestructura del diseño con aislamiento LRB,
obtenidas de un análisis modal eigen
Tabla IV-03: Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes
a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A1 324
Tabla IV-04: Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes
a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A2 324
Tabla IV-05: Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes
a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A3 325
Tabla IV-06: Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes
a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A4 325
Tabla IV-07: Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes
a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A5
Tabla IV-08: Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes
a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A6
Tabla IV-09: Determinación del comportamiento dinámico no-lineal del Módulo-A1 para las
propiedades de límite superior y el sismo DE. Dirección X-X 329

Tabla IV-10: Determinación del comportamiento dinámico no-lineal del Módulo-A1 para las
propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-11: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A1 para las propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-12: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A1 para las propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-13: Determinación del comportamiento dinámico no-lineal del Módulo-A2 para las
propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-14: Determinación del comportamiento dinámico no-lineal del Módulo-A2 para las
propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-15: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A2 para las propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-16: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A2 para las propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-17: Determinación del comportamiento dinámico no-lineal del Módulo-A3 para las
propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-18: Determinación del comportamiento dinámico no-lineal del Módulo-A3 para las
propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-19: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A3 para las propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-20: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A3 para las propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-21: Determinación del comportamiento dinámico no-lineal del Módulo-A4 para las
propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-22: Determinación del comportamiento dinámico no-lineal del Módulo-A4 para las
propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-23: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A4 para las propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-24: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A4 para las propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-25: Determinación del comportamiento dinámico no-lineal del Módulo-A5 para las
propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-26: Determinación del comportamiento dinámico no-lineal del Módulo-A5 para las
propiedades de límite superior y el sismo DE. Dirección Y-Y

Tabla IV-27: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A5 para las propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-28: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A5 para las propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-29: Determinación del comportamiento dinámico no-lineal del Módulo-A6 para las
propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-30: Determinación del comportamiento dinámico no-lineal del Módulo-A6 para las
propiedades de límite superior y el sismo DE. Dirección Y-Y
Tabla IV-31: Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-
A6 para las propiedades de límite superior y el sismo DE. Dirección X-X
Tabla IV-32: Determinación de derivas inelásticas ultimas y derivas residuales en el
Tabla IV-33: Resumen de derivas ultimas y derivas residuales para el sismo DE y las
propiedades de límite superior correspondientes al diseño con aislamiento LRB
Tabla IV-34: Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en
el nivel de base para el sismo DE y las propiedades de límite superior, correspondientes al
diseño con aislamiento LRB
Tabla IV-35: Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en
el 1er-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño
con aislamiento LRB
Tabla IV-36: Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en
el 2do-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño
del aislamiento LRB
Tabla IV-37: Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en
el 3er-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño
con aislamiento LRB
Tabla IV-38: Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en
el nivel de base para el sismo DE y las propiedades de límite superior correspondiente al
diseño con aislamiento LRB
Tabla IV-39: Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en
el 1er-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño
con aislamiento LRB
Tabla IV-40: Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en
el 2do-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño
con aislamiento LRB

Tabla IV-41: Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en
el 3er-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño
con aislamiento LRB
Tabla IV-42: Aceleraciones espectrales promedio de piso β =5% T=0.05-3.00seg de los puntos
de control 11 y 56 para el sismo DE y las propiedades de límite superior correspondientes al
diseño con aislamiento LRB
Tabla IV-43: Desplazamientos máximos de aisladores LRB y deslizadores PTFE para el sismo
MCE y las propiedades de límite inferior
Tabla IV-44: Desplazamientos de aisladores LRB y deslizadores PTFE para el sismo MCE y las
propiedades de límite inferior. Combinación de cargas sísmicas PROM-TH
Tabla IV-45: Resumen de los valores de los parámetros resilientes para la estimación del daño
del diseño actual con aislamiento LRB del bloque aislado del Hospital de Pacasmayo 387
Tabla IV-46: Porcentaje y balance de pérdidas en bloque con aislamiento LRB del Hospital de
Pacasmayo para las propiedades de límite superior y el sismo de diseño DE
Tabla IV-47: Propiedades dinámicas del sistema de aislamiento FPT en el sismo DE y para las
propiedades de límite superior, correspondientes a la combinación promedio de casos
sísmicos PROM-TH
Tabla IV-48: Propiedades dinámicas de la superestructura del diseño con aislamiento FPT,
obtenidas del análisis modal de vectores de Ritz
Tabla IV-49: Comportamiento histerético del aislador FPT-A para el sismo DE y las
propiedades de límite superior. Procedimiento de análisis de Fuerza lateral equivalente
ELF
Tabla IV-50: Comportamiento histerético del aislador FPT-B para el sismo DE y las propiedades
de límite superior. Procedimiento de análisis de Fuerza lateral equivalente ELF
Tabla IV-51: Comportamiento histerético del aislador FPT-A para el sismo MCE y las
propiedades de límite inferior. Procedimiento de análisis de Fuerza lateral equivalente
ELF
Tabla IV-52: Comportamiento histerético del aislador FPT-B para el sismo MCE y las
propiedades de límite inferior. Procedimiento de análisis de Fuerza lateral equivalente
ELF
Tabla IV-53: Determinación de factor de torsión para determinar el desplazamiento máximo
total del sistema de aislamiento FPT 399
Tabla IV-54: Resumen del procedimiento de análisis de Fuerza lateral equivalente ELF para el
diseño con aislamiento FPT400

Tabla IV-55: Derivas pico de piso del diseño con aislamiento FPT, correspondientes a la
combinación promedio de los casos sísmicos PROM-TH máxima
Tabla IV-56: Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control
11 en el nivel de base para el sismo DE y las propiedades de límite superior. Diseño con
aislamiento FPT 406
Tabla IV-57: Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control
11 en el 1er-piso para el sismo DE y las propiedades de límite superior. Diseño con
aislamiento FPT 408
Tabla IV-58: Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control
11 en el 2do-piso para el sismo DE y las propiedades de límite superior. Diseño con
aislamiento FPT
Tabla IV-59: Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control
11 en el 3er-piso para el sismo DE y las propiedades de límite superior. Diseño con
aislamiento FPT 412
Tabla IV-60: Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control
56 en el nivel de base para el sismo DE y las propiedades de límite superior. Diseño con
aislamiento FPT 414
Tabla IV-61: Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control
56 en el 1er-piso para el sismo DE y las propiedades de límite superior. Diseño con
aislamiento FPT 416
Tabla IV-62: Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control
56 en el 2do-piso para el sismo DE y las propiedades de límite superior. Diseño con
aislamiento FPT 418
Tabla IV-63: Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control
56 en el 3er-piso para el sismo DE y las propiedades de límite superior. Diseño con
aislamiento FPT 420
Tabla IV-64: Aceleraciones espectrales promedio de piso β =5% T=0.05-3.00seg de los puntos
de control 11 y 56 para el sismo DE y las propiedades de límite superior. Diseño con
aislamiento FPT 422
Tabla IV-65: Aporte de fuerza cortante en elementos verticales del diseño con aislamiento FPT
para la dirección X-X
Tabla IV-66: Aporte de fuerza cortante en elementos verticales del diseño con aislamiento FPT
para la dirección Y-Y

Tabla IV-67: Factor de escala de fuerza cortante en la superestructura del diseño con aislamiento
FPT
Tabla IV-68: Factor de escala de fuerza cortante en la subestructura del diseño con aislamiento
FPT
Tabla IV-69: Desplazamientos máximos de aisladores FPT para el sismo MCE y las propiedades
de límite inferior
Tabla IV-70: Desplazamientos de aisladores FPT para el sismo MCE y las propiedades de límite
inferior. Combinación de cargas sísmicas PROM-TH
Tabla IV-71: Esfuerzos de carga axial, flexión y corte en columna en la columna C1 del primer
piso, para cada combinación de diseño
Tabla IV-72: Resistencia a corte de columna C1 del 1er-piso para el eje local 2-2
Tabla IV-73: Resistencia a corte de columna C1 del 1er-piso para el eje local 3-3
Tabla IV-74: Esfuerzos de carga axial, flexión y corte en placa P1 del primer piso, para cada
combinación de diseño
Tabla IV-75: Resistencia a corte de placa P1 del 1er-piso para el eje local 2-2
Tabla IV-76: Resistencia a corte de placa P1 del 1er-piso para el eje local 3-3
Tabla IV-77: Resumen de los valores de los parámetros resilientes para la estimación del daño
del diseño con aislamiento FPT444
Tabla IV-78: Porcentaje y balance de pérdidas en bloque con aislamiento FPT del Hospital de
Pacasmayo para las propiedades de límite superior y el sismo de diseño DE

INDICE DE FIGURAS

CAPÍTULO II: MARCO TEÓRICO

Figura II-01: Comportamiento de un edificio con base fija y un edificio con base aislada ante un
evento sísmico
Figura II-02: Cambio de periodo y reducción de la aceleración espectral en una estructura con
aislamiento en la base
Figura II-03: Parámetros del sistema de dos grados de libertad con aislamiento en la base 52
Figura II-04a: Aislador elastomérico de alto amortiguamiento HDR (High Damping Rubber)
con su respectivo comportamiento histerético
Figura II-04b: Aislador elastomérico con núcleo de plomo LRB (Lead Rubber Bearing) con su
respectivo comportamiento histerético
Figura II-05: Parámetros del modelo bi-lineal de un ciclo histerético de un aislador elastomérico
LRB
Figura II-06: Selección de los parámetros del modelo histerético de un aislador elastomérico
HRB
Figura II-07: Condiciones de contorno para un aislador elastomérico bajo una carga vertical P
(el aislador se flexiona sin fuerza lateral, pero se evita que gire en cada extremo)
Figura II-08: Notación para el área reducida Ar, el desplazamiento lateral D y los ángulos θ y ϕ
Figura II-09: Sección transversal de un aislador de simple péndulo de fricción SFP
Figura II-10: Modelización del movimiento del péndulo deslizante de un aislador de péndulo de
fricción FPS
Figura II-11: Diagrama de cuerpo libre del deslizador de un aislador SFP en su configuración
deformada
Figura II-12: Comportamiento histerético analítico de un aislador de simple péndulo de fricción
SFP
Figura II-13: Vista en corte del aislador de triple péndulo de fricción FPT
Figura II-14: Sección transversal de un aislador de triple péndulo de fricción, FPT, con su
propiedades geométricas y mecánicas75
Figura II-15: Curva monotónica de fuerza-desplazamiento par un aislador de triple péndulo de
fricción FPT77
Figura II-16: (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo
de fricción FPT en la fase de movimiento I

Figura II-17: Comportamiento histerético analítico de un aislador de triple péndulo de fricción
FPT en la fase de movimiento I
Figura II-18: (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo
de fricción FPT en la fase de movimiento II
Figura II-19: Comportamiento histerético analítico de un aislador de triple péndulo de fricción
FPT durante la fase de movimiento II se muestra en relación con la fase de movimiento I 83
Figura II-20: (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo
de fricción FPT en la fase de movimiento III
Figura II-21: Comportamiento histerético analítico de un aislador de triple péndulo de fricción
FPT durante la fase de movimiento II se muestra en relación con la fase de movimiento I y
И
Figura II-22: (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo
de fricción FPT en la fase de movimiento IV
Figura II-23: Comportamiento histerético analítico de un aislador de triple péndulo de fricción
FPT durante la fase de movimiento II se muestra en relación con la fase de movimiento I, II
y III
Figura II-24: (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo
de fricción FPT en la fase de movimiento V91
Figura II-25: Comportamiento histerético analítico de un aislador de triple péndulo de fricción
FPT durante la fase de movimiento II se muestra en relación con la fase de movimiento I, II,
III y IV

CAPÍTULO III: MATERIALES Y MÉTODOS

Figura III-001a: Presentación del isotipo del software Microsoft Excel 2016 102
Figura III-001b: Presentación del isotipo del software ETABS v.17.0.1
Figura III-002a: Portada del sistema de calificación REDi TM "Iniciativa de Diseño Sísmico
basado en Resiliencia"
Figura III-002b: Portada del FEMA P-58-1 Evaluación del Desempeño Sísmico de Edificios y
del Estándar de Aislamiento Sísmico para la Funcionalidad Continua, SISCF 104
Figura III-003: Vista 3D frontal Hospital de Pacasmayo
Figura III-004: Plano de Ubicación de Hospital de Pacasmayo106
Figura III-005: Esquema clave de los módulos estructurales
Figura III-006: Zonificación sísmica
Figura III-007: Modelo tridimensional de masas y rigideces 123

Figura III-008: Peso de entrepiso
Figura III-009: Límites superior e inferior de propiedades de un sistema bilineal Fuerza-
Deformación
Figura III-010: Figura C.3-2 Estimación de daños por movimiento sísmico, utilizado para
seleccionar propiedades del aislador, tipo de estructura, y rigidez de piso 151
Figura III-011a: Hoja de ruta para la clasificación REDi TM
Figura III-011b: Objetivos básicos para los tres (03) niveles de clasificación REDi TM 156
Figura III-012: Acelerogramas Estación PRQ – Sismo del 17.10.1966
Figura III-013: Acelerogramas Estación PRQ – Sismo del 31.05.1970
Figura III-014: Acelerogramas Estación PRQ – Sismo del 03.10.1974
Figura III-015: Acelerogramas Estación MOQ001 – Sismo del 23.06.2001 167
Figura III-016: Acelerogramas Estación ICA002 – Sismo del 15.08.2007 169
Figura III-017a: Acelerogramas Estación Concepción – Sismo del 27.02.2010 171
Figura III-017b: Espectros de respuesta Estación Concepción – Sismo del 27.02.2010 172
Figura III-018: Acelerogramas Estación AMNT – Sismo del 16.04.2016 174
Figura III-019: Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo
del 17.10.1966 Lima, Perú
Figura III-020: Contenido de frecuencias del ajuste espectral de la componente E-W 177
Figura III-021: Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo
del 17.10.1966 Lima, Perú
Figura III-022: Contenido de frecuencias del ajuste espectral de la componente N-S 179
Figura III-023: Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo
del 31.05.1970 Ancash, Perú
Figura III-024: Contenido de frecuencias del ajuste espectral de la componente E-W 181
Figura III-025: Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo
del 31.05.1970 Ancash, Perú
Figura III-026: Contenido de frecuencias del ajuste espectral de la componente N-S 183
Figura III-027: Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo
del 03.10.1974 Lima, Perú
Figura III-028: Contenido de frecuencias del ajuste espectral de la componente E-W 185
Figura III-029: Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo
del 03.10.1974 Ancash, Perú 186
Figura III-030: Contenido de frecuencias del ajuste espectral de la componente N-S 187

Figura III-031: Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo
del 23.06.2001 Arequipa, Perú
Figura III-032: Contenido de frecuencias del ajuste espectral de la componente E-W 189
Figura III-033: Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo
del 23.06.2001 Arequipa, Perú 190
Figura III-034: Contenido de frecuencias del ajuste espectral de la componente N-S 191
Figura III-035: Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo
del 15.08.2007 Ica, Perú
Figura III-036: Contenido de frecuencias del ajuste espectral de la componente E-W 193
Figura III-037: Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo
del 15.08.2007 Ica, Perú
Figura III-038: Contenido de frecuencias del ajuste espectral de la componente N-S 195
Figura III-039: Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo
del 27.02.2010 Maule, Chile 196
Figura III-040: Contenido de frecuencias del ajuste espectral de la componente E-W 197
Figura III-041: Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo
del 27.02.2010 Maule, Chile
Figura III-042: Contenido de frecuencias del ajuste espectral de la componente N-S 199
Figura III-043: Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo
del 16.04.2016 Manabí, Ecuador
Figura III-044: Contenido de frecuencias del ajuste espectral de la componente E-W 201
Figura III-045: Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo
del 16.04.2016 Manabí, Ecuador
Figura III-046: Contenido de frecuencias del ajuste espectral de la componente N-S 203
Figura III-047a: Ubicación de aisladores y deslizadores en planta Módulo-A Hospital de
Pacasmayo
Figura III-047b: Planta Interfaz de aislamiento Módulo-A Hospital de Pacasmayo 207
Figura III-048: Planta Aligerado Nivel de base Módulo-A Hospital de Pacasmayo 207
Figura III-049: Planta Aligerado 1er. Piso Módulo-A Hospital de Pacasmayo
Figura III-050: Planta Aligerado 2do. Piso Módulo-A Hospital de Pacasmayo 208
Figura III-051: Planta Aligerado 4to. Piso Módulo-A Hospital de Pacasmayo
Figura III-052: Modelo matemático – Planta de nivel de base. Diseño con aisladores LRB 210
Figura III-053: Modelo matemático – Planta 1er-piso. Diseño con aisladores LRB 210
Figura III-054: Modelo matemático - Planta 2do-3er-piso. Diseño con aisladores LRB 211

Figura III-055: Modelo matemático – Planta 4to-piso. Diseño con aisladores LRB
Figura III-056: Modelo matemático – Elevación frontal. Diseño con aisladores LRB
Figura III-057: Modelo matemático – Elevación lateral. Diseño con aisladores LRB
Figura III-058: Modelo matemático – Vista 3D. Diseño con aisladores LRB
Figura III-059: Definición de las características del concreto f'c=210Kg/cm2214
Figura III-060: Definición de las características del concreto f'c=280Kg/cm2
Figura III-061: Definición de las características del acero de refuerzo fy=4200Kg/cm2 216
Figura III-062: Definición de Columna C1(.60x.060) del 1er-piso como elemento frame 218
Figura III-063: Definición de Viga V103b(.30x.75) como elemento frame
Figura III-064: Definición de losas aligeradas h=25cm en dos direcciones como elementos shell
Figura III-065: Definición de losas macizas h=20cm como elementos shell
Figura III-066: Definición de aislador LRB-B para límite superior como elementos link 227
Figura III-067: Definición de aislador LRB-B para límite inferior como elementos link 228
Figura III-068: Definición de aislador LRB-C para límite superior como elementos link 231
Figura III-069: Definición de aislador LRB-C para límite inferior como elementos link 232
Figura III-070: Definición de deslizador Slider-A para límite inferior como elementos link 235
Figura III-071: Definición de deslizador Slider-A para límite inferior como elementos link 236
Figura III-072: Asignación de cargas por peso de tabiques y de piso terminado – Base 238
Figura III-073: Asignación de cargas por peso de tabiques y de piso terminado – 1er. Piso . 238
Figura III-074: Asignación de cargas por peso de tabiques y de piso terminado – 2do. Piso. 239
Figura III-075: Asignación de cargas por peso de tabiques y de piso terminado – 3er. Piso . 239
Figura III-076: Asignación de cargas por peso de tabiques y de piso terminado – 4to. Piso . 240
Figura III-077: Asignación de sobrecarga en elementos shell – Base
Figura III-078: Asignación de sobrecarga en elementos shell – 1er. Piso
Figura III-079: Asignación de sobrecarga en elementos shell – 2do. Piso
Figura III-080: Asignación de sobrecarga en elementos shell – 3er. Piso
Figura III-081: Asignación de sobrecarga en elementos shell – 4to. Piso
Figura III-082: Definición de la fuente de masa para una estructura de categoría A1
Figura III-083: Definición del caso modal de vectores de Ritz para el análisis dinámico. Diseño
con aislamiento LRB
Figura III-084: Definición de función rampa de cargas cuasi-estáticas. Diseño con aislamiento
LRB

Figura III-085: Definición del caso de carga FNA de cargas cuasi-estáticas iniciales para el
análisis dinámico. Diseño con aislamiento LRB
Figura III-086: Definición del caso de carga tiempo-historia FNA TH-1 PRQ_1966 para el
diseño con aislamiento LRB
Figura III-087: Definición del caso de carga tiempo-historia FNA TH-2 PRQ_1970 para el
diseño con aislamiento LRB
Figura III-088: Definición del caso de carga tiempo-historia FNA TH-3 PRQ_1974 para el
diseño con aislamiento LRB
Figura III-089: Definición del caso de carga tiempo-historia FNA TH-4 MOQ001_2001 para el
diseño con aislamiento LRB
Figura III-090: Definición del caso de carga tiempo-historia FNA TH-5 ICA002_2007 para el
diseño con aislamiento LRB
Figura III-091: Definición del caso de carga tiempo-historia FNA TH-6 constitucion_2010 para
el diseño con aislamiento LRB 255
Figura III-092: Definición del caso de carga tiempo-historia FNA TH-7 AMNT_2016 para el
diseño con aislamiento LRB 256
Figura III-093: Definición de la combinación de cargas promedio PROM-TH de los siete (07)
casos de carga tiempo-historia FNA
Figura III-094: Modelo matemático Módulo A1 Vista 3D 258
Figura III-095: Modelo matemático Módulo A2 Vista 3D
Figura III-096: Modelo matemático Módulo A3 Vista 3D
Figura III-097: Modelo matemático Módulo A4 Vista 3D
Figura III-098: Modelo matemático Módulo A5-A6 Vista 3D
Figura III-099: Asignación de rótula plática en columna C1-60x60
Figura III-100: Definición automática del comportamiento inelástico de la columna C1(60x60)
para la curva #1 de interacción P-M2-M3
Figura III-101: Asignación de rótula plástica en viga V-10A6(30x75)
Figura III-102: Definición automática del comportamiento inelástico de la viga
Figura III-103: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-104: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-105: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-106: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-107: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-108: Asignación de fuerza sísmica distribuida inicial para análisis estático

Figura III-109: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-110: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-111: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-112: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-113: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-114: Asignación de fuerza sísmica distribuida inicial para análisis estático
Figura III-115: Definición de caso de carga no-lineal estática por gravedad
Figura III-116: Definición de caso de carga lateral estática no-lineal en la dirección X-X 285
Figura III-117: Definición de caso de carga lateral estática no-lineal en la dirección X-X 286
Figura III-118: Planta Interfaz de aislamiento Módulo-A Hospital de Pacasmayo. Diseño con
aisladores FPT
Figura III-119: Modelo matemático – Planta Nivel de base. Diseño con aislamiento FPT 289
Figura III-120: Modelo matemático - Planta 1er-piso. Diseño con aislamiento FPT 290
Figura III-121: Modelo matemático - Planta 2do-3er-piso. Diseño con aislamiento FPT 290
Figura III-122: Modelo matemático – Planta 4to-piso. Diseño con aislamiento FPT 291
Figura III-123: Modelo matemático – Elevación frontal. Diseño con aislamiento FPT 291
Figura III-124: Modelo matemático – Elevación lateral. Diseño con aislamiento FPT 292
Figura III-125: Modelo matemático – Vista 3D. Diseño con aislamiento FPT 292
Figura III-126: Definición de aislador FPT-A para límite superior como elementos link 298
Figura III-127: Definición de aislador FPT-A para límite inferior como elementos link 299
Figura III-129: Definición de aislador FPT-B para límite inferior como elementos link 304
Figura III-130: Definición de placas t=30cm como elementos shell
Figura III-131: Definición del caso modal vectores de Ritz para el análisis. Diseño con
aislamiento FPT
Figura III-132: Definición de función rampa para cargas cuasi-estáticas. Diseño con aislamiento
FPT
Figura III-133: Definición del caso de carga FNA para cargas cuasi-estáticas iniciales para el
análisis dinámico. Diseño con aislamiento FPT 308
Figura III-134: Definición del caso de carga tiempo-historia FNA TH-1 PRQ_1966 para el
diseño con aislamiento FPT 310
Figura III-135: Definición del caso de carga tiempo-historia FNA TH-2 PRQ_1970 para el
diseño con aislamiento FPT 311
Figura III-136: Definición del caso de carga tiempo-historia FNA TH-3 PRQ_1974 para el
diseño con aislamiento FPT

Figura III-137: Definición del caso de carga tiempo-historia FNA TH-4 MOQ001_2001 para e
diseño con aislamiento FPT
Figura III-138: Definición del caso de carga tiempo-historia FNA TH-5 ICA002_2007 para e
diseño con aislamiento FPT
Figura III-139: Definición del caso de carga tiempo-historia FNA TH-6 constitucion_2010 para
el diseño con aislamiento FPT
Figura III-140: Definición del caso de carga tiempo-historia FNA TH-7 AMNT_2016 para e
diseño con aislamiento FPT

CAPÍTULO III: RESULTADOS Y DISCUSIÓN

Figura IV-01a: Fuerza cortante asociada al desplazamiento en cada nivel de la estructura.
Valores máximos y mínimos de la combinación PROM-TH para el diseño con aislamiento
LRB en el sismo DE
Figura IV-01b: Fuerza cortante asociada al desplazamiento en cada nivel de la estructura.
Valores máximos y mínimos de la combinación PROM-TH para el diseño con aislamiento
LRB en el sismo MCE
Figura IV-02a: Deformada del eje A6-A6 del diseño con aislamiento LRB, para el sismo DE y
las propiedades de límite superior, correspondiente a la combinación promedio de carga
sísmica PROM-TH máxima
Figura IV-02b: Deformada del eje 15-15 del diseño con aislamiento LRB, para el sismo DE y
las propiedades de límite superior, correspondiente a la combinación promedio de carga
sísmica PROM-TH máxima
Figura IV-03: Comportamiento no-lineal estático del Módulo-A1 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X
Figura IV-04: Comportamiento no-lineal estático del Módulo-A1 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X
Figura IV-05: Comportamiento no-lineal estático del Módulo-A2 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X
Figura IV-06: Deformación no-lineal estático del Módulo-A2 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección Y-Y
Figura IV-07: Comportamiento no-lineal estático del Módulo-A3 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X
Figura IV-08: Comportamiento no-lineal estático del Módulo-A3 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección Y-Y

Figura IV-09: Comportamiento no-lineal estático del Módulo-A4 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X
Figura IV-10: Comportamiento no-lineal estático del Módulo-A4 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección Y-Y
Figura IV-11: Comportamiento no-lineal estático del Módulo-A5 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X
Figura IV-12: Comportamiento no-lineal estático del Módulo-A5 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección Y-Y
Figura IV-13: Comportamiento no-lineal estático del Módulo-A6 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X
Figura IV-14: Comportamiento no-lineal estático del Módulo-A6 para las propiedades de límite
superior y el sismo DE. Formación de rótulas plásticas. Dirección Y-Y
Figura IV-15: Ubicación de puntos de control para la determinación de las aceleraciones
espectrales promedio de piso β =5% T=0.05-3.00seg. Diseño con aislamiento LRB 359
Figura IV-16: Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del
punto de control 11 en el nivel de base para el caso de sismo TH-7 AMNT_2016. Diseño con
aislamiento LRB
aislamiento LRB
aislamiento LRB
aislamiento LRB
 aislamiento LRB

Figura IV-22: Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del
punto de control 56 en el 2do-piso para el caso de sismo TH-7 AMNT_2016. Diseño con
aislamiento LRB
Figura IV-23: Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del
punto de control 56 en el 3er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con
aislamiento LRB
Figura IV-24a: Deformada del eje A6-A6 del bloque aislado del Hospital Pacasmayo con
aislamiento LRB, para el sismo MCE y las propiedades de límite inferior, correspondiente a
la combinación promedio de carga sísmica PROM-TH máxima
Figura IV-24b: Deformada del eje 15-15 del bloque aislado del Hospital Pacasmayo con
aislamiento LRB, para el sismo MCE y las propiedades de límite inferior, correspondiente a
la combinación promedio de carga sísmica PROM-TH máxima
Figura IV-25: Desplazamientos del aislador LRB-B Link-K36 para el caso de sismo
Figura IV-26: Desplazamientos del aislador LRB-C Link-K3 para el caso de sismo
Figura IV-27: Desplazamientos del deslizador Slider-A Link-K10 para el caso de sismo 382
Figura IV-28: Diagramas de histéresis del aislador LRB-B Link-K36 para el caso de sismo TH-
7 AMNT_2016
Figura IV-29: Diagramas de histéresis del aislador LRB-C Link-K3 para el caso de sismo TH-
7 AMNT_2016
Figura IV-30: Diagramas de histéresis del deslizador Slider-A Link-K10 para el caso de sismo
TH-7 AMNT_2016
Figura IV-31: Estimación de aporte al daño por sismo del diseño actual con aislamiento LRB
del bloque aislado del Hospital de Pacasmayo, utilizando las curvas de fragilidad del método
simplificado especificado en SISFC
Figura IV-32a: Fuerza cortante asociada al desplazamiento en cada nivel de la estructura.
Valores máximos y mínimos de la combinación PROM-TH para el diseño con aislamiento
FPT en el sismo DE
Figura IV-32b: Fuerza cortante asociada al desplazamiento en cada nivel de la estructura.
Valores máximos y mínimos de la combinación PROM-TH para el diseño con aislamiento
FPT en el sismo MCE
Figura IV-33a: Deformada del eje A5-A5 del diseño con aislamiento FPT, para el sismo DE y
las propiedades de límite superior, correspondiente a la combinación promedio de carga

Figura IV-33b: Deformada del eje A10-A10 del diseño con aislamiento FPT, para el sismo DE
y las propiedades de límite superior, correspondiente a la combinación promedio de carga
sísmica PROM-TH máxima
Figura IV-33c: Deformada del eje 11-11 del diseño con aislamiento FPT, para el sismo DE y
las propiedades de límite superior, correspondiente a la combinación promedio de carga
sísmica PROM-TH máxima
Figura IV-34: Ubicación de puntos de control para la determinación de las aceleraciones
espectrales promedio de piso β =5% T=0.05-3.00seg. Diseño con aislamiento FPT 405
Figura IV-35: Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del
punto de control 11 en el nivel de base para el caso de sismo TH-7 AMNT_2016. Diseño con
aislamiento FPT 407
Figura IV-36: Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del
punto de control 11 en el 1er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con
aislamiento FPT 409
Figura IV-37: Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del
punto de control 11 en el 2do-piso para el caso de sismo TH-7 AMNT_2016. Diseño con
(11) (11) (11) (11)
aisiamiento FP1
Figura IV-38: Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del
 Figura IV-38: Determinación de la aceleración espectral promedio β=5% T=0.05-3.00seg del punto de control 11 en el 3er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con
 aistamiento FP1
 aisiamiento FP1
 aistamiento FP1
 aistamiento FP1
 aistamiento FPT
 aislamiento FP1
 aistamiento FP1
 aistamiento FPT
 aistamiento FP1
 atsiamiento FP1
 aisiamiento FPT
 Figura IV-38: Determinación de la aceleración espectral promedio β=5% T=0.05-3.00seg del punto de control 11 en el 3er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento FPT

Figura IV-43a: Deformada del eje A5-A5 del diseño con aislamiento FPT, para el sismo MCE
y las propiedades de límite inferior, correspondiente a la combinación promedio de carga
sísmica PROM-TH máxima
Figura IV-43b: Deformada del eje 11-11 del diseño con aislamiento FPT, para el sismo MCE y
las propiedades de límite inferior, correspondiente a la combinación promedio de carga
sísmica PROM-TH máxima
Figura IV-44: Desplazamientos del aislador FPT-A Link-K5 para el caso de sismo TH-7
AMNT_2016
Figura IV-45: Desplazamientos del aislador FPT-B Link-K61 para el caso de sismo TH-7
AMNT_2016
Figura IV-46: Diagramas de histéresis del aislador FPT-A Link-K5 para el caso de sismo TH-5
ICA002_2016
Figura IV-47: Diagramas de histéresis del aislador FPT-B Link-K61 para el caso de sismo TH5
ICA002_2007

INDICE DE ECUACIONES

CAPÍTULO II: MARCO TEÓRICO

Ecuación 2-01a: Ecuación del movimiento en sistemas de un grado de libertad 52
Ecuación 2-02b: Reducción de la ecuación del movimiento en sistemas de un grado de
libertad
Ecuación 2-02: Notación matricial de la ecuación del movimiento en sistemas de un grado de
libertad
Ecuación 2-03: Solución de la ecuación del movimiento en sistemas de un grado de libertad 52
Ecuación 2-04: Ecuación característica de la solución de la ecuación del movimiento en sistemas
de un grado de libertad
Ecuación 2-05: Valores propios de solución
Ecuación 2-06: Simplificación de los valores propios
Ecuación 2-07: Vectores propios de solución
Ecuación 2-08: Masa participativa modal M _i
Ecuación 2-09: Factor de participación modal L _i
Ecuación 2-10: Simplificación de los factores de participación modal L _i
Ecuación 2-11: Ecuación del amortiguamiento crítico
Ecuación 2-12: Coeficientes de amortiguamiento
Ecuación 2-13: Notación matricial de ecuación del movimiento en sistemas de varios grados de
libertad
Ecuación 2-14: Solución de la ecuación del movimiento en sistemas de varios grados de libertad
Ecuación 2-15: Rigidez lateral en aisladores elastoméricos
Ecuación 2-16: Deformación máxima por corte
Ecuación 2-17: Rigidez vertical en aisladores elastoméricos
Ecuación 2-18: Deformación unitaria por compresión
Ecuación 2-19: Deformación promedio por corte
Ecuación 2-20: Momento por flexión en aisladores elastoméricos
Ecuación 2-21: Deformación total por corte y flexión
Ecuación 2-22: Deformación promedio por corte (en el sentido de la energía de deformación
total por corte)
Ecuación 2-23: Rigidez efectiva en aislador LRB
Ecuación 2-24: Periodo efectivo en aislador LRB61

Ecuación 2-25: Amortiguamiento efectivo en aislador LRB
Ecuación 2-26: Energía disipada por el modelo de un aislador LRB en un ciclo histerético 63
Ecuación 2-27: Expresión reducida de la energía disipada por el modelo de un aislador LRB en
un ciclo histerético
Ecuación 2-28: Ecuación de cargas resistentes por corte y por flexión
Ecuación 2-29: Solución de la ecuación de cargas resistentes por corte y por flexión: Carga
crítica
Ecuación 2-30: Simplificación de la solución de la ecuación de cargas resistentes por corte y por
flexión
Ecuación 2-31: Carga crítica en función de las cargas resistentes por corte y por flexión 66
Ecuación 2-32: Esfuerzo crítico en función de los factores de forma del aislador
elastomérico
Ecuación 2-33: Área reducida correspondiente al esfuerzo crítico
Ecuación 2-34: Ángulos θ y φ que describen el área reducida de esfuerzo crítico
Ecuación 2-35: Carga crítica en el desplazamiento D del aislador
Ecuación 2-36a: Equilibrio horizontal de fuerzas desarrolladas en un aislador SFP
Ecuación 2-36b: Equilibrio vertical de fuerzas desarrolladas en un aislador SFP
Ecuación 2-37: Desplazamiento horizontal que describe el punto de pivote de un aislador
SFP
Ecuación 2-38: Relación fuerza-desplazamiento que gobierna el deslizamiento de un aislador
SFP
Ecuación 2-39: Simplificación de la relación fuerza-desplazamiento que gobierna el
deslizamiento de un aislador SFP71
Ecuación 2-40: Rigidez efectiva en un aislador SFP
Ecuación 2-41: Energía disipada por un aislador SFP en un ciclo de histerético
Ecuación 2-42: Amortiguamiento efectivo en un aislador SFP
Ecuación 2-43a: Equilibrio horizontal de fuerzas desarrolladas en la fase I de deslizamiento de
un aislador FPT77
Ecuación 2-43b: Equilibrio vertical de fuerzas desarrolladas en la fase I de deslizamiento de un
aislador FPT77
Ecuación 2-44a: Reacción a la fuerza lateral en la fase I de deslizamiento de un aislador
FPT
Ecuación 2-44b: Reacción al peso en la fase I de deslizamiento de un aislador FPT77
Ecuación 2-45: Desplazamiento relativo en la superficie 2. Fase I de deslizamiento

Ecuación 2-46: Relación fuerza-desplazamiento en la superficie 2. Fase I de deslizamiento 78
Ecuación 2-47: Relación fuerza-desplazamiento en la superficie 3. Fase I de deslizamiento 79
Ecuación 2-48: Relación total fuerza-desplazamiento en la fase I de deslizamiento de un aislador
FPT
Ecuación 2-49: Desplazamiento de transición de fase I a fase II de deslizamiento de un aislador
FPT
Ecuación 2-50a: Desplazamiento relativo en la superficie 1. Fase II de deslizamiento 80
Ecuación 2-50b: Desplazamiento relativo en la superficie 2. Fase II de deslizamiento
Ecuación 2-51: Relación fuerza-desplazamiento en la superficie 1. Fase II de deslizamiento. 80
Ecuación 2-52a: Equilibrio horizontal de fuerzas desarrolladas en la fase II de deslizamiento de
un aislador FPT
Ecuación 2-52b: Equilibrio vertical de fuerzas desarrolladas en la fase II de deslizamiento de un
aislador FPT
Ecuación 2-53: Relación fuerza-desplazamiento en la superficie 2. Fase II de deslizamiento. 81
Ecuación 2-54: Desplazamiento relativo en la superficie 2 en función de la fricción de las
superficies 1 y 2. Fase II de deslizamiento
Ecuación 2-55: Relación total fuerza-desplazamiento en la fase II de deslizamiento de un
aislador FPT
Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador
Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT
Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT 84 Ecuación 2-57a: Desplazamiento relativo en la superficie 3. Fase III de deslizamiento
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT 84 Ecuación 2-57a: Desplazamiento relativo en la superficie 3. Fase III de deslizamiento
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT 84 Ecuación 2-57a: Desplazamiento relativo en la superficie 3. Fase III de deslizamiento
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT 84 Ecuación 2-57a: Desplazamiento relativo en la superficie 3. Fase III de deslizamiento
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT 84 Ecuación 2-57a: Desplazamiento relativo en la superficie 3. Fase III de deslizamiento 84 Ecuación 2-57b: Desplazamiento relativo en la superficie 4. Fase III de deslizamiento 84 Ecuación 2-58: Relación fuerza-desplazamiento en la superficie 3. Fase III de deslizamiento 84 Ecuación 2-59: Relación fuerza-desplazamiento en la superficie 3. Fase III de deslizamiento 84 Ecuación 2-60: Desplazamiento relativo en la superficie 3 en función de la fricción de las superficies 3 y 4. Fase III de deslizamiento. 84 Ecuación 2-61: Relación total fuerza-desplazamiento en la fase III de deslizamiento de un aislador FPT.
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT 84 Ecuación 2-57a: Desplazamiento relativo en la superficie 3. Fase III de deslizamiento
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT 84 Ecuación 2-57a: Desplazamiento relativo en la superficie 3. Fase III de deslizamiento 84 Ecuación 2-57b: Desplazamiento relativo en la superficie 4. Fase III de deslizamiento 84 Ecuación 2-58: Relación fuerza-desplazamiento en la superficie 3. Fase III de deslizamiento 84 Ecuación 2-59: Relación fuerza-desplazamiento en la superficie 3. Fase III de deslizamiento 84 Ecuación 2-60: Desplazamiento relativo en la superficie 3 en función de la fricción de las superficies 3 y 4. Fase III de deslizamiento. 84 Ecuación 2-61: Relación total fuerza-desplazamiento en la fase III de deslizamiento de un aislador FPT. 85 Ecuación 2-62: Fuerza horizontal cuando ocurre el contacto con el anillo de seguridad en la superficie 1. 86 Ecuación 2-63: Desplazamiento de transición de fase III a fase IV de deslizamiento de un aislador FPT.
 Ecuación 2-56: Desplazamiento de transición de fase II a fase III de deslizamiento de un aislador FPT
Ecuación 2-66: Relación total fuerza-desplazamiento en la fase IV de deslizamiento de un

aislador FPT
Ecuación 2-67: Condición de reanudación de deslizamiento en la superficie 4. Fase IV de
deslizamiento
Ecuación 2-68: Fuerza horizontal cuando ocurre el contacto con el anillo de seguridad en la
superficie 4
Ecuación 2-69: Desplazamiento de transición de fase IV a fase V de deslizamiento de un aislador
FPT
Ecuación 2-70: Relación fuerza-desplazamiento en la superficie 4. Fase V de deslizamiento. 90
Ecuación 2-71: Relación fuerza-desplazamiento en la superficie 3. Fase V de deslizamiento. 90
Ecuación 2-72: Relación total fuerza-desplazamiento en la fase V de deslizamiento de un
aislador FPT91

CAPÍTULO III: MÉTODOS Y MATERIALES

Ecuación 3-01: Factor de modificación de propiedad máximo
Ecuación 3-02: Factor de modificación de propiedad mínimo126
Ecuación 3-03: Rigidez efectiva del sistema de aislamiento en el desplazamiento máximo 129
Ecuación 3-04: Amortiguamiento efectiva del sistema de aislamiento en el desplazamiento
máximo
Ecuación 3-05: Desplazamiento máximo del sistema de aislamiento140
Ecuación 3-06: Periodo efectivo del sistema de aislamiento en el desplazamiento máximo 141
Ecuación 3-07: Desplazamiento máximo total del sistema de aislamiento141
Ecuación 3-08: Factor de relación entre el periodo efectivo traslacional y el periodo efectivo
torsional del sistema de aislamiento142
Ecuación 3-09: Fuerza cortante mínima en la base143
Ecuación 3-10: Fuerza cortante mínima en la superestructura reducida
Ecuación 3-11: Fuerza cortante mínima en la superestructura no reducida

INDICE DE ANEXOS

ANEXO-1	CONTENIDO	DE TABLAS	459
---------	------------------	-----------	-----

ANEXO-2: FUERZA SÍSMICA QUE INGRESA A LA ESTRUCTURA CONTANDO
CON LAS PROPIEDADES DE LÍMITE SUPERIOR – ANÁLISIS TIEMPO-HISTORIA
FNA
A1.1 FUERZA SÍSMICA QUE INGRESA A LA ESTRUCTURA – DISEÑO CON
AISLAMIENTO LRB
A1.1.1 FUERZA SÍSMICA QUE INGRESA EN EL SISMO DE DISEÑO "DE" 478
A1.1.2 FUERZA SÍSMICA QUE INGRESA EN EL MÁXIMO SISMO
CONSIDERADO "MCE"
A1.2 FUERZA SÍSMICA QUE INGRESA A LA ESTRUCTURA - DISEÑO CON
AISLAMIENTO FPT
A1.2.1 FUERZA SÍSMICA QUE INGRESA EN EL SISMO DE DISEÑO "DE" 486
A1.2.2 FUERZA SÍSMICA QUE INGRESA EN EL MÁXIMO SISMO
CONSIDERADO "MCE"
ANEXO-3: ACELERACIÓN ESPECTRAL PROMEDIO DE PISO β=5% T=0.05-3.00seg

ANÁ	LISIS TIEMPO-HISTORIA FNA 494
A2.1	ACELERACIÓN ESPECTRAL PROMEDIO DE PISO β =5% T=0.05-3.00seg PARA EL
	DISEÑO CON AISLAMIENTO LRB 494
A2.2	ACELERACIÓN ESPECTRAL PROMEDIO DE PISO β =5% T=0.05-3.00seg PARA EI
	DISEÑO CON AISLAMIENTO FPT

ANEXO-4: DEFORMACIÓN DE AISLADORES CRÍTICOS – ANÁLISIS

TIEN	ЛРО-НІ	STORIA	
A3.1	DEFOR	MACIÓN DE AISLADORES CRÍTICOS – DISEÑO CON	AISLAMIENTO
	LRB		
	A3.1.1	AISLADOR LRB-B	
	A3.1.2	AISLADOR LRB-C	
	A3.1.3	DESLIZADOR SLIDER-A	
A3.2	DEFOR	MACIÓN DE AISLADORES CRÍTICOS – DISEÑO CON	AISLAMIENTO
	FPT		

A3.2.1	AISLADOR PROTOTIPO FPT-A	628
A3.2.2	AISLADOR PROTOTIPO FPT-B	635

ANEXO-5: AISLADOR FPT8831/14-12R/11-6 RECOMENDADO POR "EPS" 642

ANEXO-6:	RESUMEN	EJECUTIVO	DE LA	LICITACIÓN	DE OBRA Y
PRESUPUE	STO PARA	LA ADQUISI	ÓN DE EQ	QUIPAMIENTO	MÉDICO DEL
HOSPITAL	DE PACASM	IAYO	•••••	••••••	
ANEXO-7:	CONTRATO	DE EJECUCI	IÓN DE LA	A OBRA DEL	HOSPITAL DE

ANEXO-8:	PRESUPUESTO	ESTIMADO	DEL	DISEÑO	DEL	HOSPITAL	DE
PACASMA	YO CON AISLAM	IENTO FPT	•••••	•••••			658

ANEXO-9:	PANEL	FOTOGR	ÁFICO I	DE LA	INSTALA	ACIÓN	EN	OBRA	DE	LOS
AISLADO	RES LRB	••••••	••••••	•••••	••••••		•••••	••••••	•••••	663

JEXO-10: PLANOS

RESUMEN

El alto peligro sísmico en el Perú obliga que estructuras tales como los Hospitales, puedan ser resilientes y mantengan su funcionalidad inmediatamente después de un sismo severo. Tal objetivo puede ser cumplido mediante el aislamiento de base, siempre y cuando se apliquen en el diseño sísmico los criterios adecuados para garantizar el desempeño requerido.

En la presente, se ha comparado la respuesta de dos (02) modelos estructurales correspondientes a dos (02) tipos de diseño con aislamiento en la base para el Hospital de Pacasmayo. El primer tipo de diseño es el especificado en el expediente técnico de la obra con un sistema de aislamiento elastomérico del tipo LRB, cumpliendo los criterios mínimos de la Norma sismorresistente E.030 y el código ASCE/SEI 7. El segundo tipo de diseño, propuesto con fines de estudio, cuenta con aislamiento pendular FPS-Triple y está basado en los criterios de resiliencia del Estándar de aislamiento sísmico para la funcionalidad continua, SISCF.

Se realizó la evaluación de ambos diseños utilizando el procedimiento de análisis dinámico Tiempo-Historia FNA con siete (07) registros sísmicos en el programa ETABS, donde se obtuvo la respuesta inelástica de las unidades de aislamiento y la respuesta elástica de la superestructura. Se ajustaron los resultados de la superestructura del primer diseño a una respuesta no-lineal estática; mientras que para el segundo diseño se asumió que sería elástica.

Finalmente se encontró que en el sismo de diseño DE (sismo con $T_r = 475$ años) y cuando las propiedades del sistema de aislamiento alcanzan su límite superior, es decir cuando el sistema se vuelve más rígido, el primer modelo presentaría daño estructural mínimo y daño considerable del contenido; y para el segundo modelo, el daño sería mínimo en todos los parámetros de evaluación. Así mismo se verificó en ambos casos que, la respuesta de la estructura en el máximo sismo considerado MCE (sismo mayor que DE, con $T_r = 2475$ años) es muy similar a la respuesta en el sismo DE, debido a esto se tomaron únicamente los valores correspondientes a DE para realizar las comparaciones en esta investigación.

PALABRAS CLAVES: Aislamiento Sísmico, Periodo Estructural, Fuerza Cortante, Nivel de Desempeño, Funcionalidad Continua, Sismo DE y Sismo MCE.

ABSTRACT

The high seismic danger in Peru compels that structures such as Hospitals, can be resilient and maintained their functionality immediately after a strong earthquake. Such an objective can be achieved through base isolation, provided that the appropriate criteria to secure the required performance are applied on the seismic design.

Here, the response of two (02) structural models corresponding to two (02) types of design with base isolation for the Pacasmayo Hospital has been compared. The first type of design is the one specified in the technical file of the building work with elastomeric isolation system of LRB type, complying with the minimum criteria of the E.030 earthquake-resistant Standard and of the ASCE/SEI 7 code. The second type design, proposed for study purposes, has pendular isolation FPS-Triple type and is based on the criteria of resilience of the Seismic Isolation Standard for Continued Functionality, SISCF.

Both designs were evaluated using the FNA Time-History dynamic analysis procedure with seven (07) seismic records on the ETABS program, where the inelastic response of the isolation units and the elastic response of the superstructure were obtained. The results of the superstructure of the first design were adjusted to a static non-linear response; while for the second design it was anticipated to be elastic.

Finally, it was found that on the design earthquake DE (earthquake with $T_r = 475$ years) and when the properties of the insulation system reach their upper limit, i.e. when the system becomes more stiff, the first model would present minimal structural damage and considerable damage to the content; and for the second, the damage would be minimal in all evaluation parameters. Likewise, it was verified on both cases that, the response of the structure in the maximum earthquake considered MCE (earthquake greater than DE, with $T_r = 2475$ years) is very similar to the response in the earthquake DE, due to this the values corresponding to DE were taken to carry out the comparisons on this study.

KEYWORDS: Seismic Isolation, Structural Period, Shear Force, Performance Level, Continued Functionality, DE Earthquake and MCE Earthquake.

ANÁLISIS SÍSMICO COMPARATIVO DEL DISEÑO DEL HOSPITAL DE PACASMAYO CON AISLAMIENTO ELASTOMÉRICO LRB, Y AISLAMIENTO PENDULAR FPS-TRIPLE

CAPÍTULO I INTRODUCCIÓN

1.1 ANTECEDENTES DEL PROBLEMA

El Perú enfrenta una alta amenaza sísmica, por estar ubicado en la zona de subducción Nazca – Sudamericana en el llamado Cinturón de Fuego. Una muestra de la gran actividad sísmica desarrollada en la zona de subducción Nazca – Sudamericana son los terremotos de 1746 (9.0Mw), 1940 (8.2Mw), 1974 (8.1Mw) en Lima; 1996 (7.7Mw) y 2007 (8.0Mw) en Ica; 2001 (8.4Mw) en Arequipa; 1970 (7.9Mw) en Ancash; 2010 (8.8Mw) en Maule-Chile; 2016 (7.8Mw) en Pedernales-Ecuador; y 1960 (9.5Mw) en Valdivia-Chile, considerado el terremoto más grande de la historia.

A partir del 2011 el Instituto Geofísico del Perú IGP, con base en el catálogo símico del cual cuenta, viene realizando diversos estudios para determinar las zonas probables de ruptura o zonas de acoplamiento sísmico en el borde occidental del Perú. De los estudios realizados se puede encontrar en un modelo promedio que la zona de acoplamiento B-2 abarca alrededor de 400x150Km2 de Barranca a Pisco, siendo el área de mayor tamaño ubicada en el extremo norte de la aspereza, y que podría dar origen a un sismo mayor a 8.8Mw, similar al sismo ocurrido en 1746 (Tavera, 2017).

El desfavorable contexto sísmico y las experiencias exitosas de edificios y puentes aislados post-sismo en países como EE.UU. (1994), Chile (2010) y Ecuador (2016), han hecho que en el Perú esta nueva tecnología pueda comenzar a implementarse. Así en el 2011 se diseñó la primera estructura con aislamiento sísmico en el Perú, la Biblioteca Central de la Universidad Nacional de Ingeniería UNI, la cual fue terminada en el 2013. Desde este último año el aislamiento como sistema de protección sísmica ha venido tomando destacable relevancia en los proyectos de infraestructura educativa y hospitalaria, producto de ello es que en el año 2016 una de las principales modificaciones de la Norma E.030 Diseño Sismorresistente fue tomar en consideración el diseño de estructuras con aislamiento sísmico y darle obligatoriedad en los proyectos de Categoría A1 (Establecimientos de Salud del segundo y tercer nivel) diseñados en las zonas sísmicas 4 y 3, dicho diseño debe ser orientado a lograr que la estructura permanezca en condiciones operativas luego de un sismo severo.

En las edificaciones esenciales, muchas veces no basta solo proteger la estructura, es importante proteger el contenido para que el servicio no sea vea interrumpido después de un terremoto. Tal es el caso del Hospital Olive View en California que tuvo un

comportamiento completamente elástico durante el terremoto de San Fernando de 1971, por ser bastante rígido durante el terremoto de San Fernando de 1971. Sin embargo, las aceleraciones de piso alcanzaron valores mayores a 1.2g, quedando el hospital inoperativo por extensos daños arquitectónicos y de contenido, teniendo que permanecer cerrado durante tres (03) meses (Zayas, Mahin y Constantinou, 2019).

El diseño de estructuras con aislamiento sísmico en las normas de diseño en general no está siendo asociado adecuadamente con el nivel de desempeño esperado y la importancia de la estructura. Un ejemplo de esto es el Hospital de la Mujer en Christchurch, Nueva Zelanda, que fue diseñado con aisladores de goma con núcleo de plomo LRB y que no pudieron mitigar el daño sísmico durante el terremoto M6 del 2011 (Zayas et al., 2019). Según los investigadores de la Universidad de Christchurch, los aisladores en el Hospital de la Mujer de Christchurch "no se desplazaron" durante el terremoto, informando además que la rigidez efectiva de los aisladores fue "3 a 4 veces" la rigidez efectiva asumida por el ingeniero estructural y que el Hospital respondió "esencialmente como si se tratara de una base fija" (Kuang, citado en Zayas et al., 2017)

El aislamiento sísmico en el Perú, sigue siendo tecnología novedosa, por tanto, es necesario realizar investigación sobre el mismo para que su implementación en el país sea cada vez mejor, y de esta manera se pueda contar con estructuras que recuperen su funcionalidad inmediatamente después de un evento sísmico severo.

1.2 FORMULACIÓN DEL PROBLEMA

1.2.1 PROBLEMA GENERAL

Conocer cuál es el nivel de desempeño o de daño que puede tener una Estructura Esencial sísmicamente aislada después de un sismo severo considerado, al ser diseñada con la aplicación de los criterios convencionales normativos; y comparativamente, con el diseño que sigue criterios que contemplan consideraciones resilientes.

1.2.1 PROBLEMAS ESPECÍFICOS

Encontrar si el diseño del bloque aislado del Hospital de Pacasmayo que sigue los criterios mínimos de las Normas E.030 y ASCE/SEI 7 (diseño actual de la estructura), mantendrá a la estructura en condiciones operativas luego del Sismo de

Diseño (DE) y el Máximo Sismo Considerado (MCE). Así mismo, al igual que para el primer tipo de diseño se busca encontrar si la propuesta basada en los criterios del Estándar de Funcionalidad Continua, puede hacer que la estructura alcance un adecuado nivel de desempeño. Basado en lo anterior se busca encontrar qué tipo de diseño podrá eventualmente proveer al Hospital Pacasmayo, un mejor desempeño (nivel de daño, balance económico post-sismo y tiempo de reposición) en el Sismo de Diseño DE, y en el Máximo Sismo Considerado MCE.

La investigación busca, además; conocer cuáles son los criterios de la filosofía de Funcionalidad Continua aplicada a Edificaciones Esenciales, tales como Hospitales; y entender qué comportamiento sísmico tiene una estructura aislada.

1.3 **OBJETIVOS**

1.3.1 OBJETIVO GENERAL

Determinar el nivel de desempeño o de daño que puede tener una Estructura Esencial sísmicamente aislada después de un sismo severo considerado, al ser diseñada con la aplicación de los criterios convencionales normativos; y comparativamente, con el diseño que sigue criterios que contemplan consideraciones resilientes.

1.3.2 OBJETIVOS ESPECÍFICOS

- Evaluar el eventual nivel de desempeño alcanzado por el diseño del Hospital Pacasmayo que emplea aisladores Elastoméricos LRB y que sigue los criterios mínimos de las Normas E.030 y ASCE/SEI 7-10, en el Sismo de Diseño DE y en el Máximo Sismo Considerado MCE.
- Evaluar el eventual nivel de desempeño alcanzado por la propuesta de diseño del Hospital de Pacasmayo con aisladores de Triple Péndulo de Fricción que sigue los criterios del Estándar de Aislamiento para la Funcionalidad Continua concordantes con la Norma E.030, en el Sismo de Diseño DE y en el Máximo Sismo Considerado MCE.
- Comparar el nivel de desempeño alcanzado por los tipos de diseño, en el Sismo de Diseño DE y en el Máximo Sismo Considerado MCE.

- Conocer los criterios del Estándar de "Funcionalidad Continua" aplicada a Edificaciones Esenciales.
- Entender el comportamiento sísmico de una estructura aislada y su metodología de diseño.

1.4 FORMULACIÓN DE LA HIPÓTESIS

1.4.1 HIPÓTESIS GENERAL

El diseño sísmico con aislamiento en la base de una Estructura Esencial, basado en criterios que contemplan consideraciones resilientes, presentará mejor desempeño que el diseño con la aplicación de los criterios convencionales normativos.

1.4.2 <u>HIPÓTESIS ESPECÍFICAS</u>

- El diseño basado en los criterios mínimos de las Normas E.030 y ASCE/SEI
 7, y el diseño basado en los criterios del Estándar de Funcionalidad Continua, proveerán al Hospital de Pacasmayo, el mismo nivel de desempeño en el Sismo de Diseño DE (Sismo con Tr = 475 años). A su vez, el diseño basado en los criterios del Estándar de Funcionalidad Continua proveerá un mejor nivel de desempeño al Hospital de Pacasmayo en el Máximo Sismo Considerado MCE (Sismo con Tr = 2475 años).
- El comportamiento sísmico de una estructura, así como su nivel de desempeño, están directamente relacionados con los parámetros de evaluación del diseño por resiliencia especificados en el Estándar de aislamiento sísmico, SISCF.

1.5 JUSTIFICACIÓN

El tema materia de investigación, es tema actual en la Ingeniería Estructural en el Perú. Los Hospitales por razones obvias son estructuras de vital importancia en el país. Contar con Hospitales con daños mínimos y que puedan mantener su funcionamiento después de un evento sísmico grande puede evitar el incremento del número de pérdidas de vidas por falta de atención médica, así como pérdidas por costos y tiempo de reparación.

Esta investigación proporcionará una idea más clara del impacto de los criterios empleados para el diseño de estructuras aisladas, en el nivel de desempeño a ser alcanzado para

determinada demanda sísmica, y en la elección del sistema de aislamiento a emplearse. Lo que redundara en la optimización del diseño.

Así mismo se espera que los resultados de la investigación puedan llegar a ser de utilidad a la normativa sismorresistente peruana, en el sentido que algunos de los criterios específicos del Estándar de Funcionalidad Continua puedan implementarse en sus modificatorias posteriores.

A nivel local, para la ciudad de Chimbote, y la región Ancash, se vienen elaborando los estudios para cerca de cinco (05) Hospitales nuevos diseñados con aislamiento en la base; estudiar la metodología de diseño, el comportamiento y las alternativas del sistema a ser empleado, es de gran importancia para el desarrollo de los mismos.

Se tiene como propósito comparar el eventual desempeño sísmico, utilizando criterios distintos a los de rigidez, resistencia y ductilidad, que alcanzarán dos tipos de diseño para el Hospital de Pacasmayo, Hospital de Nivel II-E. El primer tipo de diseño es con él que cuenta el Hospital en su expediente técnico, a base de aisladores elastoméricos tipo LRB y sigue los criterios mínimos de las Normas E.030 y ASCE/SEI 7. El segundo, es un diseño propuesto para efectos de la tesis, a base de aisladores de Triple Péndulo de Fricción (FPS-Triple) y los criterios del Estándar de Funcionalidad Continua en concordancia con la Norma E.030.

1.6 LIMITACIONES DEL TRABAJO

En el presente trabajo de investigación, no se han podido contar con las verificaciones en laboratorio de la capacidad para ambos tipos de aisladores utilizados en el análisis. No habiéndose podido tener acceso a los resultados de los ensayos a carga axial y a corte de los aisladores LRB instalados en la obra. Y no habiéndose podido ensayar y verificar la capacidad de los aisladores FPT, por falta de laboratorios especializados en el país, pudiéndose los aisladores ensayar únicamente en laboratorios y entidades extranjeras que resulta en un costo económico elevado.

ANÁLISIS SÍSMICO COMPARATIVO DEL DISEÑO DEL HOSPITAL DE PACASMAYO CON AISLAMIENTO ELASTOMÉRICO LRB, Y AISLAMIENTO PENDULAR FPS-TRIPLE

CAPÍTULO II MARCO TEÓRICO

2.1 ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1 ANTECEDENTES INTERNACIONALES

En 1989 Zayas, V.; Low, S.; Bozzo, L.; y Mahin, S.; presentaron para el Centro de Investigación de Ingeniería de Sísmica del Pacífico, PEER, el artículo: "Estudios de viabilidad y desempeño para mejorar la resistencia sísmica de edificios nuevos y existentes utilizando el sistema de péndulo de fricción" (Feasibility and Performance Studies on Improving the Earthquake Resistance of New and Existing Buildings Using the Friction Pendulum System), donde se investigó analítica y experimentalmente el desempeño anticipado de edificios con dispositivos FPS, comparándose la respuesta sísmica de los edificios apoyados sobre FPS con las de diseño convencional por código, ambos casos con costos de construcción equivalentes (Zayas, Low, Bozzo y Mahin, 1989). Encontrándose que con los aisladores FPS la resistencia sísmica se mejora con un 86% menos de daño en el edificio durante un severo.

Nagarajaiah, S. y Sun, X.; del departamento de Ing. Civil de la Universidad de Missouri, Columbia, presentaron en la 11va Conferencia Mundial en Ingeniería Estructural realizada en 1996, el artículo: "Desempeño sísmico de edificios con base aislada en el terremoto de Northridge en 1994" (Seismic performance of base isolated buildings in the 1994 Northridge Earthquake), donde se evaluó el desempeño sísmico del Hospital de la Universidad del Sur de California, USC Hospital, y el centro de bomberos de Los Ángeles, FCC, en relación con las técnicas de análisis y los criterios de diseño utilizados (Nagarajaiah y Sun, 1996). Encontrándose que el USC Hospital funcionó bien, desamplificó las aceleraciones y redujo la respuesta general; mientras que el edificio FCC alcanzó la expectativa de desempeño, sin embargo, los golpes accidentales redujeron la efectividad del aislamiento sísmico; y las técnicas de análisis utilizadas en la base son precisas y pueden predecir de manera gradual la respuesta de las estructuras aisladas.

Por otro lado, en el 2015; Valerio, J. en su tesis de maestría de la Escuela de Camins en Barcelona, España; realizó un análisis comparativo de un edificio con base fija y con cuatro (04) tipos diferentes de aisladores, aisladores HDR, LRB, FPS y Roll N-Cage (RNC), utilizando cuatro factores de desempeño para la comparación; la deriva del edificio, la aceleración en el piso superior, la fuerza cortante en la base y el desplazamiento relativo al terreno (Valerio, 2015). Los resultados revelaron que la deriva de piso se reduce un 74% con aisladores HDRB y LRB, un 84% con FPS y 86% con RNC; la aceleración de piso se reduce un 75% con HDRB y LRB, un 93% con FPS y 92% con RNC; y la fuerza cortante se reduce un 77% con HDRB, un 76% con LRB, 78% con FPS, y 84% con RNC.

2.1.2 ANTECEDENTES NACIONALES

En 2018 Yucra, M.; realizó en su tesis de maestría de la Pontificia Universidad Católica del Perú, PUCP, la evaluación del desempeño sísmico de un hospital aislado, quedando dicha evaluación definida por límites de deriva de entrepiso y giros de rótulas para los elementos estructurales y aceleraciones de piso para los elementos no estructurales sensibles a aceleraciones. Se obtuvieron derivas menores a 0.0031 y aceleraciones de piso menores a 0.22g para el sismo máximo considerado ($T_r=2475años$) de PGA=0.675g, estimándose daños leves y un nivel de desempeño de ocupación inmediata (Yucra, 2018).

Por otro lado, en el presente año; Moscoso, J.; en su tesis de maestría de la Pontificia Universidad Católica del Perú, PUCP, realizó la evaluación del desempeño sísmico de una edificación hospitalaria con aislamiento sísmico, estudiándose la factibilidad técnica de usar aislamiento sísmico y prefabricados emulativos de concreto en hospitales nuevos. El desempeño del edificio fue evaluado como medida de daño de los criterios de derivas y aceleraciones globales, y también giros inelásticos en las rótulas de los elementos estructurales. Los resultados mostraron que el edificio luego del máximo sismo considerado de PGA=0.675g (Tr=2475años) tendría un desempeño muy bueno permitiendo su ocupación inmediata (Moscoso, 2019).

2.2 BASE TEÓRICA

2.2.1 TEORÍA LINEAL DEL AISLAMIENTO SÍSMICO

a. <u>SISTEMA DE DOS GRADOS DE LIBERTAD CON AISLAMIENTO EN LA</u> <u>BASE</u>

El aislamiento de base en los edificios tiene como objetivo reducir las fuerzas sísmicas en la estructura al cambiarse sus características dinámicas, debido a la incorporación de una base flexible, que incrementa considerablemente el periodo fundamental del edificio hasta modificarlo substancialmente con respecto al periodo predominante del movimiento del terreno (Bozzo y Barbat, 2000), lo que conlleva a: "Buscar mantener la estructura en el rango lineal elástico, concentrando las no-linealidades en la base" (Bozzo y Barbat, 2000, p.258), y recientemente a, que las instalaciones esenciales tales como hospitales, puentes, estaciones de bomberos y policía, centros de respuesta a emergencias y plantas de energía eléctrica mantengan su funcionalidad inmediatamente después de un terremoto (Zayas et al., 2019), el cual es un objetivo más extenso. Zayas et al. (2019) refiere que la funcionalidad continua se obtiene cuando los daños son limitados al 2% del costo de la construcción, al controlar cinco (05) parámetros de la respuesta del edificio; la deriva pico de piso máxima, la deriva pico de piso promedio, la deriva residual piso máxima, la deriva pico de piso promedio, la deriva residual piso máxima, la deriva pico de piso promedio y la aceleración espectral promedio para sistemas con $\beta=5\%$ en el rango T=0.05-3.00seg.

Figura II-01. Comportamiento de un edificio con base fija y un edificio con base aislada ante un evento sísmico Fuente: Molinares y Barbat, 1994, p.3

En la actualidad se disponen de aisladores de base con características geométricas y mecánicas necesarias para incrementar el periodo fundamental e incorporar un mayor amortiguamiento en los edificios, reduciendo la fuerza sísmica que ingresa a la estructura, tal y como se muestra en la siguiente figura:

Fuente: Lucho, 2012, p.7

La teoría lineal del aislamiento sísmico se encuentra basada en un modelo estructural de dos masas, como se muestra en la Figura II-1. La masa m es destinado a representar la superestructura del edificio y m_b la masa del nivel de base por encima del sistema de aislamiento. La rigidez y amortiguamiento de la estructura son representados por k_s , c_s , y la rigidez y amortiguamiento del aislamiento por k_b , c_b . (Naeim y Kelly, 1999).

Los desplazamientos absolutos de las dos masas se denotarán por u_s y u_b , pero es conveniente utilizar desplazamientos relativos y, en consecuencia, definir:

$$v_b = u_b - u_g \quad v_s = u_s - u_b$$

donde ug es el desplazamiento del suelo.

Fuente: Aguiar, Almazán, Dechent y Suárez, 2016, p.28

Las ecuaciones de movimiento a cada grado de libertad del sistema, son:

$$(m+m_b)v''_b+mv''_s+c_bv'_b+k_bv_b = -(m+m_b)u''_g$$
(2-01a)

$$mv''_{b} + mv''_{s} + c_{s}v'_{s} + k_{s}v_{s} = -mu''_{g}$$
(2-02b)

Escrita en notación matricial como:

$$\begin{bmatrix} M & m \\ m & m \end{bmatrix} \begin{cases} v''_b \\ v''_s \end{cases} + \begin{bmatrix} c_b & 0 \\ 0 & c_s \end{bmatrix} \begin{cases} v'_b \\ v'_s \end{cases} + \begin{bmatrix} k_b & 0 \\ 0 & k_s \end{bmatrix} \begin{cases} v_b \\ v_s \end{cases} = -\begin{bmatrix} M & m \\ m & m \end{bmatrix} \begin{cases} 1 \\ 0 \end{cases} u''_g$$

donde $M = m + m_b$, es decir en notación matricial:

$$Mv''+Cv'+Kv = -MRu''_g \tag{2-02}$$

Definimos la relación de masa: $\gamma = \frac{m}{m + m_b} = \frac{m}{M}$

y las frecuencias nominales: $\omega_b^2 = \frac{k_b}{m + m_b}, \ \omega_s^2 = \frac{k_s}{m}$

Se asume que $\varepsilon = \omega_b^2 / \omega_s^2$, y que ε es muy reducido del orden de 10⁻² (Naeim y Kelly, 1999).

La solución de 2-3 está dada por el problema de valores y vectores propios:

$$\left(K - \omega^2 M\right) \phi = 0 \tag{2-03}$$

(Bozzo y Barbat, 2000)

donde ϕ es el vector de los modos del sistema combinado. La ecuación característica de solución de la ecuación 2-4 está dada por: det $|K - \omega^2 M| = 0$

Con las frecuencias ω_b y ω_s , la ecuación característica es:

$$(1-\gamma)\omega^4 - (\omega_b^2 + \omega_s^2)\omega^2 + \omega_b^2\omega_s^2 = 0$$
(2-04)

las soluciones respectivas son:

$$\omega_{1}^{2} = \frac{1}{2(1-\gamma)} \left[\omega_{b}^{2} + \omega_{b}^{2} - \sqrt{(\omega_{b}^{2} - \omega_{s}^{2})^{2} + 4\gamma \omega_{b}^{2} \omega_{s}^{2}} \right]$$
$$\omega_{2}^{2} = \frac{1}{2(1-\gamma)} \left[\omega_{b}^{2} + \omega_{b}^{2} + \sqrt{(\omega_{b}^{2} - \omega_{s}^{2})^{2} + 4\gamma \omega_{b}^{2} \omega_{s}^{2}} \right]$$
(2-05)

y en el primer orden de ε son dadas por:

$$\omega_1^2 = \omega_b^2 (1 - \gamma \varepsilon), \ \omega_2^2 = \frac{\omega_s^2}{1 - \gamma} (1 - \gamma \varepsilon)$$
(2-06)

(Naeim y Kelly, 1999).

La primera frecuencia corresponde al modo fundamental de vibración y es muy cercana a la frecuencia del sistema de aislamiento, considerando que ε es un valor pequeño. Por su parte "La segunda frecuencia natural del sistema, ω_2 , es mayor que la frecuencia de la estructura con base fija, ω_s , lo que puede ser suficiente para evitar la resonancia en el segundo modo" (Bozzo y Barbat, 2000, p.275).

Los vectores propios ϕ_1 y ϕ_2 o formas modales se obtienen al emplear las frecuencias ω_1 y ω_2 para resolver la ecuación 2-4. Por tanto, los vectores propios son:

$$\boldsymbol{\phi}_{1}^{T} = \begin{bmatrix} 1 & \varepsilon \end{bmatrix}, \quad \boldsymbol{\phi}_{2}^{T} = \begin{bmatrix} 1 & -1/\gamma \end{bmatrix}$$
(2-07)

El vector propio correspondiente al modo fundamental de vibración indica que aproximadamente la totalidad del movimiento lateral se concentra en el sistema de aislamiento y que el desplazamiento relativo en los pisos superiores es una variable de segundo orden. (Bozzo y Barbat, 2000).

La masa participativa M_i y los factores de participación L_i del modo i se obtienen con las siguientes ecuaciones:

$$\boldsymbol{M}_i = \boldsymbol{\phi}_i^T \boldsymbol{M} \boldsymbol{\phi}_i \tag{2-08}$$

$$L_i = \frac{\phi_i^T M R}{\phi_i^T M \phi_i} \tag{2-09}$$

donde $R^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$. Al resolver la ecuación 2-9 los factores de participación modal son aproximadamente iguales a:

$$L_1 = 1 - \gamma \varepsilon, \ L_2 = \gamma \varepsilon \tag{2-10}$$

(Aguiar, Almazán, Dechent y Suarez, 2016).

De las ecuaciones 2-10, se puede inferir que el factor de participación del primer modo es cercano a la unidad, y que por consecuencia el comportamiento global de la estructura será similar al del primer modo. Por otro lado, el factor γ siempre es inferior a la unidad y el factor $\varepsilon \approx 0.01$, como consecuencia el factor de participación del segundo modo tiene poca incidencia en el comportamiento global de la estructura (Bozzo y Barbat, 2000).

Los coeficientes de amortiguamiento son obtenidos al desacoplar las ecuaciones diferenciales que gobiernan los problemas de la dinámica de estructuras y considerando la ortogonalidad de los modos, y se desprenden de la siguiente ecuación:

$$2\omega_i\beta_i = \frac{\phi_i^T C\phi_i}{\phi_i^T M\phi_i}$$
(2-11)

Al aplicar las simplificaciones del valor reducido de ε , se obtiene:

$$\beta_{1} = \beta_{b} \left(1 - \frac{3}{2} \gamma \varepsilon \right)$$

$$\beta_{2} = \frac{\beta_{s} + \gamma \beta_{b} \sqrt{\varepsilon}}{\sqrt{1 - \gamma}} \left(1 - \frac{\gamma \varepsilon}{2} \right)$$
(2-12)

(Aguiar et al., 2016).

b. <u>SISTEMA DE VARIOS GRADOS DE LIBERTAD CON AISLAMIENTO EN</u> <u>LA BASE</u>

La teoría lineal para sistemas de dos grados de libertad puede extenderse a edificios de varios pisos. La formulación de las ecuaciones de movimiento es similar al del modelo de dos grados de libertad, que en notación matricial se definen como:

$$MV''+CV'+KV = -MRu''_{g} \tag{2-13}$$

Donde:

$$M = \begin{bmatrix} m_b + m_T & R^T M_s \\ M_s R & M_s \end{bmatrix}, M = \begin{bmatrix} C_b & 0 \\ 0 & C_s \end{bmatrix}$$
$$K = \begin{bmatrix} k_b & 0 \\ 0 & K_s \end{bmatrix}, R = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, V = \begin{bmatrix} v_b \\ V_s \end{bmatrix}$$

K_s es la matriz de rigidez lateral de la estructura, C_s es la matriz de amortiguamiento, m_T es la masa total de la estructura $m_T = \sum_{i=1}^{N} m_i$, donde m_i es la masa de un piso.

La solución de las ecuaciones de movimiento, está dada por el problema de los vectores y valores propios:

$$\left(K - \omega^2 M\right) \phi = 0 \tag{2-14}$$

(Bozzo y Barbat, 2000).

2.2.2 AISLAMIENTO ELASTOMÉRICO REFORZADO

Se trata de aisladores conformados por capas de neopreno vulcanizado a planchas metálicas, lo que hace que el apoyo sea flexible horizontalmente y rígida verticalmente (Bozzo y Barbat, 2000). Los aisladores elastoméricos pueden alcanzar mayores niveles de amortiguamiento al incorporárseles un núcleo de plomo (Gómez, 2007), dependiendo de la capacidad de amortiguamiento, los aisladores elastoméricos son clasificados como aisladores con núcleo de plomo LRB y aisladores de alto amortiguamiento HDR.

Figura II-04a. Aislador elastomérico de alto amortiguamiento HDR (High Damping Rubber) con su respectivo comportamiento histerético

Fuente: Bridgestone, 2019. Recuperado de https://www.bridgestone.com

Fuente: Bridgestone, 2019. Recuperado de https://www.bridgestone.com

a. <u>CARACTERÍSTICAS MECÁNICAS DE LOS AISLADORES</u> <u>ELASTOMÉRICOS</u>

La propiedad mecánica más importante de los aisladores elastoméricos es su rigidez lateral, y está dada por:

$$K_H = \frac{GA}{t_r} \tag{2-15}$$

Donde G es el módulo de corte del elastómero, A es la sección completa del aislador y t_r es el espesor total de la goma. El desplazamiento horizontal máximo está relacionado con la deformación máxima por corte γ :

$$\gamma = \frac{D}{t_r} \tag{2-16}$$

(Naeim y Kelly, 1999).

La rigidez vertical Kv, expresada en términos de EI, también es calculada con la teoría elástica lineal, y está definida por la siguiente ecuación:

$$K_V = \frac{E_c A}{t_r} \tag{2-17}$$

Donde A es la sección transversal del aislador, t_r es el espesor total de la goma y E_c es el módulo de compresión instantánea de la composición caucho-acero. El valor de E_c para una capa de caucho está controlado por el factor de forma S, definido por:

$$S = \frac{\acute{a}rea - c \arg ada}{\acute{a}rea - libre - c \arg a}$$

Que es una medida adimensional de la relación de aspecto de la capa única del elastómero. Para una capa circular de diámetro Φ o radio R y espesor t, el factor de forma es:

$$S = \frac{\Phi}{4t}$$
 o $S = \frac{R}{2t}$

Para capas con forma circular completo, el módulo de compresión E_c , está dado por:

$$E_c = 6GS^2$$

Bach. ESTEBAN KORAFI APONTE

Para capas elastoméricas con orificios centrales de radio interior a y radio exterior b, el módulo de compresión E_c es:

$$E_c = 6\lambda GS^2$$

Donde:

$$\lambda = \frac{b^2 + a^2 - [(b^2 - a^2)/(\ln b/a)]}{(b - a)^2}$$

(Naeim y Kelly, 1999).

Bajo compresión directa, la restricción proporcionada por las capas de acero produce un esfuerzo cortante en el caucho, que se denota por γ_c . La deformación unitaria de compresión ε_c , es dado por:

$$\varepsilon_c = \frac{\Delta}{t_r}$$

Donde Δ es el desplazamiento vertical del aislador, entonces:

$$\gamma_c = 6S\varepsilon_c \tag{2-18}$$

La deformación máxima por corte debido a la compresión no es la única deformación por corte de interés. También es útil estimar la deformación promedio de la siguiente manera: Debido a que el caucho es algo sensible a las deformaciones, el módulo G a menudo se modifica de acuerdo con el nivel de deformación. En compresión, la deformación por corte varía ampliamente sobre el volumen de las capas de caucho; por lo tanto, el valor apropiado del módulo utilizado para estimar la deformación promedio se basa en un cálculo de la energía elástica almacenada en las capas de caucho. A partir de este cálculo la deformación promedio por corte γ_{ave} , viene dada por:

$$\gamma_{ave} = \sqrt{6}S\varepsilon_c \tag{2-19}$$

(Naeim y Kelly, 1999).

La rigidez a la flexión de una capa elastomérica se calcula utilizando un enfoque similar con el mismo tipo de supuestos de desplazamiento. Las capas se suponen cargadas por un momento M, y se asume que la deformación es una rotación de las placas de soporte denotada por α , generando un radio de curvatura ρ que está relacionado con α por:

$$\frac{1}{\rho} = \frac{\alpha}{t}$$

Por analogía con la teoría de secciones planas, donde:

$$M = \frac{EI}{\rho}$$

Se escribe:

$$M = \left(EI\right)_{eff} \frac{\alpha}{t}$$

Para secciones circulares, el momento de inercia está dado por:

$$I = \frac{\pi R^4}{4}$$

Pero para el caso de las capas elastoméricas el momento de inercia será un tercio del momento correspondiente a una sección plana, resultando $\pi R^4/12$. La diferencia es causada por el hecho de que la distribución de presiones varía en función a una parábola cúbica a través de la capa, mientras que en una sección plana la distribución del esfuerzo de flexión es lineal.

Considerando E como $E_c = 6GS^2$, tenemos:

$$M = \frac{3\alpha G}{2t^3} \frac{\pi R^6}{12} \tag{2-20}$$

Para el caso de capas con orificios centrales, se tiene:

$$(EI)_{eff} = 2GS^2 I \frac{(b+a)^2}{b^2 - a^2}$$

(Naeim y Kelly, 1999).

La deformación por corte inducida por flexión, está dada por:

$$\gamma_b = 6S\varepsilon_b \tag{2-21}$$

Donde $\varepsilon_b = R(\alpha/t)$ es la deformación por compresión del borde producida por la flexión. La deformación promedio por corte (en el sentido de la energía de deformación total por corte) viene dado por:

$$\gamma_{b}^{ave} = \sqrt{2S^{2}\alpha}$$

$$\gamma_{b}^{ave} = \sqrt{2S}\frac{R}{2}\frac{\alpha}{t}$$

$$\gamma_{b}^{ave} = \frac{\sqrt{2}}{2}S\varepsilon_{b}$$
(2-22)

(Naeim y Kelly, 1999).

b. <u>MODELAMIENTO BI-LINEAL PARA AISLADORES ELASTOMÉRICOS</u> - AISLADORES ELASTOMÉRICOS CON NUCLEO DE PLOMO - LRB

El comportamiento histerético de un aislador elastomérico del tipo LRB es normalizado mediante un modelo bi-lineal basado en tres parámetros, K1, K2 y Q. La rigidez elástica K₁ difícil de medir y generalmente se toma empíricamente como de múltiplo de K₂, la rigidez post-fluencia, que puede ser estimado de manera más precisa a partir del módulo de corte del caucho y el diseño del aislador. La fuerza característica Q es la intersección del ciclo de histéresis y el eje de fuerza y se estima con precisión a partir del límite elástico [10.3MPa (1500 psi)] y el área del núcleo de plomo. (Naeim y Kelly, 1999).

La rigidez efectiva K_{eff} , definida como la pendiente secante de los valores máximos de un ciclo histerético, se reduce constantemente con el desplazamiento. En base los parámetros básicos K₁, K₂ y Q, K_{eff} está dado por:

$$K_{eff} = K_2 + \frac{Q}{D}, \ D \ge D_y$$
(2-23)

Fuente: Naeim y Kelly, 1999, p.104

La frecuencia natural efectiva ω_{eff} , está dada por:

$$\omega_{eff} = \sqrt{\frac{K_{eff}g}{W}}$$

y el periodo efectivo T_{eff}, por:

$$T_{eff} = \frac{2\pi}{\omega_{eff}} \tag{2-24}$$

El amortiguamiento efectivo β_{eff} es definido por:

$$\beta_{eff} = \frac{W_D}{2\pi K_{eff} D^2}$$

Donde W_D es la energía histerética disipada que es igual al área determinada por un ciclo histerético, es decir $W_D = 4Q(D - D_y)$. Para enunciar β_{eff} de los parámetros básicos, se observa que el desplazamiento y fuerza de fluencia D_y, F_y, correspondiente al núcleo de plomo, son:

$$D_y = \frac{F_y}{K_1}, \ F_y = Q + K_2 D_y$$

De esta manera:

$$D_y = \frac{D}{K_1 - K_2}$$

Usando la definición de β_{eff} y el resultado de la ecuación 2-24 para K_{eff}, se tiene:

$$\beta_{eff} = \frac{4Q(D - D_y)}{2\pi (K_2 D + Q)D^2}$$
(2-25)

(Naeim y Kelly, 1999).

- AISLADORES ELASTOMÉRICOS DE ALTO AMORTIGUAMIENTO HDR

Las características mecánicas determinadas a partir de las pruebas cíclicas de los aisladores con una frecuencia constante se expresan típicamente como una función de desplazamiento D utilizando dos parámetros: la rigidez efectiva de K_{eff} y el amortiguamiento viscoso equivalente B_{eff} (Naeim y Kelly, 1999).

Los aisladores de caucho de alta amortiguación se caracterizan por un comportamiento rígido (K_{eff} alto) en deformaciones por corte de hasta aproximadamente un 25%, una disminución sustancial en K_{eff} hasta una deformación de 150 a 200%, y luego un aumento de K_{eff} por encima de esta deformación debido a la deformación por cristalización en el material. (Las deformaciones a las que cambian estas rigideces dependen del compuesto elastomérico) (Naeim y Kelly, 1999).

Típicamente B_{eff} disminuye conforme crece la deformación, pero no W_D . Pruebas recientes de aislamiento elastomérico han demostrado que en un amplio rango de deformaciones W_D es proporcional a la deformación por corte γ elevada a un exponente de aproximadamente 1.5 (en la práctica, el valor real varía de aproximadamente de 1.45 a 1.75, dependiendo del compuesto bajo consideración) (Naeim y Kelly, 1999).

Se modela el sistema de aislamiento elastomérico como una combinación de un elemento de resorte elástico lineal, un elemento histerético puro (W_D proporcional $D^{1.0}$) y un elemento viscoso puro (W_D , proporcional a $D^{2.0}$). El objetivo es determinar las propiedades de cada uno de estos elementos de manera que W_D del sistema combinado sea proporcional aproximadamente a $D^{1.5}$ en un rango dado de deformaciones. Los cuatro parámetros necesarios para la forma básica del modelo son K₁, (la rigidez elástica del elemento de resorte lineal), K₂ la rigidez elástica del elemento histerético (plásticoelástico)]. F_y (la fuerza de fluencia del elemento histérico, alternativamente D_y el desplazamiento de fluencia del elemento histerético), y C (el coeficiente del elemento de amortiguamiento lineal viscoso).

La energía disipada por el modelo en un ciclo histerético es expresado inicialmente como:

$$W_D = 4F_y (D - D_y) + \pi C \omega D^2 \qquad (2-26)$$

Obviando D_y para desplazamientos grandes bajo el sismo de diseño, 2-27, se convierte en:

$$W_D = 4F_v D + \pi C\omega D^2 \tag{2-27}$$

(Naeim y Kelly, 1999).

La selección de los parámetros finales del modelo, K1 y K2, se hace mejor usando la forma del lazo de histerético medido en el desplazamiento objetivo. La elección lógica para K_2 es la rigidez tangente en el desplazamiento cero. La elección de K_1 se realiza mejor a simple vista para que coincida aproximadamente con la rigidez de descarga inicial después de la excursión máxima del lazo. Tenga en cuenta que mientras K_2 puede permanecer aproximadamente constante sobre un amplio rango de desplazamiento, la mejor elección para K_1 (la pendiente de descarga) probablemente variará.

(Naeim y Kelly, 1999).

Figura II-06. Selección de los parámetros del modelo histerético de un aislador elastomérico HDR

Fuente: Naeim y Kelly, 1999, p.115

c. <u>PANDEO Y ESTABILIDAD DE AISLADORES ELASTOMÉRICOS</u>

Se utiliza un método paralelo al análisis elástico lineal del pandeo de Euler de una columna. Para modelar el aislador de goma como una viga continua, es necesario introducir ciertas modificaciones a los parámetros definidos en la sección anterior.

Considere que el aislador es una columna de longitud h con un área de sección transversal A y que la rigidez a corte por unidad de longitud es definida como $P_s = GA_s$, donde A_s es el área efectiva de corte dada por:

$$A_{s} = A \frac{h}{t_{r}}$$

Donde h es la altura total del aislador (goma más acero) y t_r es la altura de la goma, como se ha mencionado antes. La rigidez a la flexión se modifica de manera similar de modo que $(EI)_{eff}$ para una capa de espesor t, llega a ser EI_s , donde:

$$EI_s = \frac{E_c I}{3} \frac{h}{t_r}$$

La carga de pandeo de Euler para una columna sin deformación por corte es:

$$P_E = \pi^2 \frac{EI_s}{h^2}$$

(Naeim y Kelly, 1999).

El aislador está restringido al giro en ambos extremos y es libre de moverse lateralmente en la parte superior. El resultado para la carga crítica de pandeo P_{crit} , es la solución de la ecuación:

$$P^2 + PP_s - P_s P_E = 0 (2-28)$$

de lo cual la carga crítica Pcrit, viene dada por:

$$P_{crit} = \frac{-P_{s} + \sqrt{P_{s}^{2} - 4P_{s}P_{E}}}{2}$$
(2-29)

Si asumimos que $P_s \approx GA$ y $P_E \approx \frac{1}{3} \frac{6GS^2 I \pi^2}{h^2} \approx GA \left(\frac{2\pi^2 S^2 I}{A} \right)$, entonces, para la

mayoría de los tipos de aisladores donde $P_E >> P_S$, la carga crítica puede ser aproximado por:

$$P_{crit} = (P_{S}P_{E})^{1/2}$$
(2-30)

Figura II-07. Condiciones de contorno para un aislador elastomérico bajo una carga vertical P (el aislador se flexiona sin fuerza lateral, pero se evita que gire en cada extremo)

Fuente: Naeim y Kelly, 1999, p.123

usando esta expresión y recordando que:

$$P_{s} = GA \frac{h}{tr}, P_{E} = \pi^{2} \frac{EI_{s}}{h^{2}}$$

tenemos:

$$P_{crit} = \left(GA\frac{h}{t_r}\right)^{1/2} \left(\frac{\pi^2}{h^2}\frac{1}{3}6GS^2Ar^2\frac{h}{t_r}\right)$$
$$P_{crit} = \frac{\sqrt{2}GASr}{t_r}$$
(2-31)

Donde el radio de giro es denotado por $r = \sqrt{I/A} = \Phi/4$ para aisladores circulares con diámetro Φ .

(Naeim y Kelly, 1999).

La presión crítica $p_{crit} = P_{crit}/A$ puede ser expresada en términos de S y el parámetro S2 referido como la relación de aspecto o el segundo factor de forma, definido por:

$$S_2 = \frac{\Phi}{t_r}$$
, para aisladores circulares

Así:

$$\frac{p_{crit}}{G} = \frac{\pi}{2\sqrt{2}}SS_2$$
, para aisladores circulares (2-32)

(Naeim y Kelly, 1999).

La carga máxima axial ocurrirá al mismo tiempo que el desplazamiento horizontal máximo y la combinación de ambos será uno de los estados límite para los cuales el aislador necesitará ser proporcionado.

Para predecir el comportamiento del aislador bajo la combinación de carga axial y carga lateral se asume que la carga axial crítica P_{crit} , está asociada al desplazamiento en el cual el esfuerzo de compresión de área reducida calculada a partir de la carga axial dividida por A_r , (el área de superposición entre la parte superior e inferior) alcanza el de esfuerzo crítico p_{crit} dado por la ecuación 6.5.

Para un aislador circular el área reducida Ar está dada por:

$$A_r = 2R^2 (\theta - \sin \theta \cos \theta)$$
$$A_r = 2R^2 \left(\frac{\pi}{2} - \phi - \sin \phi \cos \phi\right)$$
(2-33)

Los ángulos θ y ϕ son obtenidos por:

$$D = 2R\cos\theta = 2R\sin\phi$$

$$\theta = \arccos\left(\frac{D}{2R}\right), \text{ para } 0 \le \theta \le \frac{\pi}{2}$$

$$\phi = \arcsin\left(\frac{D}{2R}\right), \text{ para } 0 \le \theta \le \frac{\pi}{2}$$
(2-34)

La carga crítica P_{crit} en el desplazamiento D, está dado por:

$$P_{crit} = p_{crit} A_r \tag{2-35}$$

(Naeim y Kelly, 1999).

Figura II-08. Notación para el área reducida Ar, el desplazamiento lateral D y los ángulos θ y ϕ

Fuente: Naeim y Kelly, 1999, p.129

2.2.3 AISLAMIENTO DE PÉNDULO DE FRICCIÓN

Los aisladores de péndulo de fricción FPS hacen que una estructura se comporte como un péndulo de gran período, y como consecuencia que las aceleraciones espectrales sean bajas, lo que a su vez redunda en que las fuerzas por efecto de un sismo también lo sean. (Aguiar et al.,2016).

a. AISLADOR DE SIMPLE PÉNDULO DE FRICCIÓN (SFP)

La compañía Earthquake Protection Systems, EPS, inventó el concepto de aislamiento sísmico de péndulo de fricción en 1985, siendo el aislador de simple péndulo de fricción, SFP, el primer tipo de aislador desarrollado por EPS (EPS, 2007). El aislador consiste en un deslizador articulado que se desplaza a lo largo de una superficie cóncava, esto genera el levantamiento de la masa soportada y que la estructura oscile como un péndulo. El deslizador está recubierto de PTFE (Teflón) que proporciona al sistema grado de fricción (Aguiar et al.,2016).

Figura II-09. Sección transversal de un aislador de simple péndulo de fricción SFP

Fuente: Cango, 2018, p.21

El peso propio de la estructura hace que está regrese a su posición de equilibrio después de la oscilación. A lo largo del contorno de la placa cóncava, el aislador posee un tope, denominado anillo de seguridad, el cual sirve para limitar el desplazamiento y mantener la estabilidad de la estructura. (Aguiar et al.,2016).

El periodo del aislador es obtenido eligiendo el radio de curvatura de la superficie cóncava, independientemente de la masa de la estructura soportada. El amortiguamiento es obtenido al elegir el coeficiente de fricción.

Figura II-10. Modelización del movimiento del péndulo deslizante de un aislador de péndulo de fricción FPS

Fuente: EPS, 2007, p.4

El dispositivo estructural soporta una carga vertical y transmite cargas horizontales de una manera predefinida. La carga vertical genera una fuerza de fricción. Cuando la fuerza horizontal aplicada es menor que la fuerza de fricción, no hay movimiento y el aislador FPS tiene una gran rigidez elástica. Esta fuerza de fricción evita el deslizamiento del dispositivo bajo cargas de servicio. Cuando la fuerza horizontal aplicada excede la fuerza de fricción, se inicia el deslizamiento y se aplica el diagrama de cuerpo libre de la figura II-11 (Fenz y Constantinou, 2008).

Figura II-11. Diagrama de cuerpo libre del deslizador de un aislador SFP en su configuración deformada

Fuente: Fenz y Constantinou, 2008, p.18

La relación fuerza-desplazamiento se deriva del equilibrio y la geometría del deslizador en una configuración desplazada. En este estado, las fuerzas que actúan sobre el deslizador son:

- 1. La carga vertical, W, que actúa en el punto de pivote.
- 2. La fuerza horizontal, F, transferida a través del aislador.
- 3. La fuerza de fricción resultante, $F_f = \mu W$, que actúa a lo largo de la interfaz deslizante. Para simplificar, el coeficiente de fricción se expresa típicamente en las ecuaciones de equilibrio como un parámetro de valor único, μ . Sin embargo, en realidad varía en función de varios factores, entre ellos, los más importantes, la velocidad y la presión de deslizamiento (como se cita en Mokha et al., 1990). Para el análisis dinámico, las ecuaciones de equilibrio se pueden usar en su misma forma, con μ (u'), un coeficiente de fricción que se actualiza en cada paso de tiempo en función de la velocidad instantánea de deslizamiento.
- 4. La fuerza resultante de la presión normal que actúa a lo largo de la interfaz deslizante, S. Esta debe estar descentrada para satisfacer el

equilibrio del momento. En consecuencia, la distribución de presión en la interfaz deslizante no es uniforme.

 Tracciones de fricción a lo largo de la superficie esférica del deslizador articulado, t_f. Se supone que su efecto es parte de la fuerza de fricción, F_f, y por lo tanto no aparecen explícitamente en las ecuaciones de equilibrio (Fenz y Constantinou, 2008).

Considerando el equilibrio en las direcciones horizontal y vertical respectivamente, se obtienen las siguientes ecuaciones:

$$F - S\sin\theta - F_f \cos\theta = 0 \tag{2-36a}$$

$$W - S\cos\theta - F_f\sin\theta = 0 \tag{2-36b}$$

Desde la geometría, u, definida como el desplazamiento horizontal del punto de pivote del deslizador es simplemente:

$$u = (R - h)\sin\theta = R_{eff}\sin\theta \qquad (2-37)$$

donde el radio efectivo de curvatura, $R_{eff}=(R-h)$, es la distancia radial desde el centro de la superficie esférica hasta el punto de pivote del deslizador articulado.

Combinando las ecuaciones 2-36a, 2-36b y 2-37, la relación fuerzadesplazamiento que gobierna el movimiento para un aislador de simple péndulo de fricción SFP es:

$$F = \frac{W}{R_{eff}\cos\theta}u + \frac{F_f}{\cos\theta}$$
(2-38)

En la mayoría de las aplicaciones, el radio de curvatura es grande en comparación con el desplazamiento horizontal, de modo que $\cos\theta \approx 1$, de donde se realiza la siguiente simplificación:

$$F = \frac{W}{R_{eff}}u + F_f \tag{2-39}$$

Esta simplificación introduce menos del 5% de error siempre que el desplazamiento horizontal sea menor que el 30% del radio de curvatura (Fenz y Constantinou, 2008).

De la ecuación 2-39, $K_b=W/R_{eff}$ es la rigidez del sistema después que se haya superado la fuerza de fricción F_f. Se observa que K_b es directamente
proporcional a la carga W, lo que implica que el centro de rigidez del sistema de aislamiento coincida con el centro de masa de la estructura, minimizándose de esta manera los efectos torsionales (Zayas et al., 1990, citado en Cango, 2018).

Reconociendo que la fuerza de fricción siempre se opondrá al movimiento, se presenta en la figura II-12, la relación cíclica fuerza-desplazamiento basada en la ecuación 2-39. Al revertir el movimiento, el aislador se descarga rígidamente en $2F_f$ y se desliza en la dirección opuesta con rigidez post-elástica $K_b=W/R_{eff}$. Este comportamiento histerético es denominado rígido-lineal (Fenz y Constantinou, 2008).

Total Displacement, u

Fuente: Fenz y Constantinou, 2008, p.20

Se define la rigidez secante que se ha denominado rigidez efectiva del aislador K_{eff} que es igual a la fuerza F dividida por el desplazamiento u.

$$K_{eff} = \frac{F_f + Wu/R}{u}$$
$$K_{eff} = \frac{F_f}{u} + \frac{W}{R}$$
(2-40)

(Aguiar et al., 2016).

Por otra parte, se define el amortiguamiento efectivo β_{eff} como la relación entre la energía disipada en un ciclo de histerético W_D (área encerrada en la curva de histéresis) y a $4\pi W_E$. Donde W_E es la energía elástica. Estas energías, valen:

$$W_D = 4F_f u$$
$$W_E = \frac{1}{2}K_{eff}u^2$$
(2-41)

Al reemplazar W_D y W_E en la definición de β_{eff} , y luego de sustituir el valor de K_{eff} y F_f , se obtiene:

$$\beta_{eff} = \frac{W_D}{4\pi W_E} = \frac{2F_f}{\pi K_{eff} u}$$

$$\beta_{eff} = \frac{2}{\pi} \left(\frac{\mu}{\mu + u/R}\right)$$
(2-42)

(Aguiar et al., 2016).

Se observa tanto en el comportamiento histerético del dispositivo como en la ecuación 2-42, que el amortiguamiento efectivo β_{eff} es directamente proporcional a la energía histerética disipada W_D , y esta a su vez al coeficiente de fricción μ . El amortiguamiento β_{eff} toma valores mayores, cuando $\mu >> u/R$.

b. AISLADOR DE TRIPLE PÉNDULO DE FRICCIÓN (FPT)

El aislador de triple péndulo de fricción, FPT, constituye el funcionamiento de tres sistemas pendulares diseñados para activarse secuencialmente a diferentes intensidades sísmicas. A medida que los movimientos sísmicos se hacen más fuertes, los desplazamientos del aislador se incrementan; y a mayores desplazamientos, la longitud efectiva del péndulo y el amortiguamiento efectivo también son mayores, lo que resulta en fuerzas sísmicas y desplazamientos relativos de piso más bajos (EPS, 2007).

Figura II-13. Vista en corte del aislador de triple péndulo de fricción FPT Fuente: Fenz y Constantinou, 2008, p.15

El péndulo interno del aislador de triple péndulo, FPT, consiste en un deslizador rígido interno que se desliza a lo largo de dos superficies esféricas cóncavas internas. Las propiedades del péndulo interno generalmente se eligen para reducir las fuerzas sísmicas durante sismos de nivel de servicio. Los dos deslizantes cóncavos, que se deslizan a lo largo de las dos superficies cóncavas principales, comprenden los dos péndulos restantes. Las propiedades del segundo péndulo generalmente se eligen para minimizar las fuerzas de corte de la estructura que ocurren durante el sismo base del diseño BDE. Las propiedades del tercer péndulo generalmente se eligen para minimizar las fuerzas que ocurren durante el terremoto de máximo considerado MCE (EPS, 2007).

Las placas cóncavas externas tienen radios efectivos $R_{eff1}=R_1-h_1$ y $R_{eff4}=R_4-h_4$. Las superficies de las placas deslizantes que se acoplan con las placas cóncavas exteriores están recubiertas con un material deslizante no metálico. Los coeficientes de fricción de estas interfaces son μ_1 y μ_4 . Las superficies cóncavas internas de las dos placas deslizantes tienen radios efectivos $R_{eff2}=R_2-h_2$ y $R_{eff3}=R_3-h_3$. Ambas superficies externas del deslizador rígido también están recubiertas con un material deslizante no metálico caracterizado por los coeficientes de fricción de μ_2 y μ_3 . Las alturas h_1 , h_2 , h_3 , h_4 son las alturas al borde inferior y superior de las placas 2 y 3. (Fenz y Constantinou, 2008).

Figura II-14. Sección transversal de un aislador de triple péndulo de fricción, FPT, con su propiedades geométricas y mecánicas

Fuente: Fenz y Constantinou, 2008, p.15

Las capacidades de desplazamiento nominal de las placas deslizantes en las superficies 1 a 4 se denotan de d_1 a d_4 (las capacidades de desplazamiento reales son ligeramente diferentes a las capacidades nominales de desplazamiento debido a los efectos de deslizador de altura y rotación). La capacidad de desplazamiento en las superficies 2 y 3, está representada por d_2 y d_3 (Fenz y Constantinou, 2008).

En referencia a la nomenclatura establecida en la figura II-14, el aislador FPT, se configura de la siguiente manera:

1. Radios efectivos grandes e iguales para las placas cóncavas externas y radios efectivos pequeños e iguales para las placas deslizantes internas,

 $R_{eff4}=R_{eff1}>>R_{eff2}=R_{eff3}$. Esta condición, cuando se combina con la especificación apropiada de los coeficientes de fricción dará como resultado transiciones deseables en la rigidez a lo largo del curso del movimiento. Tenga en cuenta que no existe un requisito estricto de que $R_{eff4}=R_{eff1}$ o $R_{eff2}=R_{eff3}$ (las ecuaciones se formulan en general para tener en cuenta las configuraciones de radios desiguales), sin embargo, para simplificar la fabricación, estos radios serán iguales en la mayoría de los casos.

- 2. Los coeficientes de fricción se seleccionan de manera que el aislador exhiba alta rigidez y baja fricción inicialmente y posteriormente disminuya la rigidez y aumente la fricción efectiva a medida que aumenta la amplitud del desplazamiento. Esto se logra mediante el uso de materiales de fricción que dan $\mu_2 = \mu_3 < \mu_1 < \mu_4$.
- 3. Las capacidades de desplazamiento de cada superficie se seleccionan de modo que haya un endurecimiento gradual en grandes desplazamientos. El deslizador debe estar en contacto con el anillo de seguridad en las superficies 1 y 4 antes de las superficies 2 y 3; siempre que el movimiento se inicie en las superficies 2 y 3 antes que en las superficies 1 y 4. Esto está garantizado siempre que F_{f1} < F_{dr2} and F_{f4} < F_{dr3} . En términos de desplazamientos, esta condición es d₂ > (μ_1 - μ_2) R_{eff2} y d₃ > (μ_4 - μ_3) R_{eff3} .
- 4. El deslizamiento debe iniciarse en la superficie de mayor fricción antes del inicio de cualquier endurecimiento, es decir, $F_{f4} < F_{dr1}$. En términos de desplazamientos, esta condición se cumple siempre que $d_1 > (\mu_4 - \mu_1)$ R_{eff1} . Esto es para evitar una situación en la cual el aislador se endurece, luego se ablanda, luego se vuelve a endurecer, lo que ocurriría si $F_{dr1} < F_{f4}$. El aislador se endurecería al contactar con el anillo de seguridad de la superficie 1, se ablandaría cuando el deslizamiento comenzara en la superficie 4, y luego se volvería a ponerse rígido al contactar con el anillo de seguridad de la superficie 4 (Fenz y Constantinou, 2008).

El aislador triple péndulo desarrolla su movimiento en cinco (05) fases de acuerdo al grado de demanda sísmica. Se presenta la curva monotónica de

fuerza-desplazamiento para un aislador FPT donde se describen las cinco (05) fases de movimiento. En la curva monotónica se puede observar que la rigidez se reduce gradualmente con el incremento del desplazamiento hasta la transición de la fase III y la fase IV, luego el aislador ingresa en una etapa de endurecimiento donde la rigidez comienza a incrementarse, haciendo que los desplazamientos en sismos severos se reduzcan.

Figura II-15. Curva monotónica de fuerza-desplazamiento par un aislador de triple péndulo de fricción FPT

Fuente: Cango, 2018.

- DESLIZAMIENTO EN FASE I

El deslizamiento en fase I, consiste en el deslizamiento en las superficies 2 y 3. A partir del reposo, el movimiento se iniciará cuando la fuerza horizontal exceda la fuerza de fricción en la(s) superficie(s) de menor fricción. Por lo tanto, el deslizamiento comienza en las superficies 2 y 3 cuando $F=F_{f2}=F_{f3}$ (Fenz y Constantinou, 2008).

Basado en FBD III de la figura II-16(b), del equilibrio vertical y horizontal respectivamente:

$$S_1 + F_{f2} \sin \theta_2 - S_2 \cos \theta_2 = 0$$
 (2-43a)

$$F_{f_2}\cos\theta_2 + S_2\sin\theta_2 - F_{f_1} = 0$$
 (2-43b)

Además de FBD IV:

$$F = F_{f1} \tag{2-44a}$$

$$W = S_1 \tag{2-44b}$$

De la geometría, el desplazamiento relativo en la superficie 2, u₂, es:

$$u_2 = R_{eff2} \sin \theta_2 \tag{2-45}$$

Combinando 2-43 y 2-45, y tomando valores pequeños para θ_2 , donde $\cos\theta_2 \approx 1$, se tiene:

$$F = \frac{W}{R_{eff2}} u_2 + F_{f2}$$
(2-46)

(Fenz y Constantinou, 2008).

Figura II-16. (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo de fricción FPT en la fase de movimiento I Fuente: Fenz y Constantinou, 2008, p.63 Las ecuaciones 2-43 a 2-46 son las ecuaciones de equilibrio para el aislador SFP convencional. Un análisis similar del equilibrio de FBD I y FBD II da para la superficie 3:

$$F = \frac{W}{R_{eff3}} u_3 + F_{f3}$$
 (2-47)

La relación fuerza-desplazamiento total para el aislador durante la fase de deslizamiento I se determina combinando las ecuaciones 2-46 y 2-47 basado en el hecho de que el desplazamiento total u es la suma de los desplazamientos u_2 y u_3 , resultando:

$$F = \frac{W}{R_{eff2} + R_{eff3}} u + \frac{F_{f2}R_{eff2} + F_{f3}R_{eff3}}{R_{eff2} + R_{eff3}}$$
(2-48)

(Fenz y Constantinou, 2008).

Al invertir el movimiento, el aislador se descarga en $2F_{f2}=2F_{f3}$ y el deslizamiento se inicia nuevamente en las superficies 2 y 3. El comportamiento histérico es rígido-lineal con una rigidez post-elástica igual a la suma de los radios efectivos de las superficies 2 y 3 y la resistencia igual al coeficiente promedio de fricción en estas dos superficies (Fenz y Constantinou, 2008).

Total Displacement, u

Figura II-17. Comportamiento histerético analítico de un aislador de triple péndulo de fricción FPT en la fase de movimiento I

Fuente: Fenz y Constantinou, 2008, p.64

- DESLIZAMIENTO EN FASE II

Cuando $F=F_{f1}$, el movimiento comienza en la superficie 1, marcando el inicio de la fase de deslizamiento II. La transición ocurre en el desplazamiento u* dado por:

$$\mu^* = (\mu_1 - \mu_2) R_{eff2} + (\mu_1 - \mu_3) R_{eff3}$$
(2-49)

La ecuación 2-49 se obtiene resolviendo la ecuación 2-48 para el desplazamiento cuando $F=F_{f1}$ (Fenz y Constantinou, 2008).

De la figura II-18, los desplazamientos relativos u1 y u2 son:

$$u_1 = R_{eff1} \sin \theta_1 \tag{2-50a}$$

$$u_2 = R_{eff2} \sin \theta_2 \tag{2-50b}$$

De FBD IV se obtienen las ecuaciones de equilibrio para un aislador SFP, lo que lleva a la siguiente relación que rige el movimiento en la superficie 1:

$$F = \frac{W}{R_{eff1}} u_1 + F_{f1}$$
 (2-51)

El ángulo que forma el deslizador rígido con respecto a la dirección vertical es ahora la suma de los ángulos θ_1 y θ_2 , como se refleja en las ecuaciones de equilibrio de FBD III:

$$S_1 \cos \theta_1 + F_{f_2} \sin(\theta_1 + \theta_2) - S_2 \cos(\theta_1 + \theta_2) - F_{f_1} \sin \theta_1 = 0$$
 (2-52a)

$$S_{2}\sin(\theta_{1}+\theta_{2})+F_{f^{2}}\cos(\theta_{1}+\theta_{2})-S_{1}\sin\theta_{1}-F_{f^{1}}\cos\theta_{1}=0$$
 (2-52b)

Usando las ecuaciones 2-50 a 2-52 y las suposiciones de que los ángulos individuales θ_1 y θ_2 son pequeños, de modo que $\cos\theta_1 \approx \cos\theta_2 \approx 1$ y $\sin\theta_1 \times \sin\theta_2 \approx 0$, para la superfície 2 se ha encontrado que:

$$F = W \left(\frac{u_1}{R_{eff1}} + \frac{u_2}{R_{eff2}} \right) + F_{f2}$$
(2-53)

Sustituyendo 2-51 en 2-53:

$$u_2 = (\mu_1 - \mu_2) R_{eff2}$$
(2-54)

La ecuación 2-54 es importante porque demuestra que el desplazamiento en la superficie 2 es constante cuando el movimiento pasa de la fase I a la fase II (resolver la ecuación 2-46 para u_2 con F=F_{f1}). Esto significa que el deslizamiento instantáneo comienza en la superficie 1, y se detiene en la superficie 2 (Fenz y Constantinou, 2008).

Figura II-18. (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo de fricción FPT en la fase de movimiento II Fuente: Fenz y Constantinou, 2008, p.66

FBD I y FBD II en la figura II-18(b) muestran que no hay cambios con respecto a FBD I y FBD II de la figura II-16(b), aparte de que el ángulo θ_3 es mayor debido al incremento del desplazamiento u₃. Por lo tanto, no hay deslizamiento en la superficie 4 y el movimiento en la superficie 3 todavía se rige por la ecuación 2-47. Entonces, con el deslizamiento solo en las superficies 1 y 3, la relación fuerza-desplazamiento total para el deslizamiento en la fase II determinada en base a las ecuaciones 2-47, 2-51 y 2-53 es:

$$F = \frac{W}{R_{eff1} + R_{eff3}}u + \frac{F_{f1}(R_{eff1} - R_{eff2}) + F_{f2}R_{eff2} + F_{f3}R_{eff3}}{R_{eff1} + R_{eff3}}$$
(2-55)

(Fenz y Constantinou, 2008).

Al invertir el movimiento, el rodamiento se descarga en $2F_{f2}=2F_{f3}$ y el movimiento se reanuda en las superficies 2 y 3. El movimiento continúa en las superficies 2 y 3 durante una distancia de 2u* hasta que el aislador se haya descargado en $2F_{f1}$, en cuyo punto el deslizamiento comienza nuevamente en la superficie 1 y se detiene en la superficie 2. El deslizamiento continúa en las superficies 1 y 3 (Fenz y Constantinou, 2008).

Total Displacement, u

Figura II-19. Comportamiento histerético analítico de un aislador de triple péndulo de fricción FPT durante la fase de movimiento II se muestra en relación con la fase de movimiento I

Fuente: Fenz y Constantinou, 2008, p.67

DESLIZAMIENTO EN FASE III

El deslizamiento se inicia en la superficie 4 cuando $F=F_{f4}$, que ocurre en el desplazamiento u^{**} dado por:

$$u^{**} = u^{*} + \left(\mu_{4} - \mu_{1}\right) \left(R_{eff1} + R_{eff2}\right)$$
(2-56)

La ecuación 2-56 se obtiene resolviendo la ecuación 2-55 para el desplazamiento cuando $F=F_{f4}$ (Fenz y Constantinou, 2008).

En la figura II-20. Los desplazamientos u_1 y u_2 y los ángulos θ_1 y θ_2 se definen como en la fase anterior; la rotación de la placa deslizante superior con respecto a la placa cóncava externa superior es de θ_4 y la rotación de la placa deslizante superior con respecto al deslizador rígido es de θ_3 . Los desplazamientos relativos u_3 y u_4 son:

$$u_3 = R_{eff3} \sin \theta_3 \tag{2-57a}$$

$$u_4 = R_{eff4} \sin \theta_4 \tag{2-57b}$$

De FBD III y FBD IV, el desplazamiento u_1 se incrementa. El movimiento en la superficie 1 todavía se rige por la ecuación 2-51 y el movimiento en la superficie 2 por la ecuación 2-53. Del equilibrio de FBD I y FBD II se deduce que para la superficie 4:

$$F = \frac{W}{R_{eff4}} u_4 + F_{f4}$$
(2-58)

Y para la superficie 3:

$$F = W \left(\frac{u_3}{R_{eff3}} + \frac{u_4}{R_{eff4}} \right) + F_{f3}$$
(2-59)

$$u_3 = (\mu_4 - \mu_3) R_{eff3}$$
(2-60)

La ecuación 2-60 demuestra que tan pronto como comienza el deslizamiento en la superficie 4, se detiene en la superficie 3. Esto se puede probar resolviendo la ecuación 2-47 para u3 con F=Ff4. Para el deslizamiento en las superficies 1 y 4, la relación fuerza-desplazamiento total para el deslizamiento en la fase III determinada combinando las ecuaciones 2-51, 2-53, 2-58 y 2-59 es:

$$F = \frac{W}{R_{eff1} + R_{eff4}} u + \frac{F_{f1} (R_{eff1} - R_{eff2}) + F_{f2} R_{eff2} + F_{f3} R_{eff3} + F_{f4} (R_{eff4} - R_{eff3})}{R_{eff1} + R_{eff4}}$$
(2-61)

(Fenz y Constantinou, 2008).

Figura II-20. (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo de fricción FPT en la fase de movimiento III Fuente: Fenz y Constantinou, 2008, p.69

Cuando el movimiento se invierte, el aislador se descarga en $2F_{f2} = 2F_{f3}$ y el deslizamiento se reanuda en las superficies 2 y 3. El movimiento continúa en las superficies 2 y 3 durante una distancia de 2u* hasta que el aislador se haya descargado en $2F_{f1}$, en el cual el deslizamiento de puntos comienza en la superficie 1 y se detiene en la superficie 2. Desde este punto, el

movimiento continúa en las superficies 1 y 3 durante una distancia de $2u^{**}-2u^*$ hasta que el aislador se haya descargado por $2F_{f4}$. En este punto, el movimiento se reanuda en la superficie 4 (y se detiene en la superficie 3) y se produce el deslizamiento en las superficies 1 y 4 (Fenz y Constantinou, 2008).

Total Displacement, u

Figura II-21. Comportamiento histerético analítico de un aislador de triple péndulo de fricción FPT durante la fase de movimiento II se muestra en relación con la fase de movimiento I y II

Fuente: Fenz y Constantinou, 2008, p.70

- DESLIZAMIENTO EN FASE IV

El deslizamiento en la fase IV comienza cuando el movimiento cambia del deslizamiento en la superficie 1 y 4 al deslizamiento en las superficies 2 y 4, lo que ocurre cuando se hace contacto con el dispositivo de retención de desplazamiento o anillo de seguridad en la superficie 1. En este punto, el desplazamiento en la superficie 1 es $u_1=d_1$ y la fuerza horizontal, F_{dr1} , es:

$$F_{dr1} = \frac{W}{R_{eff1}} d_1 + F_{f1}$$
(2-62)

La transición entre fases de movimiento ocurre en el desplazamiento u_{dr1}, dado por:

$$u_{dr1} = u^{**} + \left(1 + \frac{R_{eff4}}{R_{eff1}}\right) d_1 - \left(\mu_4 - \mu_1\right) \left(R_{eff1} + R_{eff4}\right)$$
(2-63)

La ecuación 2-63 se obtiene resolviendo la ecuación 2-61 para u con $F=F_{dr1}$. (Fenz y Constantinou, 2008).

En FBD III y FBD IV de la figura II-22, se muestra que el efecto del dispositivo de retención en contacto con la placa deslizante sobre la superficie 1 es introducir una fuerza adicional sobre la placa, F_{r1} . Se asume que el dispositivo de retención es rígido y, por lo tanto, a partir de FBD IV, la relación fuerza-desplazamiento que rige el movimiento en la superficie 1 es:

$$F = \frac{W}{R_{eff1}} d_1 + F_{f1} + F_{r1}$$
(2-64)

No hay desplazamiento adicional en la superficie 1 y el equilibrio se mantiene mediante el incremento de la fuerza de retención, F_{r1} , a medida que aumenta la fuerza horizontal aplicada, F. Usando FBD III y FBD IV, la relación fuerza-desplazamiento que gobierna el movimiento en la superficie 2 es:

$$F = W \left(\frac{d_1}{R_{eff1}} + \frac{u_2}{R_{eff2}} \right) + F_{f2}$$
(2-65)

Esto demuestra que el deslizamiento se reanuda en la superficie 2 cuando se pone en contacto el dispositivo de retención en la superficie 1. Nada ha cambiado en las superficies superiores, por lo que el movimiento en las superficies 3 y 4 todavía se rige por las ecuaciones 2-58 y 2-59 respectivamente. Por lo tanto, con el deslizamiento que ocurre en las superficies 2 y 4, la relación fuerza-desplazamiento total es:

$$F = \frac{W}{R_{eff2} + R_{eff4}} \left(u - u_{dr1} \right) + \frac{W}{R_{eff1}} d_1 + F_{f1}$$
(2-66)

(Fenz y Constantinou, 2008).

Figura II-22. (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo de fricción FPT en la fase de movimiento IV Fuente: Fenz y Constantinou, 2008, p.72

Al invertir el movimiento, el aislador se descarga en $2F_{f2}=2F_{f3}$ y el movimiento se reanuda en las superficies 2 y 3. Después de que el deslizador contacta el dispositivo de retención en la superficie 1, el movimiento no comenzará en esta superficie hasta que $F_{r1}+2F_{f1}$ haya descargado el aislador a:

$$F = \frac{W}{R_{eff1}} d_1 - F_{f1}$$

El deslizamiento se reanuda en la superficie 4 cuando el aislador se ha descargado por $2F_{f4}$. Se puede demostrar que en la fase IV, si el desplazamiento total máximo, u_{max} , satisface lo siguiente:

$$u_{\max} > u_{dr1} + 2(\mu_4 - \mu_1)(R_{eff2} + R_{eff4})$$
(2-67)

Luego, el movimiento se iniciará en la superficie 4 antes que en la superficie 1 ($2F_{f4} < F_{r1} + 2F_{f1}$). Si la ecuación 2-65 no se cumple, el movimiento se iniciará en la superficie 1 antes que en la superficie 4 ($F_{r1} + 2F_{f1} < 2F_{f4}$). Esto demuestra que es posible tener diferentes tipos de comportamiento de descarga dependiendo del desplazamiento máximo alcanzado. Sin embargo, según la ecuación 2-67 que sigue, se puede demostrar que para la configuración típica con d₁=d₄ y R_{eff1}=R_{eff4}, la ecuación 2-65 no se puede satisfacer antes del inicio de la fase V. Por lo tanto, el movimiento comenzará en la superficie 1 antes que en la superficie 4 para configuraciones estándar (Fenz y Constantinou, 2008).

Total Displacement, u

Figura II-23. Comportamiento histerético analítico de un aislador de triple péndulo de fricción FPT durante la fase de movimiento II se muestra en relación con la fase de movimiento I, II y III

Fuente: Fenz y Constantinou, 2008, p.73

DESLIZAMIENTO EN FASE V

El deslizamiento en la fase V comienza cuando el movimiento cambia del deslizamiento en la superficie 2 y 4 al deslizamiento en las superficies 2 y 3, lo que ocurre cuando se hace contacto con el dispositivo de retención de desplazamiento en la superficie 4. En el punto de transición, el desplazamiento relativo en la superficie $u_4=d_4$ y la fuerza horizontal, F_{dr4} , es:

$$F_{dr4} = \frac{W}{R_{eff4}} d_4 + F_{f4}$$
(2-68)

La transición entre fases de movimiento ocurre en el desplazamiento u_{dr4}, dado por:

$$u_{dr4} = u_{dr1} + \left[\left(\frac{d_4}{R_{eff4}} + \mu_4 \right) - \left(\frac{d_1}{R_{eff1}} + \mu_1 \right) \right] \left(R_{eff2} + R_{eff4} \right)$$
(2-69)

Del equilibrio de FBD I y FBD II de la figura II-24, se deduce que para la superficie 4:

$$F = \frac{W}{R_{eff4}} d_4 + F_{f4} + F_{r4}$$
(2-70)

Y para la superficie 3:

$$F = W \left(\frac{d_4}{R_{eff4}} + \frac{u_3}{R_{eff3}} \right) + F_{f3}$$
(2-71)

(Fenz y Constantinou, 2008).

Figura II-24. (a) Forma desplazada (b) Diagrama de cuerpo libre del aislador de triple péndulo de fricción FPT en la fase de movimiento V Fuente: Fenz y Constantinou, 2008, p.74

La ecuación 2-71 demuestra que el deslizamiento se reanuda en la superficie 3, después del contacto con el dispositivo de retención en la superficie 4. En la parte inferior del aislador, el movimiento todavía está ocurriendo en la superficie 2 con el deslizador sobre el dispositivo de retención en la superficie 1. Por lo tanto, la combinación de las relaciones fuerzadesplazamiento para las superficies 2 y 3, da:

$$F = \frac{W}{R_{eff2} + R_{eff3}} \left(u - u_{dr4} \right) + \frac{W}{R_{eff4}} d_4 + F_{f4}$$
(2-72)

(Fenz y Constantinou, 2008).

Cuando el movimiento se invierte, el aislador se descargará en $2F_{f2}=2F_{f3}$ y se producirá deslizamiento en las superficies 2 y 3. El movimiento se reanudará en la superficie 1 cuando el aislador se descarga a $F_{dr1}-2F_{f1}$ y el movimiento se reanuda en la superficie 4 cuando el rodamiento se descarga a $F_{dr4}-2F_{f4}$. Dado que el primero siempre es más grande que el último (suponiendo la configuración estándar), cuando el aislador se descarga desde el desplazamiento máximo $u_{max}>u_{dr4}$, el deslizamiento se iniciará en la superficie 1 antes de la superficie 4 (Fenz y Constantinou, 2008).

Total Displacement, u

Figura II-25. Comportamiento histerético analítico de un aislador de triple péndulo de fricción FPT durante la fase de movimiento II se muestra en relación con la fase de movimiento I, II, III y IV

Fuente: Fenz y Constantinou, 2008, p.77

Las ecuaciones que gobiernan la relación fuerza-desplazamiento de los aisladores FPT para las cinco (05) fases de movimiento se resumen en la siguiente tabla:

Cuadro II-1

MPORTAMIENTO DE AISLADORES DE TRIPLE PÉNDULO DE FRICCIÓN FPT scripción Relación fuerza-desplazamiento	ente de las superficies 2 y 3. $F = \frac{W}{R_{off2} + R_{off3}} u + \frac{F_{f_2} R_{off2} + F_{f_3} R_{off3}}{R_{off2} + R_{off3}}$ Valido hasta: $F = F_{f_1} u = u^* = (\mu_1 - \mu_2) R_{off2} + (\mu_1 - \mu_3) R_{off2}$	detiene en la superficie 2. $F = \frac{W}{R_{gf1} + R_{ef3}} u + \frac{F_{f1}(R_{gf1} - R_{gf2}) + F_{f2}R_{ef3}}{R_{ef1} + R_{ef3}}$ bre las superficies 1 y 3. Valido hasta: $F = F_{f4}$ $u = u^* = u^* + (\mu_4 - \mu_1)(R_{gf1} + R_{ef3})$	$F = \frac{W}{R_{gr1} + R_{gr4}} u + \frac{F_{f_1}(R_{gr1} - R_{gr2}) + F_{f_2}R_{gr2} + F_{f_3}R_{gf3} + F_{f_4}(R_{gr4} - R_{gr3})}{R_{gr1} + R_{gr4}}$ tiene en la superficie 2 y 3. bre las superficies 1 y 4. Valido hasta: $F = F_{gr1} = \frac{W}{R_{gr1}} d_i + F_{f_1}$ $u = u_{gr1} = u^* + \left(1 + \frac{R_{gr4}}{R_{gr1}}\right) d_i - (\mu_i - \mu_i)$	edor en la superficie 1. El $F = \frac{W}{R_{df2} + R_{df4}} (u - u_{dr1}) + \frac{W}{R_{df1}} d_1 + F_{f1}$ e detenido en la superficie 3. Su las superficies 2 y 4 $Ualido hasta: F = F_{dr4} = \frac{W}{R_{df4}} d_4 + F_{f4} \qquad u = u_{dr4} = u_{dr1} + \left[\frac{d_4}{R_{dr4}} + \mu_4 \right] - \left(\frac{d}{R_{dr4}} + \mu_4 \right)$
RESUMEN DEL CO tse De	Deslizamiento unicar	El movimiento se . Deslizamiento so	El movimiento se de Deslizamiento so	Contacto con reter movimiento permanec Deslizamiento

Resumen del comportamiento de aisladores de triple péndulo de fricción

Bach. ESTEBAN KORAFI APONTE

2.3 <u>DEFINICIÓN DE TÉRMINOS</u>

SISTEMA DE AISLAMIENTO: Conjunto de elementos estructurales que incluye todas las unidades de aislamiento, todos los elementos que transfieren fuerza entre los elementos del sistema de aislamiento y todas las conexiones a otros elementos estructurales (ASCE/SEI 7-16, 2017).

INTERFAZ DE ASILAMIENTO: Límite entre la parte superior de la estructura, que está aislada, y la parte inferior de la estructura, que se mueve rígidamente con el suelo (ASCE/SEI 7-16, 2017).

UNIDAD DE AISLAMIENTO: Elemento estructural del sistema de aislamiento horizontalmente flexible y verticalmente rígido que permite grandes deformaciones laterales bajo carga sísmica de diseño (ASCE/SEI 7-16, 2017).

NIVEL DE BASE: Primer nivel de la estructura aislada sobre la interfaz de aislamiento (ASCE/SEI 7-16, 2017).

SUBESTRUCTURA: Son todos los elementos estructurales por debajo del nivel de base, incluyendo el sistema de aislamiento y los elementos de cimentación.

SUPERESTRUCTURA: Son todos los elementos estructurales por encima del nivel de base, tales como columnas y/o placas, vigas y losas.

MÁXIMO SISMO CONSIDERADO, MCE: Nivel de demanda sísmica con una probabilidad del 2% de ser excedido en 50 años, es decir con un periodo de retorno Tr=2475años, asociada a una aceleración máxima en suelo rígido PGA=0.675g para efectos de la tesis.

SISMO DE DISEÑO, DE: Nivel de demanda sísmica con una probabilidad del 10% de ser excedido en 50 años, es decir con un periodo de retorno Tr=475años, asociado a una aceleración máxima en suelo rígido PGA=0.450g para efectos de la tesis.

DESPLAZAMIENTO MÁXIMO, D_M: Desplazamiento lateral en el máximo sismo considerado, MCE, excluyendo el desplazamiento adicional causado por torsión real y accidental, requerido para el diseño del sistema de aislamiento (ASCE/SEI 7-16, 2017).

DESPLAZAMIENTO TOTAL MÁXIMO, D_{TM}: Desplazamiento lateral máximo total en el máximo sismo considerado, MCE, incluido el desplazamiento adicional causado por la torsión real y accidental, requerido para la verificación de la estabilidad del sistema de aislamiento o elementos del mismo, diseño de separaciones de estructura y pruebas de carga vertical de prototipos de unidades de aislador (ASCE/SEI 7-16, 2017).

DESPLAZAMIENTO DE DISEÑO, D_D: Desplazamiento lateral en el sismo de diseño, DE, excluyendo el desplazamiento adicional causado por torsión real y accidental, requerido para el diseño del sistema de aislamiento (SISCF, 2019).

SISCF: Es el Estándar de aislamiento sísmico para la funcionalidad continua "Seismic Isolation Standard for Continued Functionality" (SISCF, 2019).

2.4 MARCO NORMATIVO

La investigación fue realizada cumpliendo el siguiente marco normativo:

- Ministerio de Vivienda, Construcción y Saneamiento (2006). *Cargas: NTE E.020*. Lima, Perú: El peruano.
- Ministerio de Vivienda, Construcción y Saneamiento (2018). *Diseño Sismorresistente: NTE E.030*. Lima, Perú: El peruano.
- Ministerio de Vivienda, Construcción y Saneamiento (2009). *Concreto Armado: NTE E.060*. Lima, Perú: El Peruano.
- Ministerio de Salud (2017). *Hospitales Seguros frente a los Desastres: Política Nacional* DS Nº 027-2017-SA. Lima-Perú: El Peruano.

- American Society of Civil Engineers (2017). Minimum Design Loads for Buildings and Other Structures: ASCE/SEI 7-16 (Modification ASCE/SEI 7-10). Reston (Virginia), USA: American Society of Civil Engineers.
- Zayas, V., Mahin, S., Constantinou, M. (2019). Seismic Isolation Standard for Continued Functionality (UCB/SEMM-2017/03). Berkeley, CA, USA: University of California, Berkeley.

CAPITULO III MATERIALES Y MÉTODOS

3.1 TIPO DE INVESTIGACIÓN

La investigación realizada es del tipo cuantitativa aplicada, dado que se busca poder refrendar criterios de diseño sísmico basados en el concepto de resiliencia, para su posterior consideración en las modificaciones futuras de la normatividad. Para tal fin se ha utilizado un conjunto de pasos secuenciales y se han medido numéricamente los resultados para probar la hipótesis planteada inicialmente.

3.2 DISEÑO DE INVESTIGACIÓN

El diseño de estudio utilizado en la tesis fue el "Diseño no-experimental transeccional correlacional-causal", es decir un diseño que describe relaciones entre dos o más categorías, conceptos o variables en un momento determinado. A veces, únicamente en términos correlacionales, otras en función de la relación causa-efecto (Hernández, Fernández y Baptista, 2014).

Para la investigación: Asociar el eventual nivel de desempeño que puede alcanzar el Hospital Pacasmayo en el Sismo de Diseño DE y en el Máximo Sismo Considerado MCE, con el diseño con aislamiento sísmico proyectado.

El diseño puede ser esquematizado del siguiente modo:

Donde en el trabajo de investigación:

- X1 : Modelo estructural correspondiente al primer tipo de diseño sismorresistente con aislamiento en la base para el Hospital de Pacasmayo.
- X2 : Modelo estructural correspondiente al segundo tipo de diseño sismorresistente con aislamiento en la base para el Hospital de Pacasmayo.
- Y1 : Nivel de desempeño sísmico que pueden alcanzar el Hospital de Pacasmayo con el primer tipo de diseño.
- Y2 : Nivel de desempeño sísmico que pueden alcanzar el Hospital de Pacasmayo con el segundo tipo de diseño.

98

3.3 UNIDAD DE ANÁLISIS

Estructura Hospitalaria

3.4 UBICACIÓN

Distrito: Pacasmayo Provincia: Pacasmayo Departamento: La Libertad

3.5 POBLACIÓN Y MUESTRA

3.5.1 <u>POBLACIÓN</u>

Hospitales de nivel de atención II-E

3.5.2 <u>MUESTRA</u>

Hospital de Pacasmayo

3.6 VARIABLES

3.6.1 VARIABLE DEPENDIENTE

Nivel de desempeño que puede alcanzar el Hospital de Pacasmayo en el Sismo de Diseño DE y en el Máximo Sismo Considerado MCE, según el sistema de calificación REDiTM.

3.6.2 VARIABLE INDEPENDIENTE

Diseño sismorresistente con aislamiento en la base, proyectado para el Hospital de Pacasmayo.

3.6.3 MATRIZ DE CONSITENCIA

Se presenta la matriz de consistencia de la investigación:

Tabla III-01

Problema general Obj Cuál es el nivel de desempeño o de daño que puede Determinar el nivel	Objetivo general	Hipótesis general	Variable Independiente
Cuál es el nivel de desempeño o de daño que puede Determinar al nival			
tener uma Estructura Esencial sísmicamente aislada puede tener uma Est después de un sismo severo considerado, al ser aislada después de un diseñada con la aplicación de los criterios convencionales normativos; comparativamente, con el normativos; comparati diseño que sigue criterios que contemplan consideraciones resilientes.	vel de desempeño o de daño que Estructura Esencial sísmicamente e un sismo severo considerado, con de los criterios convencionales rativamente, con el diseño que sigue emplan consideraciones resilientes.	El diseño sísmico con aislamiento en la base de uma Estructura Esencial, basado en criterios que contemplan consideraciones resilientes, presentará mejor desempeño que el diseño con la aplicación de los criterios convencionales normativos.	Diseño sismorresistente con aislamiento en la base del Hospital de Pacasmayo.
Problemas específicos Objet	ojetivos específicos	Hipótesis específicas	Variable Dedependiente
 El diseño del bloque aislado del Hospital de 1- Evaluar el eventue Pacasmayo que sigue los criterios mínimos de las Normas E.030 y ASCE/SEI 7 (diseño actual de la estructura), mantendrá a la estructura en conticiones operativas luego del Sismo de Diseño DE y el Máximo Sismo Considerado MCE. DE y el Máximo Sismo Considerado MCE. 2- La propuesta basada en los criterios del Estándar 2- Evaluar el eventua de Funcionalidad Continua, podrá hacer que la por la propuesta desempeño. 3- Qué tipo de diseño podrá eventualmente proveer al 3- Compara el nivel Hospital Pacasmayo, un mejor desempeño (nivel de caño, balance económico post-sismo y tiempo de reposición) en el Sismo de Diseño DE, y en el Máximo Sismo Considerado MCE. 	nual nivel de desempeño alcanzado 1- lel Hospital Pacasmayo que emplea stoméricos LRB y que sigue los sos de las Normas E.030 y 0, en el Sismo de Diseño DE y en el considerado MCE. nual nivel de desempeño alcanzado ta de diseño del Hospital de a de diseño del Hospital de a la Funcionalidad Continua on la Norma E.030, en el Sismo de n el Máximo Sismo Considerado vel de desempeño alcanzado por os de diseño, en el Sismo de n el Máximo Sismo Considerado vel de desempeño alcanzado por os de diseño, en el Sismo de n el Máximo Sismo Considerado	El diseño basado en los criterios mínimos de las Normas E.030 y ASCE/SEI 7, y el diseño basado en los criterios del Estándar de Funcionalidad Continua, proveerán a al Hospital de Pacasmayo el mismo nivel de desempeño en el Sismo de Diseño DE (Sismo con Tr = 475 años). Así mismo el diseño basado en los criterios del Estándar de Funcionalidad Continua podrá proveer al Hospital de Pacasmayo un mejor desempeño en el Máximo Sismo Considerado MCE (Sismo con Tr = 2475 años).	Nivel de desempeño que puede alcanzar el Hospital de Pacasmayo en el Sismo de Diseño DE y en el Máximo Sismo Considerado MCE, según el sistema de calificación REDi TM
 4- Cuáles son los criterios de la filosofía de 4- Conocer los criter Funcionalidad Continua aplicada a Edificaciones 4- Funcionalidad Continua aplicada a Edificaciones Estenciales. 5- Qué comportamiento sísmico tiene una estructura 5- Entender el compo aislada. 	iterios del Estándar de 2- l Continua" aplicada a Esenciales. mportamiento sísmico de una da y su metodología de diseño.	El comportamiento sísmico de una estructura, así como su nivel de desempeño, están directamente relacionados con los parámetros de evaluación del diseño por resiliencia especificados en el Estándar de aislamiento sísmico, SISCF.	

Matriz de consistencia de la investigación

Fuente: Elaboración propia, 2019

3.6.4 **OPERACIONALIZACIÓN DE VARIABLES**

Se presenta la matriz de operacionalización de variables:

Tabla III-02

Matriz de operacionalización de variables

VARIABLE	DEFINICIÓN CONECEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES
	Proceso que proporciona la docorinoión do los comocorcions do	Realización del análisis de respuesta sísmica de los modelos estructurales correspondientes a los diseños	Rigidez	Deriva o distorsión de piso
	los elementos estructurales de una los elementos estructurales de una edificación, con el fin de proporcionarle una rigidez adecuada acon livitor en docadocaraciados	sismorresistentes, con la asistencia del software ETABS, consistente con la aplicación de los procedimientos de análisis "Fuerza Lateral Equivalente" e	Resistencia	Sección y armado del refuerzo de los elementos estructurales
Diseño sismorresistente con aislamiento en la base del Hospital de	para muntar sus uesprazamientos laterales, proprocionar carácteristicas	"Historia de Respuestas" o "Tiempo- Historia". Luego se procederá a la		Periodo del sistema de aislamiento
Pacasmayo.	dinamicas que eviten amplificaciones excesivas de la vibración, que posea resistencia a correa lateral suficiente	recopilación de los resultados del análisis para evaluar el desempeño	Carásterísticas dinámicas	Periodo fundamental de la estructura
	para aobsorver las fuerzas de inercia	sísmico aproximando la respuesta lineal encontrada a una no lineal. Los		Aceleración espectral de piso
	mucudas por la vibracion, y que tenga alta capacidad de disipación de energía mediante deformaciones inelásticas.	valores finales para evaluar el desempeño sísmico son: 1) Derivas de entrepiso, 2) Derivas residuales de entrepiso y 3) Aceleraciones de piso.	Disipación de energía	Amortiguamiento del sistema de aislamiento
		Determinación del nivel de desempeño sísmico de los modelos del edificio		Daños estructurales
		correspondientes a los diseños sismorresistentes traducido en la	Probabilidad de accdientes	Daños no-estructurales
	Escala de clasificación de un edificio	determinación del nivel de daño estructural v no-estructural así como		Daños del contenido
Nivel de desempeño que puede alcanzar el Hosnital de Pacasmavo en	medida en términos de la probabilidad de incurrir en accidentes, costos de	del costo y tiempo de reparación; teniendo como instrumento un modelo		Daños estructurales
el Sismo de Diseño DE y en el Máximo Sismo Considerado MCF senún el	reparación y reemplazo, tiempo de reparación y etiqueta de seguridad; en	normalizado de la metodología del FFMA P-58. "Fvaluación del	Costo de reparación	Daños no-estructurales
sistema de caificación REDi TM	función de sus características únicas de sitio, estructurales, no estructurales y	Desempeño Sísmico de Edificios" indicado en el "Fetándar de		Daños del contenido
	de ocupación	Aislamiento Sísmico para la Funcionalidad Continua", SISCF, v la		Daños estructurales
		calificación Redi ^{IM} "Iniciativa de	Tiempo de reparación	Daños no-estructurales
		Diseno Sismico basado en Resiliencia".		Daños del contenido

Fuente: Elaboración propia, 2019

3.7 INSTRUMENTOS

3.7.1 INSTRUMENTOS DE RECOLECCIÓN DE DATOS

El análisis de respuesta sísmica de los modelos estructurales correspondientes a los diseños sismorresistentes fue realizada con la asistencia del software Microsoft Excel 2016 y el software ETABS v.17.0.1

Figura III-001a. Presentación del isotipo del software Microsoft Excel 2016 Fuente: Microsoft Excel 2016, 2019

Figura III-001b. Presentación del isotipo del software ETABS v.17.0.1 Fuente: ETABS v.17.0.1, 2019

3.7.2 INSTRUMENTOS DE PROCESAMIENTO DE DATOS

La determinación del nivel de desempeño sísmico de los modelos del edificio correspondientes a los diseños sismorresistentes, se realizó teniendo como instrumento un modelo normalizado de la metodología del FEMA P-58: "Evaluación del Desempeño Sísmico de Edificios" indicado en el "Estándar de Aislamiento Sísmico para la Funcionalidad Continua", SISCF, y la calificación REDiTM "Iniciativa de Diseño Sísmico basado en Resiliencia".

Figura III-002b. Portada del FEMA P-58-1 Evaluación del Desempeño Sísmico de Edificios y del Estándar de Aislamiento Sísmico para la Funcionalidad Continua, SISCF

Fuente: FEMA P-58-1, 2012; y SISCF, 2019

3.8 PROCEDIMIENTOS

3.8.1 CONSIDERACIONES GENERALES PARA EL DISEÑO SISMORRESISTENTE

a. <u>INTRODUCCIÓN</u>

Se comparó la respuesta en los sismos DE y MCE de dos (02) tipos de diseño sísmico con aislamiento en la base para el Hospital de Pacasmayo; el primero a base de aisladores LRB, realizado para alcanzar un desempeño de seguridad de vidas; y el segundo a base de aisladores FPT, realizado para garantizar el funcionamiento continuo del establecimiento.

Para el diseño del Hospital con aisladores LRB se evaluó la deformación de los aisladores, la capacidad de los elementos estructurales, las derivas o distorsiones de piso y las aceleraciones espectrales de piso; siguiendo los procedimientos de análisis indicados en el capítulo 17 de ASCE/SEI 7-16, bajo el marco de las disposiciones indicadas en NTE E.030 referentes a peligro sísmico, categoría, sistema estructural e irregularidades de las edificaciones. Por su parte para el diseño con aisladores FPT, se utilizaron los procedimientos

indicados en ASCE/SEI 7-16 así como los criterios indicados en el Estándar de aislamiento sísmico para la funcionalidad continua, también bajo el marco de las disposiciones de peligro sísmico, categoría, sistema estructural e irregularidades de las edificaciones, indicadas en NTE E.030.

Figura III-003. **Vista 3D frontal Hospital de Pacasmayo** Fuente: Expediente Técnico del Hospital de Pacasmayo, 2017 [CD-ROM]

b. <u>UBICACIÓN DE LA EDIFICACIÓN</u>

Institución: Hospital de Pacasmayo Distrito: Pacasmayo Provincia: Pacasmayo Departamento: La Libertad

Figura III-004. Plano de Ubicación de Hospital de Pacasmayo

Fuente: Expediente Técnico del Hospital de Pacasmayo, 2017 [CD-ROM]

c. <u>DESCRIPCIÓN DE LA EDIFICACIÓN</u>

El Hospital de Pacasmayo tiene una categorización II-E que corresponde a un Hospital de atención especializada (NTS Nº 21-MINSA, 2011) y cuenta con las siguientes unidades productoras de servicios de salud UPSS:

- UPSS Consulta Externa
- UPSS Emergencia
- UPSS Hospitalización
- UPSS Centro Obstétrico
- UPSS Centro Quirúrgico
- UPSS Cuidados Intensivos
- UPSS Medicina de Rehabilitación
- UPSS Diagnóstico por imágenes
- UPSS Patología Clínica (Laboratorio Clínico)
- UPSS Anatomía patológica
- UPSS Farmacia

- UPSS Centro de Hemoterapia y Banco de Sangre
- UPSS Nutrición y Dietética
- UPSS Central de Esterilización

Estructuralmente el Hospital de Pacasmayo está conformado por 14 módulos, 06 módulos de 04 pisos que conforman el bloque principal, y 08 módulos de 01 piso. El bloque principal, es una estructura aislada, que utiliza 62 aisladores sísmicos de base y 29 deslizadores.

Se ha tomado como unidad de análisis, la edificación principal del Hospital de Pacasmayo, siendo esta la única que presenta aislamiento en la base. La edificación principal está identificada como Bloque-A, la cual está conformada de 06 módulos estructurales de 04 pisos que nacen en una misma losa. El Bloque tiene una altura de 18.03m, medido desde el NPT=+0.35 del piso exterior al bloque; y cuenta con un sótano de aislamiento, el cual tiene una altura de 2.45m medido hacia abajo desde el NPT=+0.35.

Figura III-005. Esquema clave de los módulos estructurales Fuente: Expediente Técnico del Hospital de Pacasmayo, 2017 [CD-ROM]

El área techada de la edificación principal, es como sigue:

Tabla III-03

Area techada det Dioque-A Hospital de Facasmayo	Á	rea	techada	del	Blog	ue-A	Hospital	de	Pacasmayo
---	---	-----	---------	-----	------	------	----------	----	-----------

ÁREA TECHA	DA - BLOQUE-A
Nivel	Área (m ²)
Sotano	3,282.26
1º Piso	2,836.76
2º Piso	1,572.54
3º Piso	1,563.09
4º Piso	1,269.29
Azotea	23.05
TOTAL	10,546.99

Fuente: Adaptado del Expediente Técnico del Hospital de Pacasmayo, 2019

- d. <u>CARACTERÍSTICAS ESTRUCTURALES GENERALES DE LA</u> <u>EDIFICACIÓN</u>
 - <u>USO ESTRUCTURAL</u>: Establecimiento de Salud, Categoría A1 (Norma E.030).
 - <u>SISTEMA DE TECHADO:</u> Losas aligeradas en dos direcciones con una altura h=0.25m con viguetas de 0.10x0.25m² y bloques de arcilla de 0.30x0.30x0.20m3, el patín de la losa posee una altura h=0.05m.
 - <u>SISTEMA ESTRUCTURAL</u>: Aislamiento en la base, con los siguientes componentes estructurales:
 - <u>Superestructura</u>: Bloque estructural de 04 pisos constituido básicamente de pórticos de concreto armado a base de columnas rectangulares de 60x60cm2 y vigas de 30x75cm2 en las dos direcciones de análisis, conectados por losas aligeradas h=0.25m. La superestructura es diseñada y construida utilizando todos los requisitos aplicables para una estructura no aislada con una fuerza de corte mínima reducida, Vs, determinada utilizando las propiedades del sistema de aislamiento de límite superior e inferior (ASCE/SEI 7-16, 2017).
 - <u>Subestructura:</u> Sistema de pedestales de concreto armado conectados a los aisladores mediante planchas empernadas de acero estructural ASTM. Asimismo, corresponde a la cimentación, a base de zapatas con una altura h=0.60m, conectadas mediante vigas de conexión de 40x90cm². La subestructura se encuentra por debajo del nivel de base y es diseñada y construida para resistir una fuerza sísmica lateral mínima, V_b, utilizando todos los requisitos aplicables para una estructura no aislada (ASCE/SEI 7-16, 2017).
 - <u>Nivel de base</u>: Constituido por capiteles con dimensiones mínimas de 1.20m y vigas de 40x90xm2, conectados por losas macizas h=0.20m. Es el primer nivel de la estructura aislada sobre la interfaz de aislamiento (ASCE/SEI 7-16, 2017).
 - <u>Sistema de aislamiento Interfaz de aislamiento:</u> Constituidos por el conjunto de aisladores individuales utilizados, los cuales se encuentran representados por un límite imaginario llamado interfaz

de aislamiento, límite que funciona como una frontera entre la porción superior de la estructura, que está aislada, y la porción inferior de la estructura, que se mueve rígidamente con el suelo. (ASCE/SEI 7-16, 2017).

e. <u>CARACTERÍSTICAS DE LOS MATERIALES</u>

- <u>CONCRETO f'_c = 210 Kg/cm²</u>: Utilizado para la construcción de columnas, placas, vigas y losas aligeradas en la superestructura; así como para losas macizas y vigas del nivel de base.
 - <u>Resistencia a la compresión</u>: f'_c = 210 Kg/cm²
 - <u>Módulo de elasticidad</u>: $E_c = 15000 v f^2 c = 217,370.65 \text{ Kg/cm}^2$
 - <u>Módulo de Poisson:</u> μ=0.20
 - <u>Módulo de corte:</u> $G_c = 90,571.11 \text{ Kg/cm}^2$
- <u>CONCRETO $f_c = 280 \text{ Kg/cm}^2$ </u>: Utilizado para la construcción de capiteles y pedestales, así como para los muros de sostenimiento del sótano de aislamiento.
 - <u>Resistencia a la compresión:</u> f'_c = 280 Kg/cm²
 - <u>Módulo de elasticidad</u>: $E_c = 15000 v f^2 c = 250,998.01 \text{ Kg/cm}^2$
 - <u>Módulo de Poisson:</u> μ =0.20
 - <u>Módulo de corte:</u> $G_c = 104,582.50 \text{ Kg/cm}^2$
- <u>ACERO DE REFUERZO $f_y = 4200 \text{ Kg/cm}^2$:</u> Acero de refuerzo ASTM A615 Grado 60.
 - <u>Esfuerzo de fluencia:</u> $f_y = 4200 \text{ Kg/cm}^2$
 - <u>Módulo de elasticidad:</u> $E_s = 2000000 \text{ Kg/cm}^2$
- <u>SUELO DE FUNDACIÓN</u>: Grava pobremente gradada con arcilla y arena, clasificada como GP, según clasificación SUCS.
 - <u>Capacidad portante</u>: $\sigma_{ult} = 4.09 \text{ Kg/cm}^2$, para una profundidad de desplante $D_f = 2.55m$, medido desde el NTN=±0.00.

f. CARGAS POR GRAVEDAD

Las cargas por gravedad utilizadas para el análisis y diseño de la estructura, serán consignadas en base a lo indicado en la Norma E.020 Cargas.

- CARGA MUERTA:

Para el metrado de cargas permanentes o muertas usadas en el análisis y diseño de la estructura, se utilizaron las siguientes cargas unitarias:

Concreto	:	2400	Kg/m3
Albañilería	:	1800	Kg/m3
Losa Aligerada h=0.25 dos direcciones	:	390	Kg/m2
Piso Terminado	:	100	Kg/m2

- CARGA VIVA:

La carga viva usada en el análisis y diseño de la estructura serán la siguiente:

Áreas de servicio hospitalario	:	300	Kg/m2
Cuartos	:	300	Kg/m2
Corredores	:	400	Kg/m2
Techos	:	100	Kg/m2

g. NORMATIVIDAD EMPLEADA

Norma E.020 Cargas Norma E.030 Diseño Sismorresistente Norma E.060 Concreto Armado ASCE/SEI 7-16 Minimum Design Loads for Buildings and Other Structures SISCF Rev. Jun 2019 Seismic Isolation Standard for Continued Functionality

3.8.2 <u>NORMA NTE E.030 DISEÑO SISMORRESISTENTE: APLICACIÓN A</u> <u>ESTRUCTURAS CON AISLAMIENTO SÍSMICO EN LA BASE</u>

Debido al desfavorable contexto sísmico que enfrenta el Perú y la innovación tecnológica en sistemas de protección sísmica, específicamente el aislamiento sísmico en la base; la normatividad sismorresistente en el Perú ha sufrido dos modificatorias significativas, una en 2016 y otra en 2018. La razón más importante de efectuar las modificatorias fue para obligar categóricamente que las edificaciones destinadas a ser usadas como establecimientos de salud del segundo y tercer nivel (Edificaciones de categoría A1), tengan aislamiento en la base cuando se encuentren en zona sísmica 4 y 3; y que en zona 1 y 2, el aislamiento sísmico sea a decisión de la entidad responsable (NTE E.030, 2018).

a. <u>FILOSOFÍA Y PRINCIPIOS DEL DISEÑO SISMORRESISTENTE</u>

La filosofía del diseño sismorresistente contemplada en la Norma NTE E.030 (2018), consiste en lo siguiente:

- "Evitar pérdida de vidas humanas".
- "Asegurar la continuidad de los servicios básicos".
- "Minimizar los daños a la propiedad" (p.4).

La Norma E.030 (2018) también indica que: "Dar protección completa a todos los sismos no es técnica ni económicamente factible para la mayoría de las estructuras" (p.4). En tal sentido la Norma considera que, en cumplimiento con lo indicado anteriormente, las estructuras pueden presentar daños importantes siempre y cuando no colapsen, ni causen daños graves a los ocupantes (NTE E.030, 2018).

Este principio no se alinea mucho a la funcionalidad de una edificación esencial, tal como un Hospital, del cual se requiere que mantenga su operatividad durante y después de un sismo severo. Debido a esto se estableció un último principio en la norma de diseño sismorresistente: "Para las edificaciones esenciales definidas en la Tabla N° 5, se debería tener consideraciones especiales orientadas a lograr que permanezcan en condiciones operativas luego de un sismo severo" (NTE E.030, 2018, p.4). Así pues, se considera al aislamiento sísmico en la base como un mecanismo para alcanzar dicho propósito.

b <u>PELIGRO SÍSMICO</u>

- ZONIFICACIÓN SÍSMICA

La Norma E.030 ha divido el territorio nacional en cuatro (04) zonas sísmicas, dicha zonificación se encuentra basada en la distribución espacial de la sismicidad observada, agrupada en fuentes sismo-génicas, así como en las características generales de los movimientos sísmicos y la atenuación de éstos con la distancia epicentral. A cada zona le corresponde a un factor Z. Este factor es interpretado como la aceleración máxima horizontal provocada por un movimiento sísmico en suelo muy rígido (Perfil tipo S1) con una probabilidad de ser excedida de 10% en 50 años (NTE E.030, 2018), es decir la aceleración correspondiente a un movimiento sísmico con un periodo de retorno Tr = 475 años.

Tabla III-04

Tabla Nº 1 E.030 Factores de zona "Z"(Ver Anexo-1: Contenido de Tablas)

Figura III-006. Zonificación sísmica

Fuente: NTE E.030 Diseño Sismorresistente, 2018, p.7

- CONDICIONES GEOTÉCNICAS

La aceleración horizontal que llega al terreno, se verá afectada en función al tipo de suelo donde la estructura se cimiente. Así E.030 clasifica a los suelos en cinco (05) perfiles, dicha clasificación se encuentra basada en la capacidad que tienen los 30 m superiores del perfil estratigráfico del suelo, medidos dese el nivel de fondo de cimentación, de permitir que la onda sísmica pueda viajar a través de cada estrato sin mucha oposición. De esta manera la clasificación de los perfiles de suelo varía en función a su rigidez (NTE E.030, 2018).

Los perfiles indicados en la Norma E.030 (2018), son los siguientes:

- <u>Perfil tipo S₀: Roca dura</u>

A este tipo corresponden las rocas sanas con velocidad de propagación de ondas de corte \overline{V}_s mayor que 1500 m/s. Las mediciones deberán corresponder al sitio del proyecto o a perfiles de la misma roca en la misma formación con igual o mayor intemperismo o fracturas. Cuando se conoce que la roca dura es continua hasta una profundidad de 30m, las mediciones de la velocidad de las ondas de corte superficiales pueden ser usadas para estimar el valor de \overline{V}_s .

- <u>Perfil tipo S₁: Roca o suelos muy rígidos</u>

A este tipo corresponden las rocas con diferentes grados de fracturación, de macizos homogéneos y los suelos muy rígidos con velocidades de propagación de onda de corte \overline{V}_s , entre 500 m/s y 1500 m/s, incluyéndose los casos en los que se cimienta sobre:

Roca fracturada, con una resistencia a la compresión no confinada q_u mayor o igual que 500 KPa (5 Kg/cm²).

Arena muy densa o grava arenosa densa, con \overline{N}_{60} mayor que 50. Arcilla muy compacta (de espesor menor que 20 m), con una resistencia al corte en condición no drenada \overline{S}_u mayor que 100 KPa (1 Kg/cm²) y con un incremento gradual de las propiedades mecánicas con la profundidad.

Perfil tipo S₂: Suelos intermedios

A este tipo corresponden los suelos medianamente rígidos, con velocidades de propagación de onda de corte \overline{V}_s , entre 180 m/s y 500 m/s, incluyéndose los casos en los que se cimienta sobre:

Arena densa, gruesa a media, o grava arenosa medianamente densa, con valores del SPT \overline{N}_{60} , entre 15 y 50.

Suelo cohesivo compacto, con una resistencia al corte en condiciones no drenada \overline{S}_u , entre 50 KPa (0,5 Kg/cm²) y 100 KPa (1 Kg/cm²) y con un incremento gradual de las propiedades mecánicas con la profundidad.

Perfil tipo S3: Suelos blandos

Corresponden a este tipo los suelos flexibles con velocidades de propagación de onda de corte \overline{V}_s , menor o igual a 180 m/s, incluyéndose los casos en los que se cimienta sobre:

Arena media a fina, o grava arenosa, con valores del SPT \overline{N}_{60} menor que 15.

Suelo cohesivo blando, con una resistencia al corte en condición no drenada \overline{S}_u , entre 25 KPa (0,25 Kg/cm2) y 50 KPa (0,5 Kg/cm2) y con un incremento gradual de las propiedades mecánicas con la profundidad.

Cualquier perfil que no correspondan al tipo S4 y que tenga más de 3 m de suelo con las siguientes características: índice de plasticidad PI mayor que 20, contenido de humedad ω mayor que 40%, resistencia al corte en condición no drenada \overline{S}_u menor que 25 KPa.

Perfil tipo S₄: Condiciones excepcionales

A este tipo corresponden los suelos excepcionalmente flexibles y los sitios donde las condiciones geológicas y/o topográficas son particularmente desfavorables, en los cuales se requiere efectuar un estudio específico para el sitio. Sólo será necesario considerar un perfil tipo S4 cuando el Estudio de Mecánica de Suelos (EMS) así lo determine. (p.10).

Tabla III-05

Tabla Nº 2 E.030 Clasificación de los perfiles de suelo

(Ver Anexo-1: Contenido de Tablas)

Para una estructura en particular, se considerará el perfil de suelo que mejor se ajuste a las condiciones geotécnicas locales. A cada perfil de suelo se le asigna un factor de amplificación S, y se le asigna también un valor representativo para su periodo fundamental T_P y el periodo donde los desplazamientos de la estructura no varían mucho o son constantes T_L (NTE E.030, 2018).

Tabla III-06a

Tabla Nº 3 E.030 Factor de suelo "S"(Ver Anexo-1: Contenido de Tablas)

Tabla III-06bTabla N° 4 E.030 Periodos " T_P " y " T_L "(Ver Anexo-1: Contenido de Tablas)

- FACTOR DE AMPLIFICACIÓN SÍSMICA (C)

El factor de amplificación representa la relación de amplificación de la aceleración que es inducida a la estructura respecto de la aceleración en el suelo (NTE E.030, 2018).

El factor de amplificación sísmica se encuentra dado por las siguientes ecuaciones, tal y como se indica en NTE E.030 (2018):

 $T < T_{p} : C = 2.5$ $T_{p} < T < T_{L} : C = 2.5 \left(\frac{T_{p}}{T}\right)$ $T > T_{L} : C = 2.5 \left(\frac{T_{p} \times T_{L}}{T^{2}}\right)$ (p.10).

Donde T es el periodo de la estructura.

Por otro lado E.030 en el art. 30.1.4 indica que, para la generación de registros simulados, se debe considerar para la zona de periodos muy cortos $(T < 0.2T_P)$ que el factor de amplificación sísmica sea:

$$C = 1 + 7.5 \left(\frac{T}{T_P}\right)$$
 (NTE E.030, 2018).

c. <u>CATEGORÍA, SISTEMA ESTRUCTURAL Y REGULARIDAD DE LAS</u> <u>EDIFICACIONES</u>

- CATEGORÍA DE LAS EDIFICACIONES Y FACTOR DE USO (U):

E.030 clasifica las edificaciones en cinco (05) categorías, en función de su grado de importancia, asignándole a cada edificación un factor de uso o importancia (U). E.030 a su vez indica que: "Para edificios con aislamiento sísmico en la base se puede considerar U=1" (NTE E.030, 2018, p.13).

Tabla III-07

Tabla Nº 5 E.030 Categoría de las edificaciones y factor "U" (Ver Anexo-1: Contenido de Tablas)

Se observa que la Tabla Nº 5 de la Norma E.030, obliga que las edificaciones de categoría A1 que se encuentren en zona 4 y 3 tengan aislamiento sísmico en la base, esta disposición fue una de las razones principales de la promulgación de la modificatoria de E.030 en 2016.

- <u>SISTEMA ESTRUCTURAL Y COEFICIENTE DE REDUCCIÓN DE LAS</u> <u>FUERZAS SÍSMICAS (R):</u>

Los sistemas estructurales contemplados en NTE E.030 (2018) son los siguientes:

- Estructuras de concreto armado:

Los elementos de los sistemas estructurales de concreto armado son diseñados de acuerdo a lo previsto en la Norma E.060 Concreto Armado, el diseño contemplado en E.060 está orientado básicamente a que los elementos incurran en una falla dúctil, debido a cargas excesivas, al proveerse al elemento una significativa capacidad de deformación.

- Pórticos: Por lo menos el 80 % de la fuerza cortante en la base actúa sobre las columnas de los pórticos. En caso se tengan muros estructurales, éstos deberán diseñarse para resistir una fracción de la acción sísmica total de acuerdo con su rigidez.
- Muros Estructurales: La resistencia sísmica está dada predominantemente por muros estructurales sobre los que actúa por lo menos el 70 % de la fuerza cortante en la base.
- Dual: Las acciones sísmicas son resistidas por una combinación de pórticos y muros estructurales. La fuerza cortante que toman los muros está entre 20 % y 70 % del cortante en la base del edifico. Los pórticos deberán ser diseñados para resistir por lo menos 30 % de la fuerza cortante en la base.
- Muros de Ductilidad Limitada: Sistema estructural donde la resistencia sísmica y de cargas de gravedad está dada por muros de concreto armado de espesores reducidos, en los que se prescinde de extremos confinados y el refuerzo vertical se

dispone en una sola capa. Con este sistema se puede construir como máximo ocho pisos.

- Estructuras de acero:
 - Pórticos Especiales Resistentes a Momentos (SMF): Estos pórticos deberán proveer una significativa capacidad de deformación inelástica a través de la fluencia por flexión de las vigas y limitada fluencia en las zonas de panel de las columnas. Las columnas deberán ser diseñadas para tener una resistencia mayor que las vigas cuando estas incursionan en la zona de endurecimiento por deformación.
 - Pórticos Intermedios Resistentes a Momentos (IMF): Estos pórticos deberán proveer una limitada capacidad de deformación inelástica en sus elementos y conexiones.
 - Pórticos Ordinarios Resistentes a Momentos (OMF): Estos pórticos deberán proveer una mínima capacidad de deformación inelástica en sus elementos y conexiones.
 - Pórticos Especiales Concéntricamente Arriostrados (SCBF): Estos pórticos deberán proveer una significativa capacidad de deformación inelástica a través de la resistencia post-pandeo en los arriostres en compresión y fluencia en los arriostres en tracción.
 - Pórticos Ordinarios Concéntricamente Arriostrados (SCBF): Estos pórticos deberán proveer una limitada capacidad de deformación inelástica en sus elementos y conexiones.
 - Pórticos Excéntricamente Arriostrados (EBF): Estos pórticos deberán proveer una significativa capacidad de deformación inelástica principalmente por fluencia en flexión o corte en la zona entre arriostres.

- Estructuras de albañilería:

Los elementos sismorresistentes son muros a base de unidades de albañilería de arcilla o cemento, confinada o armada.

Estructuras de madera:

Los elementos resistentes son principalmente a base de madera. Se incluyen sistemas entramados y estructuras arriostradas tipo poste y viga.

- Estructuras de tierra:

Los muros resistentes son hechos con unidades de albañilería de tierra o tierra apisonada in situ.

E.030 restringe el sistema estructural de acuerdo a la categoría de la edificación y la zona donde se ubique, dejando establecido que el aislamiento sísmico en la base puede proyectarse con cualquier sistema estructural para su superestructura.

Tabla III-08

Tabla Nº 6 E.030 Categoría y sistema estructural de las edificaciones(Ver Anexo-1: Contenido de Tablas)

A cada sistema estructural le corresponde un coeficiente de reducción de fuerzas sísmicas (R), el cual a su vez representa la capacidad de disipación de energía por mecanismos de deformación inelástica y falla dúctil del sistema estructural.

Tabla III-09

Tabla Nº 7 E.030 Sistemas estructurales

(Ver Anexo-1: Contenido de Tablas)

Para el caso de edificaciones con aislamiento sísmico en la base, donde la energía es disipada mediante el desplazamiento o deformación del aislador, E.030 no indica explícitamente qué coeficiente de reducción (R) se debería utilizar para el diseño de los elementos de la superestructura. De esto se puede comentar que, sería un error que para cualquier sistema estructural proyectado con aislamiento en la base se le asigne el coeficiente de reducción indicado en la Tabla III-3 (Tabla Nº 7 de NTE E.030), debido a que los

elementos de la superestructura estarían siendo diseñados para que se dañen y disipen energía al incurrir en el rango inelástico mediante un mecanismo de falla dúctil; cuando la finalidad del aislamiento en la base es proteger a la superestructura, disipando el aislador la energía que disiparían los elementos de la superestructura.

Por razón de la incertidumbre del coeficiente de reducción utilizado para sistemas con aislamiento sísmico y otras consideraciones especiales para dicho sistema, E.030 refiere el cumplimiento de los requisitos de "Minimum Design Loads for Building and Other Structures", ASCE/SEI 7, vigente, Structural Engineering Institute of the American Society of Civil Engineers, Reston, Virginia, USA, en la medida que sean aplicables. (NTE E.030, 2018).

- <u>REGURALIDAD ESTRUCTURAL:</u>

Las estructuras se definen como irregulares, cuando: "Presentan una o más de las irregularidades indicadas en las Tablas Nº 8 y 9" (NTE E.030, 2018, p.16).

Tabla III-010a

Tabla Nº 8 E.030 Irregularidades estructurales en altura(Ver Anexo-1: Contenido de Tablas)

Tabla III-10b

Tabla Nº 9 E.030 Irregularidades estructurales en planta

(Ver Anexo-1: Contenido de Tablas)

Así mismo E.030 establece que: "De acuerdo a su categoría y la zona donde se ubique, la edificación se proyecta respetando las restricciones a la regularidad de la Tabla N° 10 (NTE E.030, 2018, p.18).

Tabla III-11

Tabla Nº 10 E.030 Categoría y regularidad de las edificaciones(Ver Anexo-1: Contenido de Tablas)

d. MODELOS PARA EL ANÁLISIS Y ESTIMACIÓN DEL PESO (P)

- MODELOS PARA EL ANÁLISIS

El modelo para el análisis es una idealización de la estructura donde se entiende que las losas de piso funcionan como diafragmas rígidos y a su vez están representados como masas concentradas distribuidas espacialmente en altura cada una con tres (03) grados de libertad asociados a dos componentes ortogonales de traslación y una de rotación. Se asume que las deformaciones de los elementos se compatibilizan mediante la condición de diafragma rígido y por tanto la distribución en planta de las fuerzas horizontales se hace en función de las rigideces de los elementos resistentes (NTE E.030, 2018).

Figura III-007. Modelo tridimensional de masas y rigideces Fuente: Salinas, 2012, p.7

ESTIMACIÓN DEL PESO (P):

NTE E.030 (2018) indica que, El peso (P) de la estructura que es considerado para el análisis se calcula adicionando a la carga permanente o muerta de la edificación un porcentaje de la carga viva o sobrecarga que se debe determinar de la siguiente manera:

- En edificaciones de las categorías A y B, se tomará el 50% de la carga viva.
- En edificaciones de la categoría C, se tomará el 25% de la carga viva.
- En depósitos, el 80 % del peso total que es posible almacenar.
- En azoteas y techos en general se tomará el 25% de la carga viva.
- En estructuras de tanques, silos y estructuras similares se considerará el 100 % de la carga que puede contener.

Cabe indicarse como criterio adicional que, el peso (P) es la suma de todos los pesos correspondientes a cada entrepiso. El peso de un entrepiso abarca todos los elementos horizontales que se encuentran dentro de su plano incluyendo las sobrecargas incidentes, y el 50% de los elementos verticales que se encuentran arriostrados por dicho entrepiso.

Figura III-008. Peso de entrepiso Fuente: Elaboración propia, AutoCAD 2016, 2019

e. <u>CONTROL DE DESPLAZAMIENTOS LATERALES</u>

E.030 indica: "Para estructuras regulares, los desplazamientos laterales se calcularán multiplicando por 0.75R los resultados obtenidos del análisis lineal y elástico con las solicitaciones sísmicas reducidas. Para estructuras irregulares, los desplazamientos laterales se calcularán multiplicando por 0.85R los resultados obtenidos del análisis lineal elástico" (NTE E.030, 2018, p.27). Así mismo, el máximo desplazamiento relativo de entrepiso, no debe exceder la fracción de altura de entrepiso (distorsión) que se indica en la Tabla Nº 11 (NTE E.030, 2018).

Tabla III-12

Tabla Nº 11 Límites para la distorsión de entrepiso

3.8.3 <u>CAPÍTULO 17 – ASCE/SEI 7-16: REQUISITOS DE DISEÑO SÍSMICO PARA</u> <u>ESTRUCTURAS SISMICAMENTE AISLADAS (SEISMIC DESIGN</u> <u>REQUIREMENTS FOR SEISMICALLY ISOLATED STRUCTURES)</u>

a. <u>PROPIEDADES DEL SISTEMA DE AISLAMIENTO</u>

- FACTORES DE MODIFICACIÓN DE PROPIEDADES

Los factores de modificación de propiedad máximos y mínimos (λ) se utilizarán para tener en cuenta la variación de los parámetros de diseño nominales de cada tipo de unidad de aislamiento debido a los efectos de calentamiento causados por el movimiento dinámico cíclico, la velocidad de carga, el raspado y la recuperación, la variabilidad de las propiedades en la producción de las unidades, temperatura, envejecimiento, exposición ambiental y contaminación (ASCE/SEI 7-16, 2017). Cuando los resultados de las pruebas de calificación del fabricante hayan sido aprobados por el profesional responsable del diseño, se permite usar dichos resultados para desarrollar los factores de modificación de propiedad, de no haber sido aprobados se deberán aplicar límites máximo y mínimo a los factores, de la siguiente manera:

$$\lambda_{máx} = (1 + (0.75 \times (\lambda_{(ae,máx)} - 1))) \times \lambda_{(test,máx)} \times \lambda_{(spec,máx)} \ge 1.8$$
(3-01)

$$\lambda_{min} = (1 - (0.75 \times (1 - \lambda_{(ae,min)}))) \times \lambda_{(test,min)} \times \lambda_{(spec,min)} \le 0.6$$
(3-02)

Donde:

- $\lambda_{ae,máx}$ = Factor máximo de modificación debido a los efectos de envejecimiento y condiciones ambientales.
- $\lambda_{ae,mín}$ = Factor mínimo de modificación debido a los efectos de envejecimiento y condiciones ambientales.
- $\lambda_{test,máx}$ = Factor máximo de modificación debido al calentamiento, velocidad de carga y estrujamiento.
- $\lambda_{test,mín}$ = Factor mínimo de modificación debido al calentamiento, velocidad de carga y estrujamiento.
- $\lambda_{\text{spec,máx}}$ = Factor máximo de modificación debido a la variación permisible de la fabricación en las características medias de un grupo de aisladores del mismo tamaño.
- $\lambda_{\text{spec,mín}}$ = Factor mínimo de modificación debido a la variación permisible de la fabricación en las características medias de un grupo de aisladores del mismo tamaño.

(ASCE/SEI 7-16, 2017, p.170).

El análisis del sistema de aislamiento y de la estructura se realizará por separado para las propiedades de límite superior e inferior, y se utilizará el caso más desfavorable para cada parámetro de respuesta de interés para el diseño (ASCE/SEI 7-16, 2017).

Tabla III-13

Table C17.2-6 Default Up	oper and Lower	Bound Mu	Itipliers for I	Jnknown Ma	anufacturers		
Variable	Unlubricated Interfaces, μ or Q_d	Lubricated (Liquid) Interfaces, μ or <i>Q_d</i>	Plain Low Damping Elastomeric, K	Lead Rubber Bearing (LRB), K _d	Lead Rubber Bearing (LRB), <i>Q_d</i>	High-Damping Rubber (HDR), K _d	High-Damping Rubber (HDR), <i>Q_d</i>
Example: Aging and Environmental Factors							
Aging, λ_a	1.3	1.8	1.3	1.3	1	1.4	1.3
Contamination, λ_c	1.2	1.4	1	1	1	1	1
Example Upper Bound, $\lambda_{(ae max)}$	1.56	2.52	1.3	1.3	1	1.4	1.3
Example Lower Bound, $\lambda_{(ae.min)}$	1	1	1	1	1	1	1
Example: Testing Factors							
All cyclic effects, Upper	1.3	1.3	1.3	1.3	1.6	1.5	1.3
All cyclic effects, Lower	0.7	0.7	0.9	0.0	0.9	0.9	0.9
Example Upper Bound, $\lambda_{(test max)}$	1.3	1.3	1.3	1.3	1.6	1.5	1.3
Example Lower Bound, $\lambda_{(\text{test. min})}$	0.7	0.7	0.9	0.0	0.9	0.9	0.9
$\lambda_{(PM, max)} = (1 + (0.75 * (\lambda_{(ae, max)} - 1))) * \lambda_{(test, max)}$	1.85	2.78	1.59	1.59	1.6	1.95	1.59
$\lambda_{(PM, \min)} = (1 - (0.75 * (1 - \lambda_{(ae, \min)})) * \lambda_{(test, \min)})$	0.7	0.7	0.9	0.9	0.9	0.9	0.9
Lambda factor for Spec. Tolerance, $\lambda_{(spec, max)}$	1.15	1.15	1.15	1.15	1.15	1.15	1.15
Lambda factor for Spec. Tolerance, $\lambda_{(spec, min)}$	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Upper Bound Design Property Multiplier	2.12	3.2	1.83	1.83	1.84	2.24	1.83
Lower Bound Design Property Multiplier	0.6	0.6	0.77	0.77	0.77	0.77	0.77
Default Upper Bound Design Property Multiplier	2.1	3.2	1.8	1.8	1.8	2.2	1.8
Default Lower Bound Design Property Multiplier	0.6	0.6	0.8	0.8	0.8	0.8	0.8
Note: λ_{pM} is the lambda value for testing and environm	ental effects.						

Tabla C17.2-6 Multiplicadores predeterminados de límite superior e inferior para fabricantes

desconocidos

Fuente: ASCE/SEI 7-16, 2017, p.680

Tabla III-14

Variable	Unlubricated PTFE, μ	Lubricated PTFE, μ	Rolling/ Sliding, K2	Plain Elastomerics, <i>K</i>	Lead rubber bearing (LRB), K2	Lead rubber bearing (LRB), <i>Q_d</i>	High- Damping Rubber (HDR), Q _d	High- Damping Rubber (HDR), K _d
Example: Aging and Environmental Factors								
Aging, λ_a	1.10	1.50	1.00	1.10	1.10	1.00	1.20	1.20
Contamination, $\lambda +$	1.10	1.10	1.00	1.00	1.00	1.00	1.00	1.00
Example Upper Bound, $\lambda_{(ae, max)}$	1.21	1.65	1.00	1.10	1.10	1.00	1.20	1.20
Example Lower Bound, $\lambda_{(ae, min)}$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Example: Testing Factors								
All cyclic effects, Upper	1.20	1.30	1.00	1.03	1.03	1.30	1.50	1.30
All cyclic effects, Lower	0.95	0.95	1.00	0.98	0.98	0.95	0.95	0.95
Example Upper Bound, $\lambda_{(test, max)}$	1.20	1.30	1.00	1.03	1.03	1.30	1.50	1.30
Example Lower Bound, $\lambda_{(\text{test, min})}$	0.95	0.95	1.00	0.98	0.98	0.95	0.95	0.95
$\lambda_{(\text{PM, max})} = (1 + (0.75 * (\lambda_{(\text{ae, max})} - 1))) * \lambda_{(\text{test, max})}$	1.39	1.93	1.00	1.11	1.11	1.30	1.73	1.50
$\lambda_{(PM, min)} = (1 - (0.75 * (1 - \lambda_{(ae, min)})) * \lambda_{(test, min)}$	0.95	0.95	1.00	0.98	0.98	0.95	0.95	0.95
Lambda factor for Spec. Tolerance, $\lambda_{(spec, max)}$	1.15	1.15	1.00	1.15	1.15	1.15	1.15	1.15
Lambda factor for Spec. Tolerance, $\lambda_{(spec, min)}$	0.85	0.85	1.00	0.85	0.85	0.85	0.85	0.85
Upper Bound Design Property Multiplier	1.60	2.22	1.00	1.27	1.27	1.50	1.98	1.72
Lower Bound Design Property Multiplier	0.81	0.81	1.00	0.83	0.83	0.81	0.81	0.81
Default Upper Bound Design Property Multiplier	1.6	2.25	-	1.3	1.3	1.5	2	1.7
Default Lower Bound Design Property Multiplier	0.8	0.8	1	0.8	0.8	0.8	0.8	0.8
<i>Note:</i> λ_{pM} is the lambda value for testing and environment	nental effects.							

Tabla C17.2-7 Multiplicadores predeterminados de límite superior e inferior para fabricantes calificados

Fuente: ASCE/SEI 7-16, 2017, p.680

COMPORTAMIENTOFUERZA-DEFORMACIÓNDELOSCOMPONENTES DEL SISTEMA DE AISLAMIENTO

Se debe desarrollar un modelo matemático de comportamiento fuerzadeflexión (loop) de cada componente del sistema de aislamiento, para límite superior e inferior.

El comportamiento fuerza-deformación de los componentes del sistema de aislamiento que son esencialmente dispositivos histéreticos (unidades de aisladores), se deberá modelar utilizando los valores máximos y mínimos de las propiedades del aislador calculadas con los factores de modificación de propiedades.

- PROPIEDADES DEL SISTEMA DE AISLAMIENTO EN EL DESPLAZAMIENTO MÁXIMO

 <u>Rigidez efectiva k_M</u>: La rigidez efectiva k_M del sistema de aislamiento en el desplazamiento máximo D_M, se calculará utilizando el comportamiento fuerza-deformación de límite superior e inferior de las unidades de aislador individuales, de acuerdo con la siguiente ecuación:

$$k_{M} = \frac{\Sigma \left| F_{M}^{+} \right| + \Sigma \left| F_{M}^{-} \right|}{2D_{M}} \tag{3-03}$$

Donde:

- ΣF_{M}^{+} = Suma, para todas las unidades de aisladores, del valor absoluto de la fuerza en un desplazamiento positivo igual a D_M.
- ΣF_{M}^{-} = Suma, para todas las unidades de aisladores, del valor absoluto de la fuerza en un desplazamiento negativo igual a D_M.

(ASCE/SEI 7-16, 2017, p.171).

• <u>Amortiguamiento efectivo β_{M} </u>: El amortiguamiento efectivo β_{M} del sistema de aislamiento en el desplazamiento máximo D_{M} , se calculará utilizando el comportamiento fuerza-deformación de límite

superior e inferior de las unidades de aisladores individuales, de acuerdo con la siguiente ecuación:

$$\beta_M = \frac{\Sigma E_M}{2\pi k_M D_M^2} \tag{3-04}$$

Donde:

 ΣE_M = Energía total disipada en el sistema de aislamiento durante un ciclo completo de respuesta en el desplazamiento D_M.

(ASCE/SEI 7-16, 2017, p.171).

Figura III-009. Límites superior e inferior de propiedades de un sistema bilineal Fuerza-Deformación

Fuente: ASCE/SEI 7-16, 2017, 681

b. <u>CRITERIOS DE MOVIMIENTO SÍSMICO</u>

- PELIGRO SÍSMICO ESPECÍFICO DE SITIO

Los criterios de movimiento sísmico están referidos a los parámetros de peligro sísmico para cada sitio específico. Para nuestro caso, son todos los parámetros indicados en la Norma E.030, tales como, zonificación (Z), perfil de suelo (S) y coeficiente de amplificación sísmica (C), que en combinación son interpretados como la aceleración horizontal máxima que ingresa a la estructura para un sitio específico.

En tal sentido los valores utilizados para la determinación del peligro sísmico, correspondiente a las condiciones del Hospital de Pacasmayo, serían:

- Zonificación: Zona Z4, Z=0.45
- <u>Perfil de suelo:</u> Suelo S1, S=1.00, T_P=0.40seg, T_L=2.50seg (Suelo de fundación: Grava pobremente gradada con arenas y finos, clasificado como GP).
- <u>Coeficiente de amplificación sísmica</u>: Se incluirán los valores correspondientes a periodos cortos.

$$T < 0.2T_p \qquad : \qquad C = 1 + 7.5 \left(\frac{T}{T_p}\right)$$
$$0.2T_p < T < T_p \qquad : \qquad C = 2.5$$
$$T_p < T < T_L \qquad : \qquad C = 2.5 \left(\frac{T_p}{T}\right)$$
$$T > T_L \qquad : \qquad C = 2.5 \left(\frac{T_p \times T_L}{T^2}\right)$$

- FACTOR DE IMPORTANCIA (I):

ASCE/SEI 7-16, representa al factor de uso o importancia con "I", y emplea prácticamente los mismos criterios de clasificación y los mismos factores que E.030, siendo el factor de clasificación el nivel de riesgo de las edificaciones. Cabe indicarse que ASCE/SEI 7-16, al igual que E.030 indica que para edificaciones sísmicamente aisladas el factor de importancia debe tomarse como I=1.0 (ASCE/SEI 7-16, 2017).

Tabla III-15

Factores de importancia (I), indicados en ASCE/SEI 7-16 y equivalentes en NTE E.030

FACTOR	DE USO	O IMPOR	FANCIA
ASCE/SI	EI 7-16	NTE E	E.030
RIESGO	Ι	CATEG.	U
IV	1.50	А	1.50
III	1.25	В	1.30
III	1.00	С	1.00
Ι	1.00	D	1.00

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-16

Tabla 1.5-1 ASCE/SEI 7-16 Categoría de riesgo

Table 1.5-1 Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads

Use or Occupancy of Buildings and Structures	Risk Category
Buildings and other structures that represent low risk to human life in the event of failure	Ι
All buildings and other structures except those listed in Risk Categories I, III, and IV	Π
Buildings and other structures, the failure of which could pose a substantial risk to human life	Ш
Buildings and other structures, not included in Risk Category IV, with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure	
Buildings and other structures not included in Risk Category IV (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing toxic or explosive substances where the quantity of the material exceeds a threshold quantity established by the Authority Having Jurisdiction and is sufficient to pose a threat to the public if released ^a	
Buildings and other structures designated as essential facilities	IV
Buildings and other structures, the failure of which could pose a substantial hazard to the community Buildings and other structures (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, or hazardous waste) containing sufficient quantities of highly toxic substances where the quantity of the material exceeds a threshold quantity established by the Authority Having Jurisdiction and is sufficient to pose a threat to the public if released ^a	
Buildings and other structures required to maintain the functionality of other Risk Category IV structures	
^a Buildings and other structures containing toxic, highly toxic substances shall be eligible for classification to a lower Risk Ca be demonstrated to the satisfaction of the Authority Having Ju hazard assessment as described in Section 1.5.3 that a relea	c, or explosive ttegory if it can inisdiction by a se of the sub

stances is commensurate with the risk associated with that Risk Category.

Fuente: ASCE/SEI 7-16, 2017, p.4

- <u>COEFICIENTE DE MODIFICACIÓN DE RESPUESTA (R):</u>

El coeficiente de modificación de respuesta sísmica no es más que el coeficiente de reducción a la fuerza sísmica, para el caso de E.030. ASCE/SEI 7-16 tabula el coeficiente R de muchos más sistemas estructurales que E.030, pero para nuestro caso solo utilizaremos los coeficientes R de los sistemas que sean compatibles con E.030. Así mismo ASCE/SEI 7-16 para sistemas aislados denomina el coeficiente R como R_I, el cual se basará en el tipo de sistema estructural utilizado para la superestructura en la dirección de análisis, y deberá ser los 3/8 del valor R del sistema estructural en base fija, con un valor máximo no mayor que 2.0 y un valor mínimo no menor que 1.0 (ASCE/SEI 7-16, 2017).

Se permite que el valor de R_I sea mayor que 2.0, siempre y cuando la resistencia lateral de la estructura por encima del nivel de base (superestructura) en la dirección de interés, según lo determinado por el análisis estático no lineal con un desplazamiento de techo correspondiente a una deriva máxima de piso menor que la deriva MCE o 0.015 h_{sx} , no es menor que 1.1 veces V_b (ASCE/SEI 7-16).

Tabla III-17

Coeficientes de modificación de respuesta (R) para sistemas a base concreto armado, indicados en ASCE/SEI 7-16 y equivalentes en NTE E.030

COEFICIENTE DE MODIFICACIÓN DE RESP	UESTA	ASCE/SEI 7-16 EQ	UIVALENTE EN NTE I	E.030
ASCE/SEI 7-16 Tabla 12.2-1		NTE E.030 Ta	bla Nº 7 - E.060 acp. 21	1.1
Sistema estructural	R	Sist. Estructural	Cond. Cortante V	R ₀
Muros especiales de corte de concreto reforzado	6	Muros estructurales	$V_w \geq 0.75 V_b$	6
Pórticos especiales a momento de concreto reforzado	8	Pórticos	$V_f \! \geq \! 0.80 V_b$	8
<u>Dual:</u> Muros especiales de corte de concreto reforzado con pórticos especiales a momento de concreto reforzado capaces de resistir al menos el 25% de las fuerzas sísmicas prescribidas	7	Dual Tipo II	$0.20V_b \! \le \! V_w \! \le \! 0.60V_b$	7
Dual: Muros especiales de corte de concreto reforzado con pórticos ordinarios a momento de concreto reforzado capaces de resistir al menos el 25% de las fuerzas sísmicas prescribidas	6.5	Dual Tipo I Muros estructurales	$\begin{split} & 0.60V_b \leq V_w < 0.70V_b \\ & 0.70V_b \leq V_w < 0.75V_b \end{split}$	7 6

Fuente: Elaboración propia, Microsoft Excel, 2019

- <u>FACTOR DE REDUNDANCIA (ρ)</u>

ASCE/SEI 7-16, denomina a los factores de irregularidad (I) como factores de redundancia con "p", y el capítulo 17 referido a aislamiento en la base indica que, cada estructura aislada deberá ser designada como irregular según lo indicado a continuación:

- Cada estructura aislada se designará como que tiene una irregularidad estructural si la configuración estructural por encima del sistema de aislamiento tiene una irregularidad estructural horizontal Tipo 1b, como se define en la Tabla 12.3-1; o una irregularidad vertical Tipo 1a, 1b, 5a, 5b, como se define en Tabla 12.3-2 (ASCE/SEI 7-16, 2017).
- Se asignará un factor de redundancia, ρ, a la estructura sobre el sistema de aislamiento según los requisitos de la Sección 12.3.4. Se permite que el valor del factor de redundancia, ρ, sea igual a 1.0 para estructuras aisladas que no tienen una irregularidad estructural, como se define en la Sección 17.2.2 (ASCE/SEI 7-16, 2017).

Para nuestro caso utilizaremos los valores indicados en E.030 correspondientes a los tipos de irregularidades indicados en ASCE/SEI 7-16 para sistemas con aislamiento en la base.

Tabla III-18 y III-19

Irregularidades estructurales en planta y en altura para sistemas con aislamiento en la base,

indicadas en ASCE/SEI 7-16 y equivalentes en NTE E.030

	IRREGULARIDAD ESTRUCTURAL HORIZONTAL EN ASCH	VSEI 7-16 EQUIV	ALENTE	EN NTE E	030		
	Tabla 12.3-1 ASCE/SEI 7-16	ASCE/SEI 7-16	cap. 17		NTE E.030 Ta	blas N° 9 y 10	
Tipo	Descripción	Categ. Diseño	٩	U_{SO}	Zona	Suelo	Ip
1.b	Irregularidad torsional extrema: Se define que existe una irregularidad torsional extrema cuando,	В	1.0	ВуС	Z1	S0 y S1	0.60
	la deriva máxima de entrepiso, calculada incluyendo la torsión accidental con $Ax = 1.0$, en un	С	1.0	А	Z1	S0 y S1	NP
	extremo de la estructura transversal a un eje es mayor que 1.4 veces el promedio de las derivas de	D	1.3	ВуС	Z1	S2 y S3	0.60
	entrepiso de los dos extremos de la estructura. Los requisitos de irregularidad torsional extrema en			A	Z1	S2 y S3	ďZ
	las secciones de referencia se aplican solo a estructuras en las que los diafragmas son rígidos o			C	Z2, Z3 y Z4	S0, S1, S2 y S4	ЧN
	semirrigidos.			в	Z2, Z3 y Z4	S0, S1, S2 y S4	ЧN
				A	Z2, Z3 y Z4	S0, S1, S2 y S4	ďZ
		ЕУF	NP				
	IRREGULARIDAD ESTRUCTURAL VERTICAL EN ASCES	<u> </u>	LENTEE	N NTE E.O.	2		
	Tabla 12.3-2 ASCE/SEI 7-16	ASCE/SEI 7-16	cap. 17		NTE E.030 Ta	blas N° 8 y 10	
Tipo	Descripción	Categ. Diseño	β	U_{SO}	Zona	Suelo	Ia
1.a	Irregularidad de rigidez - Piso blando: Se define que existe irregularidad de rigidez de piso blando	В	1.0	ВуС	Z1	S0 y S1	0.75
	cuando, en un entrepiso la rigidez lateral es menor que el 70% de la rigidez lateral del entrepiso	С	1.0	А	Z1	S0 y S1	0.75
	superior o menor que al 80% de la rigidez promedio de las tres entrepisos superiores.	D	1.3	ВуС	Z1	S2 y S3	0.75
				A	Z1	S2 y S3	0.75
				C	Z2, Z3 y Z4	S0, S1, S2 y S4	0.75
				в	Z2, Z3 y Z4	S0, S1, S2 y S4	0.75
				А	Z2, Z3 y Z4	S0, S1, S2 y S4	NP
		ЕУF	1.3				
1.b	Irregularidad de rigidez - Piso extremadamente blando: Se define que existe irregularidad de	В	1.0	ВуС	Z1	S0 y S1	0.50
	nigidez de piso extremadamente blando cuando, en un entrepiso la rigidez lateral es menor que el	С	1.0	А	Z1	S0 y S1	NP
	60% de la rigidez lateral del entrepiso superior o menor que al 70% de la rigidez promedio de las	D	1.3	ВУС	Z1	S2 y S3	0.50
	tres entrepisos superiores.			A	Z1	S2 y S3	ď
				C	Z2, Z3 y Z4	S0, S1, S2 y S4	ď
				в	Z2, Z3 y Z4	S0, S1, S2 y S4	ďZ
				A	Z2, Z3 y Z4	S0, S1, S2 y S4	ďN
		ЕУF	1.3				
5.a	Irregularidad de resistencia lateral discontinua - Piso débil: Se define que existe irregularidad de	В	1.0	ВУС	Z1	S0 y S1	0.75
	resistencia lateral discontinua de piso débil cuando, la resistencia lateral de un entrepiso es menor	С	1.0	А	Z1	S0 y S1	0.75
	que 80% de la resistencia lateral del entrepiso superior.La resistencia lateral del entrepiso es la	D	1.3	ВУС	Z1	S2 y S3	0.75
	resistencia lateral total de todos los elementos sismorresistentes que comparten la cortante del			A	Z1	S2 y S3	0.75
	entrepiso para la dirección en consideración.			U	Z2, Z3 y Z4	S0, S1, S2 y S4	0.75
				в	Z2, Z3 y Z4	S0, S1, S2 y S4	0.75
				А	Z2, Z3 y Z4	S0, S1, S2 y S4	ďZ
		ЕУҒ	1.3				
5.b	Irregularidad de resistencia lateral discontinua - Piso extremadamente débil: Se define que	В	1.0	ВуС	Z1	S0 y S1	0.50
	existe irregularidad de resistencia lateral discontinua de piso extremadamente débil cuando, la	C	1.0	A	Z1	S0 y S1	ď
	resistencia lateral de un entrepiso es menor que 65% de la resistencia lateral del entrepiso	D	1.3	ВуС	Z1	S2 y S3	0.50
	superior.La resistencia lateral del entrepiso es la resistencia lateral total de todos los elementos			А	Z1	S2 y S3	ďZ
	sismorresistentes que comparten la cortante del entrepiso para la dirección en consideración.			U	Z2, Z3 y Z4	S0, S1, S2 y S4	ďZ
				<u>а</u> -	Z2, Z3 y Z4	S0, S1, S2 y S4	£ £
		ם יי ב ב	1 2	А	L2, L3 y L4	30, 31, 32 y 34	AN
		יצנים	C.1				

Fuente: Elaboración propia, Microsoft Excel, 2019

<u>ESPECTRO DE RESPUESTA DEL MÁXIMO SISMO CONSIDERADO</u> "MCE"

ASCE/SEI 7-16 hace referencia a la construcción del espectro de respuesta del Máximo Sismo Considerado "MCE". Para tal efecto MCE es interpretado como el movimiento sísmico que tiene una probabilidad de 2% de ser excedido en 50 años, es decir que tiene un periodo de retorno $T_r =$ 2475 Años, y que se asume tiene una aceleración máxima horizontal igual a 1.5 veces la aceleración correspondiente al Sismo Diseño "DE" (ASCE/SEI 7-16, 2017). Por su parte DE es el movimiento sísmico con una probabilidad de 10% de ser excedido en 50 años, de donde podríamos determinar que para nuestro caso corresponde al movimiento sísmico para cada zona determinada en E.030.

ASCE/SEI 7-16 a diferencia de E.030, construye sus espectros utilizando únicamente los parámetros de peligro sísmico específico de sitio, es decir los parámetros de zonificación (Z), perfil de suelo (S) y coeficiente de amplificación sísmica (C). Los criterios de categoría (U), sistema estructural (R) y regularidad de la edificación (I) son aplicados como factores de amplificación en el cálculo de la fuerza lateral que ingresa a la estructura, y de los desplazamientos encontrados del análisis.

Siguiendo el procedimiento de E.030 en concordancia con lo prescrito en ASCE/SEI 7-16, la aceleración espectral para cualquier periodo, estaría dada por:

Para MCE : $S_M = 1.5ZUCSg$ Para DE : $S_D = ZUCSg$

Los factores de irregularidad (I) o redundancia, serán aplicados como factores de amplificación siendo multiplicados a la fuerza cortante que ingresa a la estructura por encima del sistema de aislamiento.

REGISTROS SÍSMICOS CORRESPONDIENTES A MCE

ASCE/SEI 7-16 indica que, cuando se utilicen los procedimientos de análisis de Historia de respuesta o también llamado Tiempo-Historia, los sismos correspondientes a MCE consistirán en no menos siete (07) pares de componentes de aceleración horizontal seleccionados y escalados a partir de eventos individuales registrados que tengan magnitudes, distancias a falla y mecanismos de fuente que sean consistentes con los que controlan a MCE. Así mismo se indica que se permite la amplitud o el ajuste espectral para el escalado de los registros sísmicos (ASCE/SEI 7-16, 2017).

- Amplitud espectral de registros sísmicos:

Para cada par de componentes de los registros se construirá el espectro de la raíz cuadrada de la suma de los cuadrados (SRSS) de la respuesta con 5% de amortiguamiento de los componentes escalados. Cada par de movimientos se escalará de manera que en el rango de periodos de $0.75T_M$ para límite superior, hasta $1.25T_M$ para límite inferior; el promedio de los espectros SRSS de todos los pares de componentes horizontales no sea menor a la ordenada del espectro de peligro uniforme MCE (ASCE/SEI 7-16, 2017).

- Ajuste o coincidencia espectral de registros sísmicos:

Para registros ajustados espectralmente cada par de componentes se escalará de manera que el rango de periodos de 0.20TM para límite superior, hasta 1.25TM para límite inferior; los valores espectrales de uno de los componentes del par sean el menos el 90% de la correspondiente ordenada del espectro de peligro uniforme MCE (ASCE/SEI 7-16, 2017).

c. <u>MODELOS DE ANÁLISIS</u>

- SISTEMA DE AISLAMIENTO

El sistema de aislamiento se debe modelar utilizando las características de deformación desarrolladas de acuerdo con la sección 3.3.1.b, que describen el comportamiento bilineal de los aisladores. Los desplazamientos laterales y las fuerzas se calcularán por separado para las propiedades de límite superior e inferior del sistema de aislamiento (ASCE/SEI 7-16, 2017).

- ESTRUCTURA AISLADA

Se permite utilizar un modelo elástico lineal para representar la estructura aislada, siempre que los elementos estructurales por encima del sistema de aislamiento sean esencialmente elásticos. El análisis del sistema de aislamiento y la estructura aislada se realizará por separado para las propiedades de límite superior e inferior, y se utilizará el caso más desfavorable para cada parámetro de respuesta de interés para el diseño (ASCE/SEI 7-16, 2017).

d. <u>PROCEDIMIENTO DE ANÁLISIS: FUERZA LATERAL EQUIVALENTE</u> (<u>ELF</u>)

Se establece este procedimiento para la determinación de los desplazamientos y de las fuerzas laterales mínimas requeridas para el diseño de estructuras sísmicamente aisladas. Así mismo el uso directo de este procedimiento es permitido para el diseño de ciertas estructuras en particular (ASCE/SEI 7-16, 2017). Para nuestro caso solo utilizaremos el procedimiento para determinar los desplazamientos y las fuerzas laterales mínimas, dado que para el diseño del Hospital se empleará el procedimiento de análisis de Historia de respuesta o Tiempo-Historia.

<u>DESPLAZAMIENTOS LATERALES MÍNIMOS REQUERIDOS PARA</u> <u>EL DISEÑO</u>

 <u>Desplazamiento máximo (D_M)</u>: El sistema de aislamiento se debe diseñar y construir para soportar como mínimo el desplazamiento máximo, D_M, determinado utilizando las propiedades de límite inferior y superior, en la dirección más crítica (ASCE/SEI 7-16, 2017).

La ecuación dada en ASCE/SEI 7-16 para determinar D_M , ajustada a los criterios de E.030, sería:

$$D_M = \frac{g \cdot S_M \cdot T_M^2}{4\pi^2 \cdot \mathbf{B}_M} \tag{3-05}$$

Donde:

- g = Aceleración causada por la gravedad en "m/s²", si las unidades de D_M son en "m".
- S_M = Aceleración espectral MCE con 5% de amortiguamiento en "g", determinada según lo indicado en 3.3.2.e.
- T_M = Periodo efectivo de la estructura aislada correspondiente al desplazamiento D_M en la dirección considerada.
- B_M = Coeficiente prescrito en la Tabla 17.5-1 de ASCE/SEI 7-16 para el amortiguamiento efectivo del sistema de aislamiento β_M , correspondiente al desplazamiento D_M .

Tabla III-20

Tabla 17.5-1 Coeficiente de amortiguamiento, B_M

Table 17.5-1	Damping	Factor,	B_M
--------------	---------	---------	-------

Effective Damping, β_M (percentage of critical) ^{<i>a,b</i>}	B _M Factor	
≤2	0.8	
5	1.0	
10	1.2	
20	1.5	
30	1.7	
40	1.9	
≥50	2.0	

^{*a*}The damping factor shall be based on the effective damping of the isolation system determined in accordance with the requirements of Section 17.2.8.6. ^{*b*}The damping factor shall be based on linear interpolation for effective damping values other than those given.

Fuente: ASCE/SEI 7-16, 2017, p.173

Periodo efectivo correspondiente al desplazamiento máximo (T_M) : El período efectivo de la estructura aislada, T_M , correspondiente al desplazamiento máximo, D_M , se determinará utilizando las características de deformación del límite superior y límite inferior del sistema de aislamiento y la ecuación:

$$T_M = 2\pi \sqrt{\frac{W}{k_M \cdot g}} \tag{3-06}$$

Donde:

- W = Peso sísmico efectivo de la estructura por encima de la interfaz de aislamiento.
- k_M = Rigidez efectiva del sistema de aislamiento correspondiente al desplazamiento máximo D_M , determinada según 3.3.1.c.
- g = Aceleración causada por la gravedad en "m/s²", si las unidades de D_M son en "m".

(ASCE/SEI 7-16, 2017, p.173)

<u>Desplazamiento máximo total (D_{TM})</u>: El desplazamiento máximo total, D_{TM}, de los elementos del sistema de aislamiento incluirá el desplazamiento adicional causado por la torsión real y accidental, calculada a partir de la distribución espacial de la rigidez lateral del sistema de aislamiento y la localización más desventajosa de la masa excéntrica. El desplazamiento máximo total, D_{TM}, de los elementos de un sistema de aislamiento no se tomará como inferior a lo prescrito por:

$$D_{TM} = D_M \left[1 + \left(\frac{y}{P_T^2}\right) \frac{12}{b^2 + d^2} \right]$$
(3-07)

Donde:

- D_M = Desplazamiento del centro de rigidez del sistema de aislamiento en la dirección de análisis.
- y = Distancia entre los centros de rigidez del sistema de aislamiento y el elemento de interés, medida perpendicularmente dirección de análisis.

- e = Excentricidad real medida en planta entre el centro de gravedad de la estructura por encima del interfaz de aislamiento y el centro de rigidez del sistema de aislamiento, más una excentricidad accidental, tomada como el 5% de la mayor dimensión en planta de la estructura perpendicular a la dirección de análisis.
- b = Dimensión en planta más corta de la estructura, medido perpendicularmente a "d".
- d = Dimensión en planta más larga de la estructura.
- P_T = Factor de relación entre el periodo efectivo traslacional y el periodo efectivo torsional del sistema de aislamiento, según lo calculado por el análisis dinámico por la siguiente ecuación:

$$P_T = \frac{1}{r_I} \sqrt{\frac{\sum_{i=1}^{N} (x_i^2 + y_i^2)}{N}}$$
(3-08)

No es necesario que P_T sea tomado como menos de 1.0.

- x_i, y_i = Distancias horizontales en los dos ejes del sistema de aislamiento, desde el centro de masa hasta cada i-ésima unidad de aislador.
- N = Número de unidades de aisladores.
- r_I = Radio de giro del sistema de aislamiento, que es igual a $\left[\left(b^2 + d^2 \right) / 12 \right]^{1/2} \text{ para sistemas de aislamiento con plantas}$ rectangulares con dimensiones $b \times d$.

(ASCE/SEI 7-16, 2017, p.173).

El desplazamiento máximo total, D_{TM} , no debe tomarse como menos de 1.15 veces D_M (ASCE/SEI 7-16, 2017).

FUERZAS LATERALES MÍNIMAS REQUERIDOS PARA EL DISEÑO

 Sistema de aislamiento y elementos estructurales por debajo del nivel de base: El sistema de aislamiento, la cimentación y todos los elementos estructurales por debajo del nivel de base; deben ser diseñados y construidos para soportar una fuerza sísmica lateral mínima V_b , utilizando todos los requisitos aplicables para una estructura no aislada, y las propiedades del sistema de aislamiento de límite superior e inferior, según la siguiente ecuación:

$$V_b = k_M \cdot D_M \tag{3-09}$$

(ASCE/SEI 7-16, 2017, p.173).

 V_b no se considerará inferior a la fuerza máxima del sistema de aislamiento en ningún desplazamiento hasta e incluso en el desplazamiento máximo total D_{TM} (ASCE/SEI 7-16, 2017).

<u>Elementos estructurales por encima del nivel de base</u>: La estructura sobre el nivel de base debe ser diseñada y construida para soportar una fuerza mínima de corte V_s, utilizando todos los requisitos aplicables para una estructura no aislada y las propiedades de límite superior e inferior del sistema del aislamiento, según lo prescrito por:

$$V_s = \frac{V_{st}}{R_I} \tag{3-10}$$

Donde:

- R_I = Coeficiente numérico relacionado con el sistema estructural por encima del sistema de aislamiento.
- V_{st} = Fuerza sísmica lateral no reducida total o de corte, en los elementos por encima del nivel de base.

(ASCE/SEI 7-16, 2017, p.173)
La fuerza sísmica lateral no reducida total o de corte, en los elementos por encima del nivel de base, se determinarán utilizando propiedades de sistema de aislamiento límite superior e inferior, según lo prescrito por:

$$V_{st} = V_b \left(\frac{W_s}{W}\right)^{(1-2.5\beta_M)}$$
(3-11)

Donde:

- W = Peso sísmico efectivo de la estructura por encima la interfaz de aislamiento.
- W_s = Peso sísmico efectivo de la estructura por encima de la interfaz de aislamiento tal como se define, excluyendo el peso sísmico efectivo del nivel base.

(ASCE/SEI 7-16, 2017, p.173).

El peso sísmico efectivo W_s se tomará como igual a W cuando la distancia media desde la parte superior del aislador hasta la parte inferior del nivel base por encima de los aisladores supere los 0.9m (ASCE/SEI 7-16, 2017).

- <u>Límites de V_s</u>: El valor de V_s no se tomará como menor que cada uno de los siguientes enunciados:
 - La fuerza sísmica lateral requerida para una estructura de base fija del mismo peso sísmico efectivo W_s y un período igual al período del sistema de aislamiento T_M, utilizando las propiedades de límite superior.
 - La fuerza sísmica lateral V_{st} con V_b igual a la fuerza requerida para activar completamente el sistema de aislamiento utilizando las propiedades de límite superior, o:

1.5 veces las propiedades nominales para el nivel de fluencia de los elementos de amortiguamiento de un sistema elastomérico.

La fuerza de fricción o de ruptura de un sistema deslizante, o,

La fuerza en el desplazamiento cero de un sistema deslizante después de un ciclo dinámico completo de movimiento en D_M .

e. <u>PROCEDIMIENTO DE ANÁLISIS DINÁMICO: HISTORIA DE</u> <u>RESPUESTA</u>

- DESCRIPCIÓN DEL PROCEDIMIENTO

El análisis de historia de respuesta debe ser realizado con un conjunto de pares de movimiento sísmico seleccionados y escalados de acuerdo con la sección 3.3.2.f. Cada par de componentes de movimiento sísmico se debe aplicar simultáneamente al modelo, considerando la ubicación más desfavorable de la masa excéntrica. El desplazamiento máximo del sistema de aislamiento se calculará a partir de la suma vectorial de los dos desplazamientos ortogonales en cada paso de tiempo (ASCE/SEI 7-16, 2017). Los parámetros de interés se calcularán para cada movimiento sísmico, y se utilizará el valor promedio del parámetro de interés para el diseño (ASCE/SEI 7-16, 2017).

Se debe tener en cuenta la respuesta torsional resultante de la falta de simetría entre la masa y la rigidez. Así mismo la excentricidad accidental consiste en el desfase del centro de masa en una proporción igual al 5% de la dimensión del diafragma para cada una de las dos direcciones ortogonales en el nivel considerado (ASCE/SEI 7-16, 2017).

- FUERZAS LATERALES Y DESPLAZAMIENTOS MÍNIMOS

El sistema de aislamiento, la cimentación y todos los elementos estructurales por debajo del nivel base se diseñarán utilizando todos los requisitos aplicables para una estructura no aislada y las fuerzas obtenidas del análisis dinámico sin reducción, pero la fuerza lateral de diseño no se tomará como menos del 90% de V_b (ASCE/SEI 7-16, 2017). El desplazamiento máximo total del sistema de aislamiento no se tomará como menos del 80% de D_{TM} (ASCE/SEI 7-16, 2017). Los elementos estructurales por encima del nivel base se diseñarán utilizando los requisitos aplicables para una estructura no aislada, y las fuerzas obtenidas del análisis dinámico reducidas por el factor R_I , determinado de acuerdo a lo indicado en 3.3.2.e (ASCE/SEI 7-16, 2017). Para estructuras regulares, el valor de V_b no se tomará como menos del 80% del valor de V_b determinado de acuerdo con la sección 3.3.4.a, y el valor V_s no se tomará como menos del 100% de los límites especificados para V_s en la sección 3.3.4.a (ASCE/SEI 7-16, 2017). Para estructuras irregulares, el valor de V_b no se tomará como menos del 100% del valor de V_b determinado de acuerdo con la sección 3.3.4.a (ASCE/SEI 7-16, 2017). Para estructuras irregulares, el valor de V_b no se tomará como menos del 100% del valor de V_b determinado de acuerdo con la sección 3.3.4.a, y el valor V_s no se tomará como menos del 100% del valor de V_b determinado de acuerdo con la sección 3.3.4.a, y el valor V_s no se tomará como menos del 100% del valor de V_b determinado de acuerdo con la sección 3.3.4.a, y el valor V_s no se tomará como menos del 100% del valor de V_b determinado de acuerdo con la sección 3.3.4.a, y el valor V_s no se tomará como menos del 100% de los límites especificados para V_s en la sección 3.3.4.a (ASCE/SEI 7-16, 2017).

- ESCALADO DE RESULTADOS

Cuando la fuerza lateral de corte sobre los elementos estructurales, determinada utilizando el procedimiento de espectro de respuesta o el de historia de respuesta, sea menor que los valores mínimos prescritos en la sección anterior, todos los parámetros de diseño se ajustarán hacia arriba proporcionalmente (ASCE/SEI 7-16, 2017).

- <u>LÍMITES DE DERIVA</u>

ASCE/SEI 7-16 establece que; la deriva máxima de piso de la estructura por encima del sistema aislamiento correspondiente a la fuerza lateral de diseño, incluyendo el desplazamiento causado por la deformación vertical del sistema de aislamiento, no debe exceder de 0.020h_{sx} (ASCE/SEI 7-16, 2017). Para nuestro caso, se utilizarán los límites de deriva prescritos en la Tabla N° 11 de la Norma E.030 (Tabla III-12), según el material predominante.

Cuando los desplazamientos en la estructura por encima del sistema de aislamiento, sean calculados con las fuerzas laterales reducidas por R_I. La deriva se calculará utilizando los valores encontrados de la siguiente ecuación:

$$\delta_x = C_d \cdot \delta_{ex} \tag{3-12}$$

Donde:

- δ_x = Deformación ultima en el nivel x.
- δ_{ex} = Deformación en la ubicación requerida, determinada por un análisis elástico.
- C_d = Coeficiente de amplificación de deformación de la estructura aislada, igual a R_I .

3.8.4 ESTANDAR DE AISLAMIENTO SÍSMICO PARA LA FUNCIONALIDAD CONTINUA – SISCF Y SISTEMA DE CALIFICACIÓN REDiTM

El estándar de aislamiento sísmico para la funcionalidad continua (Seismic isolation standar for continued funcionality) denominado abreviadamente como SISCF, es un documento publicado por la escuela de ingeniería estructural, mecánica y materiales de la Universidad de California UC Berkeley, y tiene como objetivo complementar las disposiciones de ASCE/SEI 7-16 para estructuras con aislamiento en la base.

En el Capítulo 1, sección 1.3.3 ASCE/SEI 7-16 especifica que, las instalaciones esenciales o de categoría de riesgo IV deben ser diseñados con una probabilidad razonable de no perder su funcionalidad después del sismo de diseño (Zayas et al., 2019). Además, en el Tabla 1.3-2 ASCE/SEI 7-16 establece, tres (03) objetivos de confiabilidad para la estabilidad de la estructura para el caso del sismo MCE, según la categoría de riesgo correspondiente sea I, II, III o IV; teniéndose que para una instalación de categoría IV, la probabilidad de daño sea como máximo el 2.5%, es decir que el nivel de daño es bajo y por tanto la instalación no perdería su funcionalidad. SISCF especifica criterios de resiliencia para cada objetivo de confiabilidad, estás criterios han sido determinados en función de estudios de estimación de daño con la metodología FEMA P58, y se presentan a continuación:

 Todos los componentes estructurales (excluyendo los aisladores) se diseñarán para tener suficiente resistencia y rigidez, de acuerdo a los requisitos adjuntos, y poder resistir una carga sísmica que represente el terremoto base de diseño del código de diseño aplicable a la estructura, que para ASCE/SEI 7-16 es un espectro DE computado como 2/3 del espectro MCE.

- Los desplazamientos de los aisladores, el cortante sísmico en la estructura y las derivas, se calcularán utilizando los procedimientos de análisis de historia de respuesta, y se verificarán utilizando el procedimiento de fuerza lateral equivalente. La cortante sísmica y las derivas de los componentes de la estructura y de los aisladores utilizados en el diseño, no serán menores que el 80% de los valores calculados utilizando el procedimiento de fuerza lateral equivalente.
- En los procedimientos de análisis se utilizará el modelo analítico de límite superior de los aisladores, para calcular las fuerzas sísmicas de la estructura y las aceleraciones espectrales piso que se producen para DE.
- Para edificios de categoría de riesgo sísmico IV: R_I= 1.0; las derivas laterales promedio de piso no excederán 0.0020 veces la altura del piso; las derivas laterales máximas de piso no excederán de 0.0030 veces la altura del piso; y el valor promedio de las aceleraciones espectrales con 5% de amortiguamiento de los pisos ocupados, para un intervalo de períodos de 0.05 a 3seg, no excederá de 0.3g según lo determinado para el procedimiento de historia de respuesta realizado de acuerdo con ASCE/SEI 7-16, sección 17.6.3.4 y SISCF. Todos los componentes no estructurales, serán diseñados con una fuerza sísmica horizontal F_p tomada como un valor fijo de 0.4W_p. Estos criterios pretenden que para edificios que cuenten con detalles estructurales y arquitectónicos típicos que cumplan con ASCE/SEI 7-16 y SISCF, el daño los componentes arquitectónicos debido al movimiento sísmico, sea menor que el 2% del costo de reparación del edificio, consistente con el objetivo de confiabilidad para estructuras de categoría IV establecido en la Tabla 1.3-2 de ASCE/SEI 7-16.
- Para edificios de categoría de riesgo sísmico III: R_I= 1.25; las derivas laterales promedio de piso no excederán 0.0030 veces la altura del piso; las derivas laterales máximas de piso no excederán de 0.0045 veces la altura del piso; y el valor promedio de las aceleraciones espectrales con 5% de amortiguamiento de los pisos ocupados, para un intervalo de períodos de 0.05 a 3seg, no excederá de 0.4g según lo determinado para el procedimiento de historia de respuesta realizado de acuerdo con ASCE/SEI 7-16, sección 17.6.3.4 y SISCF. Todos los componentes no estructurales, serán diseñados con una fuerza sísmica horizontal F_p tomada como un valor fijo de 0.6W_p.

Estos criterios pretenden que para edificios que cuenten con detalles estructurales y arquitectónicos típicos que cumplan con ASCE/SEI 7-16 y SISCF, el daño los componentes arquitectónicos debido al movimiento sísmico, sea menor que el 4% del costo de reparación del edificio, consistente con el objetivo de confiabilidad para estructuras de categoría III establecido en la Tabla 1.3-2 de ASCE/SEI 7-16.

Para edificios de categoría de riesgo sísmico II y I: R_I= 1.5; las derivas laterales promedio de piso no excederán 0.0040 veces la altura del piso; las derivas laterales máximas de piso no excederán de 0.006 veces la altura del piso; y el valor promedio de las aceleraciones espectrales con 5% de amortiguamiento de los pisos ocupados, para un intervalo de períodos de 0.05 a 3seg, no excederá de 0.6g según lo determinado para el procedimiento de historia de respuesta realizado de acuerdo con ASCE/SEI 7-16, sección 17.6.3.4 y SISCF. Todos los componentes no estructurales, serán diseñados con una fuerza sísmica horizontal F_p tomada como un valor fijo de 0.8W_p. Estos criterios pretenden que para edificios que cuenten con detalles estructurales y arquitectónicos típicos que cumplan con ASCE/SEI 7-16 y SISCF, el daño los componentes arquitectónicos debido al movimiento sísmico, sea menor que el 8% del costo de reparación del edificio, consistente con el objetivo de confiabilidad para estructuras de categoría II y I establecido en la Tabla 1.3-2 de ASCE/SEI 7-16 (Zayas et al., 2019).

Tabla III-21

Tabla 1.3-2 Objetivos de confiabilidad para la inestabilidad estructural causada por terremotos, Probabilidad condicional de falla por sismo

Risk Category	Conditional Probability of Failure Caused by the MCE _{<i>R</i>} Shaking Hazard (%)
I & II	10
III	5
IV	2.5

 Table 1.3-2 Target Reliability (Conditional Probability of Failure)

 for Structural Stability Caused by Earthquake

Fuente: ASCE/SEI 7-16, 2017, p.3

Tabla III-22

		_	-		
Structure Design	Target Limit	Average Elect			Movimun of
Criteria Applicable	for Building	Spectra	Average of	Maximun of	Peak Residual
Under ASCE 7-16	Architectural	Acoloratión	Peak Story	Peak Story	Story Drift
Base Criteria for the	& Structural	Limit	Drift Limits	Drift Limits	Limita
Design Earthquake	Damage	Liiiit			Linnts
SISCF Category IV	2%	0.3g	0.0020	0.0030	0.0000
SISCF Category III	4%	0.4g	0.0030	0.0045	0.0000
SISCF Category II	8%	0.6g	0.0067	0.0100	0.0000
Chapter 17 no SISCF	30%	1.0g	0.0133	0.0200	0.0000
Fixed Base DE	60%	1.3g	0.0200	0.0300	0.0200
Fixed Base MCE	100%	1.5g	0.0400	0.0500	0.0400

Tabla C.3-1 Límites de criterios de resiliencia para las categorías de diseño de estructuras

Fuente: Estándar de aislamiento sísmico para la funcionalidad continua SISCF, 2019, p.30

Tabla III-23

Tabla C.3-2 Contribuciones al daño arquitectónico y estructural del edificio

	Torget Limit	Average			Maximun of	Maximun of
Structure Design	for total	Floor	Average of	Maximun of	Peak	Peak
Criteria Applicable	Building	Spectra	Peak Story	Peak Story	Residual	Residual
Under ASCE 7-16	Architectural	Aceleratión	Drift Related	Drift Related	Story Drift	Story Drift
Base Criteria for the	& Structural	Related	Architect	Structural	Related	Related
Design Earthquake	Damage	Architect	Damage	Damage	Structural	Structural
	Damage	Damage			Damage	Damage
SISCF Category IV	2%	1.5%	0.25%	0.25%	0%	0%
SISCF Category III	4%	3%	0.5%	0.5%	0%	0%
SISCF Category II	8%	4%	2%	2%	0%	0%
Chapter 17 Only	30%	10%	10%	10%	0%	0%
Fixed Base DE	60%	14%	13%	13%	10%	10%
Fixed Base MCE	100%	16%	17%	17%	25%	25%

Fuente: Estándar de aislamiento sísmico para la funcionalidad continua SISCF, 2019, p.30

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INEGENIERÍA E.P. INGENIERÍA CIVIL

summing the contribution from the average spectral acceleration from 0.05-3 sec for all floors, average peak drift ratio for all floors, and the maximum peak drift ratio for any one floor. Structural component damage is estimated by summing the contribution from average residual drift ratio for all floors and maximum residual drift ratio for any one floor.

Figura III-010. Figura C.3-2 Estimación de daños por movimiento sísmico, utilizado para seleccionar propiedades del aislador, tipo de estructura, y rigidez de piso Fuente: Estándar de aislamiento sísmico para la funcionalidad continua SISCF, 2019, p.34 Los criterios de resiliencia especificados en las Tablas C.3-1 y C.3-2, y la Figura C.3-2 se desarrollaron utilizando un modelo representativo de edificios en base fija que cumplen con ASCE/SEI 7-16 en FEMA P-58 para estimar los límites aplicables para los costos de reparación asociados con los componentes arquitectónicos y estructurales. Los resultados obtenidos de los cálculos de daños con la metodología FEMA P-58 fueron calibrados con datos de daños en edificios de base fija durante el terremoto de North Ridge en 1994, utilizando el registro sísmico de North Ridge MUL para representar un evento de nivel DE; y también daños observados en edificios durante el terremoto de Ecuador de 2016, utilizando el registro sísmico APED de Ecuador para representar un evento de nivel MCE (Zayas et al., 2019).

Utilizando información extraída del análisis de este modelo, así como los daños reportados por los eventos sísmicos de North Ridge y de Ecuador, se desarrollaron las relaciones entre los parámetros de demanda sísmica y el daño medio esperado como un porcentaje del costo de construcción (Zayas et al., 2019). Se observó que los cálculos de daños que mejor se correlacionaban con el daño sísmico observado en el rango de estudios específicos de la aplicación FEMA P-58, resultaban de la combinación de los parámetros de: aceleración espectral promedio de piso, deriva de piso máxima promedio de la estructura, deriva máxima de piso, deriva residual inelástica promedio de piso y deriva residual inelástica máxima de piso. La combinación de estos cinco parámetros de respuesta estructural dio como resultado el método simplificado de estimación de daño arquitectónico y estructural especificado en los Tablas C.3-1 y C.3-2, y la Figura C.3-2 (Zayas et al., 2019).

Por otro lado, SISCF establece factores de seguridad por resistencia al corte y por desplazamiento para los aisladores, y son aplicados para la verificación en laboratorio de la capacidad de desplazamiento del aislador y su resistencia a corte, debiendo proyectarse aisladores con capacidades mayores que las de límite inferior para MCE utilizadas en el análisis, y que cumplan con al menos uno de los criterios que a continuación se citan, según corresponda a los tipos de aislador y estructura especificados:

 Para aisladores que mantienen una rigidez lineal de fuerza de restauración hasta desplazamientos por encima de 2.0D_M, la resistencia a corte del aislador medida durante las excursiones de desplazamiento lateral positivo y negativo no deben ser inferiores a 3.0 veces la resistencia a corte en D_D y la capacidad de movimiento requerida de todos los componentes afectados por los movimientos del aislador sísmico será 2.0D_M.

- Para los sistemas de aislamiento donde todos los aisladores proporcionan una rigidez lateral K_d más allá de D_M correspondiente a un periodo natural de aislamiento de 0.75 a 2.5seg, la resistencia a corte del aislador medida durante las excursiones de desplazamiento lateral positivo y negativo no deben ser inferiores a 3.0 veces la resistencia a corte en D_D y la capacidad de movimiento requerida de todos los componentes afectados por los movimientos del aislador sísmico será 1.5D_M.
- Para aisladores que no cumplan con los dos criterios antes mencionados pero que están instalados en estructuras que cuentan con componentes estructurales que constituyen un sistema de restricción de desplazamiento, el corte que se produce en desplazamientos mayores a D_M nos será menor que el corte medido en D_M y la capacidad de movimiento requerida de todos los componentes afectados por los movimientos del aislador sísmico debe ser 1.5 veces mayor que los desplazamientos ortogonales que activan el sistema de restricción de desplazamiento. Por otro lado, el Sistema de restricción se diseñará para una capacidad de fuerza lateral elástica en todas las direcciones de 3.0 veces la suma de las cortantes del modelo analítico de límite superior en D_D de todos los aisladores; y no comenzará a restringir los desplazamientos laterales a menos de 1.5D_M, pero deberá tener la rigidez suficiente para evitar desplazamientos aislador superiores a 1.75D_M en los aisladores.
- Para sistemas de aislamiento instalados en estructuras que cumplen con los requisitos de las secciones 1.3.1.3, 12.2.1.1 y 17.2.4.5 de ASCE 7-16, y donde todos los aisladores proporcionan una rigidez lateral K_d más allá de D_D correspondiente a un período natural del sistema de aislamiento de 0.5 a 2.0seg; la resistencia a corte del aislador medida durante las excursiones de desplazamiento lateral positivo y negativo no deben ser inferiores a 5.0 veces el esfuerzo cortante medido en D_D, y la capacidad de movimiento de todos los componentes afectados por los movimientos del aislador será 1.25D_D. También se demostrará que los aisladores y los miembros estructurales primarios permanecen estables para una carga sísmica igual a 1.5 veces

 MCE_R , donde el análisis de la estructura incluye los efectos de grandes desplazamientos y cargas verticales excéntricas (Zayas et al., 2019).

Por su parte el sistema de calificación REDiTM indica que en la actualidad el objetivo de los códigos de diseño sísmico de edificios es proporcionar "seguridad de vida" a los ocupantes en el sismo de nivel de diseño (nivel con movimientos de terreno iguales a los 2/3 de MCE), esto significa que los ocupantes deberían poder escapar del edificio, pero no implica que el edificio pueda volver a ocuparse o, de hecho, si la reparación sería económicamente viable o no (REDiTM, 2013). Varios investigadores han estimado recientemente que las pérdidas financieras directas para los nuevos edificios aporticados diseñados con según los códigos de diseño sometidos a movimientos de "nivel de diseño", son superiores al 20% del valor total del edificio (como se citó en Terzic et al. 2012, Mayes et al. 2013), y la expectativa es que puedan ser inutilizables por más de 1 año (como se citó en Terzic et al. 2012). Los estudios se basaron en una metodología robusta para calcular pérdidas originalmente desarrolladas por Centro de Investigación en Ingeniería de Terremotos del Pacífico (PEER) y que se ha convertido la base para la evaluación de pérdidas de última generación descrita en FEMA P-58 (2013).

De esto se puede concluir que el objetivo de los códigos de diseño es sólo proteger la vida de los ocupantes, y que se permiten daños significativos en la estructura del edificio, componentes arquitectónicos y fachadas, equipos mecánicos y eléctricos, así como daño del contenido del edificio, siempre y cuando se cumpla el objetivo de código. Por lo tanto, no es sorprendente que cuando un gran terremoto golpea una región urbana las pérdidas debidas a daños de edificios e infraestructura son inmensas, las pérdidas directas incluyen los costos de la demolición después del terremoto, reparación y reposición de la funcionalidad, pero la vulnerabilidad más significativa son las pérdidas indirectas debido al tiempo de inactividad – la incapacidad de las personas para regresar a sus hogares o a sus puestos de trabajo – que es mucho más difícil de cuantificar: problemas sociales, sentido de comunidad y calidad de vida pueden afectar a las comunidades durante años e incluso décadas después de un terremoto (REDiTM, 2013). Por tal motivo el sistema de calificación REDiTM proporciona un marco para implementar el "diseño sísmico basado en la

resiliencia", definiendo a la resiliencia como, la capacidad de una organización o comunidad para recuperarse rápidamente después de un futuro gran terremoto.

El sistema de calificación REDiTM establece tres (03) categorías de clasificación, los cuales incorporan explícitamente la resiliencia del edificio (Building Resilience), que se traduce en la verificación del desempeño de la estructura y todos los componentes no estructurales, incluidos los componentes arquitectónicos, fachadas, equipos MEP y contenido del edificio. Cada categoría se encuentra complementada con un plan de contingencia post-evento, denominada planificación resiliente – organización resiliente (Organizational Resilience) y resiliencia del entorno (Ambient Resilience). La asignación del nivel de clasificación REDiTM es realizada mediante una evaluación de pérdidas (Loss Assessment), para verificar que se hayan adoptado las recomendaciones de los objetivos de resiliencia asociados con cada clasificación, medida en términos de tiempo de reocupación y pérdida financiera.

Figura III-011a. Hoja de ruta para la clasificación REDiTM Fuente: REDiTM, 2013, p.8

Los objetivos básicos de resiliencia sísmica para los tres niveles del sistema de calificación REDi TM se resumen en la siguiente Figura. Estos se refieren al desempeño en el sismo de nivel de diseño DE. Los niveles de oro (gold) y platino (platinium) apuntan a lograr una reducción de cambio gradual en los riesgos por sismo en relación con los edificios diseñados por código al enfocarse en el estado

de reocupación inmediata, la recuperación funcional rápida y los bajos niveles de pérdida financiera directa. El nivel plata (Silver) no necesariamente logra la reocupación inmediata, pero la reducción sustancial de los daños causados y las medidas de planificación implementadas permiten que el tiempo requerido para lograr la recuperación funcional se limite a seis meses.

Figura III-011b. Objetivos básicos para los tres (03) niveles de clasificación REDiTM

Fuente: REDiTM, 2013, p.11

3.8.5 MOVIMIENTOS SÍSMICOS PARA EL ANÁLISIS

El análisis para la evaluación de los dos tipos de diseño sísmico de la edificación principal del Hospital de Pacasmayo, que fueron comparados para efectos del presente trabajo de investigación, fue realizado con el procedimiento de análisis de Historia de respuesta o Tiempo-Historia, según lo indicado en el capítulo 17 de ASCE/SEI 7-16, aplicándose los criterios de peligro sísmico indicados en E.030. A su vez, la aplicación del procedimiento de análisis de Historia de respuesta, fue realizado utilizando siete (07) pares de movimiento sísmico, escalados espectralmente hasta el espectro de peligro uniforme MCE. Se empleó el método de ajuste espectral, indicado en la sección 3.3.2.f, para el escalado.

a. <u>PELIGRO SÍSMICO</u>

Los parámetros de peligro sísmico indicados en E.030, para determinar el espectro de peligro uniforme MCE, son los siguientes:

- Zonificación: Zona Z4, Z=0.45
- <u>Perfil de suelo:</u> Suelo S1, S=1.00, T_P=0.40seg, T_L=2.50seg (Suelo de fundación: Grava pobremente gradada con arenas y finos, clasificado como GP).
- <u>Coeficiente de amplificación sísmica:</u> Se incluirán los valores correspondientes a periodos cortos.

$$T < 0.2T_{p} \qquad : \qquad C = 1 + 7.5 \left(\frac{T}{T_{p}}\right)$$
$$0.2T_{p} < T < T_{p} \qquad : \qquad C = 2.5$$
$$T_{p} < T < T_{L} \qquad : \qquad C = 2.5 \left(\frac{T_{p}}{T}\right)$$
$$T > T_{L} \qquad : \qquad C = 2.5 \left(\frac{T_{p} \times T_{L}}{T^{2}}\right)$$

- <u>Categoría de la edificación:</u> Categoría A1, U=1 (Hospital II-E)

b. ESPECTROS DE PELIGRO UNIFORME MCE y DE

Los espectros de peligro uniforme MCE y DE para la edificación principal del Hospital de Pacasmayo, según los parámetros de peligro sísmico indicados en E.030, se encuentran desarrollados en la Tabla III-20.

Tabla III-24

Espectro de peligro uniforme MCE y DE

ESPECTRO DE PELIGRO UNIFORME MCE y BDE - NTE E.030

PARAMETROS S	ISMICOS E.	030			PSEUD	DACELERAC	IONES - NT	E E.030
ZONA	Z4	Ζ	=	0.45	Deriede	Coef. Ampl.	Pseudo Ac	eleración
SUELO	S1	S	=	1.00	Periodo	Sísmica	BDE	MCE
Periodo de plataforma		TP	=	0.40	T(seg)	С	SD(g)	SM(g)
Peridodo de desplazamientos constantes		TL	=	2.50	0.00	1.00	0.450	0.6
CATEGORIA EDIFICACION	A1	U	=	1.0	0.05	1.09	0.492	0.7
SISTEMA ESTRUCTURAL	MUR-EST	R	=	1.00	0.08	1.14	0.513	0.7
Reducción básica:		R0	=	6	0.10	2.50	1.125	1.6
Sistema de la base:	Aisl-SISFC	R0'	=	1	0.15	2.50	1.125	1.6
rregularidad altura		Ia	=	1.00	0.20	2.50	1.125	1.6
rregularidad planta		Ip	=	1.00	0.25	2.50	1.125	1.6
					0.30	2.50	1.125	1.6
$S_D = ZUCS \cdot g$	$T < 0.2 T_P$	C = 1+	7,5 · (-	-)	0.35	2.50	1.125	1.6
-				p/	0.40	2.50	1.125	1.6
$S_M = 1.5 \cdot ZUCS \cdot g$	$T \leq T_P$		C=2,	,5	0.45	2.22	1.000	1.5
	$T_P \leq T \leq T_L$		C = 2	$5 \cdot \left(\frac{T_P}{T}\right)$	0.50	2.00	0.900	1.3
				(7-,7-)	0.55	1.82	0.818	1.2
	$T > T_L$		C = 2	$5 \cdot \left(\frac{TP+TL}{T^2}\right)$	0.60	1.67	0.750	1.1
					0.65	1.54	0.692	1.0
Egnestre de Daeudooosle	mainna M(ч г П	DF		0.70	1.43	0.643	0.9
Espectro de Eseudoaceie	1030	L y D	DE		0.75	1.33	0.600	0.9
	.050				0.80	1.25	0.563	0.8
2.000					0.85	1.18	0.529	0.7
					0.90	1.11	0.500	0.7
a 1 500					0.95	1.05	0.474	0.7
Sa(1.00	1.00	0.450	0.6
i i i					1.10	0.91	0.409	0.6
					1.20	0.83	0.375	0.5
					1.30	0.77	0.346	0.5
					1.40	0.71	0.321	0.4
0.500					1.50	0.67	0.300	0.4
					1.60	0.63	0.281	0.4
					1.70	0.59	0.265	0.3
0.000	1	T			1.80	0.56	0.250	0.3
0.00 2.00 4.00	6.00	8.0	0	10.00	1.90	0.53	0.237	0.3
Peri	odo T(seg)				2.00	0.50	0.225	0.3
E 030 DD5	MCE	TD			2.10	0.48	0.214	0.3
E.030-DBE E.030		19 -	- IL		2.20	0.45	0.205	0.3
					2.30	0.43	0.196	0.2
					2.40	0.42	0.188	0.2
					2 50	0.40	0.180	0.2

0.75	1.05	0.4/4	0.711
1.00	1.00	0.450	0.675
1.10	0.91	0.409	0.614
1.20	0.83	0.375	0.563
1.30	0.77	0.346	0.519
1.40	0.71	0.321	0.482
1.50	0.67	0.300	0.450
1.60	0.63	0.281	0.422
1.70	0.59	0.265	0.397
1.80	0.56	0.250	0.375
1.90	0.53	0.237	0.355
2.00	0.50	0.225	0.338
2.10	0.48	0.214	0.321
2.20	0.45	0.205	0.307
2.30	0.43	0.196	0.293
2.40	0.42	0.188	0.281
2.50	0.40	0.180	0.270
2.60	0.37	0.166	0.250
2.70	0.34	0.154	0.231
2.80	0.32	0.143	0.215
2.90	0.30	0.134	0.201
3.00	0.28	0.125	0.188
3.50	0.20	0.092	0.138
4.00	0.16	0.070	0.105
4.50	0.12	0.056	0.083
5.00	0.10	0.045	0.068
6.00	0.07	0.031	0.047
7.00	0.05	0.023	0.034
8.00	0.04	0.018	0.026
9.00	0.03	0.014	0.021
10.00	0.03	0.011	0.017

Fuente: Elaboración propia, Microsoft Excel, 2019

c. <u>REGISTROS SÍSMICOS SELECCIONADOS</u>

Se han seleccionado siete (07) registros de movimiento sísmico, cada registro con dos componentes horizontales. Los registros sísmicos seleccionados se describen a continuación:

- SISMO DEL 17.10.1966 LIMA, PERÚ

Se dispuso del registro acelerométrico de la estación Parque de la Reserva PRQ, situado sobre un perfil de suelo tipo S0.

Tabla III-25

Localización del evento – Sismo del 17.10.1966

Datos				
Fecha	17/10/1966			
Hora	16:41:00			
Latitud	-10.7			
Longitud	-78.7			
Magnitud	8.1 Mw			
Profundidad	24 Km			
Fuente	IGP			

http://ceois.cismid-uni.org

Figura III-012. Acelerogramas Estación PRQ – Sismo del 17.10.1966 Fuente: REDACIS-CISMID, 2019, Recuperado de: <u>http://ceois.cismid-uni.org</u>

- <u>SISMO DEL 31.05.1970 LIMA, PERÚ</u>

Se dispuso del registro acelerométrico de la estación Parque de la Reserva PRQ, situado sobre un perfil de suelo tipo S0.

Tabla III-26

Locultation del evenuo - Sismo del SI.0S.1770

Datos				
Fecha	31/05/1970			
Hora	15:23:00			
Latitud	-9.36			
Longitud	-78.87			
Magnitud	6.6 mb			
Profundidad	64 Km			
Fuente	IGP			

http://ceois.cismid-uni.org

Figura III-013. Acelerogramas Estación PRQ – Sismo del 31.05.1970 Fuente: REDACIS-CISMID, 2019, Recuperado de: <u>http://ceois.cismid-uni.org</u>

- <u>SISMO DEL 03.10.1974 LIMA, PERÚ</u>

Se dispuso del registro acelerométrico de la estación Parque de la Reserva PRQ, situado sobre un perfil de suelo tipo S0.

Tabla III-27

Localización del evento – Sism	o del	03.10	.1974
--------------------------------	-------	-------	-------

Datos				
Fecha	3/10/1974			
Hora	09:21:00			
Latitud	-12.5			
Longitud	-77.98			
Magnitud	6.6 mb			
Profundidad	13 Km			
Fuente	IGP			

http://ceois.cismid-uni.org

Figura III-014. Acelerogramas Estación PRQ – Sismo del 03.10.1974 Fuente: REDACIS-CISMID, 2019, Recuperado de: <u>http://ceois.cismid-uni.org</u>

- SISMO DEL 23.06.2001 AREQUIPA, PERÚ

Se dispuso del registro acelerométrico de la estación Cesar Vizcarra Vargas MOQ001, situado sobre un perfil de suelo tipo S2.

Tabla III-28

Datos				
Fecha	23/06/2001			
Hora	15:33:00			
Latitud	-16.08			
Longitud	-73.77			
Magnitud	6.9 mb			
Profundidad	33 Km			
Fuente	IGP			

http://ceois.cismid-uni.org

Figura III-015. Acelerogramas Estación MOQ001 – Sismo del 23.06.2001 Fuente: REDACIS-CISMID, 2019, Recuperado de: <u>http://ceois.cismid-uni.org</u>

- <u>SISMO DEL 15.08.2007 ICA, PERÚ</u>

Se dispuso del registro acelerométrico de la estación UNICA ICA002, situado sobre un perfil de suelo tipo S3.

Tabla III-29

Localización del evento – S	Sismo del	15.08.2007
-----------------------------	-----------	------------

Da	ntos
Fecha	15/08/2007
Hora	18:40:58
Latitud	-13.67
Longitud	-76.76
Magnitud	7.9 Mw
Profundidad	40 Km
Fuente	IGP

http://ceois.cismid-uni.org

Figura III-016. Acelerogramas Estación ICA002 – Sismo del 15.08.2007 Fuente: REDACIS-CISMID, 2019, Recuperado de: <u>http://ceois.cismid-uni.org</u>

- SISMO DEL 27.02.2010 MAULE, CHILE

Se dispuso del registro acelerométrico de la estación Constitución, situado sobre un perfil de suelo tipo S2.

Tabla III-30

		HIPOCENTRO
Hora UTC	:	06:34:08 27/02/2010
Latitud	:	-36° 17' 23''
Longitud	:	-73° 14' 20''
Profundidad	:	30.1 Km
Magnitud	:	8.8 (Mw) GS
Fuente	:	Servicio Simológico (U. de Chile)
D C : 10 II		

Localización del evento – Sismo del 27.02.2010

Referencia: 43 Km al SO de Cobquecura

Fuente: Adaptado del INFORME RENADIC Rev. 2 TERREMOTO MAULE, 2010

Figura III-017a. Acelerogramas Estación Concepción – Sismo del 27.02.2010 Fuente: INFORME RENADIC Rev. 2 TERREMOTO MAULE, 2010

Figura III-017b. Espectros de respuesta Estación Concepción – Sismo del 27.02.2010 Fuente: INFORME RENADIC Rev. 2 TERREMOTO MAULE, 2010

- SISMO DEL 16.04.2016 MANABÍ, ECUADOR

Se dispuso del registro acelerométrico de la estación Manta AMNT, situado sobre un perfil de suelo tipo S1.

Tabla III-31

Localización del evento – Sismo del 16.04.2016

	Datos
Fecha	16/04/2016
Hora	18h58 (Local)
Magnitud	7.8 Mw
Epicentro	Pedernales, Manabí
Profundidad	20 Km
Fuente	IG-EPN

Fuente: Adaptado de INFORME SÍSMICO ESPECIAL Nº 8 - 2016 IGEPN, 2016

Fuente: TERREMOTO DEL 16 DE ABRIL DE 2016, IGEPN, Recuperado de: https://www.igepn.edu.ec

En el siguiente Tabla se resumen las características acelerométricas de los siete (07) pares de movimientos sísmicos seleccionados para el análisis:

Tabla III-32

	MOVIM	IENTOS S	ÍSMICOS UTILIZ#	ADOS PARA	EL ANÁLISIS	
RE	GISTRO SÍSM	1ICO	EPICENTRO	COMD	ACEL. MÁX	L. PGA (g)
COD	ESTACIÓN	FECHA	(UBICACIÓN)	comi -	Comp. 1	Comp. 2
01	PRQ	1966	Lima, Perú	E-W, N-S	0.184	0.273
02	PRQ	1970	Ancash, Perú	E-W, N-S	0.107	0.100
03	PRQ	1974	Lima, Perú	E-W, N-S	0.198	0.184
04	MOQ001	2001	Arequipa, Perú	E-W, N-S	0.301	0.224
05	ICA001	2007	Ica, Perú	E-W, N-S	0.278	0.340
06	constitucion	2010	Maule, Chile	L, T	0.527	0.613
07	AMNT	2016	Manabí, Ecuador	E-W, N-S	0.390	0.524

Fuente: Elaboración propia, Microsoft Excel, 2019.

d. <u>MÉTODO DEL AJUSTE ESPECTRAL</u>

El método es descrito es la sección 3.3.2.f, y fue realizado en el dominio de las frecuencias, escalando las ordenadas del espectro de Fourier de la señal sísmica a las ordenadas del espectro de Fourier correspondientes al espectro MCE. El ajuste espectral en el dominio de las frecuencias fue realizado con la asistencia del programa ETABS 17.0.1, para cada par de movimiento sísmico. Cabe indicarse que en el ajuste espectral no solo se incrementa el valor de las aceleraciones, sino que también se modifica el contenido de frecuencias de la señal sísmica, haciendo que sean muy cercanas a las frecuencias del sismo uniforme MCE, en otras palabras, se trata de un nuevo movimiento sísmico con el mismo origen sismogénico, pero con distintas características dinámicas.

- <u>SISMO DEL 17.10.1966 LIMA, PERÚ</u>

Se presenta el ajuste espectral del evento sísmico para las componentes horizontales E-W y N-S, así como el contenido de frecuencias o espectro de Fourier del movimiento sísmico original y del escalado.

Time	History Function Name SAd01 P	QR_1966_EW				
lethod to Use for Spectral Matching						
Spectral Matching in Frequency D	omain O Spectral Mat	ching in Time Doma	in			
hoose Input Response Spectrum and Ref	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum	Acceleration Units	g Units	~
Reference Acceleration Time History	01 PQR_1966_EW	~ ()	Time History Accele	ration Units	g Units	~
Espectro de respue del registro ajusta Espectro de funiforme MCI	sta	e/Spectrally Match	ed Acceleration Time Histo	y Istado		
Espectro de respue del registro ajusta Espectro de respue uniforme MCI Espectro de resp del revistro orie	sta do peligro E-E.030	e/Spectrally Match	Registro aju	y istado Registro original		
esp. Spec. Plot Axes Options	sta	Time History F	Registro aju	rstado Registro original	Spectral Match	ing
esp. Spec. Plot Axes Options A Lin - Y Lin O X Lin - Y Log	Reference sta do peligro E-E.030 uesta ginal Response Spectrum Plot Options O Plot for Reference Time History	Time History F	Plot Options erence Time History	ry sistado Registro original Frequency-Domain Set Mato	Spectral Match	ing
esp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log X Log - Y Lin O X Log - Y Log	sta	Time History F O Plot Refer	Registro aju Registro aju Regis	y Istado Registro original Frequency-Domain Set Mate	Spectral Match ching Parameter	ing

Figura III-019. Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo del 17.10.1966 Lima, Perú

Figura III-020. Contenido de frecuencias del ajuste espectral de la componente E-W Sismo del 17.10.1966 Lima, Perú

Time	History Function Name SAd01 PC	R_1966_NS				
Method to Use for Spectral Matching						
Spectral Matching in Frequency [Domain O Spectral Mate	ching in Time Doma	in			
Choose Input Response Spectrum and Re	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spect	rum Acceleration Units	g Units	~
Reference Acceleration Time History	01 PQR_1966_NS	~ 0	Time History Acc	eleration Units	g Units	~
Espectro de respue del registro ajusta Espectro de uniforme MC	esta do peligro E-E,030	a/Spectrally Match	Registre	story to ajustado		
Target/Matched Response Spectrum Espectro de respud del registro ajusta Espectro de uniforme MC Espectro de resp del registro ori	esta do peligro E-E.030	e/Spectrally Match	Registre	story o ajustado Registro original		
Target/Matched Response Spectrum Espectro de resput del registro ajusta Espectro de uniforme MC Espectro de resp del registro ori	esta do peligro E-E.030 puesta ginal Performente de la construcción de	Time History F	Plot Options	story ro ajustado Registro original Frequency-Domain	Spectral Match	ing
Target/Matched Response Spectrum Espectro de respu del registro ajusta Espectro de uniforme MC Espectro de resp del registro ori Resp. Spec. Plot Axes Options S X Lin - Y Lin O X Lin - Y Log	esta do peligro E-E.030 puesta ginal Response Spectrum Plot Options O Plot for Reference Time History	Time History F	Plot Options erence Time History	story ro ajustado Registro original Frequency-Domain Set Matc	Spectral Match	ing
 Target/Matched Response Spectrum Espectro de resput del registro ajusta Espectro de uniforme MC Espectro de resput del registro originaria Espectro de resput del registro originaria Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log X Log - Y Lin O X Log - Y Log 	Reference	Time History F O Plot Refe O Plot Mate	Not Options Protect Time History Ched Time History	story o ajustado Registro original Frequency-Domain Set Mate	Spectral Match shing Parameter	ing

Figura III-021. Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo del 17.10.1966 Lima, Perú

ANÁLISIS SÍSMICO COMPARATIVO DEL DISEÑO DEL HOSPITAL DE PACASMAYO CON AISLAMIENTO ELASTOMÉRICO LRB, Y AISLAMIENTO PENDULAR FPS-TRIPLE

Figura III-022. Contenido de frecuencias del ajuste espectral de la componente N-S Sismo del 17.10.1966 Lima, Perú
b. SISMO DEL 31.05.1970 ANCASH, PERÚ

Se presenta el ajuste espectral del evento sísmico para las componentes horizontales E-W y N-S, así como el contenido de frecuencias o espectro de Fourier del movimiento sísmico original y del escalado.

Time	History Function Name SAd02 F	PQR_1970_EW				
Method to Use for Spectral Matching						
Spectral Matching in Frequency D	omain O Spectral Ma	tching in Time Doma	ain			
Choose Input Response Spectrum and Ref	erence Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum	Acceleration Units	g Units	~
Reference Acceleration Time History Farget/Matched Response Spectrum Espectro de respue del registro ajustar Espectro de puniforme MCI	sta	O	Time History Acceler ed Acceleration Time History Registro aju	ation Units stado	g Units	~
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de respue del registro ajustad Espectro de juniforme MCI Martine MCI Espectro de respue del registro ajustad	02 PQR_1970_EW	O	Time History Acceler ed Acceleration Time History Registro aju	ation Units stado gistro original	g Units	
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de respue del registro ajustas Espectro de respue uniforme MCI Espectro de respue del registro origeneses del registro origeneses	02 PQR_1970_EW	O	Time History Acceleration	ation Units stado gistro original	g Units	
Reference Acceleration Time History Farget/Matched Response Spectrum Espectro de respue del registro ajustac Espectro de respue uniforme MCI Espectro de resp del registro orig Resp. Spec. Plot Axes Options	02 PQR_1970_EW sta do opeligro E-E.030 uesta jinal Reference Plot for Reference Time History	Ce/Spectrally Match	Time History Acceleration ed Acceleration Time History Registro aju Re	ation Units stado egistro original Frequency-Domain Set Mat	g Units	~
Reference Acceleration Time History Target/Matched Response Spectrum	02 PQR_1970_EW sta do peligro E-E.030 uesta ginal Response Spectrum Plot Options O Plot for Reference Time History O Plot for Matched Time History		Time History Acceler ed Acceleration Time History Registro aju Registro aju Registr	ation Units stado gistro original Frequency-Domain Set Mate	g Units	rg

Figura III-023. Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo del 31.05.1970 Ancash, Perú

Figura III-024. Contenido de frecuencias del ajuste espectral de la componente E-W Sismo del 31.05.1970 Ancash, Perú

Time	History Function Name SAd02 PC	2R_1970_NS				
Method to Use for Spectral Matching						
Spectral Matching in Frequency D	omain O Spectral Mate	ching in Time Doma	ain			
Choose Input Response Spectrum and Re	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum	Acceleration Units	g Units	~
Reference Acceleration Time History	02 DOD 1070 NS	~ 0	Time History Acceler	ation 1 links	a Haite	
Target/Matched Response Spectrum Espectro de respu del registro ajust Espectro de uniforme MC	esta ado peligro E-E.030	e/Spectrally Matche	ed Acceleration Time History Registro a	justado	S Criss	
arget/Matched Response Spectrum del registro ajust Espectro de uniforme MC Espectro de resp del registro orig	esta ado peligro E-E,030	e/Spectrally Matche	ed Acceleration Time History Registro a	justado egistro original		
arget/Matched Response Spectrum Espectro de respu del registro ajust Espectro de uniforme MC Espectro de resp del registro orig Resp. Spec. Plot Axes Options	esta ado peligro E-E.030 uesta ginal Response Spectrum Plot Options	e/Spectrally Matche	ed Acceleration Time History Registro a	justado egistro original Frequency-Domain	Spectral Match	ng
arget/Matched Response Spectrum Espectro de respu del registro ajust Espectro de respu uniforme MC Espectro de resp del registro orig Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log	esta ado peligro E-E.030 uesta ginal Response Spectrum Plot Options O Plot for Reference Time History	e/Spectrally Matche	ed Acceleration Time History Registro a Registro a Registro a Registro a Registro a	justado egistro original Frequency-Domain Set Mate	Spectral Match	ng
arget/Matched Response Spectrum arget/Matched Response Spectrum del registro ajust Bespectro de respudel registro adultation Espectro de respudel registro origination Resp. Spec. Plot Axes Options X Lin - Y Lin X Lin - Y Log X Log - Y Lin X Log - Y Log	esta ado peligro E-E.030 uesta ginal Response Spectrum Plot Options O Plot for Reference Time History O Plot for Matched Time History	Time History P O Plot Refe O Plot Mato	ed Acceleration Time History Registro a Registro a Registro a Registro a Registro a Registro a	justado egistro original Frequency-Domain Set Mato	Spectral Match	ing

Figura III-025. Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo del 31.05.1970 Ancash, Perú

Figura III-026. Contenido de frecuencias del ajuste espectral de la componente N-S

Sismo del 31.05.1970 Ancash, Perú

- <u>SISMO DEL 03.10.1974 LIMA, PERÚ</u>

Se presenta el ajuste espectral del evento sísmico para las componentes horizontales E-W y N-S, así como el contenido de frecuencias o espectro de Fourier del movimiento sísmico original y del escalado.

Time	History Function Name SAd03 PC	2R_1974_EW				
Method to Use for Spectral Matching						
Spectral Matching in Frequency Description	omain O Spectral Mate	ching in Time Doma	ain			
Choose Input Response Spectrum and Ref	erence Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum /	Acceleration Units	g Units 🚿	~
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de respue del registro ajusta Espectro de puniforme MCI	esta	• • • • • • • • • • • • • • • • • • •	Time History Accelera ed Acceleration Time History Registro ajustad	do	g Units	
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de respue del registro ajusta Espectro de res del registro or Espectro de res del registro or	esta do peligro E-E,030	e/Spectrally Matcher	Time History Acceleration Time History Registro ajustad R	do do gistro original	g Units	
Reference Acceleration Time History Target/Matched Response Spectrum del registro ajusta Espectro de respue del registro ajusta Espectro de res del registro ori	esta do peligro E-E,030	e/Spectrally Match	Time History Acceleration Time History	do do gistro original	g Units	
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de respue del registro ajusta Espectro de respue uniforme MCI Espectro de respue del registro ori Resp. Spec. Plot Axes Options	esta do peligro E-E,030 Puesta iginal Response Spectrum Plot Options O Plot for Reference Time History	Time History F	Time History Acceleration Time History Registro ajustac R	tion Units	g Units	
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de respue del registro ajusta Espectro de respue del registro de respue del registro ori Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log X Log - Y Log	03 PQR_1974_EW esta ado peligro E-E,030 Buesta iginal Response Spectrum Plot Options O Plot for Reference Time History O Plot for Matched Time History		Time History Acceleration ed Acceleration Time History Registro ajustad Registro ajustad Registro ajustad Registro ajustad Registro ajustad Registro ajustad Registro ajustad	do do gistro original Frequency-Domain Set Mate	g Units	

Figura III-027. Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo del 03.10.1974 Lima, Perú

Figura III-028. Contenido de frecuencias del ajuste espectral de la componente E-W Sismo del 03.10.1974 Lima, Perú

Time	History Function Name SAd03 PC	2R_1974_NS				
Method to Use for Spectral Matching						
Spectral Matching in Frequency D	omain O Spectral Mate	ching in Time Doma	ain			
hoose Input Response Spectrum and Ref	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum	Acceleration Units	g Units	~
	03 DOD 1074 NS		Time History Acceler	ation Linite	a Units	~
Reference Acceleration Time History arget/Matched Response Spectrum Espectro de respu del registro ajusta Espectro de juniforme MCI	esta ado E-E.030	e/Spectrally Match		Registro ajustado		
Reference Acceleration Time History arget/Matched Response Spectrum Espectro de respu del registro ajusta Espectro de juniforme MCI Espectro de resp del registro aristo Espectro de resp del registro aristo	esta ado peligro E-E.030	e/Spectrally Matche		Registro ajustado Registro orig	inal	
Reference Acceleration Time History arget/Matched Response Spectrum del registro ajusta Espectro de respu del registro de resp del registro orig	esta ado peligro E-E.030	e/Spectrally Matche		Registro ajustado Registro orig	inal	
Reference Acceleration Time History arget/Matched Response Spectrum Espectro de respu del registro ajusti Espectro de resp del registro orig Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log	esta ado peligro E-E.030 uesta ginal Response Spectrum Plot Options O Plot for Reference Time History	Time History F	Plot Options	Registro ajustado Registro orig	inal Spectral Match	ing
Reference Acceleration Time History arget/Matched Response Spectrum del registro ajusta Espectro de respu- del registro argon Espectro de respu- del registro originario Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log X Log - Y Lin O X Log - Y Log	esta ado peligro E-E,030 uesta ginal Response Spectrum Plot Options O Plot for Reference Time History O Plot for Matched Time History	Time History P O Plot Refe O Plot Mate	Plot Options erence Time History ched Time History	Registro ajustado Registro orig	inal Spectral Match hing Parameter Time History	ing

Figura III-029. Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo del 03.10.1974 Ancash, Perú

ANÁLISIS SÍSMICO COMPARATIVO DEL DISEÑO DEL HOSPITAL DE PACASMAYO CON AISLAMIENTO ELASTOMÉRICO LRB, Y AISLAMIENTO PENDULAR FPS-TRIPLE

Figura III-030. Contenido de frecuencias del ajuste espectral de la componente N-S Sismo del 03.10.1974 Lima, Perú

- SISMO DEL 23.06.2001 AREQUIPA, PERÚ

Se presenta el ajuste espectral del evento sísmico para las componentes horizontales E-W y N-S, así como el contenido de frecuencias o espectro de Fourier del movimiento sísmico original y del escalado.

Time	History Function Name SAd04 MG	OQ001_2001_EW				
Method to Use for Spectral Matching						
Spectral Matching in Frequency D	Iomain O Spectral Mate	ching in Time Domai	n			
hoose Input Response Spectrum and Ref	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum	Acceleration Units	g Units	~
Reference Acceleration Time History	04 MOQ001_2001_EW	~ 0	Time History Accelera	ation Units	g Units	\sim
Farget/Matched Response Spectrum Espectro de respondel registro ajust Espectro uniforme	uesta tado o de peligro MCE-E.030	e/Spectrally Matche	d Acceleration Time History Registro aju	stado		
arget/Matched Response Spectrum Espectro de response del registro ajust Espectro Espectro de del registro Espectro de del registro	Reference uesta tado o de peligro MCE-E.030 respuesta o original	e/Spectrally Matche	d Acceleration Time History Registro aju	stado stro original		
arget/Matched Response Spectrum Espectro de respi del registro ajust Espectro uniforme Espectro de del registro Resp. Spec. Plot Axes Options	Reference uesta tado o de peligro MCE-E.030 respuesta o original Response Spectrum Plot Options	e/Spectrally Matche	d Acceleration Time History Registro aju Regis Regis	stado stro original	n Spectral Match	ing
arget/Matched Response Spectrum Espectro de respudel registro ajust del registro ajust Espectro de respudel registro ajust Espectro de respudel registro Barrow Resp. Spec. Plot Axes Options X Lin - Y Lin X Lin - Y Log	Reference uesta tado o de peligro MCE-E.030 respuesta o original Response Spectrum Plot Options O Plot for Reference Time History	Time History P	d Acceleration Time History Registro aju Regis Regis	stado stro original Frequency-Domain Set Mate	n Spectral Match	ing
arget/Matched Response Spectrum Espectro de respudel registro ajust Espectro de respudel registro ajust Espectro de respudel registro Espectro de registro Espectro de registro Resp. Spec. Plot Axes Options X Lin - Y Lin X Lin - Y Log X Log - Y Lin X Log - Y Log	Reference uesta tado o de peligro MCE-E.030 respuesta o original Response Spectrum Plot Options O Plot for Reference Time History O Plot for Matched Time History	Time History P O Plot Refe O Plot Mato	d Acceleration Time History Registro aju Regis Regis ot Options rence Time History hed Time History	stado stro original	n Spectral Match	ing

Figura III-031. Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo del 23.06.2001 Arequipa, Perú

Figura III-032. Contenido de frecuencias del ajuste espectral de la componente E-W

Sismo del 23.06.2001 Arequipa, Perú

Time	History Function Name SAd04 MC	Q001_2001_NS				
Method to Use for Spectral Matching						
Spectral Matching in Frequency D	Domain O Spectral Mate	hing in Time Domai	n			
Choose Input Response Spectrum and Re	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ ①	Response Spectrum Ac	cceleration Units	g Units	~
Reference Acceleration Time History	04 MOQ001_2001_NS	~ ()	Time History Acceleration	on Units	g Units	~
Espectro de resp del registro ajus Espectro uniforme	uesta itado o de peligro MCE-E.030		Registro aju	Istado	inal	
Espectro de resp del registro ajus Espectro uniforme Espectro de res del registro or	uesta tado o de peligro MCE-E.030		Registro aju	Istado Registro orig	inal	
Espectro de resp del registro ajus Espectro uniforme Espectro de res del registro or	uesta itado o de peligro MCE-E.030 spuesta riginal Besponse Spectrum Plot Options	Time History P	Registro aju	Registro orig	inal	ing
Espectro de resp del registro ajus Espectro uniforme Espectro de res del registro or Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log	Vesta tado o de peligro MCE-E.030 spuesta riginal Response Spectrum Plot Options O Plot for Reference Time History	Time History P O Plot Refe	Registro aju	Istado Registro orig	inal	ing
Espectro de resp del registro ajus Espectro uniforme Espectro de res del registro of Resp. Spec. Plot Axes Options	uesta itado o de peligro MCE-E.030 spuesta riginal Response Spectrum Plot Options O Plot for Reference Time History O Plot for Matched Time History	Time History P O Plot Refe O Plot Mato	Registro aju	Registro orig	inal Spectral Match ching Parameter h Time History	ing
Espectro de resp del registro ajus Espectro uniforme Espectro de res del registro or Resp. Spec. Plot Axes Options	uesta	Time History P O Plot Refe O Plot Both	Registro aju	Istado Registro orig	n Spectral Match ching Parameters h Time History equency Conten	ing s

Figura III-033. Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo del 23.06.2001 Arequipa, Perú

Figura III-034. Contenido de frecuencias del ajuste espectral de la componente N-S

Sismo del 23.06.2001 Arequipa, Perú

- <u>SISMO DEL 15.08.2007 ICA, PERÚ</u>

Se presenta el ajuste espectral del evento sísmico para las componentes horizontales E-W y N-S, así como el contenido de frecuencias o espectro de Fourier del movimiento sísmico original y del escalado.

Time	History Function Name SAd 05 IC	A002_2007_EW				
Aethod to Use for Spectral Matching						
Spectral Matching in Frequency D	Iomain O Spectral Mate	ching in Time Domai	1			
Choose Input Response Spectrum and Re	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum	Acceleration Units	g Units	~
Reference Acceleration Time History	05 ICA002_2007_EW	~ 0	Time History Acceler	ation Units	g Units	\sim
arget/Matched Response Spectrum Espectro de resp del registro ajus Espect uniform	uesta tado ro de peligro e MCE-E.030	e/Spectrally Matche	d Acceleration Time Histor	udo Registro original		
arget/Matched Response Spectrum Espectro de resp del registro ajus Espect uniform Espectro de del registro	uesta tado ro de peligro e MCE-E.030 respuesta original	e/Spectrally Matche	Registro ajusta	ndo Registro original		
arget/Matched Response Spectrum Espectro de resp del registro ajus Espect uniform Espectro de del registro uniform Espectro de del registro	uesta tado ro de peligro e MCE-E.030 respuesta original	e/Spectrally Matche	Acceleration Time History	y Registro original Frequency-Domain	n Spectral Match	ing
erget/Matched Response Spectrum Espectro de resp del registro ajus Espectro de del registro Espectro de del registro Espectro de del registro	uesta tado ro de peligro e MCE-E. 030 respuesta original Response Spectrum Plot Options O Plot for Reference Time History	Time History P	d Acceleration Time History Registro ajusta	y Registro original Frequency-Domain Set Mato	n Spectral Match	ing
erget/Matched Response Spectrum Espectro de resp del registro ajus Espectro de registro uniform Espectro de del registro Espectro de del registro Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log X Log - Y Lin O X Log - Y Log	Reference	Time History P O Plot Refe D Plot Refe	Acceleration Time History Registro ajusta	y tdo Registro original Frequency-Domain Set Mato	a Spectral Match	ling

Figura III-035. Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo del 15.08.2007 Ica, Perú

Figura III-036. Contenido de frecuencias del ajuste espectral de la componente E-W Sismo del 15.08.2007 Ica, Perú

Time	History Function Name SAd 05 IC	A002_2007_NS				
Method to Use for Spectral Matching						
Spectral Matching in Frequency D	Domain O Spectral Mate	ching in Time Doma	in			
Choose Input Response Spectrum and Rel	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ ()	Response Spectrum /	Acceleration Units	g Units	~
Reference Acceleration Time History	05 ICA002_2007_NS	~ ()	Time History Accelera	tion Units	g Units	\sim
Target/Matched Response Spectrum Espectro de res del registro aju Espectro d uniforme M	puesta puesta la construcción de peligro la construcción de la constru	e/Spectrally Matche	ed Acceleration Time History Registro ajust	ado		
Target/Matched Response Spectrum Espectro de resi del registro aju Espectro de uniforme M Espectro de re del registro o	puesta Istado le peligro ICE-E.030	e/Spectrally Matche	Registro ajust	ado Registro original		
Target/Matched Response Spectrum Espectro de res del registro aju Espectro d uniforme M Espectro de re del registro o Resp. Spec. Plot Axes Options	puesta istado le peligro ICE-E.030 espuesta iriginal Response Spectrum Plot Options	e/Spectrally Matche	ed Acceleration Time History Registro ajust	ado egistro original	Spectral Match	ing
Target/Matched Response Spectrum Espectro de res del registro aju Espectro de uniforme M Espectro de re del registro de Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log	Puesta Istado le peligro ICE-E.030 sepuesta ariginal Response Spectrum Plot Options O Plot for Reference Time History	Time History F	ed Acceleration Time History Registro ajust Registro ajust Registro ajust Registro ajust Registro ajust Registro ajust Registro ajust Registro ajust	ado Registro original Frequency-Domain Set Mate	n Spectral Match	ing
Target/Matched Response Spectrum Espectro de res del registro aju Espectro d uniforme M Espectro de re del registro d Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log X Log - Y Lin O X Log - Y Log	Puesta	Time History F O Plot Refe D Plot Refe	ed Acceleration Time History Registro ajust	ado Registro original Frequency-Domain Set Mate	a Spectral Match	ing

Figura III-037. Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo del 15.08.2007 Ica, Perú

Figura III-038. Contenido de frecuencias del ajuste espectral de la componente N-S Sismo del 15.08.2007 Ica, Perú

- SISMO DEL 27.02.2010 MAULE, CHILE

Se presenta el ajuste espectral del evento sísmico para las componentes horizontales E-W y N-S, así como el contenido de frecuencias o espectro de Fourier del movimiento sísmico original y del escalado.

Time	History Function Name SAd 06 co	onstitucion_2010_L				
Method to Use for Spectral Matching						
Spectral Matching in Frequency D	omain O Spectral Mate	ching in Time Domai	1			
Choose Input Response Spectrum and Ref	erence Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum /	Acceleration Units	g Units	~
Reference Acceleration Time History	06 constitucion_2010_L	~ 0	Time History Accelera	tion Units	g Units	~
Farget/Matched Response Spectrum Espectro de ress del registro ori Espectro uniforme N	puesta ginal de peligro MCE-E.030	e/Spectrally Matche	d Acceleration Time History Regist	ro ajustado		
Farget/Matched Response Spectrum Espectro de resp del registro ori Espectro uniforme M Espectro de respuesta del registro ajustado	puesta ginal de peligro MCE-E.030	e/Spectrally Matche	d Acceleration Time History Regist	ro ajustado		
Farget/Matched Response Spectrum Espectro de resp del registro ori Espectro uniforme M Espectro de respuesta del registro ajustado	Puesta ginal de peligro MCE-E.030	e/Spectrally Matche	d Acceleration Time History Regist Regist Regist	ro ajustado	n Spectral Matching	
Espectro de resp del registro ori Espectro de resp del registro ori Espectro uniforme M Espectro de respuesta del registro ajustado	Puesta ginal de peligro MCE-E.030 Response Spectrum Plot Options O Plot for Reference Time History	e/Spectrally Matche	d Acceleration Time History Regist Regist Regist ot Options ence Time History	ro ajustado international stro original Frequency-Domain Set Mate	n Spectral Matching ching Parameters	
Farget/Matched Response Spectrum Espectro de residel registro ori Gel registro ori Espectro de respuesta del registro ajustado Resp. Spec. Plot Axes Options X Lin - Y Lin X Lin - Y Log X Log - Y Lin X Log - Y Log	Puesta ginal de peligro MCE-E.030 Response Spectrum Plot Options O Plot for Reference Time History O Plot for Matched Time History	e/Spectrally Matche	d Acceleration Time History Regist Regist Regist et Options ence Time History hed Time History	ro ajustado	h Spectral Matching ching Parameters	

Figura III-039. Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo del 27.02.2010 Maule, Chile

Figura III-040. Contenido de frecuencias del ajuste espectral de la componente E-W Sismo del 27.02.2010 Maule, Chile

Time	e History Function Name SAd06 co	nstitucion_2010_T				
Method to Use for Spectral Matching						
Spectral Matching in Frequency	Domain O Spectral Mate	ching in Time Doma	in			
Choose Input Response Spectrum and Re	eference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum Acc	celeration Units	g Units	~
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de resp del registro orig Espect uniform	06 constitucion_2010_T uesta ginal ro de peligro e MCE-E.030	O	Time History Acceleration ed Acceleration Time History Registro ajusta	do	g Units	~
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de resp del registro orig Espectro de resp del registro ajus	06 constitucion_2010_T uesta ginal ro de peligro e MCE-E.030 uesta stado	O	Time History Acceleration ad Acceleration Time History Registro ajusta Regist	do do ro original	g Units	~
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de resp del registro orig Espectro de resp del registro ajus Espectro de resp del registro ajus	06 constitucion_2010_T	O	Time History Acceleration	do do ro original	g Units	•
Reference Acceleration Time History Target/Matched Response Spectrum	06 constitucion_2010_T	O Plot Before	Time History Acceleration ad Acceleration Time History Registro ajusta Registro Regist Regist Regist Regist Regist	n Units do ro original Frequency-Domain Set Mate	g Units	ng
Reference Acceleration Time History Target/Matched Response Spectrum Espectro de resp del registro orig Espectrum Espectro de resp del registro ajus Resp. Spec. Plot Axes Options © X Lin - Y Lin O X Lin - Y Log X Lin - Y Lin O X Lin - Y Log	06 constitucion_2010_T		Time History Acceleration ad Acceleration Time History Registro ajusta Regist R	n Units do ro original Frequency-Domain Set Mate	g Units	ng

Figura III-041. Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo del 27.02.2010 Maule, Chile

Figura III-042. Contenido de frecuencias del ajuste espectral de la componente N-S Sismo del 27.02.2010 Maule, Chile

- SISMO DEL 16.04.2016 MANABÍ, ECUADOR

Se presenta el ajuste espectral del evento sísmico para las componentes horizontales E-W y N-S, así como el contenido de frecuencias o espectro de Fourier del movimiento sísmico original y del escalado.

Time	History Function Name SAd07 AN	4NT_2016_EW				
Method to Use for Spectral Matching						
Spectral Matching in Frequency D	omain O Spectral Mate	ching in Time Doma	ain			
Choose Input Response Spectrum and Ref	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	× 0	Response Spectrum Acc	celeration Units	g Units	~
Reference Acceleration Time History	07 AMNT_2016_EW	~ ()	Time History Acceleration	n Units	g Units	~
Farget/Matched Response Spectrum Espectro de resp del registro ajus Espectro d uniforme M	Puesta stado e peligro CE-E.030	e/Spectrally Matche	ed Acceleration Time History Registro ajusta Registro origin	do Marina Marina		~
Espectro de resp del registro ajus Espectro d uniforme M Espectro de r del registro ajus	e peligro CE-E.030 espuesta original	e/Spectrally Matche	ed Acceleration Time History Registro ajusta Registro origin	do mante and a second and a second		~
arget/Matched Response Spectrum Espectro de resp del registro ajus Espectro d uniforme M Espectro de r del registro a Resp. Spec. Plot Axes Options	e peligro CE-E.030 espuesta original	Time History F	ed Acceleration Time History Registro ajusta Registro origin	do nal	Spectral Matchin	
arget/Matched Response Spectrum Espectro de resp del registro ajus del registro du Espectro d uniforme M Espectro de registro a Resp. Spec. Plot Axes Options XLin - Y Lin XLin - Y Log	Reference stado e peligro CE-E.030 espuesta original Response Spectrum Plot Options O Plot for Reference Time History	Time History F	ed Acceleration Time History Registro ajusta Registro origin Plot Options erence Time History	do nal Frequency-Domain Set Mato	Spectral Matchin	
arget/Matched Response Spectrum Espectro de resp del registro ajus Espectro d uniforme M Espectro de r del registro d Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log X Log - Y Lin O X Log - Y Log	Puesta tado e peligro CE-E.030 espuesta original Response Spectrum Plot Options O Plot for Reference Time History O Plot for Matched Time History	Time History F O Plot Refe O Plot Mato	ed Acceleration Time History Registro ajusta Registro origin Plot Options erence Time History ched Time History	do nal Frequency-Domain Set Mate	Spectral Matchin hing Parameters Time History	

Figura III-043. Ajuste espectral en el dominio de las frecuencias de la componente E-W Sismo del 16.04.2016 Manabí, Ecuador

Figura III-044. Contenido de frecuencias del ajuste espectral de la componente E-W Sismo del 16.04.2016 Manabí, Ecuador

Time	History Function Name SAd07 AN	MNT_2016_NS				
Method to Use for Spectral Matching						
Spectral Matching in Frequency I	Domain O Spectral Mate	ching in Time Doma	in			
Choose Input Response Spectrum and Re	ference Time History					
Target Response Spectrum	ER-E.030_MCE-TH-R=1	~ 0	Response Spectrum Acc	eleration Units	g Units	~
Reference Acceleration Time History	07 AMNT 2016 NS				140.00	
Target/Matched Response Spectrum Espectro de res del registro aj Espect uniform	spuesta stado solo de peligro e MCE-E.030	e/Spectrally Matche	Registro ajustado	h Units	g Units	~
Target/Matched Response Spectrum Espectro de res del registro aj Espectro de res del registro de res del registres del registro de res del registro de res del registr	spuesta istado ro de peligro e MCE-E.030 spuesta riginal	e/Spectrally Matche	Registro original	- Units	g Units	~
Target/Matched Response Spectrum Espectro de res del registro aj Espectruniform Espectro de re del registro o Resp. Spec. Plot Axes Options	spuesta istado ro de peligro e MCE-E.030 spuesta riginal	e/Spectrally Matche	Registro ajustado Registro original	Frequency-Domain	g Units	~
Target/Matched Response Spectrum Espectro de res del registro aj Espectro de res del registro aj Espectro de res del registro o Resp. Spec. Plot Axes Options X Lin - Y Lin O X Lin - Y Log	Puesta istado ro de peligro e MCE-E.030 spuesta riginal Response Spectrum Plot Options O Plot for Reference Time History	e/Spectrally Matche	ed Acceleration Time History Registro ajustado Registro original	Frequency-Domain Set Mato	g Units	ing
Target/Matched Response Spectrum Espectro de rei del registro aj Espectro de rei del registro o Espectro de rei del registro o Resp. Spec. Plot Axes Options	spuesta istado ro de peligro e MCE-E.030 spuesta riginal Response Spectrum Plot Options O Plot for Reference Time History O Plot for Matched Time History	Constant of the second se	Registro ajustado Registro original	Frequency-Domain Set Mate	g Units	ing s

Figura III-045. Ajuste espectral en el dominio de las frecuencias de la componente N-S Sismo del 16.04.2016 Manabí, Ecuador

Figura III-046. Contenido de frecuencias del ajuste espectral de la componente N-S Sismo del 16.04.2016 Manabí, Ecuador

Fuente: Elaboración propia, ETABS, 2019

Como resultado del ajuste espectral de los registros sísmicos, se generaron nuevos registros sísmicos, todos ajustados al sismo máximo considerado MCE. Los nuevos registros presentaron las siguientes características:

Tabla III-33

Movimientos sísmicos ajustados espectralmente al sismo MCE

	,							
MOVIMIENTOS SÍSMICOS AJUSTADOS ESPECTRALMENTE A MCE								
REGISTRO AJUSTADO A		COMPONENTES	ACEL. MÁX. PGA (g)					
	E.030-MCE	AJUSTADOS	Comp. 1	Comp. 2				
SAd01	PRQ_1966	E-W, N-S	0.683	0.718				
SAd02	PRQ_1970	E-W, N-S	0.752	0.661				
SAd03	PRQ_1974	E-W, N-S	0.780	0.816				
SAd04	MOQ001_2001	E-W, N-S	0.697	0.640				
SAd05	ICA002_2007	E-W, N-S	0.539	0.536				
SAd06	constitucion_2010	L, T	0.494	0.598				
SAd07	AMNT_2016	E-W, N-S	0.614	0.816				

Fuente: Elaboración propia, Microsoft Excel, 2019.

3.8.6 <u>EVALUACIÓN DEL DISEÑO SÍSMICO CON AISLAMIENTO</u> <u>ELASTOMÉRICO CON NÚCLEO DE PLOMO LRB (LEAD BEARING</u> <u>RUBBER)</u>

La verificación del diseño existente de la edificación principal del Hospital de Pacasmayo con aislamiento elastomérico tipo LRB, fue realizado empleando el procedimiento de análisis de Historia de respuesta o Tiempo-Historia indicado en el capítulo 17 de ASCE/SEI 7-16, con la asistencia del programa ETABS 17.0.1. La evaluación consistió en someter linealmente un modelo matemático representativo de la distribución espacial de masas y rigideces de la estructura, a siete (07) pares de movimientos sísmicos seleccionados y escalados según lo indicado en la sección 3.3.2.f; y ajustar los resultados lineales al comportamiento no-lineal propio de la estructura, para determinar su respuesta sísmica en función del nivel de desempeño de la estructura o el nivel de daño alcanzado.

Como se especifica en la sección 3.3, ASCE/SEI 7-16, funda que el análisis debe realizarse tanto para el límite superior como para el límite inferior de las propiedades del sistema de aislamiento, y deben considerarse los resultados más desfavorables; pero por efectos de practicidad, se realizó el análisis para límite superior utilizando los movimientos sísmicos correspondientes al sismo base de diseño DE, y el análisis para límite inferior con los movimientos sísmicos correspondientes al máximo sismo considerado MCE. Lo anterior tiene su sustento en que para DE y las propiedades de límite superior, el desplazamiento del sistema de aislamiento es pequeño, por tratarse de un sismo menor que MCE y un sistema de aislamiento con mayor rigidez, lo que hace que los aisladores disipen menos energía, y que ingrese así mayor fuerza sísmica a la superestructura; caso contrario, para MCE y las propiedades de límite inferior, el desplazamiento del sistema de aislamiento es grande, por tratarse del máximo sismo considerado y un sistema de aislamiento con mayor flexibilidad, lo que hace que los aisladores disipen mucha energía, pudiendo llegar alguno hasta su nivel de colapso. Esta suposición para la simplificación de la realización de los análisis, se encuentra limitada a que en el contexto de máximo sismo considerado MCE y las propiedades máximas alcanzadas por el sistema de aislamiento, logre ingresar mayor fuerza sísmica que en el sismo DE; la primera razón de esto es que el sismo MCE es un sismo 50% mayor que DE, y que esta diferencia siempre hará que ingrese mayor fuerza en el sismo MCE, incluso si para

DE el sistema de aislamiento alcanza un periodo menor y disipe menos energía; la segunda razón es que en el sismo DE ingresará mayor fuerza, siempre y cuando los aisladores sean de gran flexibilidad como para hacer que los periodos correspondientes a cada sismo sean lo suficientemente distintos, lo cual no es el caso más común. Para los dos casos de estudio de la presente tesis, se ha encontrado que, bajo la condición de las propiedades de límite superior del sistema de aislamiento, la fuerza sísmica que ingresa a la estructura para DE, es aproximadamente de 80 a 90% el valor correspondiente a MCE, y que la respuesta de la estructura en DE, a nivel de entrepiso, es casi igual a la respuesta en MCE.

De lo comentado, se puede concluir que, el comportamiento de las estructuras sobre sistemas de aislamiento con incremento de su rigidez en el sismo DE, será bastante cercano a su comportamiento en el sismo MCE, para las mismas condiciones de rigidez; pudiendo igualarlo o ser mayor en algunos casos. Por otro lado, se acepta la suposición de la condición de sismo DE y las propiedades de límite superior, para la simplificación del análisis, al tomarse en cuenta la probabilidad de ocurrencia del sismo.

Fuente: Adaptado del Expediente Técnico del Hospital de Pacasmayo, 2017.

*Figura III-***047b.** Planta Interfaz de aislamiento Módulo-A Hospital de Pacasmayo Fuente: Expediente Técnico del Hospital de Pacasmayo, 2017 [CD-ROM]

*Figura III-***048.** Planta Aligerado Nivel de base Módulo-A Hospital de Pacasmayo Fuente: Expediente Técnico del Hospital de Pacasmayo, 2017 [CD-ROM]

*Figura III-***049.** Planta Aligerado 1er. Piso Módulo-A Hospital de Pacasmayo Fuente: Expediente Técnico del Hospital de Pacasmayo, 2017 [CD-ROM]

*Figura III-***050.** Planta Aligerado 2do. Piso Módulo-A Hospital de Pacasmayo Fuente: Expediente Técnico del Hospital de Pacasmayo, 2017 [CD-ROM]

*Figura III-***051.** Planta Aligerado 4to. Piso Módulo-A Hospital de Pacasmayo Fuente: Expediente Técnico del Hospital de Pacasmayo, 2017 [CD-ROM]

a. MODELO MATEMÁTICO DE MASAS Y RIGIDECES

Se generaron dos (02) modelos matemáticos en el programa ETABS 17.0.1, para representar el sistema de aislamiento, el nivel de base y la superestructura, bajo las condiciones de límite superior e inferior de las propiedades del sistema de aislamiento. Para el modelamiento del sistema de aislamiento se definieron 3 tipos de elementos enlace (link), dos (02) tipos de aisladores elastoméricos LRB y un (01) deslizador de teflón o Slider PTFE, cada tipo de aislador y deslizador con sus respectivas características histeréticas. El nivel de base y la superestructura fueron modelados como un sistema integral de pisos y marcos, se utilizaron elementos tipo marco (frame) verticales y horizontales, para representar los pórticos de concreto armado, y se emplearon elementos planos horizontales tipo área (Shell) para representaron las losas de cada piso.

Se modelaron seis (06) módulos estructurales de cuatro (04) pisos sobre un único nivel de base, los módulos se encuentran separados, según las juntas especificadas en el Expediente Técnico.

*Figura III-***052.** Modelo matemático –Planta de nivel de base. Diseño con aisladores LRB Fuente: Elaboración propia, ETABS, 2019

*Figura III-***053.** Modelo matemático – Planta 1er-piso. Diseño con aisladores LRB Fuente: Elaboración propia, ETABS, 2019

*Figura III-***054. Modelo matemático – Planta 2do-3er-piso. Diseño con aisladores LRB** Fuente: Elaboración propia, ETABS, 2019

*Figura III-***055.** Modelo matemático – Planta 4to-piso. Diseño con aisladores LRB Fuente: Elaboración propia, ETABS, 2019

*Figura III-***056.** Modelo matemático – Elevación frontal. Diseño con aisladores LRB Fuente: Elaboración propia, ETABS, 2019

*Figura III-***057.** Modelo matemático – Elevación lateral. Diseño con aisladores LRB Fuente: Elaboración propia, ETABS, 2019

*Figura III-***058.** Modelo matemático – Vista 3D. Diseño con aisladores LRB Fuente: Elaboración propia, ETABS, 2019

DEFINICIÓN DE LAS CARACTERÍSTICAS DE LOS MATERIALES

Las propiedades mecánicas de los materiales utilizados para el análisis y la construcción de la edificación del Hospital de Pacasmayo, fueron definidas para el modelo matemático en ETABS 17 según los datos indicados en la sección 3.1.4. Para el concreto, se deben definir la masa y el peso unitario del material, el módulo de elasticidad (E), el coeficiente de Poisson (μ) y la resistencia a la compresión del concreto (f'c). Para el acero de refuerzo se deben definir el módulo de elasticidad (E) y el esfuerzo de fluencia (fy).

Material Property Data	Material Property Design Data	×
General Data Material Name CONC-fc=210 Material Type (Tipo de material) Concrete (Concreto) Directional Symmetry Type (Tipo de simetría direccional) Material Display Color Isotropic (Isotrópico) Material Notes Modify/Show Notes Material Weight and Mass Modify/Show Notes Material Weight and Mass Specify Weight Density (Especificar densidad por peso) Weight per Unit Volume Peso por unidad de volumen Mass per Unit Volume Q.245014 Mechanical Property Data (Propiedades mecánicas) Modulus of Elasticidad Poisson's Ratio, U Coefficient of Themal Epanaion, A Coefficient de Poisson Shear Modulus, G 0.2000099 905711.05	Material Name and Type Material Name CONC-fc=210 Material Type Concrete, Isotropic Design Properties for Concrete Materials (Propiedades de diseño para concreto) Specified Concrete Compressive Strength, f'c 2109.21 Especificar resistencia a la compresión del concreto Lightweight Concrete Shear Strength Reduction Factor OK OK Cancel	
Design Property Data Modify/Show Material Property Design Data Advanced Material Property Data Nonlinear Material Data Material Dampin Time Dependent Properties OK Cancel	ng Properties	

Figura III-059. Definición de las características del concreto f'c=210Kg/cm2

👔 Material Property Data	Material Property Design Data	×
Material Property Data General Data Material Name CONC-fc=280 Material Name (Concreto) Directional Symmetry Type (Tipo de simetría direccional) Material Display Color Material Display Color Material Notes Material Notes Material Weight and Mass Specify Weight Density (Especificar densidad por peso) Weight per Unit Volume Peso por united de volumen Peso por united de volumen	Material Property Design Data Material Name and Type Material Name CONCfc=280 Material Type Concrete, Isotropic Design Properties for Concrete Materials (Propiedades de diseño para concreto) Specified Concrete Compressive Strength, fc 2812.28 tonf/m ² Especificar resistencia a la compressión del concreto Ughtweight Concrete Shear Strength Reduction Factor	×
Peso por unidad de volumen 0.245014 Masa per unidad de volumen 0.245014 Mechanical Property Data (Propiedades mecánicas) Modulus of Elasticity, E 2509980.08 Módulo de elasticidad 0.2 Poisson's Ratio, U 0.2 Coeficient of Poisson 0.2 Coeficiente de Poisson 0.0000099 Shear Modulus, G 1045825.03	OK Cancel	
Design Property Data Modify/Show Material Property Design Data Advanced Material Property Data Nonlinear Material Data Material Data Material Data Material Data OK	ng Properties	

Figura III-060. Definición de las características del concreto f'c=280Kg/cm2

Material Property Data		Material Property Design Data	>
General Data Material Name Material Type (Tipo de material) Directional Symmetry Type (Tipo de simetría direccional)	A615Gr60 Rebar (Refuerzo) Uniaxial	Material Name and Type Material Name Material Type Design Properties for Rebar Materials	A615Gr60 Rebar, Uniaxial (Propiedades de diseño para refuerzo)
Material Display Color Material Notes	Change Modify/Show Notes	Minimum Yield Strength, Fy Mínimo esfuerzo de fluencia Minimum Tensile Strength, Fu Mínimo esfuerzo de tensión	42184.18 tonf/m ² 63276.27 tonf/m ²
Material Weight and Mass Specify Weight Density (Especificar densidad por peso) Weight per Unit Volume Peso por unidad de volumen Mass per Unit Volume Mass por unidad de volumen	O Specify Mass Density 7.849 0.80038	Expected Yield Strength, Fye Expected Tensile Strength, Fue	46402.6 tonf/m ² 69603.89 tonf/m ²
Mechanical Property Data (Propiedade Modulus of Elasticity, E Módulo de elasticidad Coefficient of Themal Expansion, A Coefficiente de expansión térmica	es mecánicas) 20389019.16 0.0000117	ОК	Cancel
Design Property Data Modify/Show Ma	aterial Property Design Data		
Advanced Material Property Data Nonlinear Material Data Time De	Material Damping	Properties	
ОК	Cancel		

Figura III-061. Definición de las características del acero de refuerzo fy=4200Kg/cm2

Fuente: Elaboración propia, ETABS, 2019

<u>DEFINICIÓN DE COLUMNAS Y VIGAS – ELEMENTOS TIPO MARCO</u> (<u>FRAME</u>)

Las columnas y vigas fueron modeladas como elementos tipo marco (frame). Se definieron las dimensiones y el respectivo acero de refuerzo de columnas y vigas en ETABS 17, utilizando las secciones de columnas y vigas especificadas en los planos de detalle del Expediente Técnico del Hospital.

Las secciones de las columnas utilizadas para la definición propia de columnas como elementos frame, se encuentran indicadas en las siguientes Tablas:

Tabla III-34a

Cuadro de columnas – Edificación principal aislada (Ver Anexo-1: Contenido de Tablas)

Tabla III-34b

Cuadro de columnas – Edificación principal aislada (Ver Anexo-1: Contenido de Tablas)

La definición de columnas en ETABS, se realiza, ingresando las dimensiones y el acero de refuerzo llenando el Tabla de dialogo Frame Sectión Property Data (Propiedades de sección de marco), tal y como se visualiza en la siguiente imagen:

ieneral Data					
Property Name	C-1-60x60-1				
Material	CONC-fc=210	~ .		2 1	
Notional Size Data	Modify/Show N	lotional Size		•	•
Display Color		Change		• <	•
Notes	Modify/Sho	w Notes			•
hane					
Section Shape	Concrete Rectangu	ar V			
Section Property Source					
Source: User Defined			P	roperty Modifiers	
Dimen	siones de			Modify/Show	Modifiers
Depth (profundided)	6	16		Currently	Default
Width (ancho)			R	einforcement	
(alicito)	Ľ	m		Modify/Show	w Rebar
Frame Section Property Re	inforcement Data		×		×
	Diseño como				
Design Type	columna Rebar Mate	erial (Material de ba	irras de refuer.	zo)	
P-M2-M3 Design (Co	Sumn) Longitu	dinal Bars	A615Gr60	~	
M3 Design Only (Be)	am) Confine	ment Bars (Ties)	A615Gr60	~	
Reinforcement Configuration	Confineme	nt Bars	Check/Design		
Rectangular	Ties	(estribos)	Reinforce	ement to be Checke	ed
◯ Circular	Barras	als	Reinforce	ement to be Designe	ed
Longitudinal Bars	gitudinales				
Clear Cover for Confinen	nent Bars (recub	rimiento)	0	.04	m
Number of Longitudinal	Bars Along 3-dir Face (varill	as eje 3-3)	5		
Number of Longitudinal	Bars Along 2-dir Face (var	illas eje 2-2)	5		
Longitudinal Bar Size an	d Area (barra-longitud	linal ⊭6 (Ø 3/4")	× 2	.84	cm ²
Comer Bar Size and Are	a (barra-esquina)	#8 (Ø1")	× 5	.1	cm ²
Confinement Ram Con	finamiento				
Confinement Bar Size an	d Area (barra-confina	miento) $(\emptyset 3/8")$	~ 0	.71	cm ²
Longitudinal Spacing of	Confinement Bars (Along 1-As	is) (espaciamie	ento)	.1	m
Number of Confinement	Bars in 3-dir (# barras-	confinamiento eie 3	-3) 4		
	Bars in 2-dir (# barras-	confinamiento eje 3	-2)		
Number of Confinement		commannento eje 2			

Figura III-062. Definición de Columna C1(.60x.060) del 1er-piso como elemento frame Fuente: Elaboración propia, ETABS, 2019

Se tomaron secciones tanto para los extremos como para el centro de luz de las vigas, las secciones utilizadas tuvieron que simplificarse de las secciones especificadas en el Expediente Técnico del Hospital.

Las secciones de los extremos de las vigas, utilizadas para la definición propia de vigas como elementos frame, se encuentran indicadas en las siguientes Tablas:

Tabla III-35

Secciones de los extremos de vigas del 1er. piso de los bloques A1-A2. Definición como elementos frame en ETABS 17. (Ver Anexo-1: Contenido de Tablas)

Tabla III-36

Secciones de los extremos de vigas del 2do. y 3er. piso de los bloques A1-A2. Definición como elementos frame en ETABS 17. (Ver Anexo-1: Contenido de Tablas)

Tabla III-37

Secciones de los extremos de vigas del 4to. piso de los bloques A1-A2. Definición como elementos frame en ETABS 17. (Ver Anexo-1: Contenido de Tablas)

Tabla III-38

Secciones de los extremos de vigas del 1er.-3er. piso del bloque A3. Definición como elementos frame en ETABS 17. (Ver Anexo-1: Contenido de Tablas)

Tabla III-39

Secciones de los extremos de vigas del 4to. piso del bloque A3. Definición como elementos frame en ETABS 17. (Ver Anexo-1: Contenido de Tablas)

Tabla III-40

Secciones de los extremos de vigas del 1er. piso del bloque A4. Definición como elementos frame en ETABS 17

(Ver Anexo-1: Contenido de Tablas)

Tabla III-41

Secciones de los extremos de vigas del 2do.-3er. piso del bloque A4. Definición como elementos frame en ETABS 17 (Ver Anexo-1: Contenido de Tablas)

Tabla III-42

Secciones de los extremos de vigas del 2do.-3er. piso del bloque A4. Definición como elementos frame en ETABS 17 (Ver Anexo-1: Contenido de Tablas)

Tabla III-43

Secciones de los extremos de vigas del 4to. piso del bloque A4. Definición como elementos frame en ETABS 17 (Ver Anexo-1: Contenido de Tablas)

Tabla III-44

Secciones de los extremos de vigas del 1er.-3er. piso de los bloques A5-A6. Definición como elementos frame en ETABS 17 (Ver Anexo-1: Contenido de Tablas)

Tabla III-45

Secciones de los extremos de vigas del 4to. piso de los bloques A5-A6. Definición como elementos frame en ETABS 17. (Ver Anexo-1: Contenido de Tablas)

La definición de vigas en ETABS, se realiza, ingresando las dimensiones y el acero de refuerzo llenando el Tabla de dialogo Frame Sectión Property Data (Propiedades de sección de marco), tal y como se visualiza en la siguiente imagen:

	General Data		
	Property Name	V103b-30x75	
	Material	CONC-Fc=210 ~	2
	Notional Size Data	Modify/Show Notional Size	3
	Display Color	Change	▲ ↓ ↓
	Notes	Modify/Show Notes	
	Shape		
	Section Shape	Concrete Rectangular V	
	Section Property Source		
	Source: User Defined		Property Modifiers
	Dimension	es de	Modify/Show Modifiers
	Section Dimensions		Currently Default
	Depth (profundidad)	0.75 m	Reinforcement
	Width (ancho)	0.3 m	Modify/Show Rebar
	Erame Section Property Reinfor	rement Data	× ×
	Tame Section Property Remon		~
	Design Type	Rebar Material (Material de barras de	refuerzo)
iseño como viga	P-M2-M3 Design (Column	Longitudinal Bars A615Gr	60 ~
brimiento	M3 Design Only (Beam)	Confinement Bars (Ties) A615Gr	60 ~
centroide		-	
efuerzo	Cover to Longitudinal Rebar Gro	p Centroid Reinforcement Area Overwi	ites for Ductile Beams (Area de refuerzo)
	(barra superior)	m Top Bars at I-End (extremo i barra superio	or) 14.25 cm ²
	Bottom Bars 0.06 (barra inferior)	m Top Bars at J-End (extremo j barra superio	or) 14.25 cm ²
		Bottom Bars at I-End (extremo i barra inferior	8.55 cm ²
		Bottom Bars at J-End (extremo j barra inferio	r) 8.55 cm ²

Figura III-063. Definición de Viga V103b(.30x.75) como elemento frame

Fuente: Elaboración propia, ETABS, 2019

<u>DEFINICIÓN DE LAS LOSAS DE PISO – ELEMENTOS TIPO ÁREA</u> <u>HORIZONTAL (SHELL)</u>

Las losas de piso fueron modeladas como elementos tipo área (shell). Las losas aligeradas en dos sentidos con una altura h=25cm, se modelaron definiendo elementos shell enteramente de concreto f'c=210Kg/cm2 con un espesor equivalente de 16.4cm, el espesor equivalente es la altura de una losa maciza de concreto que tiene el mismo peso unitario de la losa aligerada; así pues, una losa aligerada en dos sentidos con h=25cm, tiene un peso unitario de 395Kg/m2, y es equivalente a una losa maciza de concreto con h=16.4cm. Por su parte las losas macizas del nivel de base con h=20cm, se modelaron como elementos shell de concreto f'c=210Kg/cm2 con un espesor de 20cm.

Property Name	
Troperty Hame	ALIG-2D-H=0.25
Slab Material	CONC-fc=210 ~
Notional Size Data	Modify/Show Notional Size
Modeling Type (tipo de modelamiento)	Shell-Thin (Área delgada) 🗸 🗸 🗸
Modifiers (Currently Default)	Modify/Show
Display Color	Change
Property Notes	Modify/Show
Type (upo de propiedad)	0.164 m
Type (tipo de propiedad)	Slab (Losa)
Thicknestespesor)	
Thicknestespesor)	(espesor equivalente)
Thicknes(espesor)	(espesor equivalente)

*Figura III-*064. Definición de losas aligeradas h=25cm en dos direcciones como elementos shell

Fuente: Elaboración propia, ETABS, 2019

General Data		
Property Name	LOSA-H=0.20	
Slab Material	CONC-fc=210 ~	
Notional Size Data	Modify/Show Notional Size	
Modeling Type (tipo de modelamiento)	Shell-Thin (Área delgada) 🛛 🗸 🗸	
Modifiers (Currently Default)	Modify/Show	
Display Color	Change	
Property Notes	Modify/Show	
Type (tipo de propiedad) Thicknestespesor)	Slab (Losa) V 0.2 m	

*Figura III-*065. Definición de losas macizas h=20cm como elementos shell

Fuente: Elaboración propia, ETABS, 2019

A todos los nodos de las losas o elementos shell en un piso, se les asigna la condición de diafragma rígido, con la finalidad de modelar la compatibilización de deformaciones, y la distribución en planta de las fuerzas horizontales sea en función de las rigideces de los elementos resistentes.

DEFINICIÓN DE LAS UNIDADES DE AISLAMIETO – ELEMENTOS ENLACE (LINK)

Los aisladores sísmicos de base fueron modelados como elementos enlace (link). Se definieron dos (02) tipos de aisladores LRB (Lead Rubber Bearing) y un (01) deslizador de teflón (Slider PTFE). Las características mecánicas de los aisladores y deslizadores fueron tomadas de las características especificadas en el Expediente Técnico.

Las propiedades nominales de los aisladores y deslizadores, fueron modificadas por los factores de límite superior y límite inferior, definiéndose los aisladores y deslizadores para cada límite. Los factores de modificación de propiedades fueron tomados de la Tabla C17.2-7 de ASCE/SEI 7-16 (Tabla III-14) Factores para fabricantes calificados, de la siguiente manera:

Para aisladores elastoméricos LRB:

Fuerza de fluencia, F_y : $\lambda_{máx} = 1.55$, $\lambda_{mín} = 0.78$ Rigidez post-fluencia, K_d : $\lambda_{máx} = 1.30$, $\lambda_{mín} = 0.80$ Para deslizadores de teflón Slider PTFE:
Coeficiente de fricción, μ : $\lambda_{máx} = 1.60$, $\lambda_{mín} = 0.80$

<u>AISLADOR LRB-B:</u> Tipo de aislador elastomérico LRB. Sus características mecánicas y sus características histeréticas se detallan en las siguientes Tablas:

Tabla III-46

Propiedades Aislador Elastomérico LRB-B

_

PROPIEDADES AISLAD	OR ELASTOMÉRICO LR	B-B	
	PROPIEDADE	S GEOMÍ	ÉTRICAS
	Diametro aislador	Di =	0.700 m
	Diametro nucleo plomo	Dp =	0.102 m
	Altura aislador	Hi =	0.254 m
	Diametro efectivo aislador	B =	0.598 m
	Número de capas	N =	7
	Espesor capas caucho	ti =	0.025 m
	Altura total caucho	Tr =	0.178 m
	PROPIED	ADES-GC	OMA
	Modulo de corte	G =	55.000 ton/m2
	Rigidez post-fluencia	Kd =	116.539 ton/m
AISLADOR LRB (LEAD RUBBER BEARING)	PROPIED	ADES-PLO	ОМО
	Esfuerzo de fluencia	$\sigma y =$	810.000 ton/m2
	Fuerza de histéresis	Qd =	6.567 ton
	Rigidez elastica	Ke =	1165.387 ton/m
	Deformación de fluencia	Dy =	0.006 m
	Fuerza de fluencia	Fv =	7.297 ton

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-47

Características histeréticas de aislador elastomérico LRB-B para el sismo BDE y propiedades

de límite superior

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-48. Características histeréticas de aislador elastomérico LRB-B para el sismo MCE y propiedades de límite inferior.

Fuente: Elaboración propia, Microsoft Excel, 2019

El modelamiento de los aisladores elastoméricos LRB-B en ETABS para límite superior y límite inferior, considera las características nolineales del comportamiento histerético, y fue realizado, ingresando la rigidez axial, la rigidez elástica del plomo y un factor de rigidez post-fluencia de la goma en el Tabla de dialogo Link Property Data (Propiedades de enlace), tal y como se visualiza en las siguientes imágenes:

Link Prope	ty Name	LR	B-B(Upper)	Link Type	Rubber Isolator	
Link Prope	ty Notes		Modify/Show Notes	P-Delta Parameters	Modify/Show	
Total Mass an	d Weight			Link/Support Directional	Properties	
Mass (mas	a de aisla	idor) 0	tonf-s²/m	Identification		
Weight (pe	so de aisl	ador) 0	tonf	Property Name	LRB-B(Upper)	
				Direction	U2	
Factors for Lin	e and Are	ea Springs		Туре	Rubber Isolator	
Link/Suppo	ort Proper	ty is Define	d for This Length When Used in	NonLinear	Yes	
Link/Suppo	ort Proper	ty is Define	d for This Area When Used in a	Linear Properties (Propi	edades lineales)	
Directional Pro	perties	(Propiedade	es para cada dirección)	Effective Stiffness	0.001 tonf/m	
Direction	Fixed	NonLinear	Properties	Effective Damping	0 tonf-s/m	
✓ U1			Modify/Show for U1	Shear Deformation Locati	on (Localización de deformación por corte	e)
✓ U2		\checkmark	Modify/Show for U2	Distance from End-J (Distancia desde extre	0.145 m	
✓ U3		\checkmark	Modify/Show for U3	Nonlinear Properties (Pro	opiedades no-lineales)	
			Fix All	Stiffness	1165.39 tonf/m	
				(Rigidez) Yield Strength	11.32 tonf	
			OK	Post Yield Stiffness Ra (Eactor de rigidez pos	tio 0.13	
			- SK	(Factor de figidez pos	(interest)	

Figura III-066. Definición de aislador LRB-B para límite superior como elementos link Fuente: Elaboración propia, ETABS, 2019

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INEGENIERÍA E.P. INGENIERÍA CIVIL

Total Mass and Weight Mass (masa de aislador) 0 tonf-s²/m Weight (peso de aislador) 0 tonf	Link/Support Directional Pr Identification Property Name Direction Type NonLinear	LRB-B(Lower) U2 Rubber Isolator
Mass (masa de aislador) 0 tonf-s ² /m Weight (peso de aislador) 0 tonf Factors for Line and Area Springs Link/Support Property is Defined for This Length When Used in Link/Support Property is Defined for This Area When Used in ar	Identification Property Name Direction Type NonLinear	LRB-B(Lower) U2 Rubber Isolator
Factors for Line and Area Springs Link/Support Property is Defined for This Length When Used in Link/Support Property is Defined for This Area When Used in ar	Type NonLinear	Rubber Isolator
		Yes
Directional Properties (Propiedades para cada dirección) Direction Fixed VU1 Modify/Show for U1 VU2 Modify/Show for U2 U3 Modify/Show for U3 Fix All	Linear Properties (Propieda Effective Stiffness (Rigidez efectiva) Effective Damping (Amortiguamiento efecti Shear Deformation Location Distance from End-J (Distancia desde extremo Nonlinear Properties (Propi Stiffness (Rigidez) Yield Strength (Fuerza de fluencia) Post Yield Stiffness Ratio (Factor de rigidez post-fi	ades lineales) 0.001 tonf/m 0 tonf-s/m (Localización de deformación por corte) 0.145 m iedades no-lineales) 1166.76 tonf/m 5.69 tonf huencia

*Figura III-***067. Definición de aislador LRB-B para límite inferior como elementos link** Fuente: Elaboración propia, ETABS, 2019

AISLADOR LRB-C: Tipo de aislador elastomérico LRB. Sus características mecánicas y sus características histeréticas se detallan en las siguientes Tablas:

Tabla III-49

Propiedades Aislador Elastomérico LRB-C

_

PROPIEDADES AISLAD	OR ELASTOMÉRICO LR	B-C	
	PROPIEDADE	S GEOMI	ÉTRICAS
	Diametro aislador	Di =	0.800 m
	Diametro nucleo plomo	Dp =	0.127 m
	Altura aislador	Hi =	0.292 m
	Diametro efectivo aislador	B =	0.673 m
	Número de capas	N =	8
	Espesor capas caucho	ti =	0.025 m
	Altura total caucho	Tr =	0.203 m
	PROPIED	ADES-GO	OMA
	Modulo de corte	G =	55.000 ton/m2
	Rigidez post-fluencia	Kd =	132.624 ton/m
AISLADOR LRB (LEAD RUBBER BEARING)	PROPIED	ADES-PL	OMO
	Esfuerzo de fluencia	$\sigma y =$	810.000 ton/m2
	Fuerza de histéresis	Qd =	10.261 ton
	Rigidez elastica	Ke =	1326.245 ton/m
	Deformación de fluencia	Dy =	0.009 m
	Ename de fluencie	$\mathbf{E}_{\mathbf{V}} =$	11.401 top

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-50

Características histeréticas de aislador elastomérico LRB-C para el sismo BDE y propiedades

de límite superior

			Aisla	dor LRB-C (8	00x320)
Número de Aisladores	N =	30			
Peso por aislador	Wn =	210.95	Ton		
Rigidez Axial	Kv =	122366.00	Ton/m		
				_	_
		Nominal	Superior	_	
Fuerza de fluencia	Fy =	11.40	17.67	Ton	-
Rigidez elástica	Ke =	1327.81	1327.81	Ton/m	Ê
Desplaz. de fluencia	$\mathbf{D}\mathbf{y} =$	0.01	0.01	m	(To
Rigidez post-fluencia	Kd =	132.78	172.62	Ton/m	eza
Desplaz. diseño	DD =	0.132	0.096	m	р.±
Fuerza diseño	FD =	27.79	31.94	Ton	_
Rigidez efectiva	KD =	210.51	332.75	Ton/m	
Coef. amort. efectivo	$\beta D =$	21.98	26.39	%	-
Amort. efectivo	CD =	29.57	36.51	Ton-m/seg	
Rigidez efectiva total	KDtotal =	6315.25	9982.49	Ton/m	
Amort. efectivo total	CDtotal =	887.19	1095.42	Ton-m/seg	

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-51

Características histeréticas de aislador elastomérico LRB-C para el sismo MCE y propiedades de límite inferior

			Aisla	dor LRB-C
Número de Aisladores Peso por aislador Rigidez Axial	N = Wn = Kv =	30 210.95 122366.00	Ton Ton/m	
		Nominal	Inferior	_
Fuerza de fluencia	Fy =	11.40	8.89	Ton
Rigidez elástica	Ke =	1327.81	1327.81	Ton/m
Desplaz. de fluencia	Dy =	0.01	0.007	m
Rigidez post-fluencia	Kd =	132.78	106.22	Ton/m
Desplaz. máximo	DM =	0.233	0.274	m
Fuerza máxima	FM =	42.34	38.00	Ton
Rigidez efectiva	$\mathbf{K}\mathbf{M} =$	181.71	138.68	Ton/m
Coef. amort. efectivo	$\beta M =$	14.80	13.34	%
Amort. efectivo	CM =	15.13	11.92	Ton-m/seg
Rigidez efectiva total	KMtotal =	5451.24	4160.32	Ton/m
Amort. efectivo total	CMtotal =	453.85	357.52	Ton-m/seg

Fuente: Elaboración propia, Microsoft Excel, 2019

El modelamiento de los aisladores elastoméricos LRB-C en ETABS para límite superior y límite inferior, se realiza, considera las características no-lineales del comportamiento histerético, y fue realizado, ingresando la rigidez axial, la rigidez elástica del plomo y un factor de rigidez post-fluencia de la goma en el Tabla de dialogo Link Property Data (Propiedades de enlace), tal y como se visualiza en las siguientes imágenes:

General	Link Time	(Aislador de goma)	
Link Property Name	(tipo de enlace)	Rubber Isolator	
Modify/Show Notes		Modify/Show	
Total Mass and Weight	Link/Support Directional	Properties	
Mass (masa de aislador) 0 tonf-s²/m	Identification		
Weight (peso de aislador) 0 tonf	Property Name	LRB-C(Upper)	
	Direction	U2	
Factors for Line and Area Springs	Туре	Rubber Isolator	
Link/Support Property is Defined for This Length When Used	in NonLinear	Yes	
Link/Support Property is Defined for This Area When Used in	ar Linear Properties (Propie	edades lineales)	
Directional Properties (Propiedades para cada dirección)	Effective Stiffness (Rigidez efectiva)	0.001 tonf/m	
Direction Fixed NonLinear Properties	Effective Damping (Amortiguamiento effective)	ctivo) 0 tonf-s/m	
U1 Modify/Show for U1	Shear Deformation Location	(Localización de deformación por cort	e)
U2 Modify/Show for U2	Distance from End-J (Distancia desde extre	0.16 m	
✓ U3 ✓ Modify/Show for U3	Nonlinear Properties (Pro	ppiedades no-lineales)	
Fix All	Stiffness	1326.25 tonf/m	
	Yield Strength (Fuerza de Tluencia)	17.27 tonf	
OK	Post Yield Stiffness Ra (Factor de rigidez pos	tio t-fluencia	
- OK	(r actor de rigidez pos		
	-		

Figura III-068. Definición de aislador LRB-C para límite superior como elementos link Fuente: Elaboración propia, ETABS, 2019

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INEGENIERÍA E.P. INGENIERÍA CIVIL

Directional Properties Modify/Show Notes Interests Modify/Show Total Mass and Weight Mass (masa de aislador) 0 tonf s*/m Weight (peso de aislador) 0 tonf s*/m Factors for Line and Area Springs Intk/Support Property is Defined for This Length When Used in Link/Support Property is Defined for This Area When Used in a Link/Support Property is Defined for This Area When Used in a Link/Support Properties (Propiedades para cada dirección) Unear Properties (Propiedades lineales) Directional Properties (Propiedades para cada dirección) Effective Stiffness (Propiedades lineales) Direction Fixed NonLinear Properties 0 tonf s/m V1 Modify/Show for U1 Shear Deformation Location (Localización de deformación por corte) Distance from End J 0.16 m V13 Modify/Show for U3 Stiffness 1327.81 tonf /m Nonlinear Properties (Propiedades no-lineales) Stiffness Ratio 0.08 108 Vield Stiffness Ratio 0.08 108 108 108 Poterties	General Link Property Name LRB-C(Lower) Link Property Notes Martific (Charu Notes	(<i>i</i> Link Type (tipo de enlace) P-Delta Parameters	Aislador de goma) Rubber Isolator
Weight (peso de aislador) Image: Constraint of the second	Total Mass and Weight Mass (masa de aislador) 0 tonf-s²/m	Link/Support Directional Pro	operties
Factors for Line and Area Springs Type Rubber Isolator Link/Support Property is Defined for This Length When Used in Link/Support Property is Defined for This Area When Used in ar NonLinear Yes Directional Properties (Propiedades para cada dirección) Effective Stiffness 0.001 tonf /m Direction Rixed NonLinear Properties 0.001 tonf /m U1 Modify/Show for U1 Effective Stiffness 0.001 tonf -s/m U2 Modify/Show for U2 Modify/Show for U3 NonLinear Properties (Propiedades no-lineales) Fix All OK Stiffness 1327.81 tonf /m Vield Stiffness Ratio 0.08 Factor de rigidez post-fluencia) 0.08	Weight (peso de aislador) 0 tonf	Property Name Direction	LRB-C(Lower)
Directional Properties (Propiedades para cada dirección) Direction Fixed NonLinear Properties U1 Modify/Show for U1 U2 Modify/Show for U2 U3 Modify/Show for U3 Fix All OK OK Directional Properties (Propiedades miteales) Effective Stiffness 0.001 tonf.m 0 tonf.s/m 0 1001 0 101 101 102 102 103 103 103 103 103 104 <td>Factors for Line and Area Springs Link/Support Property is Defined for This Length When Used in Link/Support Property is Defined for This Area When Used in ar</td> <td>Type NonLinear</td> <td>Rubber Isolator Yes</td>	Factors for Line and Area Springs Link/Support Property is Defined for This Length When Used in Link/Support Property is Defined for This Area When Used in ar	Type NonLinear	Rubber Isolator Yes
	Directional Properties (Propiedades para cada dirección) Direction Fixed NonLinear Properties U1 Image: Modify/Show for U1 Modify/Show for U1 U2 Image: Modify/Show for U2 Modify/Show for U2 U3 Image: Modify/Show for U3 Fix All OK Image: Modify/Show for U3 Image: Modify/Show for U3	Effective Stiffness (Rigidez efectiva) Effective Damping (Amortiguamiento efectiva) Distance from End-J (Distancia desde extremo) Nonlinear Properties (Rigidez) Yield Strength (Fuerza de fluencia) Post Yield Stiffness Ratio (Factor de rigidez post-flu	(Localización de deformación por corte) 0.16 m (dades no-lineales) 1327.81 torf/m 8.89 torf 0.08

Figura III-069. Definición de aislador LRB-C para límite inferior como elementos link Fuente: Elaboración propia, ETABS, 2019

DESLIZADOR Slider-A: Tipo de deslizador de teflón Slider PTFE. Sus características mecánicas y sus características histeréticas se detallan en las siguientes Tablas:

Tabla III-52

Propiedades de deslizador de teflón Slider-A

_

PROPIEDADES GEOMÉTRICAS				
Diametro deslizador	Ds =	0.610 m		
Diametro deslizador rígido	Dr =	0.152 m		
PROP	IEDADES-TEF	LÓN		
Coef. fricción	μ =	0.120		
Peso por deslizador	Wn =	76.880 ton		
Fuerza de fluencia	Fy =	9.226 ton		
Despl. máximo desliz.	$\Delta max =$	0.457 m		

DESLIZADOR SLIDER PTFE

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-53

Características histeréticas de deslizador de teflón Slider-A para el sismo BDE y propiedades

de límite superior

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-54

Características histeréticas de deslizador de teflón Slider-A para el sismo MCE y propiedades de límite inferior

Fuente: Elaboración propia, Microsoft Excel, 2019

El modelamiento de los deslizadores de teflón Slider-A en ETABS para límite superior y límite inferior, considera las características nolineales del comportamiento histerético, y fue definido como un elemento enlace del tipo multilineal plástico, ingresando la rigidez axial, y la función numérica de la histéresis del deslizador en el Tabla de dialogo Link Property Data (Propiedades de enlace), tal y como se

	General							(Multil	ineal plástica)	
	Link Pro	perty Name	Slider-A(Up	oper)	L	ink Type	10.00)	MultiLi	near Plastic	~	
	Link Pro	perty Notes	Modi	fy/Show Notes	F	-Delta Par	ameters		Modify/Show	N	
	Total Mass	and Weight									
	Mass(m	asa de aislado	r) 0	tonf-s²/m		Rotatio	nal Inertia 1	I	0	tonf-m-s ²	
	Weight(peso de aislad	or) <mark>0</mark>	tonf		Rotatio	nal Inertia 2	2	0	tonf-m-s ²	
						Rotatio	nal Inertia 3	3	0	tonf-m-s ²	
	Factors for	Line and Area S	prings								-
	Link/Su	oport Property is	Defined for Thi	is Length When Use	ed in a Line Sp	ing Proper	ty		0.07	m	
	Link/Su	oport Property is	Defined for Thi	is Area When Used	in an Area Spr	ng Propert	y		0	m²	
	Directional	Properties (P	ropiedades pa	ra cada dirección)							
	Direction	Fixed Nor	Linear	Properties	Dire	ction	Fixed N	onLinear	Prop	erties	
	🗹 U1		Mo	dify/Show for U1] R1			Modify/Sh	ow for R1	
	✓ U2		Mo	dify/Show for U2] R2			Modify/Sh	ow for R2	
	🗹 U3		Mo	dify/Show for U3] R3			Modify/Sh	ow for R3	
Type NonLinea	r	Yes	ear Plastic				No Par	ameters a	re Required for	this Hysteresis Ty	pe
ear Prope	rties (Propie	dades lineales)		Hysteresis D	efinition Dia	igram				
Effective (Rigidez Effective (Amortia	Stiffness efectiva) Damping guamiento ef	0.001 ectivo)	tor	nf/m nf-s/m				Kii	nematic Hystere	sis Model	
ear Deform	mation Location	(Localizaci	ón de deforma	ación por corte)					1		
Distance (Distanc	from End-J ia desde extr	emo)	m				/	/			
tilinear Fo	orce-Displ Relat	ion (Relación	multilineal f	uerza-despl.)			1				
Pt	Displ (m)	Force (tonf)			Action						
1 -	0.457	-14.3					1				
3	0	0								//	
4 (0.001	14.3								1	
Add Dev		te Row				_	-	_			
Aud NO	Dele	ac now	++++					1	Defension		

visualiza en las siguientes imágenes:

*Figura III-*070. Definición de deslizador Slider-A para límite inferior como elementos link Fuente: Elaboración propia, ETABS, 2019

General Link Property Name Link Property Notes	Slider-A(Lower) Modify/Show Notes	Link Type (tipo de enlace) MultiLinear Plastic P-Delta Parameters Modify/Show
Total Mass and Weight Mass(masa de aislador) Weight(peso de aislador)	0 tonf-s²/m 0 tonf	Rotational Inertia 1 0 tonf-m-s ² Rotational Inertia 2 0 tonf-m-s ² Rotational Inertia 3 0 tonf-m-s ²
Factors for Line and Area Sprin Link/Support Property is De Link/Support Property is De	gs fined for This Length When Used fined for This Area When Used in	eed in a Line Spring Property 0.07 m d in an Area Spring Property 0 m ²
Directional Properties (Prop	ear Properties	Direction Fixed NonLinear Properties
⊻ U1 □	Modify/Show for U1	R1 Modify/Show for R1
☑ U2 □ ☑	Modify/Show for U2	R2 Modfy/Show for R2
☑ U3 🗌 🗹	Modify/Show for U3	R3 Modify/Show for R3
Direction U2 Type MultiLinear NonLinear Yes	Plastic	(Tipo de histéresis)
Linear Properties (Propiedades lineales)		Hysteresis Definition Diagram
Effective Stiffness (Rigidez efectiva) Effective Damping (Amortiguamiento efectivo) Share Defermation Leasting (Localización	tonf/m tonf-s/m	Kinematic Hysteresis Model
Distance from End-J (Distancia desde extremo)	m	
Pt Displ (m) Force (tonf) 1 -0.457 -7.2 2 -0.001 -7.2 3 0 0 4 0.001 7.2 5 0.457 7.2		Action
Add Row Delete Row		

*Figura III-***071. Definición de deslizador Slider-A para límite inferior como elementos link** Fuente: Elaboración propia, ETABS, 2019

- ASIGNACIÓN DE CARGAS Y DEFINICIÓN DE LA FUENTE DE MASA
 - <u>CARGA MUERTA</u>: El peso propio de los elementos estructurales fue metrado directamente por ETABS, según el tipo de modelamiento utilizado para cada elemento.

El peso de los pisos terminados, fue asignado como carga uniformemente distribuida en los elementos shell, equivalentes a $P_{PT}=100 \text{Kg/m}^2$.

Los tabiques de albañilería, fueron modelados como cargas uniformemente distribuidas en los elementos shell, en función de su peso lineal, según la siguiente Tabla:

Tabla III-55

Carga equivalente de tabique, según su peso lineal

Peso del Tabique (kg / m)	Carga Equivalente (kg / m²)
74 o menos	30
75 a 149	60
150 a 249	90
250 a 399	150
400 a 549	210
550 a 699	270
700 a 849	330
850 a 1000	390

Fuente: San Bartolomé, 1998, p.5

Así pues, para tabiques de ladrillo K-K con un espesor t=0.15m y una altura promedio h=3.50m, su peso lineal sería:

 $p_{tabique} = \gamma_m \cdot t \cdot h = 1800 \cdot 0.15 \cdot 3.50 = 945 Kg / m^2$, teniéndose una carga equivalente P_{TAB}=390Kg/m².

*Figura III-***072.** Asignación de cargas por peso de tabiques y de piso terminado – Base Fuente: Elaboración propia, ETABS, 2019

*Figura III-***073.** Asignación de cargas por peso de tabiques y de piso terminado – 1er. Piso Fuente: Elaboración propia, ETABS, 2019

*Figura III-***074.** Asignación de cargas por peso de tabiques y de piso terminado – 2do. Piso Fuente: Elaboración propia, ETABS, 2019

*Figura III-*075. Asignación de cargas por peso de tabiques y de piso terminado – 3er. Piso Fuente: Elaboración propia, ETABS, 2019

Figura III-076. Asignación de cargas por peso de tabiques y de piso terminado – 4to. Piso Fuente: Elaboración propia, ETABS, 2019

 <u>CARGA VIVA</u>: La carga viva o sobrecarga fue asignada como carga uniformemente distribuida en los elementos shell. Se determinó el valor de la carga viva en función del ambiente al que corresponde el elemento shell y lo especificado en la norma de cargas E.020, según lo indicado en la sección 3.1.6.b.

*Figura III-***077.** Asignación de sobrecarga en elementos shell – Base Fuente: Elaboración propia, ETABS, 2019

*Figura III-***078.** Asignación de sobrecarga en elementos shell – 1er. Piso Fuente: Elaboración propia, ETABS, 2019

*Figura III-*079. Asignación de sobrecarga en elementos shell – 2do. Piso Fuente: Elaboración propia, ETABS, 2019

Figura III-080. Asignación de sobrecarga en elementos shell – 3er. Piso

Fuente: Elaboración propia, ETABS, 2019

*Figura III-***081.** Asignación de sobrecarga en elementos shell – 4to. Piso Fuente: Elaboración propia, ETABS, 2019

<u>FUENTE DE MASA:</u> La fuente de masa tiene que ver con el peso
(P) de la estructura que es considerado para el análisis, y fue definida
en ETABS como la sumatoria de los patrones de carga muerta y carga
viva cada uno multiplicado por un factor que representa el porcentaje
de la carga según el tipo de estructura. Así para nuestro caso E.030
indica que para una edificación Hospitalaria de categoría estructural
A1, el peso (P) debe ser calculado como el 100% de la carga muerta
más el 50%, según lo especificado en la sección 3.2.4.b.

Mass Source Name MASA	-A1		Load Patter	n Multiplicado	ores de masa)
lass Source		(Carga muerta)	D	 ✓ 1 1 	Add
Element Self Mass		(Carga viva) (Carga viva de techo)	L) RL	0.5	Modify
Additional Mass		(Delete
Specified Load Patterns (Especificar p	atrones de carga)				
Adjust Diaphragm Lateral Mass to Move M	ass Centroid by:		Mass Options		
This Ratio of Diaphragm Width in X Direc	tion		Include Lateral N	lass	
This Ratio of Diaphragm Width in Y Direc	tion		Include Vertical I	Mass	
			Lump Lateral Ma	iss at Story Levels	

*Figura III-*082. Definición de la fuente de masa para una estructura de categoría A1 Fuente: Elaboración propia, ETABS, 2019

b. <u>ANÁLISIS MODAL – VECTORES DE RITZ</u>

Para el procedimiento de análisis de Historia de Respuesta o Tiempo-Historia, se utilizó el análisis modal con vectores de Ritz, el cual aplica vectores de carga que se distribuyen espacialmente como vectores de carga dinámica. Se ingresa un vector de carga inicial para iniciar el procedimiento, este vector ingresado genera un vector de Ritz de desplazamiento estático, los vectores restantes son generados secuencialmente a partir de una relación de recurrencia en la que la matriz de masas es multiplicada por el vector de Ritz obtenido anteriormente y que es utilizado como vector de carga para la solución estática siguiente, cada solución estática se denomina ciclo de generación. Cuando la carga dinámica se compone de varias distribuciones espaciales independientes, cada una de ellas sirve como vector de carga inicial para generar un conjunto de vectores de Ritz, cada ciclo de generación crea tantos vectores de Ritz como vectores de carga inicial hayan. Debido a la ortogonalización, los vectores de Ritz son regulados con las técnicas de solución para eigenvalores, resultando un conjunto de modos de vectores de Ritz cada uno con una forma de modo y una frecuencia (Computers & Structures, 2017).

Se utilizaron tres (03) vectores de carga para el análisis, tres (03) vectores de aceleración correspondientes a los grados de libertad de los aisladores, dos (02) grados traslacionales y uno (01) rotacional. Así mismo se consideraron tres (03) modos para cada unidad de aislamiento, resultando un total de $n = 3 \cdot 91 = 273$ modos, lo que generó ncyc = 91ciclos, es decir un ciclo de análisis por cada aislador, con lo quedarían cubiertas todas las formas de modo de la estructura aislada.

		Modal		Design
Modal Case Sub Type (T	Tipo de caso modal)	Ritz	~	Notes
Exclude Objects in this 0	Group	Not Applicable		
Mass Source (Fuente de	e masa)	MASA-A1		
-Delta/Nonlinear Stiffness				
Use Preset P-Delta	Settings None		Modify/Show	
oads Applied (Carga ap	plicada)	(Ciclos máximos)		
Load Type	Load Name	Maximum Cycles	Target Dyn. Par. Ratio, %	Add
Acceleration ~	UXVector traslacional	0	99	Delete
Acceleration	UYVector traslacional	0	99	Delete
Acceleration	RZVector rotacional	0	99	
ther Parameters	des(Máximo número d	e modos)	273	

*Figura III-*083. Definición del caso modal de vectores de Ritz para el análisis dinámico. Diseño con aislamiento LRB

Fuente: ETABS 17.0.1, Elaboración propia, 2019

c. <u>ANÁLISIS DINÁMICO TIEMPO-HISTORIA NO-LINEAL FNA</u>

ETABS como herramienta numérica para el análisis de estructuras, ofrece una lista de cuatro (04) subtipos de análisis Tiempo-Historia, para el caso del diseño abordado en esta sección, se utilizó el análisis Tiempo-Historia no lineal rápido FNA (fast non-lineal analysis). El método FNA restringe toda no-linealidad únicamente a elementos link/support, y toma el resto de elementos como elásticos lineales, sin embargo, no hay límite en la cantidad de elementos nolineales que se puedan considerar, siempre que se obtengan modos adecuados. Esto se hace mejor usando una cantidad suficiente de vectores de Ritz.

La ecuación de equilibrio dinámico de una estructura elástica lineal con elementos link/support no-lineales predefinidos sometidos a una carga arbitraria puede escribirse como:

$$K_L \cdot u(t) + C \cdot \dot{u}(t) + M \cdot \ddot{u}(t) + r_N(t) = r(t)$$

donde K_L es la matriz de rigidez de los elementos elásticos lineales (todos los elementos excepto los elementos link/support); C es la matriz de amortiguamiento proporcional; M es la matriz diagonal de masas; r_N es el vector de fuerzas de los grados no-lineales de libertad en los elementos Link/Support; $u, \dot{u} y \ddot{u}$, son los desplazamientos, velocidades y aceleraciones relativos a la tierra; y r es el vector de cargas aplicadas (Computers & Structures, 2017).

Debido a que un análisis FNA solo puede continuar a partir de otro análisis FNA, se definieron casos estáticos de carga que actúen antes del análisis dinámico, para tal fin se aplicaron gradualmente cargas cuasi-estáticas con alto amortiguamiento (Computers & Structures, 2017), de la siguiente manera:

Definición una función de Tiempo-Historia de rampa con un crecimiento lineal de cero a uno durante un período de tiempo largo (digamos diez veces) en comparación con el primer período de la estructura y que a continuación se mantiene constante durante un período de tiempo igual (Computers & Structures, 2017).

Fuente: Elaboración propia, ETABS, 2019

Definición de un caso modal no lineal de Tiempo-Historia FNA, utilizando un alto amortiguamiento modal β=0.99, y tan pocos o tantos pasos como se desee, pero sin que el tiempo total no sea menor que el doble de tiempo de la función rampa (Computers & Structures, 2017).

Load Case Name		TH RAMP_PESO		Design
Load Case Type/Subtyp	Time History	~ Nonline	ear Modal (FNA) 🛛 🗸	Notes
Exclude Objects in this G	àroup	(Tiempo- Not Applicable	Historia modal no-lineal)
Mass Source (Fuente de	e masa)	Previous (MASA-A1)	
Initial Conditions				
Zero Initial Condition	s - Start from Unstressed	State		
Continue from State	at End of Nonlinear Case	(Loads at End of Case	ARE Included)	
Nonlinear Case				
Loads Applied (Carga ap)	licada)			
Load Type	Load Name	Function	Scale Factor	0
Load Pattern \sim	D(Carga muerta)	00 RAMP_GRAV	1	Add
Load Pattern	L (Carga viva)	00 RAMP_GRAV	0.5	Delete
Load Pattern	RL (Cargo vivo do techo)	00 RAMP_GRAV	0.25	
	(Carga viva de techo)			Advanced
Other Parameters				
Modal Load Case (Case) de carga modal)	Modal	~	
		Modal		7
Number of Output Time 3	Steps (Número de paso	s de tiempo de salida)	404	2 veces el tiempo
Output Time Step Size ()	Rango de pasos de tien	npo de salida)	0.1 s	la función ram
Modal Damping	Constant at 0.99		Modify/Show	
Nonlinear Parameters	Default		Modify/Show	
Norminear rarameters	Condiana			

*Figura III-***085. Definición del caso de carga FNA de cargas cuasi-estáticas iniciales para el análisis dinámico. Diseño con aislamiento LRB** Fuente: Elaboración propia, ETABS, 2019

Para los efectos del análisis, el programa define una rigidez lineal efectiva para cada grado de libertad de los elementos no-lineales. La rigidez efectiva de un grado no-lineal de libertad arbitraria, pero generalmente varía entre cero y la máxima rigidez no lineal de ese grado de libertad. La ecuación de equilibrio puede entonces ser reescrita como:

$$K \cdot u(t) + C \cdot \dot{u}(t) + M \cdot \ddot{u}(t) = r(t) - [r_N(t) - K_N \cdot u(t)]$$

Donde $K = K_L + K_N$, con K_L siendo la rigidez de todos los elementos lineales y de los grados lineales de libertad de los elementos Link/Support, y K_N siendo la matriz lineal de rigidez efectiva para todos los grados no lineales de libertad. El amortiguamiento se definió utilizando un factor de amortiguamiento para cada modo, medido como como una fracción del amortiguamiento crítico, ETABS considera que el factor de amortiguamiento puede definirse como constante para todos los modos o calculado para cada modo por coeficientes proporcionales de masa y rigidez en el rango de dos periodos, para el caso del diseño abordado en esta sección se definió un amortiguamiento constante β =0.05 para todos los modos.

Se definió el análisis modal de tiempo-historia no-lineal FNA, para cada registro sísmico ingresado, con un número y tamaño de pasos de tiempo que abarcó el tiempo de duración del registro. Se definieron las cargas de aceleración para dos direcciones ortogonales de análisis correspondiente a las direcciones globales 1 y 2, y se asignaron las componentes de los registros sísmicos a cada una de las direcciones. De esto, en algunos casos se amplificó una de las componentes para que los valores del espectro de respuesta del registro sísmico no sean menores que el 90% del valor correspondiente en el espectro de peligro uniforme MCE, según lo indicado en la sección 3.3.2.f.

Tabla III-56

Casos de carga modal de tiempo-historia no-lineal FNA para el análisis dinámico, con sus factores de escalas respectivos

	CASOS DE CARG	A MODAL TIEMPO-HISTORIA	NO-LI	NEAL FI	NA	
	CASO DE CADCA	REGISTRO AJUSTADO A	FA	CTOR D	E ESC	CALA
	CASU DE CARGA	E.030-MCE	Cor	np. 1	Coi	mp. 2
TH-1	PRQ_1966	SAd01 PRQ_1966	1.37	(E-W)		
TH-2	PRQ_1970	SAd02 PRQ_1970	1.04	(E-W)		
TH-3	PRQ_1974	SAd03 PRQ_1974	1.10	(E-W)		
TH-4	MOQ001_2001	SAd04 MOQ001_2001			1.19	(N-S)
TH-5	ICA002_2007	SAd05 ICA002_2007	1.23	(E-W)		
TH-6	constitucion_2010	SAd06 constitucion_2010				
TH-7	AMNT_2016	SAd07 AMNT_2016				

Fuente: Elaboración propia, Microsoft Excel, 2019

Para el caso de los análisis con el sismo base de diseño BDE, los componentes de los registros fueron reducidos por un factor igual a 2/3.

Load Case Name		TH-1 PQR_1966		Design
Load Case Type/Subty	Time History	✓ Nonline	ear Modal (FNA) 🛛 🗸	Notes
Exclude Objects in this	Group	(Tiempo- Not Applicable	Historia modal no-line	al)
Mass Source(Fuente d	e masa)	Previous (MASA-A1)	
Initial Conditions				
Zero Initial Condition	is - Start from Unstressed	State		
Continue from State	at End of Nonlinear Case	(Loads at End of Case	ARE Included)	
Nonlinear Case		TH RAMP_PESO	~]
Carga aplicada) Loads Applied	Ajustados		Comp. E-W: g·FE=9.81·1.37	=13.44
Load Type	Load Name	Function	Scale Factor	0
Acceleration ~	U1Dirección global 1	SAd01 PQR_1966	13.4397	Add
Acceleration	U2Dirección global 2	SAd01 PQR_1966	9.81	Delete
				Advanced
Other Parameters				
Modal Load Case (Case	o de carga modal)	Modal	~	1
Number of Output Time	Steps (Número de pasos	s de tiempo de salida)	3283	Número y tamañ
Output Time Step Size (Rango de pasos de tiem	no de salida)	0.02	de pasos abarca
Modal Damping	Constant at 0.05	F • • • • • • • • • • • • • • • • • • •	Modify/Show	tempo de registr
(Amortiguamiento mo	dal)		Modily/Show]
	Default		Modify/Show	

*Figura III-*086. Definición del caso de carga tiempo-historia FNA TH-1 PRQ_1966 para el diseño con aislamiento LRB

Fuente: Elaboración propia, ETABS, 2019

Load Case Name		TH-2 PQR_1970		Design
Load Case Type/Subty	pe Time History	✓ Nonline	ar Modal (FNA) 🛛 🗸	Notes
Exclude Objects in this	Group	Not Applicable	Historia modal no-line	eal)
Mass Source(Fuente d	e masa)	Previous (MASA-A1)	
Initial Conditions				
Zero Initial Condition	ns - Start from Unstressed S	State		
Continue from State	at End of Nonlinear Case	(Loads at End of Case	ARE Included)	
Nonlinear Case		TH RAMP_PESO	~	·
Carga aplicada)	Registros sísmicos - Ajustados		Comp. E-W:	
Loads Applied es	pectralmente a MCE		g·FE=9.81·1.04	4=10.20
Load Type	Load Name	Function	Scale Factor	0
Acceleration ~	U1Dirección global 1	SAd02 PQR_1970	10.2024	Add
Acceleration	U2Dirección global 2	SAd02 PQR_1970	9.81	Delete
				Advanced
Other Parameters				
Other Parameters	o de carga modal)	Modal		*
Other Parameters Modal Load Case (Cas	o de carga modal)	Modal	V	·
Other Parameters Modal Load Case (Cas Number of Output Time	o de carga modal) Steps (Número de pasos	Modal de tiempo de salida)	2255	Número y tamañ de pasos abarca
Other Parameters Modal Load Case (Cas Number of Output Time Output Time Step Size (o de carga modal) Steps (Número de pasos Rango de pasos de tiemj	Modal a de tiempo de salida) po de salida)	2255	Número y tamañ de pasos abarca sec tiempo de registr
Other Parameters Modal Load Case (Cas Number of Output Time Output Time Step Size (Modal Damping (Amortingamiento mo	o de carga modal) Steps (Número de pasos Rango de pasos de tiemp dal Constant at 0.05	Modal a de tiempo de salida) po de salida)	2255 0.02 Modify/Show	Número y tamañ de pasos abarca sec tiempo de registr

*Figura III-*087. Definición del caso de carga tiempo-historia FNA TH-2 PRQ_1970 para el diseño con aislamiento LRB

Fuente: Elaboración propia, ETABS, 2019

		TH-3 PQR_1974		Design	
Load Case Type/Subtyp	Time History	✓ Nonlin	ear Modal (FNA)	✓ Notes	
Exclude Objects in this (Group	(Tiempo- Not Applicable	Historia modal n	o-lineal)	
Mass Source(Fuente de	e masa)	Previous (MASA-A	1)		
nitial Conditions					
O Zero Initial Condition	s - Start from Unstressed	State			
Continue from State	at End of Nonlinear Case	(Loads at End of Case	ARE Included)		
Nonlinear Case		TH RAMP_PESO		\sim	
arga aplicada)	Registros sísmicos Aiustados	7	Comp. E-	W:	
oads Applied es	pectralmente a MCE		g·FE=9.81	1.10=10.79	
Load Type	Load Name	Function	Scale Facto	r 🔍	
Acceleration \sim	U1Dirección global 1	SAd03 PQR_1974	10.791	Add	
Acceleration	U2Dirección global 2	SAd03 PQR_1974	9.81	Delete	
				Advanced	
Other Parameters					
Modal Load Case (Case	o de carga modal)	Modal		\sim	
	Steps (Número de paso	s de tiempo de salida)	4899	Número v ta	mañ
Number of Output Time	Steps (I tullero de paso	s de dempo de sanda)	4000	de pasos ab	oarca
Number of Output Time	n 1 1 1	npo de salida)	0.02	sec tiempo de re	gistr
Number of Output Time Output Time Step Size ()	Rango de pasos de tien	-F			
Number of Output Time Output Time Step Size () Modal Damping (Amortiguamiento mo	Rango de pasos de tien		Modify/Sho	W	

*Figura III-*088. Definición del caso de carga tiempo-historia FNA TH-3 PRQ_1974 para el diseño con aislamiento LRB

Load Case Name			TH-4 MOQ001_200	1]	Design
Load Case Type/Subtyp	e Time History		~ Nonlin	ear M	odal (F	NA) ~		Notes
Exclude Objects in this G	iroup		(Tiempo-	Histo	ria m	odal no-line	al)	
Mass Source(Fuente de	masa)		Previous (MASA-A1)				
Initial Conditions								
Zero Initial Conditions	s - Start from Unstressed	St	tate					
Continue from State a	at End of Nonlinear Case	e ((Loads at End of Case	ARE	nclud	ed)		
Nonlinear Case			TH RAMP_PESO			~		
Carga aplicada)	Registros sísmicos						1	
Loads Applied esp	pectralmente a MCE						_	-
Load Type	Load Name		Function		Scale	e Factor]	0
Acceleration \sim	U1Dirección global 1	s	Ad04 MOQ001_20	9.81				Add
Acceleration	U2Dirección global 2	s	Ad04 MOQ001_20	11.6	739			Delete
							Ι,	
		_			L	Come E We] [Advanced
Other Parameters					-	g·FE=9.81·1	.19=	11.67
Modal Load Case (Caso	de carga modal)		Modal			~	1	
Number of Output Time S	teps (Número de paso	os (de tiempo de salida)	[946		1	Número y tamaño
Output Time Stee Size (E	anao da nasao da tian				1.02]	de pasos abarca
Output Time Step Size (P	cango de pasos de tien	пр	o de salida)	_ Ц	1.02		Sec	tiempo de registro
(Amortiguamiento mod	Constant at 0.05				Mod	ify/Show		
Nonlinear Parameters	Default				Mod	ify/Show		

*Figura III-*089. Definición del caso de carga tiempo-historia FNA TH-4 MOQ001_2001 para el diseño con aislamiento LRB

LC	oad Case Name		TH-5 ICA002_2	007			Design
L	oad Case Type/Subtyp	Time History	~ N	onlinear N	lodal (FNA)	\sim	Notes
Б	xclude Objects in this 0	àroup	(Tier Not Applicable	npo-Hist	oria modal no-l	ineal)	
М	lass Source(Fuente de	e masa)	Previous (MAS	A-A1)			
Initial	l Conditions						
С	Zero Initial Condition	s - Start from Unstressed	State				
	Continue from State	at End of Nonlinear Case	(Loads at End of (Case ARE	Included)		
	Nonlinear Case		TH RAMP_PE	50		\sim	
Carga	a aplicada)	Registros sísmicos			Comp. E-V	V:	
Load	ds Applied esj	pectralmente a MCE			g·FE=9.81	1.23=12	.07
	Load Type	Load Name	Function		Scale Factor		0
A	Acceleration ~	U1Dirección global 1	SAd05 ICA002_20	0 12.	0663		Add
A	Acceleration	U2Dirección global 2	SAd05 ICA002_20	0 9.8	1		Delete
							_
							Advanced
Othe	r Parameters						
м	Iodal Load Case (Case) de carga modal)	Modal			\sim	
N	humber of Output Time 1	Stars (Número de reco	de tienne de sel	(ab)	10004		Número y tamañ
IN	umber of Output Time	steps (Numero de pasos	s de tiempo de sa	ida)	10504	_	de pasos abarca
0	output Time Step Size (I	Rango de pasos de tiem	po de salida)	L	0.02	sec	tiempo de registro
	lodal Damping	Constant at 0.05			Modify/Show.		
M (A		uui)					

*Figura III-*090. Definición del caso de carga tiempo-historia FNA TH-5 ICA002_2007 para el diseño con aislamiento LRB

Load Case Name		TH-6 constitucion_	2010	Design
Load Case Type/Subty	pe Time History	✓ Nonlin	near Modal (FNA) 🛛 🗸	Notes
Exclude Objects in this	Group	(Tiempo Not Applicable	-Historia modal no-line	al)
Mass Source (Fuente d	e masa)	Previous (MASA-A	1)	
Initial Conditions				
O Zero Initial Condition	ns - Start from Unstressed	State		
 Continue from State 	at End of Nonlinear Case	(Loads at End of Case	ARE Included)	
Nonlinear Case		TH RAMP_PESO	~	
Carga aplicada)	Registros sísmicos Aiustados	7		
Loads Applied es	spectralmente a MCE			•
Load Type	Load Name	Function	Scale Factor	0
	U1 Dirección global 1	SAd06 constitucion	9.81	Add
Acceleration ~				
Acceleration ~ Acceleration	U2Dirección global 2	SAd06 constitucion	9.81	Delete
Acceleration ~ Acceleration	U2Dirección global 2	SAd06 constitucion	9.81	Delete
Acceleration ~ Acceleration	U2Dirección global 2	SAd06 constitucion	9.81	Delete Advanced
Acceleration Acceleration Other Parameters	U2Dirección global 2	SAd06 constitucion	9.81	Delete Advanced
Acceleration Acceleration Other Parameters Modal Load Case (Cas	U2Dirección global 2	SAd06 constitucion	9.81	Delete Advanced
Acceleration Acceleration Other Parameters Modal Load Case (Cas Number of Octuat Time	U2Dirección global 2 o de carga modal)	SAd06 constitucion	9.81	Delete Advanced Número y tamañ
Acceleration Acceleration Other Parameters Modal Load Case (Cas Number of Output Time	U2Dirección global 2 o de carga modal) Steps (Número de pasos	SAd06 constitucion Modal s de tiempo de salida	9.81	Delete Advanced Número y tamaño de pasos abarca
Acceleration Acceleration Other Parameters Modal Load Case (Cas Number of Output Time Output Time Step Size (U2Dirección global 2 o de carga modal) Steps (Número de pasos Rango de pasos de tiem	SAd06 constitucion Modal s de tiempo de salida npo de salida)	9.81 (7165 0.02	Delete Advanced Número y tamañ de pasos abarca sec tiempo de registr
Acceleration Acceleration Other Parameters Modal Load Case (Cas Number of Output Time Output Time Step Size (Modal Damping (Amortiguamiento mo	U2Dirección global 2 o de carga modal) Steps (Número de pasos Rango de pasos de tiem odal) constant at 0.05	SAd06 constitucion Modal s de tiempo de salida apo de salida)	9.81 (7165 0.02 Modify/Show	Delete Advanced Número y tamañ de pasos abarca sec tiempo de registre

*Figura III-*091. Definición del caso de carga tiempo-historia FNA TH-6 constitucion_2010 para el diseño con aislamiento LRB

Load Case Name			TH-7 AMNT_2016			Design
Load Case Type/Subty	De Time History		~ Nonline	ear Modal (FNA) 🛛 🗸		Notes
Exclude Objects in this	Group		Not Applicable	Historia modal no-linea	1)	
Mass Source (Fuente d	e masa)		Previous (MASA-A1)		
Initial Conditions						
O Zero Initial Condition	ns - Start from Unstressed	St	ate			
Continue from State	at End of Nonlinear Case	(Loads at End of Case	ARE Included)		
Nonlinear Case			TH RAMP_PESO	~		
Carga aplicada)	Registros sísmicos Aiustados					
Loads Applied es	spectralmente a MCE					0
Load Type	Load Name		Function	Scale Factor		U
Acceleration ~	U1Dirección global 1	S	Ad07 AMNT_2016	9.81		Add
Acceleration	U2Dirección global 2	S	Ad07 AMNT_2016	9.81		Delete
					Г	Advanced
Other Parameters						
Modal Load Case (Case	o de carga modal)		Modal	~		
Number of Output Time	Steps(Número de paso	s d	le tiempo de salida)	2501		Número y tamañ
Output Time Step Size(Rango de pasos de tien	ipo	o de salida)	0.02	sec	de pasos abarca tiempo de registr
Modal Damping	Constant at 0.05		,	Madfu/Show		uompo de regiou
(Amortiguamiento mo	dal)			Modily/Show		
March Description				Modify/Show		

*Figura III-*092. Definición del caso de carga tiempo-historia FNA TH-7 AMNT_2016 para el diseño con aislamiento LRB

d. <u>COMBINACIÓN PROMEDIO DE LOS CASOS DE ANÁLISIS DINÁMICO</u> <u>TIEMPO-HISTORIA FNA</u>

Se definió en ETABS la combinación de cargas PROM-TH como la suma lineal de los 1/7 de cada uno de los siete (07) casos de carga correspondiente a cada registro sísmico utilizado en el análisis, para determinar el promedio de los valores de interés encontrados de los análisis Tiempo-Historia FNA de cada uno de los registros sísmicos utilizados.

Se presenta la definición de la combinación de cargas promedio PROM-TH:

General Data		
Load Combination Name	PROM-TH	
Combination Type	Linear Add (Suma lineal)	\sim
(Tipo de combinación)		_
Notes	Modify/Show Notes	
Auto Combination	No Factor de escala	-1/7
	para alcanzar el	promed
Define Combination of Load Case	Combo Results de los 7 casos d	e carga
Load Name (Nom	bre de carga) Scale Factor	
TH-1 PQR_1966	0.1429 A	dd
TH-2 PQR_1970	0.1429 De	ete
TH-3 PQR_1974	0.1429	
TH-4 MOQ001_2001	0.1429	
TH-5 ICA002_2007	0.1429	
TH-6 constitucion_2010	0.1429	
	¥	

*Figura III-*093. Definición de la combinación de cargas promedio PROM-TH de los siete (07) casos de carga tiempo-historia FNA

e. <u>ANÁLISIS ESTÁTICO NO-LINEAL DE LOS MÓDULOS</u> <u>ESTRUCTURALES</u>

Se realizó el análisis estático no-lineal de los seis (06) módulos estructurales que conforman el bloque aislado del Hospital de Pacasmayo, con la finalidad de determinar la respuesta no-lineal del bloque; ajustando los resultados estáticos no-lineales a los resultados dinámicos lineales del procedimiento de análisis historia de respuesta. Se requiere encontrar la respuesta no-lineal para determinar el nivel de desempeño y de daño de la estructura, cabe reiterarse que para tales fines se debe analizar la estructura con el límite superior de propiedad y el sismo de diseño DE.

Se creó un modelo no-lineal en ETABS para cada módulo estructural de manera independiente, asumiendo el nivel de base como apoyo de cada uno de los módulos, y se realizó el análisis estático no-lineal fue realizado para cada módulo estructural de manera monotónica, es decir incrementando gradualmente una carga lateral inicial hasta el punto de falla de la estructura.

Figura III-094. Modelo matemático Módulo A1 Vista 3D Fuente: Elaboración propia, ETABS, 2019

*Figura III-*095. Modelo matemático Módulo A2 Vista 3D Fuente: Elaboración propia, ETABS, 2019

Figura III-096. Modelo matemático Módulo A3 Vista 3D Fuente: Elaboración propia, ETABS, 2019

Figura III-097. Modelo matemático Módulo A4 Vista 3D Fuente: Elaboración propia, ETABS, 2019

Figura III-098. Modelo matemático Módulo A5-A6 Vista 3D Fuente: Elaboración propia, ETABS, 2019

Se asignaron rótulas plásticas a los extremos de todas las columnas y vigas, para representar las características no-lineales de cada una de ellas. Se seleccionaron los elementos frame (columnas y vigas) en función de las propiedades de su sección y se les asigno una rótula (hinge) en cada extremo. En el momento de la asignación ETABS definió de manera automática el comportamiento inelástico de la sección del elemento.

En la asignación de las rótulas plásticas en columnas se definió la ubicación relativa de cada rótula a una distancia igual a $L_c/12$ medido desde cada extremo. Dado que todas las columnas en todos los niveles tienen la misma longitud libre $L_c=3.67m$, la distancia relativa de las rótulas plásticas en cada extremo fue determinada de la siguiente manera:

Extremo-i:
$$d_{hi} = L_c / 12 = 0.083L_c = 0.083(3.67) = 0.306m$$

Extremo-j: $d_{hj} = L_c (1 - 1/12) = 0.917L_c = 0.917(3.67) = 3.364m$

Así mismo, se definió la disposición del confinamiento para el incremento de la ductilidad en el elemento. Se definieron la cuantía y espaciamiento del confinamiento para cada sección de columna.

Tabla III-57

Disposición de confinamiento en columnas para cada módulo estructural

Bloque	Sección en ETABS	Ancho efectivo	Peralte	Peralte efectivo		С	onfinamie	ento	Espaciamiento	Cuantía de confinamiento	Factor de espaciamiento
Bl	Columna	bw (cm)	t (cm)	d (cm)		Ba	arras	Av (cm2)	s (cm)	ρ=Av/(bw*s)	s/d
	C1	60.00	60.00	53.10	2	φ	3/8 "	1.425	10.00	0.0024	0.19
A1	C10	80.00	90.00	83.10	2	φ	3/8 "	1.425	10.00	0.0018	0.12
	C11	60.00	80.00	73.10	2	ø	3/8 "	1.425	10.00	0.0024	0.14
	C1	60.00	60.00	53.10	2	ø	3/8 "	1.425	10.00	0.0024	0.19
A2	C10	80.00	90.00	83.10	2	ø	3/8 "	1.425	10.00	0.0018	0.12
	C11	60.00	80.00	73.10	2	φ	3/8 "	1.425	10.00	0.0024	0.14
	C1	60.00	60.00	53.10	2	ø	3/8 "	1.425	10.00	0.0024	0.19
12	C2	diametro =	60.00	53.10	2	ø	3/8 "	1.425	10.00	0.0027	0.19
AS	C7	40.00	100.00	93.10	2	ø	3/8 "	1.425	10.00	0.0036	0.11
	C8	30.00	70.00	63.10	2	φ	3/8 "	1.425	10.00	0.0048	0.16
	C1	60.00	60.00	53.10	2	ø	3/8 "	1.425	10.00	0.0024	0.19
A 4	C3	30.00	50.00	43.10	2	ø	3/8 "	1.425	10.00	0.0048	0.23
A4	C7	40.00	100.00	93.10	2	φ	3/8 "	1.425	10.00	0.0036	0.11
	C8	30.00	70.00	63.10	2	ø	3/8 "	1.425	10.00	0.0048	0.16
15	C4	35.00	80.00	73.10	2	ø	3/8 "	1.425	10.00	0.0041	0.14
AS	C9	25.00	35.00	28.29	2	φ	3/8 "	1.425	10.00	0.0057	0.35
16	C4	35.00	80.00	73.10	2	¢	3/8 "	1.425	10.00	0.0041	0.14
A0	C9	25.00	35.00	28.29	2	φ	3/8 "	1.425	10.00	0.0057	0.35

Fuente: Adaptado del Expediente Técnico de la Obra del Hospital de Pacasmayo, 2019

Auto Hinge Assignment Data (Asignamiento de rótula en pórtico) Hinge Property Relative Distance (Distancia relativa) Auto Propeidad de rótula) 0.003 Auto Hinge Assignment Data Auto Hinge Assignment Data Type: From Tables in ASCE 41-17 Type: Trom Tables in ASCE 41-17 Type: Trom Tables in ASCE 41-17 Tobles in ASCE 41-17 Tobles in ASCE 41-17 Stet a Hinge Table (Seleccionar una tabla de rótula) Table 10-8 and 10-8 (Concrete Columns) DDF: PL42-M3 Modify/Show Auto Hinge Assignment Data.	👔 Frame Assignment - Hinges	×
Auto Hinge Assignment Data Type: From Tables In ASCE 41-17 Table: Table 10-8 and 10-9 (Concrete Columns) DOF: P-M2-M3 Modify/Show Auto Hinge Assignment Data Auto Hinge Type (Tipo de rórula automática) From Tables In ASCE 41-17 Table 10-8 and 10-9 (Concrete Columns) M3 P-M3 M2-M3 M2-M3 M2-M3 P-M42 P-M3 M2-M3 M2-M3 P-M42 P-M3 No controlled by Inadequate Development or Splicing No controlled by Inadequate Development or Splicing No controlled by Inadequate Development or Splicing No controlled by Inadequate Development or Splicing No controlled by Inadequate Development or Splicing No controlled by Inadequate Development or Splicing V2 V3 Proma Current Design In User-specified Ratio, VyE / VcooDE<	Frame Hinge Assignment Data (Asignamie Hinge Property Rela Auto (Propiedad de rótula) 0.083 Auto P-M2-M3 0.0917	Add Modify Delete
Auto Hinge Type (Tipo de rótula automática) From Tables in ASCE 41-17 Tablas de ASCE 41-17 Select a Hinge Table (Seleccionar una tabla de rótula) Table 10-8 and 10-9 (Concrete Columns) Tabla 10-8 y 10-9 para columnas de concreto Degree of Freedom (Grados de libertad) M2 P-M2 Parametric P-M2-M3 M2-M3 P-M42 Parametric P-M2-M3 Generotado por de columna de concreto) Concrete Column Behavior Not Controlado por desarrollo inadecuado o empalme Controlado por desarrollo inadecuado o empalme Controlado por corte) Shear Reinforcing Ratio p = AV (bw * s) From Current Design User Value Do024 Progran Calculated User-specified Ratio, VyE / VcoIDE V2 V3 User-specified Ratio, VyE / VcoIDE V2 V3 User-specified Ratio, VyE / VcoIDE V2 V3 User-specified Ratio (sid) Fractor de carga de rótula controlada por deformación) Deformation Controled Hinge Load Carrying Capacity Extrapolated After Point E Starpolated After Point E Starpolated After Point E Value User Value User Value User Value User Value In Starpolated After Point E Value Value	Auto Hinge Assignment Data Type: From Tables In ASCE 41-17 Table: Table 10-8 and 10-9 (Concrete Colu DOF: P-M2-M3 Modify/Show Auto H	imns) finge Assignment Data
Table 10-8 and 10-9 (Concrete Columns) Tabla 10-8 y 10-9 para columnas de concreto Degree of Freedom (Grados de libertad) M2 P-M2 Parametric P-M2-M3 M2-M3 P-M3 Flexocompresión biaxial (Comportamiento de columna de concreto) Iser Value Gravity PESO-E Iser Value (Comportamiento de columna de concreto) Concrete Column Behavior Iser Value Iser Value Iser Value Iser Value Iser Value Iser value Iser-specified Ratio, VyE / Vcol0E Iser-specified Ratio, VyE / Vcol0E Iser-specified Ratio, VyE / Vcol0E Iser Value Iser Value <th>Auto Hinge Type (Tipo de rótula automática) From Tables In ASCE 41-17 Select a Hinge Table (Seleccionar una tabla de rótula)</th> <th>~</th>	Auto Hinge Type (Tipo de rótula automática) From Tables In ASCE 41-17 Select a Hinge Table (Seleccionar una tabla de rótula)	~
Degree of Freedom (Grados de libertad) M2 P-M2 Parametric P-M2-M3 M3 P-M3 M2-M3 P-M2-M3 Flexocompresión biaxial (Comportamiento de columna de concreto) Concrete Column Behavior Not Controlled by Inadequate Development or Splicing No controlado por desarrollo inadecuado o empalme Controlled by Inadequate Development or Splicing No controlled by Inadequate Development or Splicing Not Controlled by Inadequate Development or Splicing Not Controlled by Inadequate Development or Splicing (Factor de refuerzo por corte) Shear Reinforcing Ratio p = Av / (bw * s) Prom Current Design User Value (Capacidad de carga de rótula controlada por deformación) Deformation Controlled Hinge Load Carrying Capacity (Capacidad de carga de rótula controlada por deformación) Deformation Controlled Hinge Load Carrying Capacity (Factor de espaciamiento de refuerzo por corte) Shear Reinforcement Spacing Ratio (s/d) (Factor de espaciamiento de refuerzo por corte) Shear Reinforcement Spacing Ratio (s/d) (Factor de espaciamiento de refuerzo por corte) Shear Reinforcement Spacing Ratio (s/d) (Factor de espaciamiento de refuerzo por corte) Shear Reinforcement Spacing Ratio (s/d) (Factor de espaciamiento de refuerzo por corte) Shear Reinforcement Spacing Ratio (s/d) (Factor de espaciamiento de refuerzo por corte) Shear Reinforcement Spacing Ratio (s/d) (Factor de espaciamiento de refuerzo por corte) Shear Reinforcement Spacing Ratio (s/d) (Factor de espaciamie	Table 10-8 and 10-9 (Concrete Columns) Tabla 10-8 y 10-9 para columns	olumnas de concreto 🗸
	 M2 P-M2 Parametric P-M2-M3 M3 P-M3 P-M3 P-M2-M3 Flexocompresión biaxial (Comportamiento de columna de concreto) Concrete Column Behavior Not Controlled by Inadequate Development or Splicing No controlado por desarrollo inadecuado o empalme Controlled by Inadequate Development or Splicing (Factor de refuerzo por corte) Shear Reinforcing Ratio p = Av / (bw * s) From Current Design User Value (Capacidad de carga de rótula controlada por deformación) Deformation Controlled Hinge Load Carrying Capacity Drops Load After Point E Cae carga después del punto E Is Extrapolated After Point E 	 Case/Combo User Value Gravity PESO-E Gravity + Lateral EVAL-AENL (Demanda de corte en fluencia por flexión / Capacidad a corte) Shear Demand at Flexural Yielding / Shear Capacity (VyE / Vcol0E) Program Calculated User-specified Shear Demand, VyE V2 V3 User-specified Ratio, VyE / Vcol0E V2 V3 (Factor de espaciamiento de refuerzo por corte) Shear Reinforcement Spacing Ratio (s/d) From Current Design User Value

Figura III-099. Asignación de rótula plática en columna C1-60x60

Figura III-100. Definición automática del comportamiento inelástico de la columna C1(60x60) para la curva #1 de interacción P-M2-M3

Fuente: Elaboración propia, ETABS, 2019

Por su parte en la asignación de las rótulas plásticas en vigas se definió la ubicación relativa de cada rótula a una distancia igual al peralte h de la viga medido desde cada extremo. La distancia relativa representada como factor varía en función de la longitud libre de la viga. Asimismo, se definió el factor de cuantía de refuerzo longitudinal a compresión en el centro de la luz libre de la viga $(\rho - \rho')/\rho_b$, donde ρ es la cuantía del refuerzo positivo en el centro de la viga, ρ' es la cuantía del refuerzo negativo en el centro de la luz y ρ_b es la cuantía balanceada.

Frame Assignment - Hinges Frame Hinge Assignment Data (Asignamice Hinge Property Reli Auto Propiedad de rótula) 0.099 Auto M3 0.904	x nto de rótula en pórtico) ative Distance (Distancia relativa) Add Add Modify
Auto Hinge Assignment Data Type: From Tables In ASCE 41-17 Table: Table 10-7 (Concrete Beams - Flex DOF: M3 Modify/Show Auto I	Ure) Item i Hinge Assignment Data
Auto Hinge Type From Tables in ASCE 41-17 Tablas de ASCE 41-17 Select a Hinge Table Table 10-7 (Concrete Beams - Flexure) Item i Tabla 10-7 para viga	s de concreto v
Degree of Freedom M2 M2 M3 Flexión (Refuerzo transversal) Transverse Reinforcing Transverse Reinforcing is Conforming Refuerzo transversal es conforme	V Value From (Cortante evaluado) • Case/Combo EVAL-AENL V2 tonf (Cuantía de refuerzo (ρ-p') / Cuantía balanceada) Reinforcing Ratio (ρ - p') / pbalanced (Cuantía de refuerzo (ρ-p') / Cuantía balanceada) Reinforcing Ratio (ρ - p') / pbalanced • From Current Design • User Value (for positive bending) Evaluado para momento positivo
(Capacidad de carga de rótula controlada por deformación) Deformation Controlled Hinge Load Carrying Capacity	Cancel

Figura III-101. Asignación de rótula plástica en viga V-10A6(30x75)

	Momento/SF	Rotació	ón/SF			Туре
Point	Moment/SF	Rotatio	in/SF			Moment - Rotation
E-	-0.2	-0.0	15			O Moment - Curvature
D-	-0.2	-0.02	525			Hinge Length
C-	-1.505345	-0.0	25			Z Balativa Lanoth
B-	-1	0				V Relative Longin
A	0	0				Load Carrying Capacity Beyond Point F
В	1	0				(C) Down To Town
C	1.492206	0.024	135			Drops to Zero
D	0.2	0.024	594			 Is Extrapolated
	0.2	0.04	/4			
				Symmetric		Hysteresis Type and Parameters
				Additional Backbone Curve Po	oints	Hysteresis Isotropic 🗸
				BC - Between Points B	and C	No Descenders Are Described For This
						No Parameters Are Required For This
				(1) - Herween Points (1)	and D	EVSTELESIS IVDE
1			4	CD - Between Points C i	and D	nysteresis type
cala para	a momento y rota	ción)		CD - Between Points C i	and D	nysteresis type
cala para ing for Mor	a momento y rota ment and Rotation	ición)	Positiv	e Negative	and D	nysteresis type
cala para ing for Moi) Use Yiel	a momento y rota ment and Rotation d Moment	ución) Moment SF	Positiv 25.9119	e Negative 64.7515	tonf-m	Momento factor de escala
cala para ing for Mor Use Yiel Use Yiel	a momento y rota ment and Rotation d Moment d Rotation	Moment SF	Positiv 25.9119	e Negative 64.7515	tonf-m	Momento factor de escala Rotación factor de escala
cala para ing for Mol Use Yiel Use Yiel (Steel O	a momento y rota ment and Rotation d Moment d Rotation (bjects Only)	Moment SF Rotation SF	Positiv 25.9119 1	e Negative 64.7515	tonf-m	Momento factor de escala Rotación factor de escala
cala para ing for Mor Use Yiel Use Yiel (Steel O iterios d	a momento y rota ment and Rotation d Moment d Rotation bjects Only) e aceptación – D	ución) Moment SF Rotation SF eformación-p	Positiv 25.9119 1 plástica/SF)	e Negative 64.7515	tonf-m	Momento factor de escala Rotación factor de escala
cala para ing for Mor] Use Yiel] Use Yiel (Steel O iterios d eptance Cr	a momento y rota ment and Rotation d Moment d Rotation bjects Only) e aceptación – D riteria (Plastic Rotation	Moment SF Rotation SF eformación-p n/SF)	Positiv 25.9119 1 plástica/SF) Positiv	e Negative 64.7515	tonf-m	Momento factor de escala Rotación factor de escala
cala para ing for Mor] Use Yiel] Use Yiel (Steel O iterios d eptance Ci	a momento y rota ment and Rotation d Moment d Rotation bjects Only) e aceptación – D riteria (Plastic Rotation diate Occupancy	Moment SF Rotation SF eformación-p n/SF)	Positiv 25.9119 1 plástica/SF) Positiv 0.00935	e Negative 64.7515 1 e Negative -0.01	tonf-m	Momento factor de escala Rotación factor de escala
cala para ing for Mor] Use Yiel (Steel O iterios d eptance Co Occu	a momento y rota ment and Rotation d Moment d Rotation bjects Only) e aceptación – D riteria (Plastic Rotation diate Occupancy pacifon inmediata	nción) Moment SF Rotation SF eformación-p √SF)	Positiv 25.9119 1 Dlástica/SF) 0.00935 0.02425	e Negative 64.7515 1 e Negative -0.01 0.025	tonf-m	Momento factor de escala Rotación factor de escala
Cala para ing for Mor Use Yiel Use Yiel Use Yiel (Steel O iterios d eptance Cr Once Life S Segn	a momento y rota ment and Rotation d Moment d Rotation bjects Only) e aceptación – D riteria (Plastic Rotation diate Occupancy pación inmediata safety uridad de vida	nción) Moment SF Rotation SF eformación-p √SF)	Positiv 25.9119 1 blástica/SF) Positiv 0.00935 0.02435	CD - Between Points C1 e Negative 64.7515 1 e Negative -0.01 -0.025 -0.025	tonf-m	Momento factor de escala Rotación factor de escala

*Figura III-*102. Definición automática del comportamiento inelástico de la viga V-10A6(30x75)

Fuente: Elaboración propia, ETABS, 2019

La carga inicial asignada fue la fuerza sísmica normativa correspondiente al sismo de diseño reducida por $R_I=2$, la distribución en altura de la fuerza símica para cada módulo, fue realizada siguiendo el procedimiento especificado en E.030. El cortante en la base fue calculado asumiendo que el periodo fundamental de cada módulo es igual al periodo de la estructura aislada calculado con el procedimiento de fuerza lateral equivalente de ASCE/SEI 7-16.

El periodo de la estructura aislada para cada límite de propiedad y nivel de sismo, fue calculado con el procedimiento de fuerza lateral equivalente de ASCE/SEI 7-16, y es igual a:

Límite superior – Sismo DE	:	$T_D=1.527seg$
Límite inferior – Sismo MCE	:	T _M =2.474seg

Las fuerzas iniciales en altura calculadas en Excel, se asignaron directamente en a los modelos matemáticos para cada dirección de análisis, utilizando el comando de patrones de carga Load Patterns.

Tabla III-58

Distribución de la fuerza sísmica en altura para el módulo A1

Coef. Ampl. Sísmica	С	0.65		
Amort. Efectivo	β	33.96	%	
Coef. Núm. Amort.	В	1.78		
Acel. Espectral (β=5%)	ZUCS/R	0.147		
Acel. Espectral (β=34%)	ZUCS/(RB)	0.083		
Peso	Р	2973.53	tonf	
Cortante Base	V	246.61	tonf	

	DISTRIBUCIÓN DE FUERZAS EN ALTURA EJE X-X									
T =	1.527	7 seg	k =	1.5			d =	49.80	m	
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento	Torsor Mz	
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)
PISO-4	17.68	460.39	460.39	35578.72	0.362	89.34	11.76	12.81	-3.54	316.01
PISO-3	13.26	1127.14	666.75	33337.47	0.339	83.71	11.26	13.47	-4.70	393.15
PISO-2	8.84	1797.47	670.33	18144.46	0.185	45.56	11.27	15.37	-6.60	300.60
PISO-1	4.42	2973.53	1176.06	11150.03	0.114	28.00	21.90	21.63	2.76	-77.29
		$\Sigma =$	2973.53	98210.68						

	DISTRIBUCIÓN DE FUERZAS EN ALTURA EJE Y-Y											
T =	T = 1.527 seg $k = 1.5$							b = 22.40 m				
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento	Torsor Mz			
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)		
PISO-4	17.68	460.39	460.39	35578.72	0.362	89.34	13.34	14.01	-1.79	-159.79		
PISO-3	13.26	1127.14	666.75	33337.47	0.339	83.71	13.21	13.69	-1.60	-133.86		
PISO-2	8.84	1797.47	670.33	18144.46	0.185	45.56	13.22	13.15	1.19	54.19		
PISO-1	4.42	2973.53	1176.06	11150.03	0.114	28.00	10.97	11.68	-1.82	-51.05		
		$\Sigma =$	2973.53	98210.68								

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-59

Distribución de la fuerza sísmica en altura para el módulo A2

Coef. Ampl. Sísmica	С	0.65	
Amort. Efectivo	β	33.96	%
Coef. Núm. Amort.	В	1.78	
Acel. Espectral (β=5%)	ZUCS/R	0.147	
Acel. Espectral (β=34%)	ZUCS/(RB)	0.083	
Peso	Р	2246.26	tonf
Cortante Base	V	186.30	tonf

	DISTRIBUCIÓN DE FUERZAS EN ALTURA EJE X-X										
T =	1.527	7 seg	k =	1.5			d =	33.05	m		
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento '	Torsor Mz		
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)	
PISO-4	17.68	206.22	206.22	15936.58	0.233	43.47	3.03	7.57	-6.19	268.88	
PISO-3	13.26	740.30	534.08	26703.98	0.391	72.84	10.58	12.27	-3.34	243.36	
PISO-2	8.84	1387.26	646.96	17511.89	0.256	47.77	10.81	13.16	-4.00	191.04	
PISO-1	4.42	2246.26	859.00	8144.04	0.119	22.21	14.83	14.39	2.09	-46.51	
		$\Sigma =$	2246.26	68296.48							

	DISTRIBUCIÓN DE FUERZAS EN ALTURA EJE Y-Y										
T =	1.527	7 seg	k =	1.5		b = 22.40 m					
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento '	Torsor Mz		
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)	
PISO-4	17.68	206.22	206.22	15936.58	0.233	43.47	11.03	9.60	2.55	110.75	
PISO-3	13.26	740.30	534.08	26703.98	0.391	72.84	9.31	8.83	1.59	116.07	
PISO-2	8.84	1387.26	646.96	17511.89	0.256	47.77	9.26	9.49	-1.34	-64.16	
PISO-1	4.42	2246.26	859.00	8144.04	0.119	22.21	11.11	10.70	1.53	33.92	
		$\Sigma =$	2246.26	68296.48							

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-60

Distribución de la fuerza sísmica en altura para el módulo A3

Coef. Ampl. Sísmica	С	0.65	
Amort. Efectivo	β	33.96	%
Coef. Núm. Amort.	В	1.78	
Acel. Espectral (β=5%)	ZUCS/R	0.147	
Acel. Espectral (β=34%)	ZUCS/(RB)	0.083	
Peso	Р	741.52	tonf
Cortante Base	V	61.50	tonf

	DISTRIBUCIÓN DE FUERZAS EN ALTURA EJE X-X										
T =	1.527	7 seg	k =	= 1.5			d =	14.80	m		
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento	Torsor Mz		
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)	
PISO-4	17.68	188.68	188.68	14581.39	0.478	29.37	7.76	8.56	-1.54	45.30	
PISO-3	13.26	372.96	184.28	9213.90	0.302	18.56	7.86	8.27	-1.16	21.48	
PISO-2	8.84	557.24	184.28	4988.03	0.163	10.05	7.86	7.85	0.75	-7.49	
PISO-1	4.42	741.52	184.28	1747.11	0.057	3.52	7.86	7.06	1.54	-5.40	
		$\Sigma =$	741.52	30530.43							

	DISTRIBUCIÓN DE FUERZAS EN ALTURA EJE Y-Y										
T =	1.52	7 seg	k =	= 1.5		b = 14.00 m					
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V	_	Momento	Torsor Mz		
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)	
PISO-4	17.68	188.68	188.68	14581.39	0.478	29.37	7.26	8.80	-2.25	-65.95	
PISO-3	13.26	372.96	184.28	9213.90	0.302	18.56	7.21	8.84	-2.32	-43.12	
PISO-2	8.84	557.24	184.28	4988.03	0.163	10.05	7.21	8.79	-2.28	-22.86	
PISO-1	4.42	741.52	184.28	1747.11	0.057	3.52	7.21	8.47	-1.96	-6.89	
		$\Sigma =$	741.52	30530.43							

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-61. Distribución de la fuerza sísmica en altura para el módulo A4

Coef. Ampl. Sísmica	С	0.65		
Amort. Efectivo	β	33.96	%	
Coef. Núm. Amort.	В	1.78		
Acel. Espectral (β=5%)	ZUCS/R	0.147		
Acel. Espectral (β=34%)	ZUCS/(RB)	0.083		
Peso	Р	1427.08	tonf	
Cortante Base	V	118.36	tonf	

	DISTRIBUCIÓN DE FUERZAS EN ALTURA EJE X-X										
T =	1.527	7 seg	k =	1.5		d = 16.25 m					
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento	Torsor Mz		
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)	
PISO-4	17.68	156.87	156.87	12122.57	0.286	33.90	8.46	8.59	-0.94	31.85	
PISO-3	13.26	468.24	311.38	15568.76	0.368	43.54	8.07	8.51	-1.25	54.60	
PISO-2	8.84	783.44	315.20	8531.79	0.202	23.86	8.03	8.58	-1.36	32.55	
PISO-1	4.42	1427.08	643.64	6102.24	0.144	17.06	8.24	8.82	-1.39	23.75	
		$\Sigma =$	1427.08	42325.36							

	DISTRIBUCIÓN DE FUERZAS EN ALTURA EJE Y-Y											
T =	1.527	7 seg	k =	1.5		b = 37.10 m						
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento	Torsor Mz			
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)		
PISO-4	17.68	156.87	156.87	12122.57	0.286	33.90	7.11	9.93	-4.68	-158.52		
PISO-3	13.26	468.24	311.38	15568.76	0.368	43.54	8.74	10.93	-4.04	-175.97		
PISO-2	8.84	783.44	315.20	8531.79	0.202	23.86	8.96	12.47	-5.36	-127.86		
PISO-1	4.42	1427.08	643.64	6102.24	0.144	17.06	15.52	17.78	-4.12	-70.36		
		$\Sigma =$	1427.08	42325.36								

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-62. Distribución de la fuerza sísmica en altura para el módulo A5

Coef. Ampl. Sísmica	С	0.65	
Amort. Efectivo	β	33.96	%
Coef. Núm. Amort.	В	1.78	
Acel. Espectral (β=5%)	ZUCS/R	0.147	
Acel. Espectral (β=34%)	ZUCS/(RB)	0.083	
Peso	Р	477.95	tonf
Cortante Base	V	39.64	tonf

			DISTRI	BUCIÓN DE I	FUERZAS I	EN ALTURA	EJE X-X			
T =	1.527	7 seg	k =	1.5			d =	9.75	m	
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento '	Forsor Mz	
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)
PISO-4	17.68	78.31	78.31	6051.67	0.343	13.62	4.96	2.92	2.53	-34.51
PISO-3	13.26	212.84	134.53	6726.47	0.382	15.13	6.59	2.86	4.22	-63.92
PISO-2	8.84	345.16	132.33	3581.79	0.203	8.06	6.60	2.84	4.25	-34.23
PISO-1	4.42	477.95	132.79	1258.93	0.071	2.83	6.60	2.94	4.15	-11.75
		$\Sigma =$	477.95	17618.87						

			DISTRI	BUCIÓN DE I	FUERZAS I	EN ALTURA	EJE Y-Y			
T =	1.527	7 seg	k =	= 1.5			b =	8.20	m	
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento '	Torsor Mz	
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)
PISO-4	17.68	78.31	78.31	6051.67	0.343	13.62	3.78	4.05	-0.68	-9.30
PISO-3	13.26	212.84	134.53	6726.47	0.382	15.13	4.13	4.07	0.48	7.22
PISO-2	8.84	345.16	132.33	3581.79	0.203	8.06	4.13	4.07	0.47	3.80
PISO-1	4.42	477.95	132.79	1258.93	0.071	2.83	4.13	4.06	0.48	1.36
		$\Sigma =$	477.95	17618.87						

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-63. Distribución de la fuerza sísmica en altura para el módulo A6

Coef. Ampl. Sísmica	С	0.65	
Amort. Efectivo	β	33.96	%
Coef. Núm. Amort.	В	1.78	
Acel. Espectral (β=5%)	ZUCS/R	0.147	
Acel. Espectral (β=34%)	ZUCS/(RB)	0.083	
Peso	Р	477.95	tonf
Cortante Base	V	39.64	tonf

			DISTRI	BUCIÓN DE I	FUERZAS I	EN ALTURA	EJE X-X			
T =	1.527	7 seg	k =	1.5			d =	9.75	m	
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento '	Forsor Mz	
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)
PISO-4	17.68	78.31	78.31	6051.67	0.343	13.62	4.96	2.92	2.54	-34.51
PISO-3	13.26	212.84	134.53	6726.47	0.382	15.13	6.59	2.86	4.22	-63.91
PISO-2	8.84	345.16	132.33	3581.79	0.203	8.06	6.60	2.84	4.25	-34.22
PISO-1	4.42	477.95	132.79	1258.93	0.071	2.83	6.60	2.94	4.15	-11.75
		$\Sigma =$	477.95	17618.87						

			DISTRI	BUCIÓN DE I	FUERZAS I	EN ALTURA	EJE Y-Y			
T =	1.527	7 seg	k =	1.5			b =	8.20	m	
Piso	Altura	Pi-Acum.	Pi	Pi*(hi)^k	αί	Fi=αi*V		Momento '	Torsor Mz	
Diafragma	m	tonf	tonf	tonf-m		tonf	CM (m)	CR (m)	e (m)	Mz (tonf-m)
PISO-4	17.68	78.31	78.31	6051.67	0.343	13.62	4.42	4.15	0.68	9.29
PISO-3	13.26	212.84	134.53	6726.47	0.382	15.13	4.07	4.14	-0.47	-7.16
PISO-2	8.84	345.16	132.33	3581.79	0.203	8.06	4.07	4.13	-0.47	-3.76
PISO-1	4.42	477.95	132.79	1258.93	0.071	2.83	4.07	4.14	-0.48	-1.35
		$\Sigma =$	477.95	17618.87						

Fuente: Elaboración propia, Microsoft Excel, 2019

La respuesta no-lineal de la estructura es representada por la curva de fuerzadeformación de la fuerza cortante en la base y el desplazamiento de un punto de control para cada incremento de la carga lateral.

Se definieron tres (03) casos de carga para el análisis estático no-lineal, un (01) caso de carga inicial correspondiente a las cargas por gravedad que se definió para actúe como un caso previo, y dos (02) casos de carga para representar el incremento de la carga sísmica en cada dirección de análisis.

Loud Case Hame			AENL-P			Design
Load Case Type Tipo de	caso de	e carga	Nonlinear S	tatic	~	Notes
Exclude Objects in this G	roup		Not Applica	ble (No-line	eal estático)	
Mass Source Fuente de	nasa		MASA-A1		~	
Continue from State a Nonlinear Case	it End o	f Nonlinear Case (I	Loads at End	of Case ARE	Included)	
ads Applied (Carga aph	cada)					0
Load Type		Load Na	ime	5ci	ale Factor	Add
Load Pattern	~	Carga muerta		T (100%)		Add
			Modal		~	
her Parameters Modal Load Case						
her Parameters Modal Load Case Geometric Nonlinearity O	ption		None		~	
her Parameters Modal Load Case Geometric Nonlinearity O Load Application	ption	oad Carga total	None		✓ Modify/Show,	
her Parameters Modal Load Case Geometric Nonlinearity O Load Application Aplication de carga Results Saved	ption Full L Final	oad Carga total State Only So	None	inal	Modify/Show	

*Figura III-*115. Definición de caso de carga no-lineal estática por gravedad

Load Case Name			AENL-SX			Design
Load Case Type Tipo de	caso de carga		Nonlinear Sta	tic	~	Notes
Exclude Objects in this G	iroup		Not Applicabl	e ^{(No-lin}	neal estático)	
Mass Source Fuente de r	masa		MASA-A1		~	
itial Conditions (Condición	inicial)					
 Zero Initial Conditions Continuar desde el es Continue from State a 	s - Start from Unst stado final del ca at End of Nonline	tressed St so no-line ar Case (ate eal Loads at End o	f Case ARE	Included)	
Nonlinear Case			AENL-P		~	
			(Caso no-linea	l del peso o	de la estructura)	
Carga aplied (Carga aplic	cada)					
Load Type		Load Na	ame	S	cale Factor	U
Load Pattern	~ SXi			1		Add
Carga lateral estática i	inicial					Delete
Carga lateral estática i	inicial			S	e define la magnitud 1	Delete
Carga lateral estática i ther Parameters	inicial			S d	e define la magnitud e control del desplaza er evaluado	Delete el punto miento a
Carga lateral estática i ther Parameters Modal Load Case	inicial		Modal	S d so	e define la magnitud e control del desplaza er evaluado	Delete / el punto / miento a
Carga lateral estática i ther Parameters Modal Load Case Geometric Nonlinearity O	ption		Modal		e define la magnitud e control del desplaze er evaluado	del punto miento a
Carga lateral estática i ther Parameters Modal Load Case Geometric Nonlinearity O Load Application Aplicación de carga	ption	Control Co	Modal None ontrol de despl	S d so	e define la magnitud y e control del desplaza er evaluado Modfy/Show	/ el punto umiento a
Carga lateral estática i ther Parameters Modal Load Case Geometric Nonlinearity O Load Application Aplicación de carga Results Saved Resultados guardados	ption Displacement Multiple States	Control Co	Modal None ontrol de despl iltiples estados	azamiento	e define la magnitud g e control del desplaza er evaluado Modify/Show Modify/Show	del punto miento a
Carga lateral estática i ther Parameters Modal Load Case Geometric Nonlinearity O Load Application Aplicación de carga Results Saved Resultados guardados Nonlinear Parameters Parámetros no-lineales	ption Displacement Multiple States User Defined	Control Co Mú Defin	Modal None ontrol de despl litiples estados nidos por usuar	azamiento	e define la magnitud y e control del desplaza er evaluado Modify/Show Modify/Show Modify/Show	/ el punto umiento a

*Figura III-*116. Definición de caso de carga lateral estática no-lineal en la dirección X-X

		451	6 14		
Load Case Name		AENL	51		Design
Load Case Type Tipo de	caso de carga	Nonline	ear Static	~	Notes
Exclude Objects in this Gr	roup	Not Ap	plicable (No-li	neal estático)	
Mass Source Fuente de n	nasa	MASA	-A1	~	
nitial Conditions (Condición	inicial)				
 Zero Initial Conditions Continuar desde el es Continue from State al 	- Start from Unst tado final del ca t End of Nonline	ressed State so no-lineal ar Case (Loads at	End of Case AR	E Included)	
Nonlinear Case		AENL-	P	~	
ande Applied (Corres onlin	(aba	(Caso n	o-lineal del peso	de la estructura)	
Carga apric	aua)				6
Load Type		Load Name	5	cale Factor	0
Land Dattern	22		1		Add
Load Pattem Carga lateral estática in	✓ SYi nicia1		1		Add Delete
Load Pattern Carga lateral estática in Ther Parameters	✓ SYi nicial			ie define la magnitud y de control del desplazan	Add Delete
Load Pattern Carga lateral estática in Dther Parameters Modal Load Case	✓ SYi nicial	Modal		ie define la magnitud y le control del desplazan er evaluado	Add Delete
Load Pattern Carga lateral estática in Other Parameters Modal Load Case Geometric Nonlinearity Op	✓ SYi nicial	Modal		ie define la magnitud y de control del desplazan er evaluado	Add Delete
Load Pattern Carga lateral estática in ther Parameters Modal Load Case Geometric Nonlinearity Op Load Application Application	✓ SYi nicial otion Displacement	Modal None Control Control de	1 S d s e desplazamiento	ie define la magnitud y de control del desplazan er evaluado	Add Delete
Load Pattern Carga lateral estática in Carga lateral estática in Other Parameters Modal Load Case Geometric Nonlinearity Op Load Application Aplicación de carga Results Saved Resultados guardados	V SYi	Modal None Control Control de Múltiples es	1 s d s e desplazamiento stados	ie define la magnitud y de control del desplazan er evaluado	Add Delete
Load Pattern Carga lateral estática in Ther Parameters Modal Load Case Geometric Nonlinearity Op Load Application Aplicación de carga Resulta Saved Resulta Saved Resultados guardados Nonlinear Parameters Parámetros no-lineales	V SYi nicial otion Displacement Multiple States User Defined	Modal None Control Control de Múltiples es Definidos po	1 s d s e desplazamiento stados r usuario	e define la magnitud y de control del desplazan er evaluado Modify/Show Modify/Show Modify/Show	Add Delete

*Figura III-*117. Definición de caso de carga lateral estática no-lineal en la dirección X-X

3.8.7 <u>DISEÑO SÍSMICO CON AISLAMIENTO DE TRIPLE PENDULO DE</u> <u>FRICCIÓN FPT (TRIPLE FRICTION PENDULUM)</u>

El diseño sísmico de la edificación principal del Hospital de Pacasmayo con aislamiento de triple péndulo de fricción FPT fue realizado, empleando el procedimiento de análisis de Fuerza lateral equivalente con el programa Excel para la determinación de los desplazamientos y fuerzas mínimas, y el procedimiento de Historia de Respuesta o Tiempo-Historia con la asistencia del programa ETABS 17.0.1; siguiendo lo indicado en el capítulo 17 de ASCE/SEI 7-16 y los criterios de resiliencia del Estándar de aislamiento sísmico para la funcionalidad continua SISCF.

El planteamiento del nivel de base y la superestructura no difiere mucho del diseño anterior, se mantiene las características de los materiales, las secciones (sin incluir armado) de pedestales, capiteles, columnas y vigas, y el diseño integral de losas (dimensionamiento y armado). Las únicas excepciones de este segundo diseño son, la incorporación de placas de concreto armado en las dos direcciones de análisis, y la unificación de los seis (06) módulos estructurales, eliminándose las juntas de separación; esto con el objetivo de que la superestructura sea más compacta al interactuar con el sistema de aislamiento, haciendo que la fuerza sísmica que ingresa a la superestructura tenga una reducción adicional. La incorporación de las placas obliga a que se cuente con más unidades de aislamiento, resultando un sistema de aislamiento con 94 aisladores de triple péndulo de fricción.

El armado de pedestales, capiteles, columnas y vigas fue calculado con las fuerzas obtenidas del análisis realizado con la aplicación de los criterios de ASCE/SEI 7-16 y del Estándar de aislamiento sísmico para la funcionalidad continua SISCF.

Al igual que para el diseño con asilamiento elastomérico, el análisis fue realizado para las propiedades de límite superior utilizando los movimientos sísmicos correspondientes al sismo base de diseño DE, y el análisis para las propiedades de límite inferior con los movimientos sísmicos correspondientes al máximo sismo considerado MCE. Como ya se mencionó, lo anterior tiene su sustento en que DE es un sismo con mayor probabilidad de ocurrencia y que combinado con las propiedades de límite superior, hacen que la fuerza sísmica en la superestructura sea

bastante cercana a la fuerza correspondiente a MCE, o en algunos casos superarla. Para MCE y las propiedades de límite inferior, el desplazamiento del sistema de aislamiento es grande, por tratarse del máximo sismo considerado y un sistema de aislamiento con mayor flexibilidad, lo que hace que los aisladores disipen mucha energía, pudiendo llegar alguno hasta su nivel de colapso.

*Figura III-*118. Planta Interfaz de aislamiento Módulo-A Hospital de Pacasmayo. Diseño con aisladores FPT

Fuente: Elaboración propia, AutoCAD, 2019

a. <u>MODELO MATEMÁTICO DE MASAS Y RIGIDECES</u>

Se generaron dos (02) modelos matemáticos en el programa ETABS 17.0.1, bajo las condiciones de límite superior e inferior de las propiedades del sistema de aislamiento, al igual que para el diseño anterior. Para el modelamiento del sistema de aislamiento se definieron dos (02) tipos de elementos link, correspondientes a un (01) tipo de aislador FPT en dos (02) modelos numéricos, con sus respectivas características histeréticas.

Para el modelamiento del nivel de base y la superestructura se utilizaron las mismas herramientas y secciones que para el modelamiento anterior, debido a que la diferencia estructural radica solo en la incorporación de las placas de concreto armado y la eliminación de las juntas de los módulos estructurales. Las placas nuevas fueron modeladas como elementos shell verticales, dividas en elementos finitos.

*Figura III-***119. Modelo matemático – Planta Nivel de base. Diseño con aislamiento FPT** Fuente: Elaboración propia, ETABS, 2019

*Figura III-*120. Modelo matemático – Planta 1er-piso. Diseño con aislamiento FPT Fuente: Elaboración propia, ETABS, 2019

*Figura III-***121. Modelo matemático – Planta 2do-3er-piso. Diseño con aislamiento FPT** Fuente: Elaboración propia, ETABS, 2019

*Figura III-*122. Modelo matemático – Planta 4to-piso. Diseño con aislamiento FPT Fuente: Elaboración propia, ETABS, 2019

*Figura III-*123. Modelo matemático – Elevación frontal. Diseño con aislamiento FPT Fuente: Elaboración propia, ETABS, 2019

*Figura III-***124. Modelo matemático – Elevación lateral. Diseño con aislamiento FPT** Fuente: Elaboración propia, ETABS, 2019

*Figura III-*125. Modelo matemático – Vista 3D. Diseño con aislamiento FPT Fuente: Elaboración propia, ETABS, 2019

- <u>DEFINICIÓN DE LAS CARACTERÍSTICAS DE LOS MATERIALES</u> Se repiten los criterios y el procedimiento de la sección 3.6.1.a.
- <u>DEFINICIÓN DE COLUMNAS Y VIGAS ELEMENTOS TIPO MARCO</u> (FRAME)

Se repiten los criterios y el procedimiento de la sección 3.6.1.b.

 <u>DEFINICIÓN DE LAS LOSAS DE PISO – ELEMENTOS TIPO ÁREA</u> (SHELL)

Se repiten los criterios y el procedimiento de la sección 3.6.1.c.

- <u>DEFINICIÓN DE LAS UNIDADES DE AISLAMIENTO – ELEMENTOS</u> <u>ENLACE (LINK)</u>

En contacto con la empresa EPS, se recibió la recomendación de utilizar el aislador FPT8831/14-12R/11-6, cuyos detalles técnicos se presentan en el Anexo-4, previa evaluación del aislador con el procedimiento de fuerza lateral equivalente ELF en Excel en función de la demanda sísmica y el periodo objetivo, se resolvió contar con el aislador FPT8833/15-12R/10-6, dispositivo que posee una ligera mayor capacidad al desplazamiento.

Se presentan las características geométricas y mecánicas nominales del aislador FPT8833/15-12R/10-6:

Tabla III-64

Propiedades mecánicas y geométricas del aislador de triple péndulo de fricción FPT8833/15-12R/10-6

Fuente: Elaboración propia, Microsoft Excel, 2019

El aislador FPT8833/15-12R/10-6 fue modelado en ETABS como elemento link, al igual que para el diseño anterior. El aislador fue definido en dos (02) prototipos numéricos, que representan el comportamiento del aislador al recibir dos (02) cargas por gravedad promedio distintas. El aislador ha sido modelado como un elemento Link multilineal plástico, mediante el cual se definen las propiedades mecánicas del dispositivo como constantes, asociadas a un peso promedio; obviándose que las propiedades cambian en función del peso que recibe el aislador, lo que hace que siempre el centro de rigidez del sistema de aislamiento siempre coincida con su centro de masa, y que se elimine la torsión. Al modelar el aislador como un elemento con propiedades constantes y agrupar las unidades de aislamiento en dos (02) grupos en función del peso que reciben, para asumir que las histéresis de capacidad de las unidades estarían representadas por dos (02) histéresis únicas, cada una descrita por un (01) peso promedio distinto; se encuentra que la torsión generada es pequeña, pudiéndose representar de esta manera el comportamiento real del sistema de aislamiento.

Las características mecánicas de los dos (02) prototipos del aislador, fueron modificadas por los factores de límite superior y límite inferior, definiéndose los prototipos para cada límite. Los factores de modificación de propiedades fueron tomados de la Tabla C17.2-7 de ASCE/SEI 7-16 (Tabla III-14) Factores para fabricantes calificados, de la siguiente manera:

Para aisladores de fricción FPT:

Coeficiente de fricción, μ : $\lambda_{máx} = 1.60$, $\lambda_{mín} = 0.80$

_

AISLADOR PROTOTIPO FPT-A: Prototipo numérico del aislador de triple péndulo de fricción FPT8833/15-12R/10-6 con mayor flexibilidad y menor peso soportado. Sus características geométricas y mecánicas, así como las histeréticas se detallan en los siguientes Tablas:

Tabla III-65

Propiedades mecánicas y geométricas, y características histeréticas del prototipo de aislador FPT-A

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-66a

Características histeréticas de la capacidad del prototipo de aislador FPT-A para las propiedades de límite superior (Upper Bound)

AISL. FPT8833/15-12R/10-6 FPT-A N =56 PLACA R (m) h (m) d (m) PLACA Reff (m) Ff (Ton) d* (m) μ 1 2.24 0.105 0.040 0.229 1 2.13 4.34 0.22 0.013 2 2 0.31 0.080 0.051 0.23 1.39 0.04 3 3 0.31 0.080 0.013 0.051 0.23 1.39 0.04 4 2.24 0.105 0.056 0.229 2.13 0.22 4 6.07 I FASE Comportamiento histerético FPT-A F2f =1.39 Ton $q^{*} =$ 0.012 m 40 2F2f =4.34 Ton 30 II FASE 2F2f =4.34 Ton 20 q** = 0.050 m 6.07 Ton F1f =Fuegza F (Ton) 9 10 III FASE F1f =6.07 Ton 0 -0.20 0.20 0.40 0.60 -0.40 - 11' qdr1 =0.440 m -10 Fdr1 =16.00 Ton IV FASE -20 Fdr1 =16.00 Ton qdr4 =0.477 m -30 Fdr4 =17.73 Ton V FASE -40 Desplazamiento q (m) Fdr4 = 17.73 Ton qcap = 0.512 m Superior Cap. ----- Nominal Cap. 26.02 Ton Fcap =

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-66b

Características histeréticas de la capacidad del prototipo de aislador FPT-A para las

AISL. FPT	8833/15-12I	R/10-6 FPT	- <u>A</u>	N =	56				
PLACA	R (m)	h (m)	μ	d (m)		PLACA	Reff (m)	Ff (Ton)	d* (m)
1	2.24	0.105	0.020	0.229		1	2.13	2.17	0.22
2	0.31	0.080	0.006	0.051		2	0.23	0.69	0.04
3	0.31	0.080	0.006	0.051		3	0.23	0.69	0.04
4	2.24	0.105	0.028	0.229		4	2.13	3.04	0.22
	I FASE			Com	nortam	ionto hist	arática ED		
F2f =	0.69	Ton		Com	portam	iento nist	eretico FP	I-A	
q* =	0.006	m				40			
2F2f =	2.17	Ton							
	II FASE					30			
2F2f =	2.17	Ton				20			
q** =	0.025	m				20			
F1f =	3.04	Ton	Ê			10		and the second	
	III FASE		(To			and the second			
F1f =	3.04	Ton	L J						
qdr1 =	0.449	m	-9.60 n	-0.40	-0.20	0.00	0.20	0.40	0.60
Fdr1 =	13.83	Ton	Ū.	Lawrence and		-10			
	IV FASE					-20			
Fdr1 =	13.83	Ton							
qdr4 =	0.468	m				-30			
Fdr4 =	14.70	Ton							
	V FASE				De	-40 splazamiento	a (m)		
Fdr4 =	14.70	Ton			De	.spiazamiento	9 (117)		
qcap =	0.512	m			Inferi	or Cap	Nominal Ca	0.	
Fcap =	25.33	Ton	<u> </u>						

propiedades de límite inferior (Lower Bound)

Fuente: Elaboración propia, Microsoft Excel, 2019

El modelamiento del prototipo de aislador FPT-A en ETABS tanto para límite superior como para límite inferior, se realizó considerando las características no-lineales del comportamiento histerético de la capacidad total del prototipo presentadas en los Tablas III-66. El aislador fue definido como un elemento Link del tipo multilineal plástico, ingresando la rigidez axial, y la función numérica de la histéresis de la capacidad del aislador en el Tabla de dialogo Link Property Data (Propiedades de enlace). La salvedad de este modelamiento fue que se consideró sobre cada aislador una misma carga vertical W, igual al peso sobre el grupo de aisladores dividido por el número de aisladores, que activa la fuerza de fricción; cuando en realidad cada aislador soporta una carga por gravedad distinta, lo que hace que el comportamiento de cada aislador sea distinto el uno del otro. La masa, el peso y las inercias rotacionales del aislador fueron tomadas de la información del aislador recomendado por la empresa EPS, FPT8831/14-12R/11-6.

Total Mass and Wingld New (mass do aislador) 0.107 torf + s/m Rotational Inetia 1 0.033 torf + s/m Weight (peso do aislador) 0.58 torf Rotational Inetia 2 0.011 torf + s/m Factors for Line and Area Spings 0.011 m Rotational Inetia 3 0.013 torf + s/m Link/Support Property is Defined for This Length When Used in an Area Sping Property 0.001 m m Unk/Support Property is Defined for This Area When Used in an Area Sping Property 16:03 m² Unk/Support Property is Defined for This Area When Used in an Area Sping Property 16:03 m² Unk / Support Property is Defined for This Area When Used in an Area Sping Property 16:03 m² Unk / Support Direction Properties Properties Properties Properties VIII Modify/Show for VII. R1 Modify/Show for VII. R2 Visuant Control Properties Properties Properties Modify/Show for VII. R2 Modify/Show for VII. Visuant Control Properties Properties Modify/Show for VII. R2 No Modify/Show for VII. No Prameters are Required for the Hysteresia Type Property Name PT PT Modify/Show for VII.	General Link Link	Property Name Property Notes	FPT	A(Upper) Modify/Show Notes	Link Typ (tipo de P-Delta F	e enlace) Parameters	(Multili MultiLi	ineal plástica) near Plastic V Modify/Show	
Federal for Line and Area Spings Unit //Support Property is Defined for This Length When Used in a Line Sping Property 0.001 m Link/Support Property is Defined for This Area When Used in an Area Sping Property 1E-03 m² Unit //Support Property is Defined for This Area When Used in an Area Sping Property 1E-03 m² Unit // Support Property is Defined for This Area When Used in an Area Sping Property 1E-03 m² Unit // Support Directional Properties Direction Fixed NonLinear Properties Property and Addy/Show for U2 R2 VSupport Directional Properties Modify/Show for U3 R3 Modify/Show for R3 VSupport Directional Properties Property Name PT-4/Upper) PT-4/Upper) Property Name PT-4/Upper) Type Multimeer Plastic Waltimeer Plastic No Parameters are Required for this Hysteresis Type NonLinear Yes O O O O Type Multimeer Plastic Norder// No Parameters are Required for this Hysteresis Model Registry Enderson 0.05 m Norder// Norder// Registry Enderson 0.05 m Norder// Norder// Registry Enderson 0.05 <	Total M. Mass Weig	(masa de aisla (masa de aisla ht (peso de ais	ador) 0.107 lador)1.058	tonf-s²/m	Rota Rota Rota	ational Inertia ational Inertia ational Inertia	a 1 a 2 a 3	0.033 tonf-m-s ² 0.018 tonf-m-s ² 0.018 tonf-m-s ²	
Dectoral Propeties (Propiedades para cada dirección) Dectora Fixed NonLinear Propeties U 1 Moddy/Show for U1 U 2 Moddy/Show for U2 U 3 Moddy/Show for U3 Youport Directional Properties Propety Name FPT-A(Upper) U2 U2 Type MultiLinear Plastic NonLinear Yes NonLinear Yes NonLinear Yes NonLinear Vers NonLinear Vers Visitancia (ackstrem) 0 Utilizer Floation 155 Propeties (Reamotion Location Utilizer Floation (Reamotion Location) Utilizer Gree Daplingelation (Reamotion Location	Factors Link/ Link/	or Line and Area Support Property Support Property	a Springs y is Defined y is Defined	for This Length When Use for This Area When Used i	d in a Line Spring Proj in an Area Spring Prop	perty perty		0.001 m 1E-03 m ²	
✓ U3 Modfy/Show for U3 R3 Modfy/Show for R3. //Support Directional Properties endication Properly Name FPT-A(Upper) Drection U2	Direction Direct	on Fixed M U1 U2	(Propiedad IonLinear	les para cada dirección) Properties Modify/Show for U1 Modify/Show for U2	Direction	Fixed	NonLinear	Properties Modify/Show for R1 Modify/Show for R2	
Propety Name FPT-A(Upper) Direction U2 Type MultiLinear Plastic NonLinear Yes mear Propeties (Propiedades lineales) Effective Stiffness 0.001 (Rigidaz effectiva) 0 0 torf s/m Multinear Force-Displ Relation (Relación multilineal fuerza-despl.) Nistance for Bord (Relación multilineal fuerza-despl.) Numer Force-Displ Relation (Relación multilineal fuerza-despl.) No factor for Stiff Statuliting and the second statuliting an	✓ Support Direction	U3		Modify/Show for U3	☐ R3			Modify/Show for R3	
Properties (Propiedades lineales) Effective Strifness 0.001 torf/m Effective Strifness 0.001 torf/s/m Montiguamiento efectivo) torf/s/m hear Deformation Location (Localización de deformación por corte) Distancia desde extremo) 0.155 utilinear Force-Displ Relation (Relación multilineal fuerza-despl.) Pi Displ 1 0.512 2 0.477 3 0.44 4 0.05 4 0.05 4 0.05 0 use: (0.512 Max: (0.512 26.02: 1 0.52 0.012 4.339 Max: (0.512 26.02: 1 0.05 0.012 4.339 Max: (0.512 26.02: Max: (0.512 26.02: Max: (0.512 26.02: Max: (0.512 26.02:	Property Name Direction Type NonLinear	FPT- U2 Multi Yes	-A(Upper) iLinear Plasti	c	 riysteresis Type and 	Hysteresia (Tipo de No F	s Type histéresis)	Cinemática) Kinematic ~ re Required for this Hysteresis Tyr	De la constanti
	near Properties (Pro Effective Stiffness (Rigidez efectiva) Effective Damping (Amortiguamienter hear Deformation Loca Distance from End-J Distance from End-J (Distancia desde etal) Utilinear Force-Displ F Pt Pt Displ (m) 1 1 -0.512 2 -0.477 3 -0.44 4 -0.05 5 -0.012	piedades linea 0.00 o efectivo) (Localiza xtremo) elation (Relaction Force tonf) 26.02 17.734 15.999 6.074 4.339 v	les) 1 ación de de 5 ión multilit	tonf/m tonf-s/m formación por corte) m neal fuerza-despl.)	Hysteresis Definition	Diagram	Kin	rematic Hysteresis Model	

*Figura III-***126. Definición de aislador FPT-A para límite superior como elementos link** Fuente: Elaboración propia, ETABS, 2019

	General							(Multi	lineal plástica)	
	Link Prop	erty Name	FP1	「-A(Lower)		Link Type (tipo de	enlace)	MultiL	inear Plastic \checkmark	
	Link Prop	erty Notes		Modify/Show Notes		P-Delta P	arameters		Modify/Show	
	Total Mass a	nd Weight	t							
	Mass (ma	asa de ais	slador) 0.10	7 tonf-s²/m		Rota	tional Inert	ia 1	0.033 tonf-m-s ²	
	Weight (p	eso de a	islador)1.05	8 tonf		Rota	tional Inert	a 2	0.018 tonf-m-s ²	
						Rota	tional Inert	a 3	0.018 tonf-m-s ²	
	Factors for Li	ne and An	ea Springs							
	Link/Supp	oort Prope	rty is Defined	for This Length When Use	ed ir	n a Line Spring Prop	erty		0.001 m	
	Link/Sup;	oort Prope	rty is Defined	for This Area When Used	in a	n Area Spring Prop	erty		1E-03 m ²	
	Directional P	operties	(Propieda	des para cada dirección)					
	Direction	Fixed	NonLinear	Properties		Direction	Fixed	NonLinear	Properties	
	✓ U1			Modify/Show for U1		🗌 R1			Modify/Show for R1	
	✓ U2		\checkmark	Modify/Show for U2		🗌 R2			Modify/Show for R2	
	✓ U3		\checkmark	Modify/Show for U3		🗌 R3			Modify/Show for R3	
k/Support	Directional Pro	operties								
dentification					H	ysteresis Type and	Associated	Parameters		
Property N	Name	FP	T-A(Lower)				Husteres	is Type	(Cinematica)	
Direction		U2	!				(Tipo d	e histéresis		
Туре		Mu	ltiLinear Plast	ic			No	Parameters a	are Required for this Hysteresis Ty	pe
NonLinear	r	Ye	S							
Linear Proper	ties (Propied	ades line	ales)		-H	ysteresis Definition	Diagram			
Effective	Stiffness	0.0	01	tonf/m				Ki	nematic Hysteresis Model	
(Rigidez Effective I	efectiva) Damping	0		tonf-s/m						
(Amortig	guamiento ere	(Locali	zación de d	eformación por corte)						
Distance f	from End-J	(Locali	7				-	/		
(Distanci	ia desde extre	mo)						/		
Multilinear Fo	rce-Displ Relation	n (Rela	ción multili	ineal fuerza-despl.)			r			
Pt D	ispl Forc	e ^		1		ction				
1 -0.	512 -25.3	31				4				
2 -0.4	468 -14.69	97								
3 -0.4	449 -13.8	29								
	025 -3.03	9								
4 -0. 5 -0.		e Rom	1							
4 -0.1 5 -0.1	Delet	E FILIN	•						Defermetter	
4 -0.1 5 -0.1 Add Row	w Delet Reorder Rows		Max: (0.	512, 25.331); Min:					Deformation	
4 -0.1 5 -0.1 Add Rov	v Delet Reorder Rows		Max: (0.	512, 25.331); Min:	_				Deformation	

*Figura III-*127. Definición de aislador FPT-A para límite inferior como elementos link Fuente: Elaboración propia, ETABS, 2019

<u>AISLADOR PROTOTIPO FPT-B:</u> Prototipo de aislador de triple péndulo de fricción FPT8833/15-12R/10-6 con mayor rigidez y peso soportado. Sus características geométricas y mecánicas, así como las histeréticas se detallan en los siguientes Tablas:

Tabla III-67

Propiedades mecánicas y geométricas, y características histeréticas del prototipo de aislador FPT-B

Fuente: Elaboración propia, Microsoft Excel, 2019

300

Tabla III-68a

Características histeréticas de la capacidad del prototipo de aislador FPT-B para las propiedades de límite superior (Upper Bound)

AISL. FPT8833/15-12R/10-6 FPT-B N =38 PLACA R (m) h (m) d (m) PLACA Reff (m) Ff (Ton) d* (m) μ 1 2.24 0.105 0.040 0.229 1 2.13 7.78 0.22 0.013 2 2 0.31 0.080 0.051 0.23 2.49 0.04 3 3 0.31 0.080 0.013 0.051 0.23 2.49 0.04 4 2.24 0.105 0.056 0.229 2.13 10.90 0.22 4 I FASE Comportamiento histerético FPT-B F2f =2.49 Ton $q^{*} =$ 0.012 m 40 2F2f =7.78 Ton 30 II FASE 2F2f =7.78 Ton 20 q** = 0.050 m 10.90 Ton F1f =Fuega F (Ton) 9 10 III FASE F1f =10.90 Ton 0 -0.40 -0.20 0.40 0.20 0.60 0.00 qdr1 =0.440 mFdr1 =28.70 Ton IV FASE -20 Fdr1 =28.70 Ton 0.477 m qdr4 =-30 Fdr4 =31.81 Ton V FASE -40 Desplazamiento q (m) Fdr4 = 31.81 Ton qdr4 =0.512 m Superior Cap. ----- Nominal Cap. 46.68 Ton Fcap =

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla III-68b

Características histeréticas de la capacidad del prototipo de aislador FPT-B para las propiedades de límite inferior (Lower Bound)

AISL. FPT	8833/15-121	R/10-6 FPT-	B	N =	38				
PLACA	Reff (m)	Ff (Ton)	d* (m)]	PLACA	R (m)	h (m)	μ	d (m)
1	2.13	3.89	0.22	1		2.24	0.105	0.020	0.229
2	0.23	1.25	0.04	2		0.31	0.080	0.006	0.051
3	0.23	1.25	0.04	3		0.31	0.080	0.006	0.051
4	2.13	5.45	0.22	4		2.24	0.105	0.028	0.229
	I FASE			Comm	e ute unic	unto biot	NÁtica ED	TD	
F2f =	1.25	Ton		Comp	ortamie	ento niste	eretico FP	I-B	
q * =	0.006	m				40			/
2F2f =	3.89	Ton							
	II FASE					30			
2F2f =	3.89	Ton				20			
q** =	0.025	m				20			
F1f =	5.45	Ton	Ê			10			
	III FASE		(Tor			and the second second			
F1f =	5.45	Ton	ц р			0	and the second se		
qdr1 =	0.449	m	<u>4</u> 0.60	-0.40		0.00-	0.20	0.40	0.60
Fdr1 =	24.81	Ton	ц Ц	at the second		-10			
	IV FASE			And the second		20			
Fdr1 =	24.81	Ton				-20			
qdr4 =	0.468	m		p.		-30			
Fdr4 =	26.36	Ton							
	V FASE					-40	()		
Fdr4 =	26.36	Ton			Desp	piazamiento	q (m)		
qdr4 =	0.512	m			Inforior	Can	Nominal Car	2	
Fcap =	45.43	Ton			menor	Cap.			

Fuente: Elaboración propia, Microsoft Excel, 2019

El modelamiento del prototipo de aislador FPT-B en ETABS tanto para límite superior como para límite inferior, también fue realizado como un elemento Link Multilineal Plástico, tomando en cuenta las características histeréticas de los Tablas III-68, y las mismas consideraciones utilizadas para el modelamiento del prototipo de aislador FPT-A.

Link Property	Name FPT-B(Upper) Notes Modify/Show Notes.	Link Type (tipo de enlace) MultiLinear Plastic P-Delta Parameters Modify/Show
Total Mass and Mass(masa o Weight(peso	Weight de aislador) 0.107 tonf-s²/ o de aislador) 1.058 tonf	Vm Rotational Inertia 1 0.033 tonf-m-s² Rotational Inertia 2 0.018 tonf-m-s² Rotational Inertia 3 0.018 tonf-m-s²
Factors for Line Link/Support	and Area Springs Property is Defined for This Length When Property is Defined for This Area When U:	Used in a Line Spring Property 0.001 m Ised in an Area Spring Property 1E-03 m ²
Directional Prope	erties (Propiedades para cada direcci	ion) Direction Fixed NonLinear Properties
✓ U1	Modify/Show for U	1 R1 Modify/Show for R1
☑ U2	Modify/Show for U2	2 R2 Modify/Show for R2
☑ U3	Modify/Show for U	3 R3 Modify/Show for R3
irection ype onLinear	U2 MultiLinear Plastic Yes	Hysteresis Type (Tipo de histéresis) No Parameters are Required for this Hysteresis Type
ar Properties (Propiedada ffective Stiffness Rigidez efectiva) ffective Damping Amortiguamiento efecti	es lineales) 0.001 tonf/m 0 tonf-s/m	Hysteresis Definition Diagram Kinematic Hysteresis Model
Distance from End-J Distancia desde extremo linear Force-Displ Relation	(Relación multilineal fuerza-despl.)	
Topping Force (tonf) -0.512 -46.68 -0.477 -31.809 -0.44 -28.696 -0.05 -10.895 -0.012 -7.782 Add Row Delete R	Max: (0.512 46 68): Min-	Petermation

Figura III-128. Definición de aislador FPT-B para límite superior como elementos link.

Total Mass and Weight Mass (mass, de aislador) 0.07 torf = 9/m Rotational Inetia 1 0.033 torf = 9/m Weight (peso de aislador) 1058 torf = 9/m Rotational Inetia 2 0.018 torf = 9/m Factors for Line and Area Springs Unix/Support Property is Defined for This Length When Used in a Line Spring Property 0.001 in Link/Support Property is Defined for This Length When Used in a Line Spring Property E.033 m ² Direction Freed NonLinear Properties Properties Properties U1 Modify/Show for U1 R1 Modify/Show for R2 U2 Modify/Show for U2 R2 Modify/Show for R2 U3 Modify/Show for U3 R3 Modify/Show for U3 Support Direction Properties Modify/Show for U3 No Parameters are Required for this Hysteresis Type Montinear Yee Modify/Show for U3 No Parameters are Required for this Hysteresis Type No Parameters are Required for this Hysteresis Type NonLinear Yee 0.001 ord #a/m No Parameters are Required for this Hysteresis Type Reference Show Expl 2.005 0.001 ord #a/m 1001 ord #a/	General Link Property Name FPT-B(Lower) Link Property Notes Modify/Show Notes	Link Type (tipo de enlace) MultiLinear Plastic P-Delta Parameters Modify/Show
Factors for Line and Area Springs Link/Support Property is Defined for This Length When Used in a Line Spring Property 0.001 m Link/Support Property is Defined for This Area When Used in an Area Spring Property 1E03 m ² Directional Properties (Propiedades para cada dirección) IEC03 m ² Directional Properties (Propiedades para cada dirección) IEC03 Moddy/Show for II1 U U U U W Moddy/Show for UI2 R3 Moddy/Show for IR3 Support Directional Properties Moddy/Show for UI3 R3 Moddy/Show for IR3 Support Directional Properties Moddy/Show for UI3 R3 Moddy/Show for IR3 Support Directional Properties Moddy/Show for II3 Moddy/Show for IR3 Moddy/Show for IR3 Support Directional Properties Moddy/Show for II3 No Areameters Moddy/Show for IR3 Support Name FT-BiLower) Hyteresis Type and Associated Parameters (Cinematic Ary Steresis Type) Non Linear Yee MultiLinear Plastic No Parameters are Required for this Hyteresis Type Non Linear Yee 0.001 ord /m If there is the steresis Type Non Linear Yee If theteries Definition Dagram If there is th	Total Mass and Weight Mass(masa de aislador) 0.107 tonf-s²/m Weight(peso de aislador) 1.058 tonf	Rotational Inertia 1 0.033 tonf-m-s² Rotational Inertia 2 0.018 tonf-m-s² Rotational Inertia 3 0.018 tonf-m-s²
Decisional Propeties (Propiedades para cada dirección) Direction Ried NonLinear Propeties U1 Modify/Show for U1 U2 Modify/Show for U2 U3 Modify/Show for U2 U3 Modify/Show for U3 Support Directional Properties Trification Property Name FPT-BiLower/ U2 Modify/Show for U3 Type MultiLinear Plastic Von Linear Ves Non Linear Ves Non Directional Properties Hysteresis Type and Associated Parameters (Cinemática) Hysteresis Type Modify/Show for U3 Type MultiLinear Plastic Vize MultiLinear Plastic Type MultiLinear Plastic Non Linear Ves Ber Enclose Stiffness 0.001 Ontoria 0.01 Ontoria 0.01 Distancia desde extremo: 0.01 Distancia desde extremo: 0.01 Madify/Show Tor Staff 0.02 Add Row Delete Row	Factors for Line and Area Springs Link/Support Property is Defined for This Length When Use Link/Support Property is Defined for This Area When Used	ed in a Line Spring Property 0.001 m in an Area Spring Property 1E-03 m ²
UI Modify/Show for U1 R1 Modify/Show for R1 U2 Modify/Show for U2 R2 Modify/Show for R3 Support Directional Properties R3 Modify/Show for R3 Tification PT-B(Lower) PT-B(Lower) Direction U2 Hyteresis Type and Associated Parameters (Cinemática) Property Name PT-B(Lower) Hyteresis Type and Associated Parameters (Cinemática) Property Name PT-B(Lower) No Parameters are Required for this Hyteresis Type NonLinear Yes No Parameters are Required for this Hyteresis Type Strective Stiffnees 0.001 torf a/m Tiffcidive efectiva) 0 torf a/m Stractic destremoing 0.17 m Tiffscher Force Dapit Palation 0.17 m Tiffscher External (Relación multilineal fuerza-despl.) Stractic destremoing 1 0.17 m Stractic destremoing 0.17 Tiff der de ford 0.17 m Stractic destremoing Stractic destremoing 1 0.06 3.831 Add Row Delete Row Delete Row Delete Row	Directional Properties (Propiedades para cada dirección) Direction Fixed NonLinear Properties	Direction Fixed NonLinear Properties
VU2 Modify/Show for U2 R2 Modify/Show for R2. VU3 Modify/Show for U3 R3 Modify/Show for R3. Support Directional Properties Historical Modify/Show for R3. Property Name FPT-B(Lower) Hysteresis Type and Associated Parameters (Cinemática) Direction U2 Hysteresis Type and Associated Parameters (Cinemática) Type MultiLinear Plastic No Parameters are Required for this Hysteresis Type NonLinear Yes No Parameters are Required for this Hysteresis Type are Properties 0.001 torf/m Rigidaz efectiva) 0.001 torf/m Brective Dampio dectivo) 0.17 n Distancia desde extremo 0.17 n Distancia desde extremo 0.17 n Modify/Show for Brod 0.17 n Distancia desde extremo 0.17 n Add Row Delete Row 0.443 2.8302	U1 Modify/Show for U1	R1 Modify/Show for R1
Image: Wight of W	U2 Modify/Show for U2	R2 Modify/Show for R2
Support Directional Properties ntification Propetty Name FPT-B(Lower) Direction U2 Type MultiLinear Plastic NonLinear Yes NonLinear Yes Biglidzz fectives 0.001 torifs/m 0.001 gridzz fectives 0.001 torifs/m 0 Biglidzz fectives 0.001 torifs/m 0 propetion 0.17 Distancia desde extremo 0.17 Distancia desde extremo 0.17 Add Row Delete Row	U3 Modify/Show for U3	R3 Modify/Show for R3
ar Properties (Propiedades lineales) ffective Stiffness 0.001 torf./m ffective Damping 0 torf.s./m Amortiguamiento efectivo) ar Deformation Location (Localización de deformación por corte) Istancia desde extremo) linear Force-Displ Relation (Relación multilineal fuerza-despl.) Province from torf.// m Displ force (m) torf./m 0.17 m Distancia desde extremo) linear Force-Displ Relation (Relación multilineal fuerza-despl.) Province for torf.// m 0.17 m Distancia desde extremo) Add Row Delete Row	Property Name FPT-B(Lower) Direction U2 Sype MultiLinear Plastic Ves	Hysteresis Type (Tipo de histéresis) No Parameters are Required for this Hysteresis Type
Effective Stiffness 0.001 tonf/m Rigidez efectiva) ara Deformation Location (Localización de deformación por corte) Distance from End-J 0.17 m Distancia desde extremo) tilnear Force-Displ Relation (Relación multilineal fuerza-despl.) Pt 0.512 45.435 2 -0.468 -26.362 3 -0.449 -24.805 4 -0.025 -5.448 5 -0.006 -3.891 Add Row Delete Row	ear Properties (Propiedades lineales)	Hysteresis Definition Diagram
ear Deformation Location (Localización de deformación por corte) Distance from End J 0.17 m (Distancia desde extremo) tilnear Force-Displ Relation (Relación multilineal fuerza-despl.) Pt 0.512 45.435 2 -0.468 -26.362 3 -0.449 -24.805 4 -0.025 -5.448 5 -0.006 -3.891 Add Row Delete Row	Effective Stiffness 0.001 tonf/m Rigidez efectiva) Effective Damping 0 tonf-s/m (Amortiguamiento efectivo)	Kinematic Hysteresis Model
Force-Lispi Relation (Relation multilineal fuerza-despl.) Pt Displ Force (m) (tonf) 1 -0.512 -45.435 2 -0.468 -26.362 3 -0.449 -24.805 4 -0.006 -3.891 Add Row Delete Row	ear Deformation Location (Localización de deformación por corte) Distance from End-J 0.17 Distancia desde extremo) The location	
Reorder Bows Max: (0.512, 45, 435); Min: Deformation	Immear Porce-Displ Relation (Relation multilineal fuerza-despl.) Pt Displ force (m) (tonf) 1 1 -0.512 -45.435 2 -0.468 -26.362 3 -0.449 -24.805 4 -0.025 -5.448	Vetion

Figura III-129. Definición de aislador FPT-B para límite inferior como elementos link

- <u>ASIGNACIÓN DE CARGAS Y DEFINICIÓN DE LA FUENTE DE</u> <u>MASA</u>

Se repiten los criterios y el procedimiento de la sección 3.6.1.e.

- <u>DEFINICIÓN DE PLACAS – ELEMENTOS TIPO ÁREA VERTICAL</u> (<u>SHELL</u>)

Las placas incorporadas se modelaron como elementos tipo shell vertical a base de concreto f'c=210Kg/cm2 con un espesor de 30cm. Las placas una vez dibujadas en el modelo matemático, se dividieron en elementos con lados aproximadamente iguales como si se tratara de una malla, conocida como malla de elementos finitos. Este procedimiento es realizado con la finalidad de que la solución de la estructura desarrollada numéricamente por el programa ETABS, sea lo suficientemente cercana a la solución analítica.

Las placas fueron extendidas entre columnas, llenando de esta manera los pórticos que conformaban, y convirtiéndose las columnas en elementos de borde de las placas.

		_
Property Name	PL-30	
Property Type	Specified	\sim
Wall Material Material de muro	CONC-fc=210	~
Notional Size Data	Modify/Show Notional Size	
Modeling Type Tipo de modelamiento	Shell-Thin (Área delgada)	\sim
Modifiers (Currently Default)	Modify/Show	
Display Color	Change	
Property Notes	Modify/Show	
roperty Data		
Thickness Espesor	0.3	m
Include Automatic Rigid Zone Area	Over Wall	

*Figura III-***130. Definición de placas t=30cm como elementos shell** Fuente: Elaboración propia, ETABS, 2019

b. <u>ANÁLISIS MODAL – VECTORES DE RITZ</u>

Siguiendo el procedimiento para el diseño anterior, se utilizaron tres (03) vectores de carga para el análisis, tres (03) vectores de aceleración correspondientes a los grados de libertad de los aisladores, dos (02) grados traslacionales y uno (01) rotacional. Así mismo se consideraron tres (03) modos para cada unidad de aislamiento, resultando un total de n = 3.94 = 282 modos, lo que generó ncyc = 94 ciclos, es decir un ciclo de análisis por cada aislador, con lo quedarían cubiertas todas las formas de modo de la estructura aislada.

		Modal		Design
Modal Case SubType (1	`ipo de caso modal)	Ritz	~	Notes
Exclude Objects in this (àroup	Not Applicable		
Mass Source (Fuente d	e masa)	MASA-A1		
-Delta/Nonlinear Stiffness				
Use Preset P-Delta	Settings None		Modify/Show	
Nonlinear Case	plicada)	(Ciclos máximos)		0
Load Type	Load Name	Maximum Cycles	Target Dyn. Par. Ratio, %	U Add
Acceleration ~	UXVector traslacional	0	99	Add Dalata
Acceleration	UYVector traslacional	0	99	Delete
Acceleration	RZVector rotacional	0	99	

Figura III-131. Definición del caso modal vectores de Ritz para el análisis. Diseño con aislamiento FPT

c. ANÁLISIS DINÁMICO TIEMPO-HISTORIA NO-LINEAL FNA

Siguiendo el procedimiento para el diseño anterior se definió el caso de cargas graduales cuasi-estáticas con alto amortiguamiento previo a los casos de cargas dinámicas. Para ello se definió una función rampa de manera similar que, para el diseño anterior, y se acomodó un amortiguamiento modal alto β =0.99 al caso de carga.

Load Case Data				>
Load Case Name		TH GRAVEDAD		Design
Load Case Type/Subtyp	Time History	✓ Nonline	ear Modal (FNA) 🗸 🗸	Notes
Exclude Objects in this C	Group	(Tiempo- Not Applicable	Historia modal no-linea	1)
Mass Source (Fuente de	e masa)	Previous (MASA-A1)	
Initial Conditions				
Zero Initial Condition	s - Start from Unstressed	State		
Continue from State	at End of Nonlinear Case	e (Loads at End of Case	ARE Included)	
Nonlinear Case				
Loads Applied (Carga ap	licada)			
Load Type	Load Name	Function	Scale Factor	0
Load Pattern \sim	D(Carga muerta)	00 RAMP_GRAVED	1	Add
Load Pattern	L (Carga viva)	00 RAMP_GRAVED	0.5	Delete
Load Pattern	LR (Carga viva de techo)	00 RAMP_GRAVED	0.25	Advanced
Other Parameters				
Modal Load Case (Case	o de carga modal)	Modal	~	
Number of Output Time	Steps (Número de paso	s de tiempo de salida)	359	2 veces el tiempo
Output Time Step Size()	Rango de pasos de tien	npo de salida)	0.08	la función rampa
Modal Damping	Constant at 0.99		Modify/Show	_
Nonlinear Parameters	Default		Modify/Show	
	ОК	Cancel	I	

*Figura III-***133. Definición del caso de carga FNA para cargas cuasi**estáticas iniciales para el análisis dinámico. Diseño con aislamiento FPT Fuente: Elaboración propia, ETABS, 2019

Para los casos de los movimientos sísmicos, al igual que para el diseño anterior; el amortiguamiento se definió utilizando un factor de amortiguamiento constante para cada modo, medido como como una fracción del amortiguamiento crítico, β =0.05.

Se definió el análisis modal de tiempo-historia no-lineal FNA, para cada registro sísmico ingresado, con un número y tamaño de pasos de tiempo que abarcó el tiempo de duración del registro. Se definieron las cargas de aceleración para dos direcciones ortogonales de análisis correspondiente a las direcciones globales 1 y 2, y se asignaron las componentes de los registros sísmicos a cada una de las direcciones. De esto, en algunos casos se amplificó una de las componentes para que los valores del espectro de respuesta del

registro sísmico no sean menores que el 90% del valor correspondiente en el espectro de peligro uniforme MCE, según lo indicado en la sección 3.3.2.f.

Tabla III-69

Casos de carga modal de tiempo-historia no-lineal FNA para el análisis dinámico, con sus factores de escalas respectivos

	CASOS DE CARGA	A MODAL TIEMPO-HISTORIA	NO-LINEAL F	'NA
	CASO DE CADCA	REGISTRO AJUSTADO A	FACTOR D	E ESCALA
	CASO DE CARGA	E.030-MCE	Comp. 1	Comp. 2
TH-1	PRQ_1966	SAd01 PRQ_1966		1.44 (N-S)
TH-2	PRQ_1970	SAd02 PRQ_1970	1.06 (E-W)	
TH-3	PRQ_1974	SAd03 PRQ_1974		1.11 (N-S)
TH-4	MOQ001_2001	SAd04 MOQ001_2001		1.18 (N-S)
TH-5	ICA002_2007	SAd05 ICA002_2007	1.21 (E-W)	
TH-6	constitucion_2010	SAd06 constitucion_2010		1.04 (N-S)
TH-7	AMNT_2016	SAd07 AMNT_2016	1.07 (E-W)	

Fuente: Elaboración propia, Microsoft Excel, 2019

Para el caso de los análisis con el sismo base de diseño BDE, los componentes de los registros fueron reducidos por un factor igual a 2/3.

Load Case Name		TH-1 PQR_1966		Design
Load Case Type/Subtype	Time History	 ✓ Nonlin 	near Modal (FNA) \sim	Notes
Exclude Objects in this G	roup	Not Applicable	-Historia modal no-line	al)
Mass Source(Fuente de	masa)	Previous (MASA-A	1)	
Initial Conditions				
Zero Initial Conditions	- Start from Unstressed S	State		
Continue from State a	t End of Nonlinear Case	(Loads at End of Case	ARE Included)	
Nonlinear Case		TH GRAVEDAD	~	
Carga aplicada) R	egistros sísmicos]		1
Loads Applied esp	ectralmente a MCE			•
Load Type	Load Name	Function	Scale Factor	0
Acceleration \sim	U1Dirección global 1	SAd01 PQR_1966	9.81	Add
Acceleration	U2Dirección global 2	SAd01 PQR_1966	14.1264	Delete
				Advanced
			Comp. N-	<u>S:</u>
Other Parameters			g·FE=9.8	1.1.44=14.13
Modal Load Case (Caso	de carga modal)	Modal	~	
Number of Output Time S	teps (Número de pasos	de tiempo de salida) 3283	Número y tamaño
Output Time Step Size (R	ango de pasos de tiem	po de salida)	0.02	sec tiempo de registro
	Constant at 0.05		Modify/Show	
Modal Damping	al)		modily/ show	1

*Figura III-*134. Definición del caso de carga tiempo-historia FNA TH-1 PRQ_1966 para el diseño con aislamiento FPT

		TH-2 PQR_1970			Design
Load Case Type/Subtyp	Time History	~ Non	linear Modal	(FNA) V	Notes
Exclude Objects in this C	âroup	Not Applicable	o-Historia	modal no-lineal))
Mass Source (Fuente de	e masa)	Previous (MASA-	A1)		
nitial Conditions					
O Zero Initial Condition	s - Start from Unstressed	State			
Continue from State	at End of Nonlinear Case	(Loads at End of Ca	se ARE Inclu	ided)	
Nonlinear Case		TH GRAVEDAD		~	
Carga aplicada)	Registros sísmicos Aiustados	7		omp. E-W:	
Loads Applied es	pectralmente a MCE		g	FE=9.81·1.06=	10.40
Load Type	Load Name	Function	Sci	ale Factor	0
Acceleration \sim	U1Dirección global 1	SAd02 PQR_1970	10.3986		Add
Acceleration	U2Dirección global 2	SAd02 PQR_1970	. 9.81		Delete
			_		
					Advanced
Other Parameters					
) de carga modal)	Modal		~	
Modal Load Case (Case	Stars (Número de paso	s de tiempo de salid	a) 225	;	Número v tamañ
Modal Load Case (Case	Jeps (Interio de paso	is de tiempo de sand	a) [225	<u>,</u>	de pasos abarca
Modal Load Case (Case			10.02		tiempo de registr
Modal Load Case (Case Number of Output Time : Output Time Step Size (I	Rango de pasos de tien	npo de salida)			
Modal Load Case (Case Number of Output Time : Output Time Step Size (I Modal Damping (Amortiguamiento mod	Rango de pasos de tien	npo de salida)	Mo	dify/Show	

*Figura III-*135. Definición del caso de carga tiempo-historia FNA TH-2 PRQ_1970 para el diseño con aislamiento FPT

Load Case Name		TH-3 PQR	1974		Design
Load Case Type/Subtype	e Time History	`	Nonlinear Mo	dal (FNA) \sim	Notes
Exclude Objects in this G	iroup	Not Applica	Tiempo-Histor	ria modal no-linea	d)
Mass Source(Fuente de	masa)	Previous (MASA-A1)		
Initial Conditions					
Zero Initial Conditions	- Start from Unstressed	State			
Continue from State a	at End of Nonlinear Case	(Loads at End	of Case ARE I	ncluded)	
Nonlinear Case		TH GRAVE	DAD	~	
Carga aplicada) F	Registros sísmicos Aiustados	7			
Loads Applied esp	pectralmente a MCE				•
Load Type	Load Name	Function	n	Scale Factor	U
Acceleration ~	U1Dirección global 1	SAd03 PQR_	1974 9.81		Add
Acceleration	U2Dirección global 2	SAd03 PQR_	10.88	391	Delete
					Advanced
ou				Comp. N-S	<u>.</u>
Other Parameters				g·FE=9.81·	1.11=10.89
Modal Load Case (Caso	de carga modal)	Modal		~	
Number of Output Time S	Steps (Número de paso	s de tiempo d	e salida)	899	Número y tamaño
	Rango de pasos de tien	npo de salida)	0	.02	sec tiempo de registro
Output Time Step Size (R				Modify/Show	
Output Time Step Size(R	Constant at 0.05				

*Figura III-*136. Definición del caso de carga tiempo-historia FNA TH-3 PRQ_1974 para el diseño con aislamiento FPT

Load Case Name		TH-4	MOQ001_200	1]	Design
Load Case Type/Subtyp	e Time History		~ Nonline	ear Modal (f	FNA) ~		Notes
Exclude Objects in this G	iroup	Not A	(Tiempo-	Historia m	odal no-line	al)	
Mass Source(Fuente de	e masa)	Previo	ous (MASA-A1	I)			
Initial Conditions							
Zero Initial Conditions	s - Start from Unstressed	State					
Continue from State a	at End of Nonlinear Case	(Loads a	t End of Case	ARE Includ	ed)		
Nonlinear Case		THG	RAVEDAD		~		
Carga aplicada)	Registros sísmicos	7				1	
Loads Applied esp	pectralmente a MCE					_	•
Load Type	Load Name	F	unction	Scale	e Factor]	0
Acceleration \sim	U1Dirección global 1	SAd04 M	IOQ001_20	9.81			Add
Acceleration	U2Dirección global 2	SAd04 N	IOQ001_20	11.5758			Delete
						l r	Advanced
				L	Comp. N-S:		
Other Parameters					g·FE=9.81·1	.18=	11.58
Modal Load Case (Caso	de carga modal)	Moda	I		~]	
Number of Output Time	Steps (Número de pasos	s de tiem	po de salida)	9946]	Número y tamañ
Output Time Step Size (H	Rango de pasos de tiem	po de sa	lida)	0.02		sec	de pasos abarca tiempo de registr
Modal Damping	Constant at 0.05	-		Mod	ifu/Show]	F 8
	lal)			-	ily/ Show	1	

Figura III-137. Definición del caso de carga tiempo-historia FNA TH-4 MOQ001_2001 para el diseño con aislamiento FPT

		TH-5 ICA002_200		Design			
Load Case Type/Subty	Time History	✓ Noni	inear Modal (FNA) ~	Notes		
Exclude Objects in this (Group	Not Applicable	o-Historia moda	l no-lineal)			
Mass Source(Fuente d	e masa)	Previous (MASA-)	Previous (MASA-A1)				
nitial Conditions							
O Zero Initial Condition	s - Start from Unstressed	State					
Continue from State	at End of Nonlinear Case	(Loads at End of Cas	e ARE Included)				
Nonlinear Case		TH GRAVEDAD		\sim			
Carga aplicada)	Registros sísmicos Aiustados	7	Com	o. E-W:			
Loads Applied es	pectralmente a MCE		g·FE:	9.81.1.21=11	87		
Load Type	Load Name	Function	Scale Fa	ctor	0		
Acceleration \sim	SAd05 ICA002_200	. 11.8701		Add			
Acceleration	U2Dirección global 2	SAd05 ICA002_200	9.81		Delete		
					_		
					Advanced		
Other Parameters							
Modal Load Case (Case	o de carga modal)	Modal		~			
	Orea Olizaria da arra	- de tienene de celid	10004	-	Número y temeñ		
N	Steps (Numero de paso	s de tiempo de salida	1) 10904		de pasos abarca		
Number of Output Time		0.02	sec	tiempo de registr			
Number of Output Time Output Time Step Size (Rango de pasos de tiem	1					
Number of Output Time Output Time Step Size (Modal Damping (Amortignaming to mo	Rango de pasos de tiem		Modify/	Show			

Figura III-138. Definición del caso de carga tiempo-historia FNA TH-5 ICA002_2007 para el diseño con aislamiento FPT

Lodu Case Maine	TH-6 constitu	ucion_2010		Design			
Load Case Type/Subtyp	e Time History	~	Nonlinear Modal	(FNA) V	Notes		
Exclude Objects in this G	àroup	Not Applicat	iempo-Historia	nodal no-lineal)			
Mass Source(Fuente de	e masa)	Previous (M	Previous (MASA-A1)				
Initial Conditions							
Zero Initial Condition:	s - Start from Unstressed	State					
Continue from State	at End of Nonlinear Case	(Loads at End	of Case ARE Inclu	ded)			
Nonlinear Case		TH GRAVED	DAD	\sim			
Carga aplicada)	Registros sísmicos Ajustados	7					
Loads Applied es	pectralmente a MCE				•		
Load Type	Load Name	Function	Sca	le Factor	0		
Acceleration ~	U1Dirección global 1	SAd06 constitue	cion 9.81		Add		
Acceleration	U2Dirección global 2	SAd06 constitue	cion 10.2024		Delete		
					Advanced		
				Comp. N-S:			
Other Parameters				g·FE=9.81·1.04	=10.20		
Modal Load Case (Case	o de carga modal)	Modal		\sim	_		
Number of Output Time	Steps (Número de paso	s de tiempo de	salida) 7165		Número y tamaño		
Output Time Step Size (I	Rango de pasos de tien	npo de salida)	0.02	sec	de pasos abarca tiempo de registro		
Modal Damping (Amortiguamento modal)			Mo	dify/Show	-		
(Amortiguamiento mod							

*Figura III-*139. Definición del caso de carga tiempo-historia FNA TH-6 constitucion_2010 para el diseño con aislamiento FPT

	TH-7 AMNT_2016			Design	
Load Case Type/Subtyp	Time History	 ✓ Nonlin 	near Modal	(FNA) V	Notes
Exclude Objects in this C	Group	Not Applicable	-Historia	modal no-lineal)	
Mass Source(Fuente de	Previous (MASA-A	Previous (MASA-A1)			
Initial Conditions					
Zero Initial Condition	s - Start from Unstressed	State			
Continue from State	at End of Nonlinear Case	(Loads at End of Case	e ARE Incl	uded)	
Nonlinear Case		TH GRAVEDAD		\sim	
Carga aplicada)	Registros sísmicos Aiustados	7	-	Comp. E-W:	
Loads Applied es	pectralmente a MCE			g·FE=9.81·1.07=	10.50
Load Type	Load Name	Function	Sc	ale Factor	0
Acceleration \sim	u V1Dirección global 1 SAd07 AMNT_2016				Add
Acceleration	Acceleration U2Dirección global 2 SAd07 AMNT_2016				Delete
					Advanced
Other Parameters					
Modal Load Case (Case	o de carga modal)	Modal		~	
Number of Output Time	Steps (Número de paso	s de tiempo de salida) 250	1	Número v tamañ
Octored Tars One Car (Decored and a local and a					de pasos abarca
Output Time Step Size (Rango de pasos de tiempo de salida)					tiempo de registro
Output Time Step Size ()	Modal Damping (Amortiguamiento modal)			odify/Show	
Modal Damping (Amortiguamiento mod	dal)				

*Figura III-*140. Definición del caso de carga tiempo-historia FNA TH-7 AMNT_2016 para el diseño con aislamiento FPT

Fuente: Elaboración propia, ETABS, 2019

d. <u>COMBINACIÓN PROMEDIO DE LOS CASOS DE ANÁLISIS DINÁMICO</u> <u>TIEMPO-HISTORIA FNA</u>

Se repite el criterio y el procedimiento de la sección 3.6.4.

CAPITULO IV RESULTADOS Y DISCUSIÓN

4.1 ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

- 4.1.1 <u>EVALUACIÓN DEL DISEÑO SÍSMICO CON AISLAMIENTO</u> <u>ELASTOMÉRICO CON NÚCLEO DE PLOMO LRB (LEAD BEARING</u> <u>RUBBER)</u>
 - a. <u>FUERZA SÍSMICA QUE INGRESA A LA ESTRUCTURA CONTANDO</u> <u>CON LAS PROPIEDADES DE LÍMITE SUPERIOR</u>

La fuerza sísmica que ingresa a la estructura cuando las propiedades del sistema de aislamiento alcanzan su límite máximo (cuando se incrementa la rigidez del sistema de aislamiento) fue evaluada para el sismo DE y el sismo MCE. La fuerza sísmica que ingresa a la estructura y su distribución por piso asociada al desplazamiento que se alcanza en cada nivel, se muestra en las Figuras IV-1a y 1b, y es representada por los valores de la combinación promedio PROM-TH de los casos de análisis Tiempo-Historia FNA.

Figura IV-01a. Fuerza cortante asociada al desplazamiento en cada nivel de la estructura. Valores máximos y mínimos de la combinación PROM-TH para el diseño con aislamiento LRB en el sismo DE

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Figura IV-01b. Fuerza cortante asociada al desplazamiento en cada nivel de la estructura. Valores máximos y mínimos de la combinación PROM-TH para el diseño con aislamiento LRB en el sismo MCE

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Se observa en la Figura IV-1a, que, el desplazamiento en el sistema de aislamiento es pequeño del orden D=7cm, lo que evidencia que se trata de un sistema con incremento de rigidez; y que por tanto la fuerza sísmica que ingresa a la estructura es mayor. Se observa además que, la cortante máxima en la base de la superestructura es V_s=1420.39Ton; y que el desplazamiento relativo en los entrepisos es grande, existiendo una diferencia máxima Δ =11cm entre la base de la superestructura y el 4to. piso, evidenciando de esta manera que el comportamiento de la estructura es afectado por el ingreso de la fuerza sísmica.

Por su parte en la Figura IV-1b, el desplazamiento en el sistema de aislamiento es del orden D=13cm y la cortante máxima en la base de la superestructura es V_s =1731.03Ton. El desplazamiento relativo en los entrepisos es muy cercano a los valores de DE, existiendo también una diferencia máxima Δ =11cm entre la base de la superestructura y el 4to. piso, indicando que la respuesta de la

estructura en DE, a nivel de distorsiones de piso, es casi igual a la respuesta en MCE.

Entonces, se evidencia que, la fuerza sísmica que ingresa a la estructura en DE es aproximadamente el 80% de la fuerza en MCE, y que la respuesta de la estructura en DE, a nivel de entrepiso, es casi igual a la respuesta en MCE. Es decir, la diferencia del comportamiento de la estructura en los sismos DE y MCE, cuando las propiedades del sistema de aislamiento alcanzan su límite máximo, es mínima, pudiendo asumirse que, en ambos niveles de sismo, la estructura tendrá el mismo comportamiento.

b. PROPIEDADES DINÁMICAS DE LA ESTRUCTURA PARA EL SISMO "DE" Y LAS PROPIEDADES DE LÍMITE SUPERIOR

Se encontraron de los análisis tiempo-historia FNA, las propiedades dinámicas del sistema de aislamiento LRB, tales como el periodo y la frecuencia angular, bajo las condiciones del sismo de diseño DE y las propiedades de límite superior. Los valores presentados corresponden al promedio de los siete (07) casos de análisis dinámico tiempo-historia, representados por la combinación PROM-TH

Tabla IV-01

Propiedades dinámicas del sistema de aislamiento LRB en el sismo DE y para las propiedades de límite superior, correspondientes a la combinación promedio de casos sísmicos PROM-TH

	(Sismo D	E y propiedad	es de límite s	superior)		
Darámatra dinán	Dir	X-X	Dir	Unided		
	nco	PROM-Max	PROM-Min	PROM-Max	PROM-Min	Uniuau
Peso total estructura	W =	13073.29	13073.29	13073.29	13073.29	Ton
Cortante base	$V_b =$	1802.90	1832.36	1646.26	1997.79	Ton
PseudoAceleración	A =	0.138	0.140	0.126	0.153	g
Desplazamiento máximo	D =	0.070	0.064	0.069	0.071	m
Frecuencia angular	$\omega_{eff} =$	4.407	4.627	4.230	4.599	seg-1
Periodo efectivo	$T_{eff} =$	1.426	1.358	1.485	1.366	seg

PROPIEDADES DINÁMICAS DEL SIST. DE AISLAMIENTO - PROM-TH

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Se puede observar que el periodo del sistema de aislamiento en ambas direcciones es bajo del orden T=1.50seg, lo que indica que se trata de un sistema de aislamiento sin mucha flexibilidad, y que por tanto la fuerza que ingrese a la estructura será de consideración.

Así mismo se presentan las propiedades dinámicas de los módulos estructurales que conforman la superestructura, obtenidas del análisis modal de eigen realizado para cada módulo por separado. De este modo se puede entender la sincronización del movimiento del sistema de asilamiento con la estructura que protege.

Tabla IV-02

Propiedades dinámicas de la superestructura del diseño con aislamiento LRB, obtenidas de un análisis modal eigen

PROP. DINÁMICAS DE LA SUPERESTRUCTURA ANÁLISI MODAL - BASE FIJA							
Módulo	Frecuenci	ia angular	Periodo fundamental				
estructural -	ω _s (s	eg-1)	$T_{s}(seg)$				
	Dir X-X	Dir Y-Y	Dir X-X	Dir Y-Y			
A1	8.035	9.159	0.782	0.686			
A2	8.751	10.403	0.718	0.604			
A3	8.355	7.409	0.752	0.848			
A4	12.592	9.093	0.499	0.691			
A5	5.878	7.173	1.069	0.876			
A6	5.878	7.173	1.069	0.876			

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Se puede verificar que el periodo de los módulos estructurales no es muy distante del periodo del sistema de aislamiento en ambas direcciones, y que por tanto el movimiento de ambos llegaría a tener cierto grado de sincronización, ocasionando un mayor ingreso de fuerza sísmica.

c. <u>EVALUACIÓN DE LOS MÓDULOS ESTRUCTURALES QUE</u> <u>CONFORMAN LA SUPERESTRUCTURA</u>

Se evaluaron los criterios de resiliencia para cada módulo estructural: Aceleración espectral promedio de piso, deriva máxima de piso, deriva promedio de piso, deriva residual máxima de piso y deriva residual promedio de piso; bajo las condiciones del sismo de diseño DE y las propiedades de límite superior del sistema de aislamiento; siguiendo el procedimiento especificado en el Estándar de aislamiento sísmico para la funcionalidad continua SISCF para determinar la estimación del daño por sismo en la superestructura.

- DERIVAS ELÁSTICAS – ANÁLISIS TIEMPO-HISTORIA FNA

Se recogieron las derivas de piso de la respuesta promedio de los casos de análisis Tiempo-Historia FNA de los movimientos sísmicos ajustados a DE, tomando en cuenta las propiedades de límite superior del sistema de aislamiento. Los valores encontrados corresponden a un comportamiento lineal sin reducción, es decir que las cargas sísmicas fueron asignadas en su totalidad, con un coeficiente de reducción $R_I=1$.

Se presenta la respuesta lineal, a nivel de deformaciones, de la combinación promedio PROM-TH de los análisis Tiempo-Historia FNA realizados para los movimientos sísmicos correspondientes a DE.

Figura IV-02a. Deformada del eje A6-A6 del diseño con aislamiento LRB, para el sismo DE y las propiedades de límite superior, correspondiente a la combinación promedio de carga sísmica PROM-TH máxima

Fuente: Elaboración propia, ETABS, 2019.

Figura IV-02b. Deformada del eje 15-15 del diseño con aislamiento LRB, para el sismo DE y las propiedades de límite superior, correspondiente a la combinación promedio de carga sísmica PROM-TH máxima
Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A1

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Tabla IV-04

Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A2

Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A3

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Tabla IV-06

Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A4

Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A5

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Tabla IV-08

Derivas elásticas pico de piso del diseño con aislamiento LRB, correspondientes a la combinación promedio de casos sísmicos PROM-TH Máxima. Módulo-A6

El sistema de aislamiento alcanza deformaciones pequeñas, aproximadamente del orden D_I =0.09m; esto debido a que la estructura se ha evaluado con las propiedades de límite superior de los aisladores, haciendo que las unidades sean más rígidas; además de haberse utilizado el sismo DE, que es un sismo menor que MCE, lo cual suma a que el sistema de aislamiento no desarrolle su capacidad de deformación. Las deformaciones pequeñas de los aisladores hacen que el periodo fundamental de la estructura sea menor que el periodo proyectado para las propiedades nominales, lo que a su vez redunda en mayor fuerza sísmica ingresando a la estructura.

Así mismo también se observa que cada módulo estructural tiene un comportamiento independiente en función de su configuración espacial de masa y su rigidez. Esto hace que los desplazamientos en altura sean distintos en cada módulo.

- <u>DERIVAS INELÁSTICAS – ÁJUSTE ANÁLSIS ESTÁTICO NO-</u> <u>LINEAL</u>

Se verificaron las derivas inelásticas ultimas y las derivas residuales de piso de los módulos estructurales, para el sismo de diseño DE y las propiedades de límite superior del sistema de aislamiento. La respuesta inelástica fue obtenida mediante el ajuste de los resultados del análisis estático no-lineal de cada módulo, al promedio de los resultados de la respuesta elástica de los casos de análisis Tiempo-Historia FNA para los siete (07) movimientos símicos correspondientes a DE.

Se presenta el proceso de ajuste de los resultados estáticos no-lineales al comportamiento dinámico lineal antes encontrado, y la determinación de las derivas inelásticas, así como de las derivas residuales de cada módulo estructural. Las derivas inelásticas de los módulos estructurales se han considerado iguales que las derivas elásticas encontradas en los análisis Tiempo-Historia FNA; esto debido a lo observado en diferentes tipos de estructuras que han sufrido sismos severos, comprobándose que ambas son muy próximas para cualquier nivel de ductilidad desarrollado. La curva

cortante-deformación resultante del ajuste no-lineal realizado, fue normalizada a una curva bi-lineal equivalente de igual cantidad de energía; de esa normalización se pudo determinar la ductilidad de cada módulo estructural para cada dirección de análisis, y a su vez con la ductilidad determinar la deriva residual de cada piso.

Los valores de la deriva o distorsión pico de cada piso tanto promedio como máxima, fueron evaluados con la metodología simplificada de estimación de daño especificada en SISFC, para encontrar sus contribuciones a los daños.

Determinación del comportamiento dinámico no-lineal del Módulo-A1 para las propiedades

de límite superior y el sismo DE. Dirección X-X

RI OOT	R_A1												
							EJE	X-X					
TIEMPO	-HISTORIA	A LINEAL											
$V_{\mathbf{X}} =$	636.12	tonf	cortante bas	se bloque									
Dx4 =	0.090	ш	desp. punto	de control 4	-piso (35)								
Dxb =	0.053	ш	desp. base t	oloque									
$\mathbf{D}\mathbf{X} =$	0.037	ш	desp. bloque	e - punto de	control								
REFERE	NCIA CUF	VALINEA	L										
$\mathbf{V} =$	2273.62	tonf											
D =	0.134	m											
ESTÁTIC	NIT ON O.	EAL (CURV	A NO LINE	AL AJUSTAI	(PA)			CURVA NO LINE	AL (AJUSTE E	3I-LINEAL)			
·	Dest	2	Kest	Kdin	Ddin	Э	Descrip.	Coef. Reducción	$\mathbf{R} =$	1.61			
	(m)	(tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)		Ductilidad	= п	1.61			
x-1		604.08			0.037			i D(m)	V(tonf)			E(tonf-m)	
х		610.30			0.037	0.288	Control	0 0.000	0.00				
x+1		748.93			0.048			1 0.023	395.11	$\mathbf{R} =$	1.61	4.588	
0	0.000	0.00	0	0	0.000			2 0.037	610.30	$\mathbf{R} =$	1.04	7.122	
1	0.010	183.36	18336	17011	0.011	0.988	L					11.711	ĺ
7	0.014	256.49	18337	17012	0.015	0.945	1° Fluencia		(
3	0.024	437.93	17982	16683	0.026	3.776			CULVO	ı no iineai	ajustada eje ,	X-X	
4	0.034	604.08	16330	15150	0.037	5.714		*	– Curva no-lineal	Ai	uste bi-lineal – –	 Provección lineal 	
S.	0.044	748.93	14137	13116	0.048	0.000			5				
9	0.055	888.82	12761	11839	0.060	0.000		3500					
7	0.066	1015.28	11571	10735	0.072	0.000							
8	0.077	1112.98	9206	8541	0.083	0.000		3 000					
6	0.088	1188.01	6982	6478	0.095	0.000		0010					
10	0.099	1255.48	5818	5397	0.107	0.000		(juc				•	
11	0.112	1326.20	5714	5301	0.120	0.000		e (to				```	
12	0.119	1363.30	5066	4700	0.128	0.000		sec					
13	0.119	1360.41	-288570	-267721	0.128	0.000		1500 1500			````		
14	0.119	1360.76	2247	2085	0.128	0.000		uet.			;	×**	
15	0.119	1359.95	-5184	-4810	0.129	0.000		100 1000		```	*		
16	0.120	1357.84	-3371	-3127	0.129	0.000							
17	0.124	1380.25	5612	5206	0.134	0.000		200	9	10.30			
18	0.124	1380.28	15300	14195	0.134	0.000		۸ 	395.11				
19	0.124	1380.33	5267	4886	0.134	0.000		0 0.00					
								0.00	0.02 0.04	0.06	0.08 0.10	0.12 0.14	0.16
									J	Desplazamier	ito - punto de contr	(m) lo.	
						11.711	_						

Determinación del comportamiento dinámico no-lineal del Módulo-A1 para las propiedades

de límite superior y el sismo DE. Dirección Y-Y

BLOQU	E-A1												
							EJE	Y-Y					
TIEMPO	-HISTORI	4 LINEAL											
Vx =	682.77	tonf	cortante bas	se bloque									
Dx4 =	0.100	ш	desp. punto	de control 4	-piso (35)								
Dxb =	0.073	ш	desp. base l	bloque									
Dx =	0.027	m	desp. bloqu	e - punto de a	control								
REFERE	NCIA CUI	RVALINE	<u>L</u>										
V =	3298.69	tonf											
D =	0.129	m											
ESTÁTIC	O NO LIN	EAL (CUR	VA NO LINE.	AL AJUSTAI	(PA)			CURVA NO LINE	AL (AJUSTE B	I-LINEAL)			
	D	Vest	Kest	Kdin	Ddin	ш	Descrip.	Coef. Reducción	$\mathbf{R} =$	1.43			
	(m)	(tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)		Ductilidad	= n	1.43			
x-1		550.48			0.022			i D(m)	V(tonf)			E(tonf-m)	
Х		657.35			0.027	2.977	Control	0 0.000	0.00				
x+1		725.96			0.030			1 0.019	477.46	$\mathbf{R} =$	1.43	4.445	
0	0.000	0.00	0	0	0.000			2 0.027	657.35	$\mathbf{R} =$	1.04	4.543	
1	0.015	206.17	13745	25644	0.008	0.829						8.988	
2	0.025	343.96	13745	25643	0.013	1.478	1° Fluencia				ie sheeterin		
ю	0.040	550.48	13364	24933	0.022	3.704			CULVG	по шпеат	ajustaaa eje	2 Y - Y	
4	0.056	725.96	11621	21682	0.030	0.000		*	– Curva no-lineal	Air	uste bi-lineal –	 Provección lineal 	
S	0.072	865.06	8365	15607	0.039	0.000			5				
9	0.088	963.60	6106	11392	0.047	0.000		3500					
7	0.104	1030.28	4151	7744	0.056	0.000		0000				```	
8	0.122	1087.59	3287	6133	0.065	0.000		3000				``.	
6	0.138	1133.63	2926	5460	0.074	0.000						· · · ·	
10	0.156	1184.99	2740	5112	0.084	0.000		00007					
11	0.177	1236.09	2447	4565	0.095	0.000		eje 2002			```		
12	0.197	1287.88	2594	4840	0.106	0.000		ləb					
13	0.210	1319.32	2542	4743	0.112	0.000		ulo 1500			<u>,</u>		
14	0.210	1300.70	-6207767	-11581861	0.112	0.000		Τίτ		Ì,	;	* * *	
15	0.229	1356.50	2854	5324	0.123	0.000		1000		, , ,	* * *	•	
16	0.229	1332.03	-8158800	-15221913	0.123	0.000			, j	ť			
17	0.240	1368.76	3392	6329	0.129	0.000		500	477.46	5			
18	0.240	1368.73	-27400	-51120	0.129	0.000		*	X				
19	0.240	1368.73	1500	2799	0.129	0.000		0 0.00					
20	0.240	1368.93	2890	5391	0.129	0.000		00.00	0.02 0	.04 0.(0.08	0.10 0.12	0.14
						00000				-	lítulo del eje		
						8.988							

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A1 para las propiedades de límite superior y el sismo DE. Dirección X-X

			EJ	E X-X			
DERIVA	S INELÁST	ICAS MÁXI.	MAS				
		DI	ERIVAS MÁ	XIMAS DE	<u>PISO</u>		
piso	∆u/hi	$\Delta y/hi$	∆u-y/hi	∆p/hi	∆p+y/hi	$\mu = \Delta p + y / \Delta y$	Δr/hi
4	0.00281	0.00175	0.00107	0.00000	0.00175	1.00	0.00000
3	0.00407	0.00253	0.00154	0.00000	0.00253	1.00	0.00000
2	0.00430	0.00267	0.00163	0.00000	0.00267	1.00	0.00000
1	0.00369	0.00229	0.00140	0.00140	0.00369	1.61	0.00042
PROM	0.00372						0.00010
MAX	0.00430						0.00042
PROM MAX	0.00372 0.00430						0.00010 0.00042

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-12

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A1 para las propiedades de límite superior y el sismo DE. Dirección Y-Y

			EJ	E Y-Y			
DERIVA	S INELÁST	ICAS MÁXI	MAS				
		DI	ERIVAS MÁ	XIMAS DE	E PISO		
piso	∆u/hi	∆y/hi	∆u-y/hi	∆p/hi	∆p+y/hi	$\mu = \Delta p + y / \Delta y$	∆r/hi
4	0.00211	0.00148	0.00064	0.00000	0.00148	1.00	0.00000
3	0.00317	0.00222	0.00095	0.00000	0.00222	1.00	0.00000
2	0.00363	0.00253	0.00109	0.00029	0.00283	1.11	0.00009
1	0.00266	0.00186	0.00080	0.00080	0.00266	1.43	0.00024
PROM	0.00289						0.00008
MAX	0.00363						0.00024

Fuente: Elaboración propia, Microsoft Excel, 2019

*Figura IV-*03. Comportamiento no-lineal estático del Módulo-A1 para las propiedades de límite superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X

Fuente: Elaboración propia, ETABS, 2019.

Se puede observar en el Módulo-A1 que en ambas direcciones se forman rótulas plásticas en la mayoría de las vigas del 2do. y 3er. piso y en la base de algunas columnas del primer piso, pero sin desarrollar mucha ductilidad, siendo la ductilidad general de la estructura μ =1.61 en la dirección X-X y μ =1.43 en la dirección Y-Y. Esto quiere decir que donde se presenten las rótulas plásticas, el acero de refuerzo a ingresará en fluencia y el concreto empezará su proceso de agrietamiento; pero debido a que la incursión inelástica es pequeña, el daño presentado no sería cuantioso. El parámetro que mide el grado de incursión inelástica del módulo estructural es la deriva residual o también llamada permanente, tanto para el valor máximo como para el valor promedio.

Por otro lado, los valores de la deriva o distorsión total tanto promedio como máxima, fueron evaluados con la metodología simplificada de estimación de daño especificada en SISFC, para encontrar sus contribuciones a los daños.

Determinación del comportamiento dinámico no-lineal del Módulo-A2 para las propiedades

de límite superior y el sismo DE. Dirección X-X

	C 7 F														
DTOLO	74-0						EJE	X-X							
TIEMPO.	HISTORIA	I LINEAL													
$V_{\mathbf{X}} =$	548.97	tonf	cortante bas	se bloque											
Dx4 =	0.090	ш	desp. punto	de control 4-	-piso (65)										
Dxb =	0.063	m	desp. Base l	bloque											
Dx =	0.027	m	desp. bloque	e - punto de v	control										
REFERE	NCIA CUF	VA LINEA	F												
$\mathbf{V} =$	2606.16	tonf													
D =	0.129	ш													
ESTÁTIC	NIT ON O	EAL (CURV	A NO LINE	AL AJUSTAL	(YC			CURVA NO	J LINEAL	(AJUSTE BI	-LINEAL)				
	Dest	٨	Kest	Kdin	Ddin	Е	Descrip.	Coef. Redu	ıcción	$\mathbf{R} =$	1.59				
	(m)	(tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)		Ductilidad		= n'	1.59				
x-1		474.44			0.025				D(m)	V(tonf)			E(tonf-m)	
x		506.26			0.027	1.095	Control	0	0.000	0.00					
x+1		597.42			0.033			1	0.017	345.27	$\mathbf{R} =$	1.59		2.939	
0	0.000	0.00	0	0	0.000			6	0.027	506.26	$\mathbf{R} =$	1.08		4.277	
1	0.015	137.25	9150	20278	0.007	0.465								7.217	
7	0.025	227.69	9150	20278	0.011	0.814	1° Fluencia			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10001100	ainstada	~ ~ ~;;;		
3	0.040	361.08	8799	19500	0.018	2.014				CULVA	10 IINEAI	ajustaaa	x-x ələ		
4	0.055	474.44	7555	16742	0.025	2.829			k C	rva no-lineal	Aiu	ste bi-lineal	Proveco	ción lineal	
5	0.074	597.42	6431	14252	0.033	0.000									
9	0.091	687.59	5475	12132	0.041	0.000		3500							
L	0.107	763.26	4597	10187	0.048	0.000		0000							
8	0.126	829.63	3523	7807	0.057	0.000		3000							
6	0.142	878.82	3009	6667	0.064	0.000								<u> </u>	
10	0.160	927.24	2691	5963	0.072	0.000		(Juc							
11	0.179	973.16	2450	5429	0.081	0.000		e (to					``` _``		
12	0.196	1010.29	2205	4887	0.088	0.000		sed					\ \ \ \		
13	0.214	1049.68	2130	4721	0.097	0.000		1500 1500				```			
14	0.215	1050.81	2374	5261	0.097	0.000		ıctı			·``				
15	0.230	1081.36	1958	4338	0.104	0.000		C0 1000			``	*	* *		
16	0.249	1117.81	1976	4380	0.112	0.000				\ \ '		í t			
17	0.264	1147.16	1933	4284	0.119	0.000		500		506.26					
18	0.274	1167.42	1941	4302	0.124	0.000			\$	345.27					
19	0.275	1138.02	-9798833	-21714746	0.124	0.000		0	0.00						
20	0.280	1156.70	3339	7399	0.126	0.000		0	00.00.	.02 0.0	4 0.0	6 0.08	0.10	0.12	0.14
21	0.280	1124.50	-10733100	-23785131	0.126	0.000				De	splazamien	to - punto de	control (m)		
22	0.285	1142.55	3824	8474	0.129	0.000									
23	0.269	990.87	9315	20643	0.121	0.000									
						7.216									

Determinación del comportamiento dinámico no-lineal del Módulo-A2 para las propiedades

de límite superior y el sismo DE. Dirección Y-Y

RLOOT	7-A2														
							EJE	Y-Y							
TIEMPO-	HISTORIA	LINEAL													
$\mathbf{V}_{\mathbf{X}} =$	630.31	tonf	cortante bas	e bloque											
Dx4 =	0.104	ш	desp. punto	de control 4-	-piso (65)										
$\mathbf{D}\mathbf{x}\mathbf{b} =$	0.074	m	desp. Base t	bloque											
$\mathbf{D}\mathbf{X} =$	0.030	m	desp. bloque	e - punto de c	control										
REFERE	NCIA CUR	VA LINEA	ال ا												
$\mathbf{V} = \mathbf{V}$	3362.43	tonf													
D =	0.160	m													
ESTÁTIC	O NO LINE	EAL (CURV	'A NO LINE	4L AJUSTAL	(AC										
	Dest	>	Kest	Kdin	Ddin	щ	Descrip.	Coef. Reduce	ción	R =	1.43				
	(m)	(tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)	I	Ductilidad		н =	1.43				
x-1		554.16			0.027			i D	(m) V	(tonf)			E(tc	onf-m)	
x		592.32			0.030	1.486	Control	0 0.	000	0.00					
x+1		693.00			0.037			1 0.	021 4	40.78	$\mathbf{R} =$	1.43	4	.630	
0	0.000	0.00	0	0	0.000			2 0.	030 59	92.32	$\mathbf{R} =$	1.06	4.	.667	
1	0.018	168.12	9607	20980	0.008	0.674							9.	.297	
7	0.035	336.24	9607	20980	0.016	2.021	1° Fluencia				- linear		~ ~ ~		
ю	0.041	395.15	9607	20979	0.019	1.027				curva n	o iineai	ajustaaa ej	e Y-Y		
4	0.060	554.16	8451	18455	0.027	4.090				a no-lineal	Aius	ste bi-lineal –	 – Provecció 	on lineal	
5	0.081	693.00	6741	14720	0.037	0.000									
9	0.099	785.82	5088	11111	0.045	0.000		3500						-	
7	0.118	854.06	3626	7919	0.054	0.000		0						<u>``</u>	
8	0.136	908.24	2874	6277	0.062	0.000		3 000					```		
6	0.156	956.29	2494	5446	0.071	0.000		0 500					```		
10	0.176	1000.98	2205	4814	0.081	0.000		0062				``,	\		
11	0.197	1043.20	1993	4352	0.090	0.000		eje 200				```			
12	0.215	1075.78	1844	4027	0.098	0.000		ləb				``````````````````````````````````````			
13	0.238	1116.17	1766	3856	0.109	0.000		ulo 1500			``				
14	0.258	1150.93	1742	3804	0.118	0.000		ţÌŢ			```		*	× ×	
15	0.283	1190.80	1575	3440	0.130	0.000		1000				* * *	، ۲		
16	0.306	1228.75	1619	3536	0.140	0.000				*	: K				
17	0.321	1251.25	1544	3372	0.147	0.000		5 00		592.32					
18	0.321	1224.40	-6713525	-14660943	0.147	0.000			+	0					
19	0.326	1240.11	3149	6878	0.149	0.000		0	0.00	_		_		_	
20	0.346	1275.20	1772	3871	0.158	0.000		0.00	0.02	0.04	0.06 0.0	0.10	0.12 0.14	0.16	0.18
21	0.350	1281.73	1552	3389	0.160	0.000					ΤÚ	tulo del eje			
						9.297									

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A2 para las propiedades de límite superior y el sismo DE. Dirección X-X

			EJ	E X-X			
DERIVA	S INELÁST	ICAS MÁXI.	MAS				
		DE	ERIVAS MÁ	XIMAS DE	<u>PISO</u>		
piso	∆u/hi	$\Delta y/hi$	∆u-y/hi	∆p/hi	∆p+y/hi	$\mu = \Delta p + y / \Delta y$	∆r/hi
4	0.00230	0.00144	0.00085	0.00000	0.00144	1.00	0.00000
3	0.00369	0.00232	0.00137	0.00000	0.00232	1.00	0.00000
2	0.00481	0.00303	0.00179	0.00000	0.00303	1.00	0.00000
1	0.00350	0.00220	0.00130	0.00130	0.00350	1.59	0.00039
PROM	0.00357						0.00010
MAX	0.00481						0.00039

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-16

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A2 para las propiedades de límite superior y el sismo DE. Dirección Y-Y

			EJ	E Y-Y			
DERIVA	S INELÁST	ICAS MÁXI	MAS				
		DI	ERIVAS MÁ	XIMAS DE	E PISO		
piso	∆u/hi	∆y/hi	∆u-y/hi	∆p/hi	∆p+y/hi	$\mu = \Delta p + y / \Delta y$	∆r/hi
4	0.00296	0.00207	0.00089	0.00000	0.00207	1.00	0.00000
3	0.00340	0.00238	0.00102	0.00000	0.00238	1.00	0.00000
2	0.00382	0.00267	0.00115	0.00019	0.00286	1.07	0.00006
1	0.00320	0.00223	0.00096	0.00096	0.00320	1.43	0.00029
PROM	0.00334						0.00009
MAX	0.00382						0.00029

Fuente: Elaboración propia, Microsoft Excel, 2019

Fuente: Elaboración propia, Adaptado de ETABS, 2019

El comportamiento del módulo A2 es parecido al del módulo A1, con la diferencia de que se desarrolla una ligera menor ductilidad μ =1.59 en la dirección X-X y μ =1.43 en la dirección Y-Y. En la dirección Y-Y las rótulas plásticas son formadas en un mayor número de columnas tanto en el 1er. como en el 2do. piso, y en un menor número de vigas, con respecto al módulo anterior.

Los valores de la deriva o distorsión total tanto promedio como máxima, fueron evaluados con la metodología simplificada de estimación de daño especificada en SISFC, para encontrar sus contribuciones a los daños.

Tabla IV-17. Determinación del comportamiento dinámico no-lineal del Módulo-A3 para las propiedades de límite superior y el sismo DE. Dirección X-X

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.0QUE-A3												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							EJE X-)	×					
1 123 0.08 m: control contro contro	PO-HIST	ORIA LINEAL											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	2.83 tonf	cortante bas	se bloque									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.088 m	desp. punto	de control 4-	-piso (78)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00	.060 m 028 m	desp. Base	bloque e - minto de c	ontrol								
	VA LINE,	AL	nhoro desn	i on onino re o									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	138	3.44 tonf											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	.224 m											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TICO NO	LINEAL (CUF	RVA NO LINE.	AL AJUSTAL	(PC		CU	IRVA NO LINE	AL (AJUSTE B.	I-LINEAL)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	De	st V	Kest	Kdin	Ddin	ш	Descrip. Co.	ef. Reducción	$\mathbf{R} =$	1.10			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(m) (tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)	Du	ctilidad	= Ħ	1.10			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		157.14			0.025			i D(m)	V(tonf)			E(tonf-m)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		168.93			0.028	0.414	Control 0	0.000	0.00				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		212.87			0.037			0.025	157.12	$\mathbf{R} =$	1.10	1.998	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	0.00	0	0	0.000		2	0.028	168.93	$\mathbf{R} =$	1.02	0.415	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01	8 72.78	4159	6179	0.012	0.429						2.412	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03	35 145.55	4159	6179	0.024	1.286	1° Fluencia		ļ	lee eile ee			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03	88 157.14	4159	6180	0.025	0.284			LULVA	no iineai	ajustaaa e	R X-X	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.05	56 212.87	3124	4642	0.037	0.000		*	– Curva no-lineal	Ait	- Iste bi-lineal	Povección lineal	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07	74 243.61	1670	2482	0.050	0.000							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.05	14 267.12	1149	1708	0.064	0.000		1400				``	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.11	2 285.07	1017	1511	0.075	0.000						· · · ·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.13	88 308.41	916	1360	0.093	0.000		1700					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.16	51 328.23	851	1264	0.108	0.000		1000				· · · ·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.15	33 346.60	819	1217	0.123	0.000		Juo					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.21	6 370.97	737	1095	0.146	0.000	-	e (to			```		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.23	386.67	810	1204	0.159	0.000		Sed			```		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.26	53 406.95	740	1099	0.177	0.000	-	ote 60					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.28	4 421.96	730	1001	0.191	0.000		orta		```			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.29	1 420.11	-1729125	-2569253	0.196	0.000		C 400		3	*		
	0.29	12 422.17	1761	2617	0.197	0.000		200	× × × × 56184	k K			
	0.31	0 435.13	732	1087	0.209	0.000			×				
0.315 429.38 2109 3134 0.212 0.000 0.05 0.10 0.15 0.20 0.315 412.37 -4252575 -6318769 0.212 0.000 0.05 0.10 0.15 0.20 0.315 412.37 -4252575 -6318769 0.212 0.000 0.05 0.217 0.000 0.323 426.50 1748 2598 0.217 0.000 0.03 0.221 0.000 0.329 432.13 901 1339 0.221 0.000 0.03 0.323 426.50 1740441 0.221 0.000 0.330 428.91 1906 2832 0.222 0.000 0.033 431.61 976 1451 0.224 0.000 0.333 431.62 550 817 0.224 0.000 0.334 432.30 814 1210 0.224 0.000 0.333 431.62 550 817 0.224 0.000 0.334 432.30 814	0.31	0 419.67	-5155467	-7660348	0.209	0.000		0					
0.315 412.37 -4252575 -6318769 0.212 0.000 0.323 426.50 1748 2598 0.217 0.000 0.329 432.13 901 1339 0.221 0.000 0.329 427.20 -1642433 -2440441 0.221 0.000 0.330 428.91 1906 2832 0.222 0.000 0.333 431.61 976 1451 0.224 0.000 0.333 431.62 550 817 0.224 0.000 0.333 431.62 550 817 0.224 0.000 0.333 431.62 550 817 0.224 0.000 0.333 431.62 550 817 0.224 0.000 0.334 432.30 814 1210 0.224 0.000	0.31	5 429.38	2109	3134	0.212	0.000		0.00	0.05	0.10	0.15	0.20	0.25
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0.31	5 412.37	-4252575	-6318769	0.212	0.000			D	esplazamien	to - punto de co	introl (m)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.32	3 426.50	1748	2598	0.217	0.000							
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.32	9 432.13	901	1339	0.221	0.000							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.32	9 427.20	-1642433	-2440441	0.221	0.000							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.33	80 428.91	1906	2832	0.222	0.000							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.33	33 431.61	976	1451	0.224	0.000							
0.334 432.30 814 1210 0.224 0.000 2.412	0.33	33 431.62	550	817	0.224	0.000							
2.412	0.33	84 432.30	814	1210	0.224	0.000							
						2.412							

Determinación del comportamiento dinámico no-lineal del Módulo-A3 para las propiedades

de límite superior y el sismo DE. Dirección Y-Y

BLOQU	JE-A3												
							EJE	Ү-Ү					
TIEMPC	D-HISTORIA	A LINEAL											
$V_{\mathbf{X}} =$	172.12	tonf	cortante bas	se bloque									
Dx4 =	0.104	m	desp. punto	de control 4-	-piso (78)								
Dxb =	0.072	m	desp. Base l	bloque									
Dx =	0.031	m	desp. bloqui	e - punto de c	control								
CURVA	LINEAL												
= V =	625.25	tonf											
D =	0.114	ш											
ESTÁTI	CO NO LIN	EAL (CURV	'A NO LINE	AL AJUSTAL	(PC			CURVA NO LIN	EAL (AJUSTE	BI-LINEAL)			
. .	Dest	Λ	Kest	Kdin	Ddin	Е	Descrip.	Coef. Reducción	$\mathbf{R} =$	1.76			
	(m)	(tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)		Ductilidad	= н	1.76			
x-1		149.53			0.028			i D(m)	V(tonf)			E(tonf-m)	
x		163.81			0.031	0.481	Control	0 0.000	0.00				
x+1		187.32			0.036			1 0.015	97.80	$\mathbf{R} =$	1.76	0.873	
0	0.000	0.00	0	0	0.000			2 0.031	163.81	$\mathbf{R} =$	1.05	1.774	
1	0.010	37.52	3752	5480	0.007	0.128						2.647	
7	0.020	75.03	3752	5480	0.014	0.385	1° Fluencia		Ċ				
ю	0.020	76.71	3753	5482	0.014	0.023			CUN	a no inea	i ajustaaa	eje r-r	
4	0.031	113.71	3571	5216	0.021	0.675		1		al	iuste bi-lineal	– – – • Provección lineal	
5	0.041	149.53	3383	4942	0.028	0.954			5				
9	0.053	187.32	3185	4653	0.036	0.000		1400					
7	0.064	218.61	2855	4171	0.044	0.000		0					
8	0.077	250.49	2404	3511	0.053	0.000		1200					
6	0.088	273.55	2293	3349	0.060	0.000		0001					
10	0.098	296.76	2257	3297	0.067	0.000		DOOT					
11	0.110	323.56	2197	3210	0.075	0.000		eje 800					
12	0.120	345.98	2197	3209	0.082	0.000		ləb					
13	0.131	369.35	2266	3310	0.089	0.000		09 ojn					,
14	0.134	378.12	2235	3264	0.092	0.000		ţÌŢ					
15	0.134	374.95	-1587200	-2318265	0.092	0.000		400				* * * * *	×
16	0.141	389.99	2395	3498	0.096	0.000					· *		
17	0.140739	388.0085	-988800	-1444242	0.096	0.000		200	97 80 16	3.81	*		
18	0.150789	411.5728	2345	3425	0.103	0.000		0.0	ł				
19	0.161568	436.265	2291	3346	0.111	0.000			E C				
20	0.166662	447.8992	2284	3336	0.114	0.000		0.00	0.02	0.04	0.06	0.08 0.10	0.12
											Título del eje		

Fuente: Elaboración propia, Adaptado de ETABS, 2019

2.647

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A3 para las propiedades de límite superior y el sismo DE. Dirección X-X

			EJ	E X-X			
DERIVA	S INELÁST	ICAS MÁXI.	MAS				
		DE	ERIVAS MÁ	XIMAS DE	<u>PISO</u>		
piso	∆u/hi	Δy/hi	∆u-y/hi	∆p/hi	∆p+y/hi	$\mu = \Delta p + y / \Delta y$	∆r/hi
4	0.00245	0.00223	0.00022	0.00139	0.00362	1.62	0.00042
3	0.00331	0.00301	0.00030	0.00195	0.00496	1.65	0.00059
2	0.00373	0.00339	0.00034	0.00230	0.00569	1.68	0.00069
1	0.00298	0.00271	0.00027	0.00027	0.00298	1.10	0.00008
PROM	0.00312						0.00044
MAX	0.00373						0.00069

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-20

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A3 para las propiedades de límite superior y el sismo DE. Dirección Y-Y

			EJ	E Y-Y			
DERIVA	S INELÁST	ICAS MÁXI	MAS				
		DI	ERIVAS MÁ	XIMAS DE	E PISO		
piso	∆u/hi	∆y/hi	∆u-y/hi	∆p/hi	∆p+y/hi	$\mu = \Delta p + y / \Delta y$	∆r/hi
4	0.00210	0.00119	0.00091	0.00000	0.00119	1.00	0.00000
3	0.00320	0.00182	0.00138	0.00000	0.00182	1.00	0.00000
2	0.00393	0.00223	0.00170	0.00028	0.00251	1.12	0.00008
1	0.00329	0.00187	0.00142	0.00142	0.00329	1.76	0.00043
PROM	0.00313						0.00013
MAX	0.00393						0.00043

Fuente: Elaboración propia, Microsoft Excel, 2019

Figura IV-07. Comportamiento no-lineal estático del Módulo-A3 para las propiedades de límite superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X

Fuente: Elaboración propia, ETABS, 2019.

*Figura IV-*08. Comportamiento no-lineal estático del Módulo-A3 para las propiedades de límite superior y el sismo DE. Formación de rótulas plásticas. Dirección Y-Y Fuente: Elaboración propia, ETABS, 2019. El comportamiento del módulo A3 en la dirección X-X presenta pocas rótulas plásticas y únicamente en vigas, lo que se traduce en un ligero desarrollo de ductilidad μ =1.10. En la dirección Y-Y se presentan rótulas plásticas en columnas y vigas del 1er., 2do. y 3er. piso, desarrollando una ductilidad μ =1.76.

Los valores de la deriva o distorsión total tanto promedio como máxima, fueron evaluados con la metodología simplificada de estimación de daño especificada en SISFC, para encontrar sus contribuciones a los daños.

Determinación del comportamiento dinámico no-lineal del Módulo-A4 para las propiedades

de límite superior y el sismo DE. Dirección X-X

BLOQU	E-A4												
							EJE	X-X					
TIEMPO	-HISTORIA	I LINEAL											
Vx =	509.31	tonf	cortante bas	se bloque									
Dx4 =	0.072	ш	desp. punto	de control 4	-piso (88)								
Dxb =	0.050	ш	desp. Base l	bloque									
$\mathbf{D}\mathbf{x} =$	0.023	ш	desp. bloqu	e - punto de	control								
CURVA	LINEAL												
V =	2572.00	tonf											
D =	0.114	ш											
ESTÁTIC	O NO LINI	EAL (CUR	VA NO LINE	AL AJUSTA	DA)			CURVA NO LINE	EAL (AJUSTE E	3I-LINEAL)			
· -	Dest	Λ	Kest	Kdin	Ddin	Е	Descrip.	Coef. Reducción	$\mathbf{R} =$	1.48			
	(m)	(tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)		Ductilidad	= п	1.48			
x-1		494.22			0.022			i D(m)	V(tonf)			E(tonf-m)	
х		495.82			0.023	0.059	Control	0 0.000	0.00				
x+1		605.16			0.031			1 0.015	344.13	$\mathbf{R} =$	1.48	2.624	
0	0.000	0.00	0	0	0.000			2 0.023	495.82	$\mathbf{R} =$	1.03	3.074	
1	0.013	169.21	13537	22569	0.007	0.634						5.697	
2	0.024	331.08	13537	22569	0.015	1.794	1° Fluencia			- linear	V oio ala atania I	>	
33	0.037	494.22	12579	20973	0.022	3.210			LUIVO	no linea	ajustaaa eje X-,	×	
4	0.051	605.16	8094	13495	0.031	0.000		*	- Curva no-lineal	Ai	uste bi-lineal – – –	Provección lineal	
5	0.064	668.44	4972	8289	0.038	0.000							
9	0.077	714.35	3558	5932	0.046	0.000		2500				``.	
7	0.091	753.96	2867	4780	0.054	0.000						````	
8	0.105	788.93	2503	4174	0.063	0.000		2 000				·	
6	0.118	817.72	2218	3699	0.070	0.000		0004			``		
10	0.132	848.59	2183	3640	0.079	0.000		(រុប៤					
11	0.145	876.19	1997	3329	0.087	0.000		e (to			```		
12	0.160	902.73	1869	3117	0.096	0.000		osec					
13	0.173	927.54	1855	3092	0.104	0.000		l 91		``			
14	0.186	951.38	1849	3083	0.112	0.000		181 1000		``	3	* *	
15	0.188	955.36	1772	2954	0.113	0.000		loJ		, ,	* * *	¢	
16	0.188	955.42	1004	1673	0.113	0.000		200	20.024	ſ			
17	0.189	956.89	1839	3066	0.113	0.000		200					
18	0.190	956.90	12	20	0.114	0.000		0.00					
								0.00	0.02	0.04	0.06 0.08	0.10	0.12
							_			Jesplazamier	nto - punto de control ((m)	
						5.697							

Determinación del comportamiento dinámico no-lineal del Módulo-A4 para las propiedades de límite superior y el sismo DE. Dirección Y-Y

0.09 0.08 Proyección lineal E(tonf-m) 1.754 2.6804.434 0.07 Curva no lineal ajustada eje Y-Y 0.06 ESTÁTICO NO LINEAL (CURVA NO LINEAL AJUSTADA) 0.05 Título del eje Ajuste bi-lineal 1.11 0.04 l.62 l.62 R = = 0.03 324.94 Curva no-lineal 0.02 221.96 324.94 V(tonf) П 0.00 II T 221 96 ч 0.01 ¥ 0.016 0.026 0.000 Coef. Reducción D(m) 0.00 0.00 0 Ductilidad 500 2500 2000 1500 000 fitulo del eje EJE Y-Y 0 \sim 1° Fluencia Control Descrip. (tonf-m) 4.434 0.446 0.0301.719 0.000 $\begin{array}{c} 0.000\\ 0.$ 0.733 1.262 0.244Ц desp. punto de control 4-piso (88) $\begin{array}{c} 0.043\\ 0.049\\ 0.055\\ 0.061 \end{array}$ 0.080(m) 0.024 0.026 0.030 0.006 0.012 0.012 0.018 0.0360.067 0.073 $\begin{array}{c} 0.083\\ 0.083\\ 0.084\\ 0.083\end{array}$ 0.000 0.024 0:030 Ddin lesp. bloque - punto de control ESTÁTICO NO LINEAL (CURVA NO LINEAL AJUSTADA) (tonf/m) 9097919 4033 47543 14043 18891956 cortante base bloque Kdin 14043 14047 12864 10827 6243 4390 3368 2769 2561 2223 2056 8524 0 desp. Base bloque (tonf/m) 5368300 2380 28053 6389 1312 1115 1154 Kest 1213 5029 3684 2590 1987 1634 1511 8286 3286 8289 591 0 520.2713 194.6305 528.83 518.09 313.03 324.94 509.92 522.67 (tonf) 363.36 246.53 313.03 431.30 451.62 468.30 483.74 497.66 165.72 401.89 82.86 168.21 363.36 TIEMPO-HISTORIA LINEAL 0.00 1175.83 tonf 359.58 tonf в в 0.026 m Ξ 0.072 0.098 0.084 0.141906 0.140992 **CURVA LINEAL** 0.0000.0100.0200.0210.0210.0410.0410.0610.0610.0730.0830.0830.0930.0930.0930.0930.0030.114 0.124 0.136 0.141 0.141 Dest E **BLOQUE-A4** П П $\mathbf{D}\mathbf{X} =$ $V_{X} =$ x-1 x+1 × Dx4 Dxb || П 8 9 111 112 113 113 115 115 116 116 116 117 Ś

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A4 para las propiedades de límite superior y el sismo DE. Dirección X-X

			EJ	E X-X			
DERIVA	S INELÁST	ICAS MÁXL	MAS				
		DE	ERIVAS MÁ	XIMAS DE	<u>PISO</u>		
piso	∆u/hi	Δy/hi	∆u-y/hi	∆p/hi	∆p+y/hi	$\mu = \Delta p + y / \Delta y$	∆r/hi
4	0.00233	0.00157	0.00075	0.00000	0.00157	1.00	0.00000
3	0.00336	0.00227	0.00109	0.00018	0.00244	1.08	0.00005
2	0.00380	0.00256	0.00123	0.00075	0.00332	1.29	0.00023
1	0.00258	0.00174	0.00084	0.00084	0.00258	1.48	0.00025
PROM	0.00302						0.00013
MAX	0.00380						0.00025

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-24

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A4 para las propiedades de límite superior y el sismo DE. Dirección Y-Y

			EJ	E Y-Y			
		DF	ERIVAS MÁ	XIMAS DE	E PISO		
piso	∆u/hi	∆y/hi	∆u-y/hi	∆p/hi	$\Delta p+y/hi$	$\mu = \Delta p + y / \Delta y$	$\Delta r/hi$
4	0.00185	0.00114	0.00071	0.00000	0.00114	1.00	0.00000
3	0.00330	0.00204	0.00126	0.00000	0.00204	1.00	0.00000
2	0.00407	0.00251	0.00156	0.00014	0.00265	1.06	0.00004
1	0.00370	0.00228	0.00142	0.00142	0.00370	1.62	0.00042
PROM	0.00323						0.00012
MAX	0.00407						0.00042

Fuente: Elaboración propia, Microsoft Excel, 2019

Figura IV-09. Comportamiento no-lineal estático del Módulo-A4 para las propiedades de límite superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X

Fuente: Elaboración propia, ETABS, 2019.

En el módulo A4 se presentan rótulas plásticas en las vigas del 1er., 2do. y 3er. piso y en la base de algunas columnas del 1er. piso, en ambas direcciones; desarrollando una ductilidad μ =1.48 en la dirección X-X y una ductilidad μ =1.62 en la dirección Y-Y.

Los valores de la deriva o distorsión total tanto promedio como máxima, fueron evaluados con la metodología simplificada de estimación de daño especificada en SISFC, para encontrar sus contribuciones a los daños.

Determinación del comportamiento dinámico no-lineal del Módulo-A5 para las propiedades de límite superior y el sismo DE. Dirección X-X

Determinación del comportamiento dinámico no-lineal del Módulo-A5 para las propiedades de límite superior y el sismo DE. Dirección Y-Y

BLOOUI	E-A5														
							EJE	Y-Y							
TIEMPO.	-HISTORIA	LINEAL													
Vx =	169.31	tonf	cortante ba:	se bloque											
Dx4 =	0.144	m	desp. punto	de control 4	-piso (143)										
Dxb =	0.077	m	desp. Base	bloque											
$D_X =$	0.067	ш	desp. bloqu	ie - punto de	control										
CURVA	LINEAL														
V =	291.60	tonf													
D =	0.116	m													
ESTÁTIC	NIT ON O	EAL (CUR	VA NO LINE	AL AJUSTAI	(PA)			CURVA NO LI	NEAL (A)	USTE BI-I	(INEAL)				
· -	Dest	٨	Kest	Kdin	Ddin	Е	Descrip.	Coef. Reducció	in F	R =	1.76				
	(m)	(tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)		Ductilidad	1	n =	1.76				
x-1		123.86			0.060			i D(n)V (((tonf)			E(to	nf-m)	
Х		128.69			0.067	0.891	Control	0 0.00	0 0	.00					
x+1		129.27			0.068			1 0.03	38 9	6.20	$\mathbf{R} =$	1.76	1.	844	
0	0.000	0.00	0	0	0.000			2 0.06	57 12	28.69	$\mathbf{R} =$	1.32	3.	276	
1	0.013	16.53	1323	2510	0.007	0.054							5.	120	
2	0.025	33.06	1323	2510	0.013	0.163					lacation of the		~ ~ ~		·
33	0.038	49.59	1323	2510	0.020	0.272				curva n	o iineai (ajustaaa eje	: Y-Y		
4	0.045	59.00	1322	2509	0.024	0.204	1° Fluencia		× Cur	rva no-lineal	A	iuste bi-lineal	Curvali	neal	
5	0.059	76.72	1269	2407	0.031	0.499									
9	0.071	89.74	1027	1948	0.038	0.556		350							
7	0.087	104.22	936	1776	0.046	0.791		000							
8	0.101	116.23	828	1572	0.053	0.842		300					`,	•	
6	0.115	123.86	570	1081	0.060	0.848		CLIC					```		
10	0.130	129.27	360	683	0.068	0.000		0007				•	```		
11	0.154	136.08	276	525	0.081	0.000		eje S				``` ```			
12	0.166	139.88	317	602	0.088	0.000		l9b				```			
13	0.179	142.38	200	379	0.094	0.000		ulo 150				28.69		¥	
14	0.195	147.13	296	561	0.103	0.000		ŤΪŤ		00 20		* * *	k		
15	0.198	148.05	323	613	0.104	0.000		100		20.20					
16	0.215	152.23	237	450	0.113	0.000				K					
17	0.217	152.77	288	547	0.114	0.000		50	X						
18	0.219	152.87	58	110	0.115	0.000		0.00	X						
19	0.220	152.91	33	62	0.116	0.000		0							
20	0.220	152.91	6	16	0.116	0.000		00.00	0.02	0.04	0.06	0.08	0.10	0.12	0.14
21	0.220	152.92	81	153	0.116	0.000					Tít	ulo del eje			
22	0.220	152.90	-5425	-10294	0.116	0.000									
						5.121									

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A5 para las propiedades de límite superior y el sismo DE. Dirección X-X

			EJ	E X-X			
DERIVA	S INELÁST	ICAS MÁXI	MAS				
		DI	ERIVAS MÁ	XIMAS DE	E PISO		
piso	∆u/hi	$\Delta y/hi$	∆u-y/hi	∆p/hi	∆p+y/hi	$\mu = \Delta p + y / \Delta y$	$\Delta r/hi$
4	0.00475	0.00202	0.00273	0.00000	0.00202	1.00	0.00000
3	0.00797	0.00339	0.00458	0.00000	0.00339	1.00	0.00000
2	0.01002	0.00426	0.00576	0.00000	0.00426	1.00	0.00000
1	0.00904	0.00385	0.00519	0.00519	0.00904	2.35	0.00156
PROM	0.00795						0.00039
MAX	0.01002						0.00156

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-28

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A5 para las propiedades de límite superior y el sismo DE. Dirección Y-Y

			EJ	E Y-Y			
		DI	ERIVAS MÁ	XIMAS DE	E PISO		
piso	∆u/hi	Δy/hi	∆u-y/hi	∆p/hi	$\Delta p+y/hi$	$\mu = \Delta p + y / \Delta y$	$\Delta r/hi$
4	0.00381	0.00217	0.00165	0.00000	0.00217	1.00	0.00000
3	0.00529	0.00300	0.00228	0.00000	0.00300	1.00	0.00000
2	0.00623	0.00354	0.00269	0.00025	0.00379	1.07	0.00008
1	0.00565	0.00321	0.00244	0.00244	0.00565	1.76	0.00073
PROM	0.00525						0.00020
MAX	0.00623						0.00073

Fuente: Elaboración propia, Microsoft Excel, 2019

*Figura IV-*11. Comportamiento no-lineal estático del Módulo-A5 para las propiedades de límite superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X

Fuente: Elaboración propia, ETABS, 2019.

*Figura IV-*12. Comportamiento no-lineal estático del Módulo-A5 para las propiedades de límite superior y el sismo DE. Formación de rótulas plásticas. Dirección Y-Y Fuente: Elaboración propia, ETABS, 2019.

El módulo A5 en la dirección X-X, presenta rótulas plásticas en los extremos de todas las columnas del 1er. al 3er. piso y en los extremos de algunas columnas del 4to. piso, mientras que en vigas solo presenta rótulas en el extremo de una sola viga en el 1er. y 2do. piso; esta condición de rotulación únicamente en columnas evidencia que las vigas son más fuertes, lo que potencialmente podría provocar la aceleración del colapso de la estructura por limitarse la capacidad de disipación de energía del sistema solo a la capacidad de las columnas. En este eje se desarrolla una ductilidad global μ =2.35, y es interpretada como la suma de la incursión inelástica de todas las columnas rotuladas.

En la dirección Y-Y presenta rótulas en los dos extremos de algunas columnas, mientras que las vigas no presentan ninguna rótula; lo que evidenciaría, al igual que en dirección X-X, el efecto de viga fuerte y columna débil; desarrollándose una ductilidad μ =1.76.

Determinación del comportamiento dinámico no-lineal del Módulo-A6 para las propiedades

de límite superior y el sismo DE. Dirección X-X

BLOQU	E-A6													
							EJE	X-X						
TIEMPO	-HISTORIA	LINEAL												
$V_{\mathbf{X}} =$	115.20	tonf	cortante bas	se bloque										
Dx4 =	0.148	ш	desp. punto	de control 4-	piso (150)									
Dxb =	0.062	ш	desp. Base l	bloque										
$D_{X} =$	0.086	ш	desp. bloque	e - punto de c	control									
CURVA	LINEAL													
= V	130.92	tonf												
D =	0.098	m												
ESTÁTIC	TO NO LINI	EAL (CUR)	VA NO LINE	AL AJUSTAL	(PC			CURVA NO LINEA	NL (AJUSTE H	3I-LINEAL)				
·	Dest	>	Kest	Kdin	Ddin	ш	Descrip.	Coef. Reducción	$\mathbf{R} =$	2.28				
	(m)	(tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)		Ductilidad	= н	2.28				
x-1		77.56			0.086			i D(m)	V(tonf)			E(t	onf-m)	
х		77.60			0.086	0.011	Control	0 0.000	0.00					
x+1		80.60			0.096			1 0.038	50.53	$\mathbf{R} =$	2.28	0	.957	
0	0.000	0.00	0.00	0.00	0.000			2 0.086	77.60	$\mathbf{R} =$	1.48	(1)	.106	
1	0.010	6.63	662.87	1333.98	0.005	0.016	L					4	.063	ĺ
2	0.020	13.26	662.88	1334.00	0.010	0.049			(lacallaca.				
3	0.030	19.89	662.87	1333.98	0.015	0.082			CULVA	no inear	ajustaaa e	/s x-y		
4	0.033	21.60	662.84	1333.91	0.016	0.027	1° Fluencia	1	× Series3	Aiuste	bi-lineal – –	 Provección li 	neal	
5	0.043	28.04	644.69	1297.39	0.021	0.123								
9	0.055	35.82	604.58	1216.67	0.028	0.204		350						_
7	0.070	43.91	571.89	1150.89	0.035	0.280		6						
8	0.080	49.24	497.73	1001.65	0.040	0.248		300						
6	0.091	53.73	402.76	810.52	0.045	0.285		CL						
10	0.102	57.83	374.68	754.01	0.051	0.304		(juc						
11	0.113	61.50	352.54	709.47	0.056	0.308		e (to 200						
12	0.124	65.10	328.67	661.42	0.062	0.345		seq						
13	0.135	68.60	311.52	626.91	0.067	0.372		150 150						
14	0.151	72.85	268.71	540.76	0.075	0.556		net.						
15	0.161	75.17	224.42	451.62	0.080	0.380		100 100			Ň	77 60		
16	0.174	77.56	193.20	388.80	0.086	0.470				50 53			ž	
17	0.192	80.60	161.33	324.66	0.096	0.000		50			X X	×		
18	0.198	81.38	151.02	303.92	0.098	0.000		0.00						
19	0.157	53.72	679.17	1366.77	0.078	0.000		0						_
								00.00	0.02	0.04	0.06	0.08	0.10 0	.12
										esplazamient	:o - punto de cc	ntrol (m)		
							_							

Fuente: Elaboración propia, Adaptado de ETABS, 2019

4.062

Determinación del comportamiento dinámico no-lineal del Módulo-A6 para las propiedades

de límite superior y el sismo DE. Dirección Y-Y

BLOQ	UE-A6												
TIEMP	0-HISTORIA	A LINEAL						1					
$V_{X} =$	171.63	tonf	cortante bas	e bloque									
Dx4 =	0.137	ш	desp. punto	de control 4-	-piso (150)								
Dxb =	0.075	ш	desp. Base l	bloque	-								
$Dx = CT I P V_2$	0.062 A I INFAI	н	desp. bloque	e - punto de i	control								
	366.73	tonf											
D = D	0.133	m m											
ESTÁTi	ICO NO LIN	EAL (CURV.	A NO LINE	4L AJUSTAL	(AC		Ū	URVA NO LIN	IEAL (AJUSTE	BI-LINEAL)			
· 1	Dest	Λ	Kest	Kdin	Ddin	ш	Descrip. C	oef. Reducciór	1 R =	1.76			
	(m)	(tonf)	(tonf/m)	(tonf/m)	(m)	(tonf-m)	Ō	uctilidad	= п.	1.76			
x-1		129.22			0.062			i D(m	V(tonf)			E(tonf-m)	
х		129.22			0.062	0.001	Control 0	0.00(0.00				
x+1		136.95			0.076			0.03	97.52	R =	1.76	1.724	
0,	0.000	0.00	0.00	0.00	0.000		2	0.062	2 129.22	К= Н	1.33	3.047	
- (0.015	19.83 20.66	1321.86	2757.36	0.007	0.071	L					4.771	
1 (*	0.045	59.00	1321.86	2757.36	0.021	0.346	1° Fluencia		Curv	'a no linea	l ajustada e	je Y-Y	
9 4	0.060	78.70	1247.67	2602.60	0.029	0.521			Cuan and line		local id oton	المصنامة المصنيصا	
S	0.078	95.90	1001.68	2089.47	0.037	0.719		1			אין		
9	0.095	110.77	878.12	1831.72	0.045	0.839		350				``	
٢	0.111	121.98	685.11	1429.12	0.053	0.913		000				``,	
8	0.130	129.22	382.23	797.32	0.062	1.140		300					
6	0.158	136.95	273.71	570.95	0.076	0.000		260			```		
10	0.173	141.63	307.95	642.37	0.083	0.000		0007			```		
11	0.193	146.36	238.50	497.50	0.093	0.000		eje Oč			``,		
12	0.196	147.35	321.82	671.30	0.094	0.000		ləb					
13	0.204	148.91	208.13	434.16	0.098	0.000		iulo 150		129.22	** ;	** **	
14	0.220	153.53	280.51	585.13	0.106	0.000		ijŢ	97.52		k X		
19 19	0.241	158.34	242.08 190.76	397.92	0.116	0.000		100	X				
17	0.257659	162.6803	262.61	547.80	0.124	0.000		50	Ĺ				
18	0.263922	163.9635	204.89	427.39	0.127	0.000		0.00	×				
19	0.265003	164.3796	384.92	802.93	0.127	0.000		0					
20	0.273987	166.5266	238.98	498.51	0.131	0.000		0.00	0.02 0.0	4 0.06	0.08 0.	10 0.12 0.14 0	.16
21	0.274968	166.6485	124.26	259.20	0.132	0.000					Título del eje		
77	87/5/2/0	1/7 1000	2/9.08	CI.28C	0.152	0.000							
67 V C	0.277937	167 2360	140.20 276.16	C4.262	0.133	0.000							
5 2	0.279413	167 4428	139.03	290.01	0 134	0.000							
26	0.282506	168.1521	229.32	478.36	0.135	0.000							
27	0.283715	168.3135	133.50	278.47	0.136	0.000							
28	0.284168	168.4518	305.30	636.84	0.136	0.000							
29	0.284693	168.5031	97.71	203.83	0.136	0.000							
30	0.28529	168.6351	221.11	461.22	0.137	0.000							
						4.763							

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A6 para las propiedades de límite superior y el sismo DE. Dirección X-X

			EJ	E X-X			
DERIVA	S INELÁST	ICAS MÁXI.	MAS				
		DI	ERIVAS MÁ	XIMAS DE	E PISO		
piso	∆u/hi	∆y/hi	∆u-y/hi	∆p/hi	∆p+y/hi	$\mu = \Delta p + y / \Delta y$	∆r/hi
4	0.00439	0.00192	0.00246	0.00000	0.00192	1.00	0.00000
3	0.00761	0.00334	0.00427	0.00000	0.00334	1.00	0.00000
2	0.00965	0.00423	0.00542	0.00000	0.00423	1.00	0.00000
1	0.00851	0.00373	0.00478	0.00478	0.00851	2.28	0.00143
PROM	0.00754						0.00036
MAX	0.00965						0.00143

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-32

Determinación de derivas inelásticas ultimas y derivas residuales en el Módulo-A6 para las propiedades de límite superior y el sismo DE. Dirección Y-Y

			EJ	E Y-Y			
		DI	ERIVAS MÁ	XIMAS DE	E PISO		
piso	∆u/hi	$\Delta y/hi$	∆u-y/hi	∆p/hi	$\Delta p+y/hi$	$\mu = \Delta p + y / \Delta y$	$\Delta r/hi$
4	0.00419	0.00238	0.00181	0.00000	0.00238	1.00	0.00000
3	0.00594	0.00337	0.00256	0.00000	0.00337	1.00	0.00000
2	0.00695	0.00395	0.00300	0.00030	0.00425	1.08	0.00009
1	0.00627	0.00356	0.00271	0.00271	0.00627	1.76	0.00081
PROM	0.00584						0.00023
MAX	0.00695						0.00081

Fuente: Elaboración propia, Microsoft Excel, 2019

*Figura IV-*13. Comportamiento no-lineal estático del Módulo-A6 para las propiedades de límite superior y el sismo DE. Formación de rótulas plásticas. Dirección X-X

Fuente: Elaboración propia, ETABS, 2019.

Fuente: Elaboración propia, ETABS, 2019.

El módulo A6 en la dirección X-X, presenta rótulas plásticas en los extremos de la mayoría de las columnas del 1er. al 3er. piso y en los extremos de algunas columnas del 4to. piso, mientras que en vigas solo presenta rótulas en el extremo de una sola viga en el 1er. y 2do. piso; esta condición de

rotulación únicamente en columnas evidencia que las vigas son más fuertes, lo que potencialmente podría provocar la aceleración del colapso de la estructura por limitarse la capacidad de disipación de energía del sistema solo a la capacidad de las columnas. En este eje se desarrolla una ductilidad global μ =2.28, y es interpretada como la suma de la incursión inelástica de todas las columnas rotuladas.

En la dirección Y-Y presenta rótulas en los dos extremos de algunas columnas, mientras que las vigas no presentan ninguna rótula; lo que evidenciaría, al igual que en dirección X-X, el efecto de viga fuerte y columna débil; desarrollándose una ductilidad μ =1.76.

Tabla IV-33

Resumen de derivas ultimas y derivas residuales para el sismo DE y las propiedades de límite superior correspondientes al diseño con aislamiento LRB

DERIVAS	ULTIMAS Y DE	RIVAS RESIDU	ALES (Upper bo	ound - DE)
		<u>EJE X-X</u>		
	DERIVA ULT.	DERIVA ULT.	DERIVA RES.	DERIVA RES.
BLOQUE	PROMEDIO	MÁXIMA	PROMEDIO	MÁXIMA
	∆uprom	∆umax	∆rprom	∆rmax
BLOQUE-A1	0.37%	0.43%	0.01%	0.04%
BLOQUE-A2	0.36%	0.48%	0.01%	0.04%
BLOQUE-A3	0.31%	0.37%	0.04%	0.07%
BLOQUE-A4	0.30%	0.38%	0.01%	0.03%
BLOQUE-A5	0.79%	1.00%	0.04%	0.16%
BLOQUE-A6	0.75%	0.96%	0.04%	0.14%
PROMEDIO	0.48%	0.61%	0.03%	0.08%
		<u>EJE Y-Y</u>		
	DERIVA ULT.	DERIVA ULT.	DERIVA RES.	DERIVA RES.
BLOQUE	PROMEDIO	MÁXIMA	PROMEDIO	MÁXIMA
	∆uprom	∆umax	∆rprom	∆rmax
BLOQUE-A1	0.29%	0.36%	0.01%	0.02%
BLOQUE-A2	0.33%	0.38%	0.01%	0.03%
BLOQUE-A3	0.31%	0.39%	0.01%	0.04%
BLOQUE-A4	0.32%	0.41%	0.01%	0.04%
BLOQUE-A5	0.52%	0.62%	0.02%	0.07%
BLOQUE-A6	0.58%	0.70%	0.02%	0.08%
PROMEDIO	0.39%	0.48%	0.01%	0.05%

Fuente: Elaboración propia, Microsoft Excel, 2019

ACELERACIÓN ESPECTRAL PROMEDIO DE PISO PARA SISTEMAS CON AMORTIGUAMIENTO β=5% EN EL RANGO T=0.05-3.00seg

Se verificó la aceleración espectral promedio para una respuesta con β =5% en cada piso, tomando la media aritmética del espectro de respuesta de aceleraciones correspondientes a los puntos de control 11 y 56 del modelo matemático. La evaluación de este parámetro fue realizada bajo las condiciones de sismo de diseño DE y de las propiedades de límite superior del sistema de aislamiento, para cada caso de sismo, rigiendo el promedio de los valores encontrados en cada caso.

Figura IV-15. Ubicación de puntos de control para la determinación de las aceleraciones espectrales promedio de piso β =5% T=0.05-3.00seg. Diseño con aislamiento LRB

Fuente: Elaboración propia, ETABS, 2019.

Las aceleraciones espectrales para cada punto de control fueron tomadas del análisis Tiempo-Historia como valores lineales y luego ajustados al comportamiento no-lineal del módulo correspondiente, al ser divididos por el segundo factor R de la curva bi-lineal del módulo. Dicho factor R se encuentra asociado a la reducción que tiene la fuerza sísmica en el
desplazamiento último. De esta manera los factores R considerados para los puntos de control 11 y 56, son los siguientes:

Punto de control 11	:	R=1.04	(Módulo-A1)
Punto de control 56	:	R=1.08	(Módulo-A2)

Para el punto de control 11 en el nivel de base, se encontraron los siguientes resultados:

Tabla IV-34

Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el nivel de base para el sismo DE y las propiedades de límite superior, correspondientes al diseño con aislamiento LRB

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
β=5% T=0.05-3.00 seg (Upper bound - DE)						
NIVEL: BASE PTO-11						
	EJE X-X	EJE Y-Y				
	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	3.922	3.177				
TH2 PQR_1970	3.741	3.466				
TH3 PQR_1974	3.618	3.779				
TH4 MOQ001_2001	3.398	4.531				
TH5 ICA002_2007	3.955	3.489				
TH6 constitucion_2010	3.593	3.946				
TH7 AMNT_2016	3.573	3.878				
PROMEDIO TH	3.686	3.752				

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 11 en el nivel de base para el caso de sismo TH-7 AMNT_2016.

Figura IV-16. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el nivel de base para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento LRB

Para el punto de control 11 en el 1er-piso, se encontraron los siguientes resultados:

Tabla IV-35

Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el 1er-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño con aislamiento LRB

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
β=5% T=0.05-3.00 seg (Upper bound - DE)						
NIVEL: 1-PISO PTO-11						
CASO DE SÍSMO	EJE X-X	EJE Y-Y				
CASO DE SISMO	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	4.463	3.407				
TH2 PQR_1970	4.251	3.816				
TH3 PQR_1974	4.223	4.229				
TH4 MOQ001_2001	3.891	4.646				
TH5 ICA002_2007	4.540	3.754				
TH6 constitucion_2010	4.211	4.145				
TH7 AMNT_2016	3.865	3.665				
PROMEDIO TH	4.206	3.952				

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 11 en el 1er. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-17. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el 1er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento LRB

Para el punto de control 11 en el 2do-piso, se encontraron los siguientes resultados:

Tabla IV-36

Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el 2do-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño del aislamiento LRB

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
T = 0.05 - 3.00 seg (Upper bound)						
NIVEL: 2-PISO PTO-11						
CASO DE SÍSMO	EJE X-X	EJE Y-Y				
	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	5.115	4.256				
TH2 PQR_1970	4.943	4.962				
TH3 PQR_1974	4.646	4.797				
TH4 MOQ001_2001	4.254	5.308				
TH5 ICA002_2007	4.833	4.811				
TH6 constitucion_2010	4.705	4.584				
TH7 AMNT_2016	4.394	4.135				
PROMEDIO TH	4.699	4.693				

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 11 en el 2do. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-18. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el 2do-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento LRB

Para el punto de control 11 en el 3er-piso, se encontraron los siguientes resultados:

Tabla IV-37

Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el 3er-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño con aislamiento LRB

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
β=5% T=0.05-3.00 seg (Upper bound - DE)						
NIVEL: 3-PISO	PTO-11					
CASO DE SÍSMO	EJE X-X	EJE Y-Y				
CASO DE SISMO	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	6.071	5.410				
TH2 PQR_1970	5.822	6.163				
TH3 PQR_1974	5.577	5.593				
TH4 MOQ001_2001	5.187	6.451				
TH5 ICA002_2007	5.700	5.692				
TH6 constitucion_2010	5.347	5.357				
TH7 AMNT_2016	5.168	5.080				
PROMEDIO TH	5.553	5.678				

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 11 en el 3er. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-19. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el 3er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento LRB

Para el punto de control 56 en el nivel de base, se encontraron los siguientes resultados:

Tabla IV-38

Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el nivel de base para el sismo DE y las propiedades de límite superior correspondiente al diseño con aislamiento LRB

ACELERACIÓN ESPECTRAL MEDIA DE PISO							
β=5% T=0.05-3.00 seg (Upper bound - DE)							
NIVEL: BASE PTO-56							
CASO DE SÍSMO	EJE X-X	EJE Y-Y					
	Sa(m/seg2)	Sa(m/seg2)					
TH1 PQR_1966	3.922	3.537					
TH2 PQR_1970	3.741	3.692					
TH3 PQR_1974	3.618	3.706					
TH4 MOQ001_2001	3.398	4.558					
TH5 ICA002_2007	3.955	3.726					
TH6 constitucion_2010	3.593	3.824					
TH7 AMNT_2016	3.573	3.639					
PROMEDIO TH	3.686	3.812					

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 56 en el nivel de base para el caso de sismo TH-7 AMNT_2016.

Figura IV-20. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el nivel de base para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento LRB

Para el punto de control 56 en el 1er-piso, se encontraron los siguientes resultados:

Tabla IV-39

Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el 1er-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño con aislamiento LRB

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
β=5% T=0.05-3.00 seg (Upper bound - DE)						
NIVEL: 1-PISO PTO-56						
CASO DE SÍSMO	EJE X-X	EJE Y-Y				
CASO DE SISMO	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	4.100	3.505				
TH2 PQR_1970	3.942	3.879				
TH3 PQR_1974	3.857	3.459				
TH4 MOQ001_2001	3.502	4.757				
TH5 ICA002_2007	4.092	3.735				
TH6 constitucion_2010	3.640	4.212				
TH7 AMNT_2016	3.694	3.861				
PROMEDIO TH	3.832	3.916				

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 56 en el 1er. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-21. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el 1er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento LRB

Para el punto de control 56 en el 2do-piso, se encontraron los siguientes resultados:

Tabla IV-40

Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el 2do-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño con aislamiento LRB

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
β=5% T=0.05-3.00 seg (Upper bound - DE)						
NIVEL: 2-PISO PTO-56						
CASO DE SÍSMO	EJE X-X	EJE Y-Y				
CASO DE SISMO	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	4.787	4.281				
TH2 PQR_1970	4.850	4.669				
TH3 PQR_1974	4.532	4.449				
TH4 MOQ001_2001	4.337	5.905				
TH5 ICA002_2007	4.663	4.554				
TH6 constitucion_2010	4.212	4.949				
TH7 AMNT_2016	4.190	4.906				
PROMEDIO TH	4.510	4.816				

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 56 en el 2do. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-22. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el 2do-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento LRB

Para el punto de control 56 en el 3er-piso, se encontraron los siguientes resultados:

Tabla IV-41

Aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el 3er-piso para el sismo DE y las propiedades de límite superior correspondiente al diseño con aislamiento LRB

ACELERACIÓN ESPECTRAL MEDIA DE PISO							
β=5% T=0.05-3.00 seg (Upper bound - DE)							
NIVEL: 3-PISO PTO-56							
CASO DE SÍSMO	EJE X-X	EJE Y-Y					
CASO DE SISMO	Sa(m/seg2)	Sa(m/seg2)					
TH1 PQR_1966	6.179	5.764					
TH2 PQR_1970	6.461	6.087					
TH3 PQR_1974	5.664	5.468					
TH4 MOQ001_2001	5.864	7.515					
TH5 ICA002_2007	6.315	5.853					
TH6 constitucion_2010	5.556	6.425					
TH7 AMNT_2016	5.441	6.299					
PROMEDIO TH	5.926	6.202					

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 56 en el 3er. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-23. Determinación de la aceleración espectral promedio β=5% T=0.05-3.00seg del punto de control 56 en el 3er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento LRB

Se presenta el resumen de las aceleraciones espectrales promedio de piso encontradas para los puntos de control 11 y 56.

Tabla IV-42

Aceleraciones espectrales promedio de piso β =5% T=0.05-3.00seg de los puntos de control 11 y 56 para el sismo DE y las propiedades de límite superior correspondientes al diseño con aislamiento LRB

ACELERACIÓN ESPECTRAL MEDIA DE PISO T=0.05-3.00seg (Upper bound - DE)							
EJE X-X				EJE Y-Y			
PISO	Pto-11 (BL-A1)	Pto-56 (BL-A2)	Acel. Prom.	PISO	Pto-11 (BL-A1)	Pto-56 (BL-A2)	Acel. Prom.
1150	Sa(m/seg2)	Sa(m/seg2)	Sa(m/seg2)	1130	Sa(m/seg2)	Sa(m/seg2)	Sa(m/seg2)
PISO-3	5.553	5.926	5.739	PISO-3	5.678	6.202	5.940
PISO-2	4.699	4.510	4.604	PISO-2	4.693	4.816	4.755
PISO-1	4.206	3.832	4.019	PISO-1	3.952	3.916	3.934
BASE	3.686	3.686	3.686	BASE	3.752	3.812	3.782
PROMEDIO	4.536	4.488	4.512	PROMEDIO	4.519	4.686	4.603

Fuente: Elaboración propia, Microsoft Excel, 2019

d. <u>EVALUACIÓN DE LA CAPACIDAD DE DEFORMACIÓN DEL SISTEMA</u> <u>DE AISLAMIENTO LRB</u>

Se evaluó la capacidad de deformación del sistema de aislamiento verificándose que los desplazamientos máximos bajo las condiciones del sismo máximo considerado MCE y las propiedades de límite inferior, no superen la capacidad de deformación contra el colapso de los aisladores. Los aisladores con sus propiedades modificadas hacia el límite inferior, representan un sistema flexible, es decir con mayor capacidad de desplazamiento ante una carga arbitraria, y por su parte el sismo MCE es el sismo que generará los mayores desplazamientos en el sistema de aislamiento.

Los desplazamientos máximos alcanzados por los aisladores LRB y los deslizadores Slider-PTFE para la combinación de cargas sísmicas PROM-TH tanto máxima como mínima, se presentan a continuación. Cabe indicarse que los desplazamientos considerados son la resultante vectorial SRSS de los componentes en las dos direcciones de análisis.

Tabla IV-43

Desplazamientos máximos de aisladores LRB y deslizadores PTFE para el sismo MCE y las propiedades de límite inferior

DESPLAZAMIENTOS MÁXIMOS (m)							
Aislador PROM-TH Max PROM-TH Mir							
LRB-B	0.25956	(K24)	0.29074	(K36)			
LRB-C	0.27853	(K1)	0.30574	(K3)			
Slider-C	0.28638	(K10)	0.31320	(K10)			

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-44

Desplazamientos de aisladores LRB y deslizadores PTFE para el sismo MCE y las propiedades de límite inferior. Combinación de cargas sísmicas PROM-TH

DEFORMACIÓN DE AISLADORES LRB								
(Sismo MCE y propiedades de límite superior)								
PROM-TH Max PROM-TH Min								n
Nivel	Elem.	Aislador	U2	U3	U-SRSS	U2	U3	U-SRSS
			(m)	(m)	(m)	(m)	(m)	(m)
Interfaz-Aisl	K1	LRB-C(Lower)	0.17916	0.21325	0.27853	-0.21573	-0.21593	0.30523
Interfaz-Aisl	K2	LRB-C(Lower)	0.18024	0.20197	0.27070	-0.21474	-0.20521	0.29702
Interfaz-Aisl	K3	LRB-C(Lower)	0.19086	0.20077	0.27701	-0.22585	-0.20609	0.30574
Interfaz-Aisl	K4	LRB-C(Lower)	0.17152	0.20227	0.26520	-0.20722	-0.20595	0.29215
Interfaz-Aisl	K5	LRB-C(Lower)	0.16628	0.20194	0.26159	-0.19866	-0.20554	0.28585
Interfaz-Aisl	K6	LRB-B(Lower)	0.16264	0.20201	0.25934	-0.19030	-0.20561	0.28016
Interfaz-Aisl	K7	LRB-B(Lower)	0.15948	0.20209	0.25743	-0.18284	-0.20557	0.27511
Interfaz-Aisl	K8	LRB-B(Lower)	0.15761	0.20176	0.25602	-0.17551	-0.20576	0.27044
Interfaz-Aisl	K9	Slider-A(Lower)	0.15778	0.20219	0.25646	-0.16971	-0.20521	0.26630
Interfaz-Aisl	K10	Slider-A(Lower)	0.19113	0.21327	0.28638	-0.22573	-0.21711	0.31320
Interfaz-Aisl	K11	Slider-A(Lower)	0.19120	0.20794	0.28248	-0.22554	-0.21417	0.31102
Interfaz-Aisl	K12	LRB-C(Lower)	0.18002	0.19176	0.26302	-0.21473	-0.19618	0.29085
Interfaz-Aisl	K13	LRB-C(Lower)	0.17353	0.19200	0.25880	-0.20672	-0.19671	0.28536
Interfaz-Aisl	K14	LRB-C(Lower)	0.16841	0.19197	0.25537	-0.19796	-0.19642	0.27887
Interfaz-Aisl	K15	LRB-C(Lower)	0.16477	0.19190	0.25293	-0.18949	-0.19660	0.27305
Interfaz-Aisl	K16	LRB-C(Lower)	0.16150	0.19207	0.25095	-0.18177	-0.19634	0.26756
Interfaz-Aisl	K17	LRB-C(Lower)	0.15933	0.19169	0.24926	-0.17465	-0.19689	0.26318
Interfaz-Aisl	K18	LRB-B(Lower)	0.15873	0.19212	0.24920	-0.16890	-0.19549	0.25834
Interfaz-Aisl	K19	LRB-C(Lower)	0.19286	0.19090	0.27136	-0.22728	-0.19577	0.29997
Interfaz-Aisl	K20	LRB-C(Lower)	0.18001	0.18439	0.25769	-0.21483	-0.18954	0.28649
Interfaz-Aisl	K21	LRB-C(Lower)	0.16758	0.18462	0.24934	-0.19884	-0.18985	0.27492
Interfaz-Aisl	K22	LRB-C(Lower)	0.16104	0.18473	0.24507	-0.18234	-0.18974	0.26315
Interfaz-Aisl	K23	LRB-C(Lower)	0.15888	0.18441	0.24341	-0.17509	-0.19012	0.25846
Interfaz-Aisl	K24	LRB-B(Lower)	0.19056	0.17624	0.25956	-0.22533	-0.18370	0.29073
Interfaz-Aisl	K25	LRB-C(Lower)	0.19258	0.18358	0.26606	-0.22705	-0.18900	0.29542
Interfaz-Aisl	K26	LRB-B(Lower)	0.17279	0.18473	0.25295	-0.20729	-0.18989	0.28112
Interfaz-Aisl	K27	LRB-B(Lower)	0.16389	0.18459	0.24684	-0.19054	-0.18994	0.26904
Interfaz-Aisl	K28	LRB-B(Lower)	0.15825	0.18468	0.24321	-0.16936	-0.18891	0.25371
Interfaz-Aisl	K29	LRB-B(Lower)	0.17321	0.17752	0.24802	-0.20690	-0.18327	0.27640
Interfaz-Aisl	K30	LRB-B(Lower)	0.16802	0.17785	0.24467	-0.19751	-0.18373	0.26975
Interfaz-Aisl	K31	LRB-B(Lower)	0.16417	0.17786	0.24204	-0.18910	-0.18382	0.26372
Interfaz-Aisl	K32	LRB-C(Lower)	0.16110	0.17743	0.23965	-0.18230	-0.18313	0.25840
Interfaz-Aisl	K33	LRB-C(Lower)	0.15889	0.17704	0.23788	-0.17504	-0.18353	0.25362
Interfaz-Aisl	K34	LRB-C(Lower)	0.17989	0.17773	0.25288	-0.21461	-0.18316	0.28215
Interfaz-Aisl	K35	Slider-A(Lower)	0.15860	0.17768	0.23817	-0.16930	-0.18252	0.24895
Interfaz-Aisl	K36	LRB-B(Lower)	0.19355	0.17207	0.25897	-0.22857	-0.17968	0.29074
Interfaz-Aisl	K37	LRB-B(Lower)	0.19382	0.16688	0.25576	-0.22836	-0.17470	0.28752
Interfaz-Aisl	K38	LRB-B(Lower)	0.19073	0.16311	0.25097	-0.22519	-0.17188	0.28329
Interfaz-Aisl	K39	LRB-C(Lower)	0.17995	0.16509	0.24421	-0.21470	-0.17091	0.27442
Interfaz-Aisl	K40	Slider-A(Lower)	0.17526	0.16450	0.24036	-0.21039	-0.17218	0.27186
Interfaz-Aisl	K41	LRB-C(Lower)	0.18030	0.15851	0.24007	-0.21481	-0.16642	0.27173
Interfaz-Aisl	K42	LRB-C(Lower)	0.17999	0.15325	0.23640	-0.21493	-0.16218	0.26925
Interfaz-Aisl	K43	LRB-C(Lower)	0.17990	0.14698	0.23230	-0.21534	-0.15874	0.26753
Interfaz-Aisl	K44	LRB-B(Lower)	0.17267	0.16420	0.23827	-0.20729	-0.17146	0.26901
Interfaz-Aisl	K45	LRB-B(Lower)	0.16715	0.16422	0.23432	-0.19855	-0.17130	0.26223
Interfaz-Aisl	K46	Slider-A(Lower)	0.16374	0.16411	0.23182	-0.19028	-0.17135	0.25606

continuación									
Interfaz-Aisl	K47	Slider-A(Lower)	0.16245	0.16415	0.23094	-0.18517	-0.17186	0.25264	
Interfaz-Aisl	K48	LRB-B(Lower)	0.16128	0.16449	0.23036	-0.18191	-0.17171	0.25016	
Interfaz-Aisl	K49	LRB-C(Lower)	0.15922	0.16374	0.22839	-0.17503	-0.17123	0.24486	
Interfaz-Aisl	K50	Slider-A(Lower)	0.15853	0.16430	0.22831	-0.16941	-0.17074	0.24052	
Interfaz-Aisl	K51	LRB-B(Lower)	0.17342	0.15875	0.23511	-0.20684	-0.16686	0.26575	
Interfaz-Aisl	K52	LRB-B(Lower)	0.16450	0.15852	0.22845	-0.18987	-0.16696	0.25283	
Interfaz-Aisl	K53	LRB-C(Lower)	0.16835	0.15854	0.23125	-0.19815	-0.16691	0.25908	
Interfaz-Aisl	K54	LRB-B(Lower)	0.16124	0.15862	0.22618	-0.18226	-0.16740	0.24747	
Interfaz-Aisl	K55	Slider-A(Lower)	0.16261	0.15886	0.22733	-0.18521	-0.16722	0.24953	
Interfaz-Aisl	K56	LRB-B(Lower)	0.15847	0.15915	0.22459	-0.16913	-0.16561	0.23671	
Interfaz-Aisl	K57	LRB-C(Lower)	0.15936	0.15852	0.22478	-0.17471	-0.16689	0.24162	
Interfaz-Aisl	K58	LRB-C(Lower)	0.17277	0.15356	0.23115	-0.20755	-0.16254	0.26362	
Interfaz-Aisl	K60	LRB-C(Lower)	0.16754	0.15324	0.22706	-0.19891	-0.16263	0.25693	
Interfaz-Aisl	K61	LRB-B(Lower)	0.16393	0.15332	0.22446	-0.19033	-0.16275	0.25043	
Interfaz-Aisl	K62	LRB-B(Lower)	0.16119	0.15334	0.22248	-0.18220	-0.16306	0.24451	
Interfaz-Aisl	K63	Slider-A(Lower)	0.16212	0.15360	0.22333	-0.18559	-0.16288	0.24693	
Interfaz-Aisl	K64	LRB-C(Lower)	0.15870	0.15344	0.22075	-0.17543	-0.16252	0.23914	
Interfaz-Aisl	K65	LRB-B(Lower)	0.15829	0.15370	0.22063	-0.16928	-0.16177	0.23415	
Interfaz-Aisl	K66	LRB-B(Lower)	0.17351	0.14778	0.22792	-0.20558	-0.15959	0.26025	
Interfaz-Ais1	K67	LRB-B(Lower)	0.16849	0.14740	0.22386	-0.19695	-0.15933	0.25333	
Interfaz-Ais1	K68	Slider-A(Lower)	0.16482	0.14765	0.22128	-0.18905	-0.15945	0.24731	
Interfaz-Aisl	K69	Slider-A(Lower)	0.16285	0.14761	0.21979	-0.18446	-0.15973	0.24401	
Interfaz-Aisl	K70	Slider-A(Lower)	0.16159	0.14769	0.21892	-0.18144	-0.15979	0.24177	
Interfaz-Aisl	K71	Slider-A(Lower)	0.15900	0.14799	0.21721	-0.16841	-0.15903	0.23163	
Interfaz-Aisl	K72	LRB-B(Lower)	0.15983	0.14755	0.21752	-0.17353	-0.15938	0.23561	
Interfaz-Aisl	K73	LRB-B(Lower)	0.19118	0.14590	0.24049	-0.22561	-0.15966	0.27639	
Interfaz-Aisl	K74	LRB-B(Lower)	0.18085	0.14374	0.23101	-0.21398	-0.15670	0.26522	
Interfaz-Aisl	K75	Slider-A(Lower)	0.19124	0.14384	0.23929	-0.22543	-0.16006	0.27647	
Interfaz-Aisl	K76	Slider-A(Lower)	0.19122	0.14353	0.23909	-0.22559	-0.15801	0.27542	
Interfaz-Aisl	K77	LRB-B(Lower)	0.19276	0.15773	0.24907	-0.22758	-0.16614	0.28177	
Interfaz-Aisl	K78	LRB-B(Lower)	0.19312	0.15252	0.24609	-0.22744	-0.16190	0.27918	
Interfaz-Aisl	K79	Slider-A(Lower)	0.18087	0.17144	0.24921	-0.21581	-0.17682	0.27899	
Interfaz-Aisl	K80	Slider-A(Lower)	0.17346	0.17305	0.24502	-0.20752	-0.17829	0.27359	
Interfaz-Aisl	K81	Slider-A(Lower)	0.17369	0.16863	0.24208	-0.20751	-0.17469	0.27125	
Interfaz-Aisl	K82	Slider-A(Lower)	0.17574	0.16879	0.24367	-0.21033	-0.17512	0.27368	
Interfaz-Aisl	K83	Slider-A(Lower)	0.15850	0.17002	0.23245	-0.16908	-0.17573	0.24387	
Interfaz-Aisl	K84	Slider-A(Lower)	0.15878	0.16867	0.23165	-0.16939	-0.17476	0.24338	
Interfaz-Aisl	K85	Slider-A(Lower)	0.15886	0.17111	0.23348	-0.17206	-0.17718	0.24698	
Interfaz-Aisl	K86	Slider-A(Lower)	0.15877	0.17188	0.23399	-0.17107	-0.17805	0.24691	
Interfaz-Aisl	K87	Slider-A(Lower)	0.15816	0.16838	0.23101	-0.17248	-0.17503	0.24573	
Interfaz-Aisl	K88	Slider-A(Lower)	0.15902	0.16839	0.23161	-0.17529	-0.17477	0.24753	
Interfaz-Aisl	K89	Slider-A(Lower)	0.15962	0.16849	0.23209	-0.17752	-0.17504	0.24930	
Intertaz-Aisl	K90	Slider-A(Lower)	0.15984	0.17106	0.23412	-0.17727	-0.17753	0.25088	
Interfaz-Aisl	K91	Slider-A(Lower)	0.16159	0.16853	0.23348	-0.18239	-0.17461	0.25250	
Interfaz-Aisl	K92	LRB-B(Lower)	0.16141	0.17072	0.23494	-0.18174	-0.17649	0.25334	

Se presenta el desplazamiento de los aisladores en la respuesta lineal para el sismo MCE y las propiedades de límite inferior:

Figura IV-24a. Deformada del eje A6-A6 del bloque aislado del Hospital Pacasmayo con aislamiento LRB, para el sismo MCE y las propiedades de límite inferior, correspondiente a la combinación promedio de carga sísmica PROM-TH máxima Fuente: Elaboración propia, ETABS, 2019.

En las Figuras IV-24a y IV-24a, se puede observar que el sistema de aislamiento cuenta con mayor flexibilidad y alcanza mayores desplazamientos. Lo que hace que menor fuerza sísmica ingrese a la estructura y que los desplazamientos relativos en los pisos sean pequeños. Es por ello es que el análisis con el sismo MCE y las propiedades de límite inferior representa un caso crítico para el sistema de aislamiento y es utilizado para la verificación de su capacidad de deformación, más no representa los mismo para la respuesta de la superestructura.

Así mismo se presenta el comportamiento de los aisladores y deslizadores con mayores desplazamientos en el tiempo para el caso de sismo TH-7 AMNT_2016, cuyos valores son cercanos a los valores promedio de la combinación PROM-TH.

TH-7 AMNT_2016

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Figura IV-26. Desplazamientos del aislador LRB-C Link-K3 para el caso de sismo TH-7 AMNT_2016

Figura IV-27. Desplazamientos del deslizador Slider-A Link-K10 para el caso de sismo TH-7 AMNT_2016

Figura IV-28. Diagramas de histéresis del aislador LRB-B Link-K36 para el caso de sismo TH-7 AMNT_2016

Fuente: Elaboración propia, ETABS, 2019.

Figura IV-29. Diagramas de histéresis del aislador LRB-C Link-K3 para el caso de sismo TH-7 AMNT_2016

Fuente: Elaboración propia, ETABS, 2019.

Figura IV-30. Diagramas de histéresis del deslizador Slider-A Link-K10 para el caso de sismo TH-7 AMNT_2016

Fuente: Elaboración propia, ETABS, 2019.

Se observa que, en los aisladores y deslizadores críticos, el desplazamiento máximo alcanzado no supera la deformación máxima por corte y por carga axial de las unidades, lo que permite establecer que el sistema de aislamiento mantendrá su funcionalidad en el máximo sismo considerado MCE e implícitamente en el sismo de diseño DE.

e. <u>ESTIMACIÓN DE DAÑOS ARQUITECTÓNICO, ESTRUCTURAL Y DE</u> <u>CONTENIDO POR SISMO</u>

Se realizó la estimación de daño por sismo a nivel de la superestructura, siguiendo los límites y curvas de fragilidad del método simplificado especificado en el Estándar de aislamiento sísmico para la funcionalidad continua SISFC. Se realizó la estimación de daño únicamente a nivel se superestructura en vista que se verificó que el sistema de aislamiento y el nivel de base mantienen su funcionalidad y no incurrirán en daño.

Se entiende que el mayor daño en la superestructura es ocasionado cuando el sistema de aislamiento alcanza el límite superior de sus propiedades e incrementa su rigidez y se suscita el sismo de diseño DE, haciendo que los aisladores se desplacen poco y que a la estructura ingresa mayor fuerza sísmica que la prevista.

Los valores encontrados para las derivas ultimas, derivas residuales y aceleraciones espectrales promedio de piso, en la evaluación realizada, fueron llevados a las curvas de fragilidad de la Figura C.3-2 (Figura III-8) de SISFC para encontrar el aporte de daño correspondiente medido en porcentaje de pérdida económica del valor total de inversión; y ser calificados con la calificación REDiTM, de donde se obtiene el tiempo de reposición del servicio que presta la infraestructura.

El costo total de inversión del Hospital, consideró el presupuesto de la obra y el presupuesto para la adquisición del equipamiento médico. La obra actualmente se encuentra en ejecución, mientras que el equipamiento médico aún no ha sido licitado; debido a ello se asumió que el correspondiente monto contratado de

ambos presupuestos es producto de la aplicación del factor relación del contrato de ejecución de la obra al valor referencial de cada uno.

Se presenta a continuación el resumen de los valores de los parámetros de resiliencia utilizados para la estimación del daño en la estructura, así como las curvas de facilidad con la determinación del aporte de daño correspondiente a cada parámetro.

Tabla IV-45

Resumen de los valores de los parámetros resilientes para la estimación del daño del diseño actual con aislamiento LRB del bloque aislado del Hospital de Pacasmayo

RESUMEN DE VALORES DE PARÁMETROS RESILIENTES PARA LA									
ESTIMACIÓN DEL DAÑO									
<u>EJE X-X</u>									
DERIVA DERIVA DERIVA DERIVA ACEL.									
BLOQUE	ULT.	ULT.	RES.	RES.	ESPEC.				
	PROMEDIO	MÁXIMA	PROMEDIO	MÁXIMA	PISO				
BLOQUE-A1	0.37%	0.43%	0.01%	0.04%					
BLOQUE-A2	0.36%	0.48%	0.01%	0.04%					
BLOQUE-A3	0.31%	0.37%	0.04%	0.07%	0.46a				
BLOQUE-A4	0.30%	0.38%	0.01%	0.03%	0.40g				
BLOQUE-A5	0.79%	1.00%	0.04%	0.16%					
BLOQUE-A6	0.75%	0.96%	0.04%	0.14%					
PROMEDIO	0.48%	0.61%	0.03%	0.08%	0.46g				
<u>EJE Y-Y</u>									
	DERIVA	DERIVA	DERIVA	DERIVA	ACEL.				
BLOQUE	ULT.	ULT.	RES.	RES.	ESPEC.				
	PROMEDIO	MÁXIMA	PROMEDIO	MÁXIMA	PISO				
BLOQUE-A1	0.29%	0.36%	0.01%	0.02%					
BLOQUE-A2	0.33%	0.38%	0.01%	0.03%					
BLOQUE-A3	0.31%	0.39%	0.01%	0.04%	0.47~				
BLOQUE-A4	0.32%	0.41%	0.01%	0.04%	0.47g				
BLOQUE-A5	0.52%	0.62%	0.02%	0.07%					
BLOQUE-A6	0.58%	0.70%	0.02%	0.08%					
PROMEDIO	0.39%	0.48%	0.01%	0.05%	0.47g				
MÁXIMO	0.48%	0.61%	0.03%	0.08%	0.47g				

Fuente: Elaboración propia, Microsoft Excel, 2019

Fuente: AutoCAD 2016, Elaboración propia, 2019.

Con el aporte al daño de cada parámetro de resiliencia, se determinó la estimación global de daño del diseño actual con aisladores LRB del bloque aislado del Hospital de Pacasmayo:

Tabla IV-46

Porcentaje y balance de pérdidas en bloque con aislamiento LRB del Hospital de Pacasmayo

para las propiedades de límite superior y el sismo de diseño DE

	PC	ORCENTAJ	E DE PÉRDID	AS EN SUPEI	RESTRUCTU	RA		-			
	LÍM	ITE SUPER	IOR (Upper be	ound) Y SISM	O DE DISEÑO) DE					
	(Asumiend	lo que los ais	sladores y la sul	pestructura ma	ntienen su func	cionalidad)		_			
			EJE	<u>X-X</u>				-			
	DERIVA	DERIVA	DERIVA	DERIVA	ACEL.		CLASIE REDI/				
VALOR	ULT.	ULT.	RES.	RES.	. ESPEC.	TOTAL	$\frac{CLASH, REDU}{FEMA, P.58}$				
	PROMEDIO	MÁXIMA	PROMEDIO	MÁXIMA	PISO		<u>1 EM11_1 -50</u>	_			
PROMEDIO	0.89%	0.65%	0.08%	0.14%	3.03%	4.79%	GOLD	-			
<u>EJE Y-Y</u>											
	DERIVA	DERIVA	DERIVA	DERIVA	ACEL.		CLASIF RFDi/				
VALOR	ULT.	ULT.	RES.	RES.	ESPEC.	TOTAL	<u>FEMA_P-58</u>				
	PROMEDIO	MÁXIMA	PROMEDIO	MÁXIMA	PISO			-			
PROMEDIO	0.62%	0.46%	0.04%	0.08%	3.12%	4.32%	GOLD	-			
MÁXIMO	0.89%	0.65%	0.08%	0.14%	3.12%	4.88%	GOLD	-			
	BALA	NCE DE PÉ	RDIDAS - CL	ASIFICACIÓ	N REDi/FEM	<u>A P-58</u>		-			
REDi™ Resili	ence Objectives			COSTO DE C	CONSTRUCCI	ÓN Y EQUI	PAMIENTO	_			
				Valor referencial		VR =	68,283,654.16	Soles			
	Baseline Re	silience Object	ives	Factor relacio	ón	FR =	0.96623				
	for Design	n Levei Earinquake		Monto Contra	atado	MC =	65,977,725.78	Soles			
Platinum	Income director Dis Co	Downtime:	- 0	<u>EVALUACIÓN DE PERDIDAS</u>							
	Function	and and Recoverv < 72 hours	ted)	CLASIFICACIÓN REDi/FEMA_P-58 GOLD							
	Dire	ct Financial Loss:		Porcentaje de pérdida total		L% =	4.88	%			
	Scenario	Expected Loss < 2.5%		Perdida financiera directa		LF =	3,219,713.02	Soles			
	Physical injury due to fa	ilure of building componer	nts unlikely	Tiempo de re	posición	$T_{RO} =$	1.00	Meses			
Gold	Immediate Re-Oc	Downtime: coupancy (Green Tag expec	ted)					-			
	Functiona	and al Recovery < 1 month ¹	· ·								
	Dire	ct Financial Loss: • Expected Loss < 5%									
	0	cupant Safety:									
	Physical injury due to fa	ilure of building componer	its unlikely								
Silver	Re. Occumancy <	Downtime:	ible)								
	Functiona	and 1 Recovery < 6 months ¹									
	Dire	ct Financial Loss:									
	Physical injury may occur from f	ccupant Safety: alling components (but not lities are unlikely	structural collapse),								

Fuente: Elaboración propia, Microsoft Excel, 2019

El Tabla IV-46 expresa que el bloque aislado del Hospital de Pacasmayo que se encuentra en construcción con aislamiento tipo LRB, en el contexto del sismo de diseño DE y las propiedades de límite superior del sistema de aislamiento; tiene una clasificación **REDiTM Gold**, con una pérdida aproximada del **4.88%** del valor de la construcción es decir un monto de **S/. 3,219,713.02**, y sus servicios quedarían postergados cerca de **un (01) mes**.

4.1.2 <u>DISEÑO SÍSMICO CON AISLAMIENTO DE TRIPLE PENDULO DE</u> <u>FRICCIÓN FPT (TRIPLE FRICTION PENDULUM)</u>

a. <u>FUERZA SÍSMICA QUE INGRESA A LA ESTRUCTURA CONTANDO</u> CON LAS PROPIEDADES DE LÍMITE SUPERIOR

Se encontró la fuerza sísmica que ingresa a la estructura en la condición en los niveles de sismo DE y MCE, cuando las propiedades del sistema de aislamiento alcanzan su límite máximo (cuando se incrementa la rigidez del sistema de aislamiento). La fuerza sísmica que ingresa a la estructura asociada al desplazamiento que se alcanza en cada nivel, se muestra en las Figuras IV-81a y 81b, y es representada por los valores de la combinación promedio PROM-TH de los casos de análisis Tiempo-Historia FNA.

*Figura IV-32*b. Fuerza cortante asociada al desplazamiento en cada nivel de la estructura. Valores máximos y mínimos de la combinación PROM-TH para el diseño con aislamiento FPT en el sismo MCE

Se observa en la Figura IV-32a, que, el desplazamiento en el sistema de aislamiento es relativamente pequeño del orden D=12cm en promedio, lo que evidencia que se trata de un sistema con incremento de rigidez; y que por tanto la fuerza sísmica que ingresa a la estructura es mayor. Además, el desplazamiento relativo en los entrepisos es pequeño, existiendo una diferencia máxima Δ =1.2cm entre la base de la superestructura y el 4to. piso, describiendo que el comportamiento de la estructura es de un sólido rígido en base flexible. Así mismo se observa que la fuerza cortante máxima en la base de la superestructura V_s=738.48Ton es cercana al valor encontrado previamente en el procedimiento de fuerza lateral equivalente ELF.

Por su parte en la Figura IV-32b, el desplazamiento en el sistema de aislamiento es del orden D=20cm en promedio y la cortante máxima en la base de la superestructura es V_s =922.34Ton. El desplazamiento relativo en los entrepisos

es muy cercano a los valores de DE, existiendo una diferencia máxima Δ =1.6cm entre la base de la superestructura y el 4to. piso, indicando que la respuesta de la estructura en DE, a nivel de distorsiones de piso, es casi igual, hasta probablemente un poco menor a la respuesta en MCE.

Entonces, se evidencia que, la fuerza sísmica que ingresa a la estructura en DE es aproximadamente el 80% de la fuerza en MCE, y que la respuesta de la estructura en DE, a nivel de entrepiso, es casi igual a la respuesta en MCE. Es decir, la diferencia del comportamiento de la estructura en los sismos DE y MCE, cuando las propiedades del sistema de aislamiento alcanzan su límite máximo, es mínima, pudiendo asumirse que, en ambos niveles de sismo, la estructura tendrá el mismo comportamiento.

b. <u>PROPIEDADES DINÁMICAS DE LA ESTRUCTURA PARA EL SISMO</u> <u>"DE" Y LAS PROPIEDADES DE LÍMITE SUPERIOR</u>

Al igual que para el diseño anterior, se encontraron de los análisis tiempohistoria FNA, el periodo y la frecuencia angular del sistema de aislamiento FPT, bajo las condiciones del sismo de diseño DE y las propiedades de límite superior. Los valores presentados corresponden a la combinación promedio de los casos análisis dinámico tiempo-historia, PROM-TH

Tabla IV-47

Propiedades dinámicas del sistema de aislamiento FPT en el sismo DE y para las propiedades de límite superior, correspondientes a la combinación promedio de casos sísmicos PROM-TH

PROPIEDADES DINÁMICOS DEL SIST. DE AISLAMIENTO - PROM-TH (Sismo DE y propiedades de límite superior)									
Dir X-X Dir Y-Y									
Parametro dinan	PROM-Max	PROM-Min	PROM-Max	PROM-Min	Unidad				
Peso total estructura	W =	13073.29	13073.29	13073.29	13073.29	Ton			
Cortante base	$V_b =$	944.74	936.31	992.13	1021.12	Ton			
PseudoAceleración	A =	0.072	0.072	0.076	0.078	g			
Desplazamiento máximo	D =	0.111	0.112	0.107	0.139	m			
Frecuencia angular	$\omega_{eff} =$	2.526	2.507	2.639	2.352	seg-1			
Periodo efectivo	$T_{eff} =$	2.488	2.506	2.380	2.671	seg			

Se puede observar que el periodo del sistema de aislamiento en ambas direcciones es bajo del orden T=2.50seg, lo que indica que se trata de un base flexible, y que por tanto la fuerza que ingrese a la estructura no será tan considerable.

Así mismo se presentan las propiedades dinámicas de la superestructura conformada por un bloque único, obtenidas del análisis modal de vectores de Ritz, con el fin de poderse entender la sincronización del movimiento del sistema de asilamiento con la estructura que protege.

Tabla IV-48

Propiedades dinámicas de la superestructura del diseño con aislamiento FPT, obtenidas del análisis modal de vectores de Ritz

PROP. DINÁMICAS DE LA SUPERESTRUCTURA								
ANÁLISI MODAL - BASE FIJA								
N/(J _ L	Frecuenci	a angular	Periodo fundamenta					
MOGUIO	ω _s (s	eg-1)	T _s (seg)					
estructurar -	Dir X-X	Dir Y-Y	Dir X-X	Dir Y-Y				
Único	10.871	13.932	0.578	0.451				

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Se observa que el periodo de los módulos estructurales es distante del periodo del sistema de aislamiento en ambas direcciones, y que por tanto el movimiento de ambos no llegaría a tener mucha sincronización, ocasionando un menor ingreso de fuerza sísmica.

c. <u>DISEÑO DE LA SUPERESTRUCTURA TOMANDO EN CUENTA EL</u> <u>SISMO "DE" Y LAS PROPIEDADES DE LÍMITE SUPERIOR</u>

Se realizó el diseño de la superestructura del diseño con aislamiento pendular del bloque aislado del Hospital de Pacasmayo, bajo las condiciones del sismo de diseño DE y las propiedades de límite superior del sistema de aislamiento, asumiendo la totalidad de la fuerza (R_I=1); verificando que los valores de los criterios de resiliencia: Aceleración espectral promedio de piso, deriva máxima de piso, deriva promedio de piso, deriva residual máxima de piso y deriva residual promedio de piso, sean menores o iguales que los valores especificados en la Tabla C.3-1 (Tabla III-22) de SISFC para limitar el daño global al 2% del valor de la construcción; según lo indicado en el Estándar de aislamiento sísmico para la funcionalidad continua SISFC.

- VALORES MÍNIMOS DE DISEÑO – PROCEDIMIENTO DE ANÁLISIS DE FUERZA LATERAL EQUIVALENTE (ELF)

Se realizó el procedimiento de análisis de Fuerza Lateral Equivalente (ELF) con el objetivo de determinar los desplazamientos y las fuerzas laterales mínimas para el diseño de la estructura; siguiendo lo especificado en la sección 3.3.4 basado en ASCE/SEI 7-16 y E.030, y las disposiciones de diseño de SISFC en la sección 3.4.

Se determinó para los casos de análisis, sismo DE – propiedades de límite superior y sismo MCE – propiedades de límite inferior, el comportamiento histerético de las unidades de aislamiento; desplazamiento máximo alcanzado, rigidez efectiva, periodo efectivo y amortiguamiento efectivo del sistema de aislamiento; así como el cortante en la base y el cortante de diseño en la superestructura.

Tabla IV-49

Comportamiento histerético del aislador FPT-A para el sismo DE y las propiedades de límite

superior. Procedimiento de análisis de Fuerza lateral equivalente ELF

AISL. FPT8833/15-12R/10-6 FPT-A				N =	56					
	P (m)	h (m)		d (m)				SE (DBE)		
$\frac{1}{1}$	2.24	0.105	$\frac{\mu}{0.040}$	0.229		III FASE (I			Propiedades nominales	
2	0.31	0.080	0.013	0.051		q =	0.162 m	q =	0.174 m	
3	0.31	0.080	0.013	0.051		F =	8.93 Ton	F =	7.41 Ton	
4	2.24	0.105	0.056	0.229						
						Propiedades	s dinámicas - Unida	d de aislamient	0	
PLACA	Reff (m)	Ff (Ton)	d* (m)			Peso por aisl	ador	$\mathbf{W} =$	108.47 Ton	
1	2.13	4.34	0.22			Rigidez efect	iva	KM =	55.10 Ton/m	
2	0.23	1.39	0.04			Coef. Amort.	. efectivo	$\beta M =$	30.70 %	
3	0.23	1.39	0.04			Amortiguami	ento efectivo	CM =	15.16 Ton-s/m	
4	2.13	6.07	0.22							
	I FASE				Cor	nnortamie	nto historático F			
F2f =	1.39	Ton								
q* =	0.012 m					20.00				
2F2f =	f = 4.34 Ton									
	II FASE					15.00				
2F2f =	4.34	Ton								
q** =	0.050	m m				10.00				
Flf =	6.07	Ton				5.00	1			
F1	III FASE		(uo)			5.00				
FIT =	6.07	Ton	F (T		1	0.00	-f		Superior DF	
qar1 =	0.440	m T	20.35	-0.25 -	0.15	-0.05	.05 0.15	0.25 0.35	Nominal Can	
Fdr1 =	10.00	Ion	Fue	/	1	-5.00			– – – Nominai Cap.	
Edr1 -	14 FASE	Ton								
rurr = adr4 =	0.477	T OII				-10.00				
qui = - Edr $4 = -$	17 73	III Ton								
1014 -	VFASE	1011				-15.00				
Edr4 –	17.73	Ton								
acap =	0.512	m				-20.00	a (m)			
Fcap =	26.02	Ton			De	espiazamiento	q (m)			
	20.02									

Fuente: Elaboración propia, Microsoft Excel, 2019
Comportamiento histerético del aislador FPT-B para el sismo DE y las propiedades de límite

superior. Procedimiento de análisis de Fuerza lateral equivalente ELF

AISL. FPT	8833/15-121	R/10-6 FPT-	B	N =	38				
PLACA	R (m)	h (m)		d (m)			III F	ASE (DBE)	
1	2.24	0.105	0.040	0.229		Lír	nite superior	Propie	dades nominales
2	0.31	0.080	0.013	0.051		q =	0.162 m	q =	0.173 m
3	0.31	0.080	0.013	0.051		F =	16.01 Ton	F =	13.28 Ton
4	2.24	0.105	0.056	0.229					
					Pr	opiedades	dinámicas - Unida	id de aislamient	0
PLACA	Reff (m)	Ff (Ton)	d* (m)		Pe	so por aisla	ador	$\mathbf{W} =$	194.56 Ton
1	2.13	7.78	0.22		Ri	gidez efecti	iva	KM =	98.84 Ton/m
2	0.23	2.49	0.04		Co	oef. Amort.	efectivo	$\beta M =$	30.70 %
3	0.23	2.49	0.04		Ar	nortiguami	ento efectivo	CM =	27.19 Ton-s/m
4	2.13	10.90	0.22						
	I FASE	_			Comn	ortamie	nto histerético	FPT-B	
F2t =	2.49	Ton			comp	ortainiei			
q* =	0.012	m T			2	0.00			
2F2f =	7.78	Ton				F 00			
2526	II FASE	T			1	5.00			
2F2I =	/./8	Ion			1	0.00			
$q^{**} = p_{1}$	0.050	m Tau			1	0.00			
<u>гп =</u>	10.90	TON	_			5.00-1-			
E1f -	10.00	Ton	Ton		1		l l		
гп – adr1 –	0.440	m	_)		1.00	0.00	1		
qui i = Edr1 =	28 70	III Ton	20.35	-0.25 -	•0.15 -0.	05 0.	05 0.15	0.25 0.35	Nominal Cap.
1 011 -	IV FASE	1011	P		<u> </u>	5.00			
Fdr1 =	28.70	Ton			' -				
adr4 =	0.477	m			1	0.00			
Fdr4 =	31.81	Ton							
	V FASE				-1	5.00			
Fdr4 =	31.81	Ton							
qdr4 =	0.512	m			-2 Desp	0.00 lazamiento	g (m)		
Fcap =	46.68	Ton			1-				

Fuente: Elaboración propia, Microsoft Excel, 2019

Comportamiento histerético del aislador FPT-A para el sismo MCE y las propiedades de

límite inferior. Procedimiento de análisis de Fuerza lateral equivalente ELF

<u></u>	0033/13-12	V 10-0 11 1 -		11 -	50				
	D (m)	h (m)		d (m)	-				
1	2.24	0.105	μ 0.020	0.229	-	T	ímite inferior	Propie	dades nominales
2	0.31	0.105	0.020	0.051	-	L	0 303 m	a –	0.286 m
2	0.31	0.080	0.006	0.051		ч – Е –	10.12 Ton	q = F -	10.260 m
4	2.24	0.000	0.028	0.229	-	1 -	10.12 101	1 -	10.20 100
·	2.2.	01100	0.020	0.222	Propiedades dinámicas - Unidad de aislamiento				to
PLACA	Reff (m)	Ff (Ton)	d* (m)	-	-	Peso por un	idad de aislamiento) W =	108.47 Ton
1	2.13	2.17	0.22	-		Rigidez efec	tiva	KM =	33.38 Ton/m
2	0.23	0.69	0.04			Coef. Amor	t. efectivo	$\beta M =$	14.69 %
3	0.23	0.69	0.04			Amortiguam	iento efectivo	CM =	5.65 Ton-s/m
4	2.13	3.04	0.22		-				
	I FASE				Com		nto historátio		
F2f =	0.69	Ton			Con	iportamie	ento histeretic	O FPT-A	
q* =	0.006	m				20.00			
2F2f =	2.17	Ton							
	II FASE					15.00			
2F2f =	2.17	Ton							
q** =	0.025	m				10.00			
F1f =	3.04	Ton							
	III FASE		(u			5.00			
F1f =	3.04	Ton	T)						
qdr1 =	0.449	m	е 25 аг	0.25		0.00	0.15	0.25 0.25	Inferior MCE
Fdr1 =	13.83	Ton	ner	-0.23	.5	-0.03	0.05	0.25 0.55	Nominal Cap.
	IV FASE			(1		-5.00			
Fdr1 =	13.83	Ton		1		10.00			
qdr4 =	0.468	m				-10.00			
Fdr4 =	14.70	Ton				15.00			
	V FASE					-15.00			
Fdr4 =	14.70	Ton				-20.00			
qcap =	0.512	m			De	splazamiento	o q (m)		
Fcap =	25.33	Ton							

Fuente: Elaboración propia, Microsoft Excel, 2019

Comportamiento histerético del aislador FPT-B para el sismo MCE y las propiedades de límite inferior. Procedimiento de análisis de Fuerza lateral equivalente ELF

.		•	1
AISL. FPT8833/15-12R/10-6 FPT-B	N =	38	

PLACA	R (m)	h (m)	μ	d (m)			III	FASE (MCE)	
1	2.24	0.105	0.020	0.229		Lí	ímite inferior	Prop	iedades nominales
2	0.31	0.080	0.006	0.051		q =	0.303 m	q =	0.285 m
3	0.31	0.080	0.006	0.051		F =	18.14 Ton	F =	18.40 Ton
4	2.24	0.105	0.028	0.229					
						Propiedades	s dinámicas - Uni	dad de aislamier	<u>nto</u>
PLACA	Reff (m)	Ff (Ton)	d* (m)			Peso por uni	dad de aislamiento	• W =	194.56 Ton
1	2.13	3.89	0.22			Rigidez efect	tiva	KM =	59.88 Ton/m
2	0.23	1.25	0.04			Coef. Amort	. efectivo	$\beta M =$	14.69 %
3	0.23	1.25	0.04			Amortiguami	iento efectivo	CM =	10.13 Ton-s/m
4	2.13	5.45	0.22						
	I FASE				Co	mnortamio	nto historátic		
F2f =	1.25	Ton			CO	inportaine	nto insteretico	U FPI-D	
q* =	0.006	m				20.00			
2F2f =	3.89	Ton							
	II FASE					15.00			
2F2f =	3.89	Ton							
q** =	0.025	m				10.00		ν	
F1f =	5.45	Ton							
	III FASE		Ê			5.00			
F1f =	5.45	Ton	L L						
qdr1 =	0.449	m	a F	0.25		0.00	1	0.25 0.21	- Inferior MCE
Fdr1 =	24.81	Ton	a).35 D	-0.25		-0.05	0.15	0.25 0.3	• • • • • Nominal Cap.
	IV FASE		ш.			-5.00			
Fdr1 =	24.81	Ton							
qdr4 =	0.468	m			1	-10.00			
Fdr4 =	26.36	Ton				15.00			
	V FASE			1		-15.00			
Fdr4 =	26.36	Ton	L L	5-		20.00			
qdr4 =	0.512	m			[Desplazamiento	q (m)		
Fcap =	45.43	Ton				-			

Fuente: Elaboración propia, Microsoft Excel, 2019

El procedimiento de análisis de fuerza lateral equivalente considera establecer el desplazamiento total máximo del sistema de aislamiento, que es la suma del desplazamiento traslacional y el desplazamiento debido a la torsión, y que es calculado tomando en cuenta la ubicación excéntrica más desfavorable del centro de masa, que incluye la excentricidad real más una excentricidad accidental, tomada como el 5% de la mayor dimensión en planta de la estructura perpendicular a la dirección de análisis. El desplazamiento total máximo es el producto del desplazamiento máximo y un factor de torsión F_T \geq 1.15 (ASCE/SEI 7-16, 2017).

ī.

Tabla IV-53

Determinación de factor de torsión para determinar el desplazamiento máximo total del sistema de aislamiento FPT

			UBICAC	IÓN EN I	PLANT/	A DE A	ISLAD	ORE	S FPS-3				
60													
00													
	FPT-A	FPT-A	FPT-A	FPT-A	FPT-A	FPT-A	FPT-A		FPT-A	FPT-A	FPT-A		
50	•	•	•	•			•		•	•	•		
	EDT A	EDT A	EDT A	EDT A	- T		EDT A		EDT A	EDT A	EDT A		
						. .							
	•	•	•	•	FP	T-AFPT-A	•		•	•	•		
40													
	FPT-A	FPT-A	FPT-A	FPT-A	FP	T-AFPT-A	FPT-A		FPT-A	FPT-A	FPT-A		
	•	•	FPT-A	FPT-A	FPT-	FPT-A	FPT-A		FPT-A	•	•		
			•	•	•	•	•		•				
20	FPT-A	FPT-A	FPT-A	FPT-A			FPT-A		FPT-A	FPT-A	FPT-A		
30	•	•	•	•			•		•	•	•		
										PP PA			
20	•	•	•	•	CM N	× CR	•		•	•	•		
					CIVI								
	FPT-B	FPT-B	FPT-B	FPT-B	FPT-B	FPT-B	FPT-B		FPT-B	FPT-B	FPT-B		
	•	0	\bigcirc	0	0	FР-В	FР-В		\bigcirc	•	0		
						•	0						
10 ^{FPT-В}	FPT-B	FPT-B	FPT-B	FPT-B	FPT-B	FPT-B	FPT-B		FPT-B	FPT-B	FPT-B	FPT-B	
•	•	•	\bigcirc	0	0	\bigcirc	\bigcirc		\bigcirc	•	\bigcirc	0	
FPT-B FPT-B	FPT-B			FPT-B			FPT-B				FPT-B	FPT-B FPT-B	
0 • •	•	FPT-B	FPT-B	•	FPT-B	FPT-B	•		FPT-B	FPT-B	•	• •	
0	10	O 20	0	30	\bigcirc	40 🔵		50	0	60	70		80
10													
-10													
				CÁLCULO) DE FA	CTOR D	E TORS	SIÓN					
CENTRO DE I	MASA CM	CENTRO DI	E RIGIDEZ	Z CR e	e-real		EJE X	<u>X-X</u>		EJE	<u>Y-Y</u>		
$\mathbf{x} =$	38.54	x =		39.09	0.55	5 e-tot	al =		4.44	e-total =	3.	38 m	
<u>y =</u>	19.53	y =		20.42	0.89	y y	=		20.42	x =	38.	.65 m	
Dimensión más o	corta	b =	4	49.80 m		FT	=		1.11	FT =	1.	.15	
Dimensión más l	arga	d =	,	//.74 m									
Radio de giro		ri =	1	26.65 m									
Factor de relació	n	PT =		1.10									

Fuente: Elaboración propia, Microsoft Excel, 2019

Se puede comprobar que en efecto la torsión es pequeña, predominando la torsión accidental sobre la torsión debido a la excentricidad real. Para los dos (02) niveles de sismo, se obtienen los mismos valores torsionales.

Resumen del procedimiento de análisis de Fuerza lateral equivalente ELF

para el diseño con aislamiento FPT

PROC. FUERZA LATERAL EQUIVALENTE - AISLAMIENTO FPT
(ASCE/SEI 7-16, E.030, SISFC)

Parámetros Sísmicos

PARAMETROS SI	SMICOS E.03)		
ZONA	Z4	Ζ	=	0.45
SUELO	S1	S	=	1.00
Periodo de plataforma		TP	=	0.40
Peridodo de desplazamientos constantes		TL	=	2.50
CATEGORIA EDIFICACION	A1	U	=	1.0
COEF. AMPLIFICACION SÍSMICA - B	DE (β=5%)	С	=	0.246
Periodo fundamental		TD	=	3.185
COEF. AMPLIFICACION SÍSMICA - M	A Z4 LO S1 do de plataforma		=	0.207
Periodo fundamental		TM	=	3.473
SISTEMA ESTRUCTURAL	DUAL	R	=	1.00
Reducción básica:		R0	=	7
Sistema de la base:	Aisl-SISFC	R0'	=	1
Irregularidad altura		Ia	=	1.00
Irregularidad planta		Ip	=	1.00

Valores nominales del sistema BDE y MCE

Peso superestructura y nivel de base Peso superestructura	W = Ws =	13396.17 8768.00		
	-	BDE	MCE	_
Rigidez efectiva	Keff =	5315.14	4468.56	Ton/m
Amortiguamiento efectivo	Ceff =	1309.46	888.89	Ton-s/m
Periodo efectivo	Teff =	3.185	3.473	seg
Coef. Amortiguamiento efectivo	βeff =	24.30	17.99	%
Coef. Núm. Amortiguamiento	Beff =	1.61	1.47	
Aceleración Espectral (β=5%)	S =	0.111	0.140	g
Desplazamiento máximo	D =	0.174	0.286	m
Desplazamiento máximo total	DT =	0.201	0.329	m

Valores máximos y mínimos

Propiedades modificadas BDE y MCE

		Máx-BDE	Mín-MCE	_
Rigidez efectiva	Keff =	6841.74	4144.88	Ton/m
Amortiguamiento efectivo	Ceff =	1881.83	701.06	Ton-s/m
Periodo efectivo	Teff =	2.807	3.606	seg
Amortiguamiento efectivo	$\beta eff =$	30.78	14.73	%
Coef. Núm. Amort.	Beff =	1.73	1.38	

Parametros de Diseño BDE y MCE

		Máx-BDE	Mín-MCE	_
Aceleración Espectral (β=5%)	S =	0.143	0.130	g
Desplazamiento máximo	D =	0.162	0.303	m
Desplazamiento máximo total	DT =	0.187	0.350	m
Cortante en la base	Vb =	1108.73	1256.79	Ton
Cortante superest. s/reducir	Vst =	1005.56	961.58	Ton
Cortante superest. reducida	Vs =	1005.56	961.58	Ton
Cortante superest. reducida mín.	Vsmin =	1251.84	1137.59	Ton

Fuente: Elaboración propia, Microsoft Excel, 2019

- ANÁLISIS TIEMPO-HISTORIA FNA – DERIVAS DE PISO

Debido que el diseño de la superestructura fue realizado sin reducción de la fuerza sísmica $R_I=1$, se espera que su comportamiento en las condiciones más desfavorables (sismo DE y propiedades de límite superior) sea completamente elástico y que sus elementos no desarrollen ductilidad ($\mu=1$). En tal sentido, las derivas de piso obtenidas de la respuesta promedio de los casos de análisis Tiempo-Historia FNA de los movimientos sísmicos ajustados a DE serán elásticas.

Se presenta la respuesta lineal, a nivel de deformaciones, de la combinación promedio PROM-TH de los análisis Tiempo-Historia FNA realizado para los movimientos sísmicos correspondientes a DE.

*Figura IV-33*a. Deformada del eje A5-A5 del diseño con aislamiento FPT, para el sismo DE y las propiedades de límite superior, correspondiente a la combinación promedio de carga sísmica PROM-TH máxima

Fuente: Elaboración propia, ETABS, 2019.

*Figura IV-33*b. Deformada del eje A10-A10 del diseño con aislamiento FPT, para el sismo DE y las propiedades de límite superior, correspondiente a la combinación promedio de carga sísmica PROM-TH máxima

Fuente: Elaboración propia, ETABS, 2019.

*Figura IV-33*c. Deformada del eje 11-11 del diseño con aislamiento FPT, para el sismo DE y las propiedades de límite superior, correspondiente a la combinación promedio de carga sísmica PROM-TH máxima

Fuente: Elaboración propia, ETABS, 2019.

Derivas pico de piso del diseño con aislamiento FPT, correspondientes a

la combinación promedio de los casos sísmicos PROM-TH máxima

D	ERIVAS PI	CO DE PISO	- COMB. Pl	ROM-TH Ma	áx			
SISI	SISMO "DE" Y PROPIEDADES DE LÍMITE SUPERIOR							
NIVEL	H (m)	Di-X (m)	Di-Y (m)	∆i/hi-X	Δi/hi-Y			
PISO-4	19.18	0.11509	0.11218	0.00113	0.00128			
PISO-3	14.76	0.11254	0.10871	0.00149	0.00155			
PISO-2	10.34	0.10862	0.10585	0.00157	0.00161			
PISO-1	5.92	0.10404	0.10488	0.00115	0.00114			
BASE	1.50	0.10149	0.10454	0	0			
DERIV	A PICO PRO	MEDIO	DERIV	VA PICO MÁ	XIMA			
	DIR-X	DIR-Y		DIR-X	DIR-Y			
$\Delta prom =$	0.00107	0.00111	$\Delta m \acute{a} x =$	0.00157	0.00161			
		Maximum	Story Drift	ts				
TECHOLE								
TECHO-A								
PISO-4 -								
			$ \rangle \rangle$					
PISO-3 -								
				11				
DICO 2				11				
PIS0-2 -								
PISO-1 -								
BASE -								
0.00	0.20 0.40	0.60 0.80 1	.00 1.20 1	.40 1.60 1.8	80 2.00 E-3			
		Drift, I	Jnitless					
		,						

Fuente: Elaboración propia, Adaptado de ETABS, 2019

El sistema de aislamiento bajo las condiciones del sismo DE y las propiedades de límite superior, alcanza un desplazamiento medio $D_I=15$ cm aproximadamente, y presenta pequeños desplazamientos relativos de piso. Esto en virtud de que, aunque el sistema de aislamiento no desarrolle mucha capacidad de desplazamiento, al interactuar con una superestructura de mayor rigidez que la del diseño actual (por habérsele incorporado placas de concreto armado), la fuerza sísmica que ingresa es baja.

ACELERACIÓN ESPECTRAL PROMEDIO DE PISO PARA SISTEMAS CON AMORTIGUAMIENTO β=5% EN EL RANGO T=0.05-3.00seg

Se verificó la aceleración espectral promedio β =5% T=0.05-3.00seg en cada piso, tomando la media aritmética del espectro de respuesta de aceleraciones correspondientes a los puntos de control 11 y 56 del modelo matemático. Al igual que para el diseño anterior, la evaluación de este parámetro fue realizada bajo las condiciones de sismo de diseño DE y de las propiedades de límite superior del sistema de aislamiento para cada caso de sismo, rigiendo el promedio de los valores encontrados en cada caso.

Figura IV-34. Ubicación de puntos de control para la determinación de las aceleraciones espectrales promedio de piso β=5% T=0.05-3.00seg. Diseño con aislamiento FPT

Fuente: Elaboración propia, ETABS, 2019.

Dado que se prevé que, para todas las condiciones de nivel de sismo y límite de propiedades del sistema de aislamiento, la respuesta estructural será completamente elástica; se tomaron los valores lineales de las aceleraciones espectrales para cada punto de control sin ninguna reducción. Para el punto de control 11 en el nivel de base, se encontraron los siguientes resultados:

Tabla IV-56

Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control 11 en el nivel de base para el sismo DE y las propiedades de límite superior. Diseño con aislamiento FPT

ACELERACIÓN ESPECTRAL MEDIA DE PISO B=5% T=0.05-3.00 seg (Upper bound - DE)							
NIVEL: BASE PTO-11							
CASO DE SÍSMO	EJE X-X	EJE Y-Y					
CASO DE SISMO	Sa(m/seg2)	Sa(m/seg2)					
TH1 PQR_1966	2.492	2.714					
TH2 PQR_1970	2.913	2.858					
TH3 PQR_1974	2.846	3.181					
TH4 MOQ001_2001	2.842	3.041					
TH5 ICA002_2007	2.933	2.824					
TH6 constitucion_2010	2.924	3.029					
TH7 AMNT_2016	2.699	2.519					
PROMEDIO TH	2.807	2.881					

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 11 en el nivel de base para el caso de sismo TH-7 AMNT_2016.

Figura IV-35. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el nivel de base para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento FPT

Para el punto de control 11 en el 1er-piso, se encontraron los siguientes resultados:

Tabla IV-57

Aceleraciones espectrales promedio $\beta=5\%$ T=0.05-3.00seg del punto de control 11 en el 1er-piso para el sismo DE y las propiedades de límite superior. Diseño con aislamiento FPT

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
$\beta = 5\%$ 1=0.05-3.00 seg (Upper bound - DE)						
NIVEL: 1-PISO PTO-11						
CASO DE SÍSMO EJE X-X EJE Y-Y						
	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	2.434	2.538				
TH2 PQR_1970	2.786	2.579				
TH3 PQR_1974	2.841	2.804				
TH4 MOQ001_2001	2.677	2.787				
TH5 ICA002_2007	2.855	2.538				
TH6 constitucion_2010	2.809	2.740				
TH7 AMNT_2016	2.621	2.369				
PROMEDIO TH 2.717 2.622						

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 11 en el 1er. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-36. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el 1er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento FPT

Para el punto de control 11 en el 2do-piso, se encontraron los siguientes resultados:

Tabla IV-58

Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control 11 en el 2do-piso para el sismo DE y las propiedades de límite superior. Diseño con aislamiento FPT

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
T = 0.05 - 3.00 seg (Upper bound)						
NIVEL: 2-PISO PTO-11						
CASO DE SÍSMO EJE X-X EJE Y-Y						
CASO DE SISMO	Sa(m/seg2)					
TH1 PQR_1966	2.564	2.827				
TH2 PQR_1970	2.942	2.735				
TH3 PQR_1974	2.921	3.195				
TH4 MOQ001_2001	2.888	3.066				
TH5 ICA002_2007	3.012	2.765				
TH6 constitucion_2010	2.934	2.972				
TH7 AMNT_2016	2.679	2.468				
PROMEDIO TH 2.849 2.861						

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 11 en el 2do. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-37. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el 2do-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento FPT

Para el punto de control 11 en el 3er-piso, se encontraron los siguientes resultados:

Tabla IV-59

Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control 11 en el 3er-piso para el sismo DE y las propiedades de límite superior. Diseño con aislamiento FPT

ACELERACIÓN ESPECTRAL MEDIA DE PISO β=5% T=0.05-3.00 seg (Upper bound - DE)						
NIVEL: 3-PISO PTO-11						
CASO DE SÍSMO EJE X-X EJE Y-Y						
CASO DE SISMO	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	2.974	3.119				
TH2 PQR_1970	3.379	3.107				
TH3 PQR_1974	3.238	3.667				
TH4 MOQ001_2001	3.315	3.700				
TH5 ICA002_2007	3.425	3.173				
TH6 constitucion_2010	3.235	3.480				
TH7 AMNT_2016	3.059	2.984				
PROMEDIO TH 3.232 3.318						

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 11 en el 3er. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-38. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 11 en el 3er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento FPT

Para el punto de control 56 en el nivel de base, se encontraron los siguientes resultados:

Tabla IV-60

Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control 56 en el nivel de base para el sismo DE y las propiedades de límite superior. Diseño con aislamiento FPT

ACELERACIÓN ESPECTRAL MEDIA DE PISO					
β=5% T=0.05-3.00 seg (Upper bound - DE)					
NIVEL: BASE PTO-56					
CASO DE SÍSMO EJE X-X EJE Y-Y					
CASO DE SISMO	CASO DE SISMO $Sa(m/seg2)$ Sa(n				
TH1 PQR_1966	2.396	2.818			
TH2 PQR_1970	2.801	2.535			
TH3 PQR_1974	2.737	2.764			
TH4 MOQ001_2001	2.732	2.979			
TH5 ICA002_2007	2.820	2.781			
TH6 constitucion_2010	2.812	2.881			
TH7 AMNT_2016	2.595	2.735			
PROMEDIO TH 2.699 2.785					

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 56 en el nivel de base para el caso de sismo TH-7 AMNT_2016.

Figura IV-39. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el nivel de base para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento FPT

Para el punto de control 56 en el 1er-piso, se encontraron los siguientes resultados:

Tabla IV-61

Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control 56 en el 1er-piso para el sismo DE y las propiedades de límite superior. Diseño con aislamiento FPT

ACELERACIÓN ESPECTRAL MEDIA DE PISO β=5% T=0.05-3.00 seg (Upper bound - DE)						
NIVEL: 1-PISO PTO-56						
CASO DE SÍSMO EJE X-X EJE Y-Y						
CASO DE SISMO	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	2.341	2.594				
TH2 PQR_1970	2.678	2.336				
TH3 PQR_1974	2.732	2.748				
TH4 MOQ001_2001	2.574	2.719				
TH5 ICA002_2007	2.745	2.540				
TH6 constitucion_2010	2.701	2.630				
TH7 AMNT_2016	2.520	2.405				
PROMEDIO TH 2.613 2.568						

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 56 en el 1er. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-40. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el 1er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento FPT

Para el punto de control 56 en el 2do-piso, se encontraron los siguientes resultados:

Tabla IV-62

Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control 56 en el 2do-piso para el sismo DE y las propiedades de límite superior. Diseño con aislamiento FPT

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
NIVEL: 2-PISO PTO-56						
CASO DE SÍSMO EJE X-X EJE Y-Y						
CASO DE SISMO	Sa(m/seg2)	Sa(m/seg2)				
TH1 PQR_1966	2.465	2.832				
TH2 PQR_1970	2.829	2.673				
TH3 PQR_1974	2.808	2.835				
TH4 MOQ001_2001	2.777	2.891				
TH5 ICA002_2007	2.896	2.705				
TH6 constitucion_2010	2.822	2.859				
TH7 AMNT_2016	2.576	2.533				
PROMEDIO TH 2.739 2.761						

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 56 en el 2do. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-41. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el 2do-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento FPT

Para el punto de control 56 en el 3er-piso, se encontraron los siguientes resultados:

Tabla IV-63

Aceleraciones espectrales promedio β =5% T=0.05-3.00seg del punto de control 56 en el 3er-piso para el sismo DE y las propiedades de límite superior. Diseño con aislamiento FPT

ACELERACIÓN ESPECTRAL MEDIA DE PISO						
β=5% T=0.05-3.00 seg (Upper bound - DE)						
NIVEL: 3-PISO PTO-56						
CASO DE SÍSMO	CASO DE SÍSMO EJE X-X EJE Y-Y					
$Sa(m/seg2) \qquad Sa(m/seg2)$						
TH1 PQR_1966	2.860	3.237				
TH2 PQR_1970	3.249	3.110				
TH3 PQR_1974	3.114	3.136				
TH4 MOQ001_2001	3.188	3.313				
TH5 ICA002_2007	3.293	3.354				
TH6 constitucion_2010	3.111	3.322				
TH7 AMNT_2016	2.942	3.002				
PROMEDIO TH 3.108 3.211						

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta a manera de ejemplo, el gráfico que representa el procedimiento para la determinación de la aceleración espectral promedio del punto de control 56 en el 3er. piso para el caso de sismo TH-7 AMNT_2016.

Figura IV-42. Determinación de la aceleración espectral promedio β =5% T=0.05-3.00seg del punto de control 56 en el 3er-piso para el caso de sismo TH-7 AMNT_2016. Diseño con aislamiento FPT

Se presenta el resumen de las aceleraciones espectrales promedio de piso encontradas para los puntos de control 11 y 56.

Tabla IV-64

Aceleraciones espectrales promedio de piso $\beta=5\%$ T=0.05-3.00seg de los puntos de control 11 y 56 para el sismo DE y las propiedades de límite superior. Diseño con aislamiento FPT

ACELERACIÓN ESPECTRAL MEDIA DE PISO T=0.05-3.00seg (Upper bound - DE)							
EJE X-X				<u>EJE</u> Y	<u>Y-Y</u>		
DISO	Pto-11	Pto-56	Acel. Prom.	DISO	Pto-11	Pto-56	Acel. Prom.
0611	Sa(m/seg2)	Sa(m/seg2)	Sa(m/seg2)	1150	Sa(m/seg2)	Sa(m/seg2)	Sa(m/seg2)
PISO-3	3.232	3.108	3.170	PISO-3	3.318	3.211	3.264
PISO-2	2.849	2.739	2.794	PISO-2	2.861	2.761	2.811
PISO-1	2.717	2.613	2.665	PISO-1	2.622	2.568	2.595
BASE	2.807	2.699	2.753	BASE	2.881	2.785	2.833
PROMEDIO	2.901	2.790	2.846	PROMEDIO	2.921	2.831	2.876

Fuente: Elaboración propia, Microsoft Excel, 2019

d. <u>DETERMINACIÓN DEL SISTEMA ESTRUCTURAL DE LA</u> <u>SUPERESTRUCTURA Y ESCALAMIENTO DE RESULTADOS</u>

Se determinó el sistema estructural de la superestructura para cada dirección de análisis en función de la fuerza cortante tomada en la base de los elementos verticales del primer piso, según lo especificado en el <u>art. 16.1</u> de la Norma E.030 e y el <u>num. 21.1</u> de la Norma E.060 para estructuras de concreto armado.

Tabla IV-65

Aporte de fuerza cortante en elementos verticales del diseño con aislamiento FPT para la dirección X-X

APORTE DE FUERZA CORTANTE DIRECCIÓN X-X				
(PROM-TH Max Upper-DE)				
CORTANTE DINÁMIC				
ELEMENIOS	LA BASE VD (Ton)			
PÓRTICOS	343.93 50.29			
MUROS ESTRUCTURALES	339.91 49.			
TOTAL	TOTAL 683.84 100			
	DUAL TIPO II			
SISTEMA ESTRUCTURAL	(Ver 21.1 Norm	na E.060)		

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-66

Aporte de fuerza cortante en elementos verticales del diseño con aislamiento FPT para la dirección Y-Y

APORTE DE FUERZA CORTANTE DIRECCIÓN Y-Y			
(PROM-TH Max Upper-DE)			
CORTANTE DINÁMICA			
ELEMENIOS	LA BASE VD (Ton)		
PÓRTICOS	132.84 17.9		
MUROS ESTRUCTURALES	605.64 82.		
TOTAL	738.48 100.0		
	MUROS ESTRUCT.		
SISTEMA ESTRUCTURAL	(Ver 21.1 Norm	na E.060)	

Fuente: Elaboración propia, Microsoft Excel, 2019

El diseño por resistencia de los elementos superiores al nivel de base fue realizado con los resultados encontrados del análisis dinámico Tiempo-Historia escalados hasta los límites de fuerza cortante mínima definidos según el <u>num.</u> <u>17.5.4.3</u> de ASCE/SEI 7-16.

Tabla IV-67

Factor de escala de fuerza cortante en la superestructura del diseño con aislamiento FPT

FACTOR DE ESCALA DE CORTANTE EN SUPERESTRUCTURA					
(PROM-TH Max Upper-DE)					
CASO DE ANÁI SIS	CORTANTI	CORTANTE Vs (Ton)			
CASO DE ANALSIS		Dir X-X	Dir Y-Y		
FUERZA LATERAL EQUIV.	ELF	1005.56	1005.56		
HISTORIA DE RESPUESTA	THD	683.84	738.48		
ASCE/SEI 7-16 Num. 17.5.4.3	Vsmin	1251.84	1251.84		
FACTOR DE ESCALA	FE =	1.83	1.70		

Fuente: Elaboración propia, Microsoft Excel, 2019

Se tomó el menor factor de las dos direcciones de análisis, debido a que los valores mínimos de fuerza cortante calculados según ASCE/SEI 7-16 son correspondientes al desplazamiento del sistema de aislamiento en la dirección resultante o SRSS de las dos componentes de análisis, lo que indica que para cada dirección la fuerza cortante mínima es menor que la especificada en el Tabla IV-63, y por tanto los factores de escala también son menores.

Para el diseño de los elementos por debajo del nivel de base, los resultados del análisis dinámico Tiempo-Historia no requirieron ser escalados dado que superaron los límites de la fuerza cortante mínima V_b especificados en el <u>num.</u> <u>17.6.4.1</u> de ASCE/SEI 7-16.

Tabla IV-68

Factor de escala de fuerza cortante en la subestructura del diseño con aislamiento FPT

FACTOR DE ESCALA DE CORTANTE EN SUBESTRUCTURA (PROM-TH Max Upper-DE)				
CASO DE ANÁLSIS CORTANTE Vb (Ton)				
CASO DE ANALSIS)	Dir X-X	Dir Y-Y	
FUERZA LATERAL EQUIV.	ELF	1108.73	1108.73	
HISTORIA DE RESPUESTA	THD	944.74	992.13	
ASCE/SEI 7-16 Num. 17.6.4.1	$90\%V_{ELF}$	886.98	987.04	
FACTOR DE ESCALA	FE =	NO	NO	

Fuente: Elaboración propia, Microsoft Excel, 2019

e. <u>VERIFICACIÓN DE LA CAPACIDAD DE DEFORMACIÓN DEL</u> <u>SISTEMA DE AISLAMIENTO FPT</u>

Se evaluó la capacidad de deformación del sistema de aislamiento FPT verificándose que los desplazamientos máximos bajo las condiciones del sismo máximo considerado MCE y las propiedades de límite inferior, no superen la capacidad de deformación contra el colapso de los aisladores. Los aisladores con sus propiedades modificadas hacia el límite inferior, representan un sistema flexible, es decir con mayor capacidad de desplazamiento ante una carga arbitraria, y por su parte el sismo MCE es el sismo que generará los mayores desplazamientos en el sistema de aislamiento.

Los desplazamientos máximos alcanzados por los aisladores FPT para la combinación de cargas sísmicas PROM-TH tanto máxima como mínima, se presentan a continuación. Cabe indicarse que los desplazamientos considerados son la resultante vectorial SRSS de los componentes en las dos direcciones de análisis.

Tabla IV-69

Desplazamientos máximos de aisladores FPT para el sismo MCE y las propiedades de límite inferior

DESPLAZAMIENTOS MÁXIMOS (m)							
(Sismo MCE y propiedades de límite inferior)							
Aislador	PROM-TH Max		PROM-TH Min				
FPT-A	0.37442	(K1)	0.40139	(K5)			
FPT-B	0.37661	(K61)	0.40651	(K61)			

Fuente: Elaboración propia, Microsoft Excel, 2019

Desplazamientos de aisladores FPT para el sismo MCE y las propiedades de límite inferior.

DEFORMACIÓN DE AISLADORES FPT

Combinación de cargas sísmicas PROM-TH

(Sismo MCE y propiedades de límite inferior)								
			PROM-TH Max			PROM-TH Min		
Nivel	Elem.	Aislador	U2	U3	U-SRSS	U2	U3	U-SRSS
			(m)	(m)	(m)	(m)	(m)	(m)
Interfaz-Aisl	K1	L1 FPT-A(Lower)	0.22727	0.29755	0.37442	-0.26061	-0.30086	0.39804
Interfaz-Aisl	K2	L1 FPT-A(Lower)	0.22646	0.29727	0.37370	-0.26198	-0.30156	0.39946
Interfaz-Aisl	K3	L1 FPT-A(Lower)	0.22624	0.29723	0.37354	-0.26279	-0.30148	0.39993
Interfaz-Aisl	K4	L1 FPT-A(Lower)	0.22600	0.29740	0.37353	-0.26384	-0.30135	0.40053
Interfaz-Aisl	K5	L1 FPT-A(Lower)	0.22585	0.29739	0.37343	-0.26507	-0.30141	0.40139
Interfaz-Aisl	K6	L1 FPT-A(Lower)	0.22761	0.29586	0.37328	-0.26379	-0.29753	0.39763
Interfaz-Aisl	K7	L1 FPT-A(Lower)	0.22774	0.29581	0.37332	-0.26262	-0.29762	0.39692
Interfaz-Aisl	K8	L1 FPT-A(Lower)	0.22794	0.29618	0.37374	-0.26154	-0.29726	0.39593
Interfaz-Aisl	K9	L1 FPT-A(Lower)	0.22809	0.29557	0.37334	-0.26073	-0.29789	0.39587
Interfaz-Aisl	K10	L1 FPT-A(Lower)	0.22832	0.29621	0.37399	-0.25993	-0.29687	0.39458
Interfaz-Aisl	K11	L1 FPT-A(Lower)	0.22792	0.29530	0.37303	-0.26028	-0.29363	0.39238
Interfaz-Aisl	K12	L1 FPT-A(Lower)	0.22764	0.29473	0.37241	-0.26109	-0.29454	0.39359
Interfaz-Aisl	K13	L1 FPT-A(Lower)	0.22722	0.29497	0.37233	-0.26216	-0.29442	0.39422
Interfaz-Aisl	K14	L1 FPT-A(Lower)	0.22741	0.29498	0.37246	-0.26226	-0.29447	0.39432
Interfaz-Aisl	K15	L1 FPT-A(Lower)	0.22691	0.29495	0.37213	-0.26346	-0.29430	0.39500
Interfaz-Aisl	K16	L1 FPT-A(Lower)	0.22685	0.29493	0.37208	-0.26463	-0.29434	0.39581
Interfaz-Aisl	K17	L1 FPT-A(Lower)	0.22766	0.29385	0.37172	-0.26341	-0.29112	0.39260
Interfaz-Aisl	K18	L1 FPT-A(Lower)	0.22757	0.29394	0.37173	-0.26242	-0.29108	0.39190
Interfaz-Aisl	K19	L1 FPT-A(Lower)	0.22736	0.29414	0.37176	-0.26238	-0.29104	0.39185
Interfaz-Aisl	K20	L1 FPT-A(Lower)	0.22770	0.29395	0.37182	-0.26171	-0.29115	0.39149
Interfaz-Aisl	K21	L1 FPT-A(Lower)	0.22780	0.29394	0.37188	-0.26100	-0.29111	0.39098
Interfaz-Aisl	K22	L1 FPT-A(Lower)	0.22812	0.29438	0.37243	-0.26012	-0.29032	0.38981
Interfaz-Aisl	K23	L1 FPT-A(Lower)	0.22798	0.29373	0.37183	-0.26029	-0.28855	0.38861
Interfaz-Aisl	K24	L1 FPT-A(Lower)	0.22795	0.29369	0.37178	-0.26059	-0.28862	0.38885
Interfaz-Aisl	K25	L1 FPT-A(Lower)	0.22812	0.29373	0.37191	-0.26016	-0.28645	0.38696
Interfaz-Aisl	K26	L1 FPT-A(Lower)	0.22802	0.29370	0.37182	-0.26028	-0.28670	0.38722
Interfaz-Aisl	K27	L1 FPT-A(Lower)	0.22803	0.29358	0.37174	-0.26033	-0.28781	0.38808
Interfaz-Aisl	K28	L1 FPT-A(Lower)	0.22787	0.29374	0.37177	-0.26120	-0.28785	0.38869
Interfaz-Aisl	K29	L1 FPT-A(Lower)	0.22771	0.29350	0.37148	-0.26102	-0.28673	0.38775
Interfaz-Aisl	K30	L1 FPT-A(Lower)	0.22752	0.29377	0.37157	-0.26144	-0.28664	0.38796
Interfaz-Aisl	K31	L1 FPT-B(Lower)	0.22821	0.29119	0.36996	-0.26810	-0.27430	0.38356
Interfaz-Aisl	K32	L1 FPT-A(Lower)	0.22754	0.29358	0.37143	-0.26199	-0.28788	0.38925
Interfaz-Aisl	K33	L1 FPT-A(Lower)	0.22736	0.29336	0.37115	-0.26183	-0.28659	0.38818
Interfaz-Aisl	K34	L1 FPT-A(Lower)	0.22751	0.29340	0.37127	-0.26241	-0.28833	0.38986
Interfaz-Aisl	K35	L1 FPT-A(Lower)	0.22742	0.29338	0.37120	-0.26247	-0.28713	0.38902
Interfaz-Aisl	K36	L1 FPT-B(Lower)	0.22839	0.29714	0.37477	-0.26794	-0.30490	0.40590
Interfaz-Aisl	K38	L1 FPT-A(Lower)	0.22798	0.29378	0.37186	-0.26028	-0.28391	0.38516
Interfaz-Aisl	K39	L1 FPT-A(Lower)	0.22763	0.29337	0.37132	-0.26130	-0.28461	0.38637
Interfaz-Aisl	K40	L1 FPT-A(Lower)	0.22757	0.29328	0.37122	-0.26208	-0.28479	0.38703
Interfaz-Aisl	K41	L1 FPT-A(Lower)	0.22745	0.29358	0.37138	-0.26231	-0.28453	0.38700
Interfaz-Aisl	K42	L1 FPT-A(Lower)	0.22656	0.29321	0.37054	-0.26343	-0.28476	0.38792
Interfaz-Aisl	K43	L1 FPT-A(Lower)	0.22630	0.29338	0.37052	-0.26476	-0.28456	0.38868
Interfaz-Aisl	K44	L1 FPT-A(Lower)	0.22748	0.29315	0.37105	-0.26399	-0.28153	0.38594
Interfaz-Aisl	K45	L1 FPT-A(Lower)	0.22755	0.29326	0.37119	-0.26282	-0.28140	0.38504
Interfaz-Aisl	K46	L1 FPT-A(Lower)	0.22740	0.29321	0.37105	-0.26225	-0.28162	0.38481
		. ,						

continuación								
Interfaz-Aisl	K47	L1 FPT-A(Lower)	0.22765	0.29324	0.37123	-0.26179	-0.28153	0.38444
Interfaz-Aisl	K48	L1 FPT-A(Lower)	0.22796	0.29294	0.37118	-0.26080	-0.28174	0.38392
Interfaz-Aisl	K49	L1 FPT-A(Lower)	0.22811	0.29351	0.37173	-0.26007	-0.28082	0.38275
Interfaz-Aisl	K50	L1 FPT-A(Lower)	0.22779	0.29351	0.37153	-0.26046	-0.27790	0.38088
Interfaz-Aisl	K51	L1 FPT-A(Lower)	0.22724	0.29286	0.37068	-0.26159	-0.27889	0.38237
Interfaz-Aisl	K52	L1 FPT-A(Lower)	0.22846	0.29325	0.37174	-0.25942	-0.27483	0.37793
Interfaz-Aisl	K53	L1 FPT-A(Lower)	0.22861	0.29300	0.37163	-0.25983	-0.27544	0.37866
Interfaz-Aisl	K54	L1 FPT-A(Lower)	0.22823	0.29307	0.37146	-0.26080	-0.27528	0.37920
Interfaz-Aisl	K55	L1 FPT-A(Lower)	0.22793	0.29312	0.37131	-0.26192	-0.27527	0.37996
Interfaz-Aisl	K56	L1 FPT-A(Lower)	0.22710	0.29312	0.37080	-0.26238	-0.27857	0.38268
Interfaz-Aisl	K57	L1 FPT-A(Lower)	0.22686	0.29309	0.37063	-0.26351	-0.27860	0.38347
Interfaz-Aisl	K58	L1 FPT-A(Lower)	0.22680	0.29318	0.37066	-0.26461	-0.27852	0.38417
Interfaz-Aisl	K59	L1 FPT-A(Lower)	0.22806	0.29301	0.37131	-0.26287	-0.27544	0.38074
Interfaz-Aisl	K60	L1 FPT-B(Lower)	0.22650	0.30028	0.37613	-0.26754	-0.30536	0.40598
Interfaz-Aisl	K61	L1 FPT-B(Lower)	0.22814	0.29964	0.37661	-0.26811	-0.30556	0.40651
Interfaz-Aisl	K62	L1 FPT-B(Lower)	0.22796	0.29630	0.37385	-0.26805	-0.30182	0.40367
Interfaz-Aisl	K63	L1 FPT-B(Lower)	0.22793	0.29741	0.37471	-0.26616	-0.30121	0.40196
Interfaz-Aisl	K64	L1 FPT-B(Lower)	0.22619	0.29717	0.37346	-0.26596	-0.30147	0.40202
Interfaz-Aisl	K65	L1 FPT-B(Lower)	0.22796	0.29527	0.37303	-0.26813	-0.29754	0.40053
Interfaz-Aisl	K66	L1 FPT-B(Lower)	0.22783	0.29604	0.37355	-0.26624	-0.29723	0.39904
Interfaz-Aisl	K67	L1 FPT-B(Lower)	0.22789	0.29570	0.37333	-0.26501	-0.29759	0.39849
Interfaz-Aisl	K68	L1 FPT-B(Lower)	0.22825	0.29403	0.37222	-0.26784	-0.29458	0.39814
Interfaz-Aisl	K69	L1 FPT-B(Lower)	0.22753	0.29532	0.37280	-0.26663	-0.29377	0.39673
Interfaz-Aisl	K70	L1 FPT-B(Lower)	0.22729	0.29457	0.37206	-0.26559	-0.29460	0.39664
Interfaz-Aisl	K71	L1 FPT-B(Lower)	0.22794	0.29335	0.37150	-0.26762	-0.29115	0.39546
Interfaz-Aisl	K72	L1 FPT-B(Lower)	0.22763	0.29411	0.37191	-0.26620	-0.29101	0.39440
Interfaz-Aisl	K73	L1 FPT-B(Lower)	0.22754	0.29413	0.37187	-0.26521	-0.29109	0.39379
Interfaz-Aisl	K74	L1 FPT-B(Lower)	0.22795	0.29400	0.37202	-0.26676	-0.28855	0.39296
Interfaz-Aisl	K75	L1 FPT-B(Lower)	0.22799	0.29278	0.37108	-0.26872	-0.28917	0.39475
Interfaz-Aisl	K76	L1 FPT-B(Lower)	0.22865	0.29252	0.37128	-0.26808	-0.28671	0.39252
Interfaz-Aisl	K77	L1 FPT-B(Lower)	0.22802	0.29396	0.37203	-0.26664	-0.28645	0.39134
Interfaz-Aisl	K78	L1 FPT-B(Lower)	0.22741	0.29347	0.37127	-0.26559	-0.28849	0.39212
Interfaz-Aisl	K79	L1 FPT-B(Lower)	0.22776	0.29366	0.37163	-0.26538	-0.28658	0.39058
Interfaz-Aisl	K80	L1 FPT-B(Lower)	0.22726	0.29345	0.37115	-0.26548	-0.28462	0.38921
Interfaz-Aisl	K81	L1 FPT-B(Lower)	0.22754	0.29344	0.37132	-0.26595	-0.28713	0.39137
Interfaz-Aisl	K82	L1 FPT-B(Lower)	0.22737	0.29329	0.37110	-0.26572	-0.28443	0.38924
Interfaz-Aisl	K83	L1 FPT-B(Lower)	0.22751	0.29348	0.37133	-0.26632	-0.28461	0.38978
Interfaz-Aisl	K84	L1 FPT-B(Lower)	0.22796	0.29294	0.37118	-0.26759	-0.28454	0.39060
Interfaz-Aisl	K85	L1 FPT-B(Lower)	0.22791	0.29357	0.37166	-0.26628	-0.28091	0.38707
Interfaz-Aisl	K86	L1 FPT-B(Lower)	0.22766	0.29283	0.37092	-0.26521	-0.28171	0.38691
Interfaz-Aisl	K87	L1 FPT-B(Lower)	0.22711	0.29277	0.37053	-0.26583	-0.27881	0.38522
Interfaz-Aisl	K88	L1 FPT-B(Lower)	0.22806	0.29305	0.37133	-0.26410	-0.27524	0.38145
Interfaz-Aisl	K90	L1 FPT-B(Lower)	0.22754	0.29335	0.37125	-0.26653	-0.27824	0.38530
Interfaz-Aisl	K92	L1 FPT-B(Lower)	0.22745	0.29316	0.37104	-0.26665	-0.27515	0.38316
Interfaz-Aisl	K93	L1 FPT-B(Lower)	0.22881	0.29311	0.37184	-0.26521	-0.27206	0.37994
Interfaz-Aisl	K94	L1 FPT-B(Lower)	0.22793	0.29234	0.37070	-0.26817	-0.28178	0.38899
Interfaz-Aisl	K95	L1 FPT-B(Lower)	0.22814	0.29255	0.37099	-0.26794	-0.27867	0.38659
Interfaz-Aisl	K96	L1 FPT-B(Lower)	0.22830	0.29202	0.37067	-0.26773	-0.27580	0.38438
Interfaz-Aisl	K97	L1 FPT-B(Lower)	0.22839	0.29247	0.37108	-0.26786	-0.27219	0.38188

Se presenta el desplazamiento de los aisladores en la respuesta lineal para el sismo MCE y las propiedades de límite inferior:

Figura IV-43a. Deformada del eje A5-A5 del diseño con aislamiento FPT, para el sismo MCE y las propiedades de límite inferior, correspondiente a la combinación promedio de carga sísmica PROM-TH máxima

Fuente: Elaboración propia, ETABS, 2019.

Figura IV-43b. Deformada del eje 11-11 del diseño con aislamiento FPT, para el sismo MCE y las propiedades de límite inferior, correspondiente a la combinación promedio de carga sísmica PROM-TH máxima

Fuente: Elaboración propia, ETABS, 2019.

Se observa en las Figuras IV-43a y IV-43b que la estructura aislada bajo las condiciones del sismo MCE y las propiedades de límite inferior cumple los principios del aislamiento sísmico, se cuenta con una base sumamente flexible y una superestructura lo suficientemente rígida como para que los periodos de ambos estén bastante alejados y no haya sincronización de movimiento.

Así mismo se presenta el comportamiento de los aisladores con mayores desplazamientos en el tiempo para el caso de sismo TH-5 ICA002_2007, cuyos valores son cercanos a los valores promedio de la combinación PROM-TH.

Figura IV-44. Desplazamientos del aislador FPT-A Link-K5 para el caso de sismo TH-7 AMNT_2016

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Figura IV-45. Desplazamientos del aislador FPT-B Link-K61 para el caso de sismo TH-7 AMNT_2016.

Fuente: Elaboración propia, ETABS, 2019.

Fuente: Elaboración propia, ETABS, 2019.

Se puede observar que, en los aisladores críticos, el desplazamiento máximo alcanzado no supera el desplazamiento máximo permitido o de colapso de las unidades, lo que permite establecer que el sistema de aislamiento mantendrá su funcionalidad en el máximo sismo considerado MCE e implícitamente en el sismo de diseño DE. Además, los desplazamientos en ambos prototipos de aislador son casi iguales, lo que indica que los desplazamientos se compatibilizan debido a que la torsión es muy pequeña.

f. <u>DISEÑO DE ELEMENTOS DE CONCRETO ARMADO INCORPORADOS</u> <u>Y MODIFICADOS</u>

El diseño de los elementos de concreto armado incorporados o modificados en el diseño con aislamiento FPT, se realizó siguiendo las disposiciones de la Norma E.060 que utiliza la metodología del diseño por resistencia, que consiste en amplificar las solicitaciones sobre las estructuras por factores λ reducir las resistencias nominales por factores φ . La ecuación general del diseño por resistencia es: $\lambda Q = \phi R_n$

Los factores de amplificación para las resistencias requeridas, vienen dados por las combinaciones de carga especificadas en el <u>num. 9.2</u> de E.060, de la siguiente manera:

Comb. 1	:	U = 1.4 CM + 1.7 CV
Comb. 2	:	$U = 1.25 (CM + CV) \pm CS$
Comb. 3	:	$U = 0.9 D \pm CS$

Donde:

CM = Carga muerta

CV = Carga viva

CS = Carga sísmica

Los factores de reducción para las resistencias de diseño, son las especificadas en el num. 9.3 de E.060, y tienen los siguientes valores:

Flexión sin carga axial	:	Ø=0.90
Carga axial y carga axial con flexión		
(a) Carga axial de tracción con o sin flexión	:	Ø =0.90

(b) Carga axial de compresión con o sin flexión	:	Ø =0.75
Cortante y torsión	:	Ø =0.85
Aplastamiento	:	Ø =0.70

- <u>DISEÑO DE COLUMNAS MODIFICADAS Y PLACAS</u> <u>INCORPORADAS</u>

El diseño de los elementos verticales tales como columnas y placas, se realizó utilizando el estado de cargas simultaneas por flexión y carga axial P-M, y el estado de cargas por corte V. Para este caso el diseño por resistencia se cumplió con:

Flexión : $P_u \le \phi P_n, M_u \le \phi P_n$ Corte : $V_u \le \phi V_n$

Se presenta el proceso de diseño de la columna C1 con la asistencia de ETABS:

Diseño de Columna C1

Tabla IV-71

Esfuerzos de carga axial, flexión y corte en columna en la columna C1 del primer piso, para cada combinación de diseño

	ESFUERZOS EN COLUMNAS											
Dico	Etiqueta	Comb Art 0.2 E 060	Estación	Р	V2	V3	M2	M3				
F 180	(Columna)	Comb. <u>Art. 5.2</u> E.000	(m)	(tonf)	(tonf)	(tonf)	(tonf-m)	tonf-m				
PISO-1	C3	1.4D+1.7L	0	-93.1255	-15.6164	1.435	3.2058	-37.5957				
PISO-1	C3	1.25(D+L)+PTH Max	0	-53.0066	-14.7934	9.7213	23.0779	-38.5806				
PISO-1	C3	1.25(D+L)+PTH Min	0	-113.9891	-21.3686	-6.7002	-16.3397	-56.2116				
PISO-1	C3	0.9D+PTH Max	0	-25.3144	-8.94	9.2783	22.1833	-24.2231				
PISO-1	C3	0.9D+PTH Min	0	-86.297	-15.5152	-7.1432	-17.2344	-41.854				

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Diseño por flexión:

Figura IV-49. Diagrama de interacción de columna C1 del 1er-piso con demanda de carga axial y esfuerzos de flexión P-M

Fuente: Elaboración propia, ETABS, 2019.

Diseño por corte:

Tabla IV-72

Resistencia a corte de columna C1 del 1er-piso para el eje local 2-2

PisoCPiso-11Piso-11Piso-11Piso-11	Comb. art. 9.2 E.060 1.4D+1.7L 1.25(D+L)+PTH Max 1.25(D+L)+PTH Min 0.9D+PTH Max 0.9D+PTH Min Interacción P-N 800	P(Ton) 93.13 53.01 113.99 25.31 86.30 Mn3	Mua3(Ton-m) -37.5957 -38.5806 -56.2116 -24.2231 -41.854) Mn3(Ton-m) -72.20 -65.67 -75.59 -60.75 -71.09 Corta Corta	V2-2.5E(Ton) -15.62 -11.16 -27.60 -17.02 -33.46 nte máxima Vu nte mínima Vu	V2-Mn(Ton) -39.34 -35.79 -41.20 -33.10 -38.74 12(+) = 12(-) =	Vu2(Ton) -39.34 -35.79 -41.20 -33.10 -38.74 -33.10 -41.20
Piso-1 Piso-1 1 Piso-1 1 Piso-1 Piso-1	1.4D+1.7L 1.25(D+L)+PTH Max 1.25(D+L)+PTH Min 0.9D+PTH Max 0.9D+PTH Min Interacción P-N 800	93.13 53.01 113.99 25.31 86.30 Mn3	-37.5957 -38.5806 -56.2116 -24.2231 -41.854	-72.20 -65.67 -75.59 -60.75 -71.09 Corta Corta	-15.62 -11.16 -27.60 -17.02 -33.46 nte máxima Vu nte mínima Vu	-39.34 -35.79 -41.20 -33.10 -38.74 12 (+) = 12 (-) =	-39.34 -35.79 -41.20 -33.10 -38.74 -33.10 -41.20
Piso-1 1 Piso-1 1 Piso-1 Piso-1	1.25(D+L)+PTH Max 1.25(D+L)+PTH Min 0.9D+PTH Max 0.9D+PTH Min Interacción P-N 800	53.01 113.99 25.31 86.30 Mn3	-38.5806 -56.2116 -24.2231 -41.854	-65.67 -75.59 -60.75 -71.09 Corta Corta	-11.16 -27.60 -17.02 -33.46 nte máxima Vu nte mínima Vu	-35.79 -41.20 -33.10 -38.74 12(+) = 12(-) =	-35.79 -41.20 -33.10 -38.74 -33.10 -41.20
Piso-1 1 Piso-1 Piso-1	1.25(D+L)+PTH Min 0.9D+PTH Max 0.9D+PTH Min Interacción P-N ⁸⁰⁰	113.99 25.31 86.30 Mn3	-56.2116 -24.2231 -41.854	-75.59 -60.75 -71.09 Corta Corta	-27.60 -17.02 -33.46 nte máxima Vu nte mínima Vu	-41.20 -33.10 -38.74 12(+) = 12(-) =	-41.20 -33.10 -38.74 -33.10 -41.20
Piso-1 Piso-1	0.9D+PTH Max 0.9D+PTH Min Interacción P-N ⁸⁰⁰	25.31 86.30 ⁄In3	-24.2231 -41.854	-60.75 -71.09 Corta Corta	-17.02 -33.46 nte máxima Vu nte mínima Vu	-33.10 -38.74 12 (+) = 12 (-) =	-33.10 -38.74 -33.10 -41.20
Piso-1	0.9D+PTH Min Interacción P-N ⁸⁰⁰	86.30 /In3	-41.854	-71.09 Corta Corta	-33.46 nte máxima Vu nte mínima Vu	-38.74 12(+) = 12(-) =	-38.74 -33.10 -41.20
	Interacción P-N 800	/In3		Corta Corta	nte máxima Vu nte mínima Vu	12(+) = 12(-) =	-33.10
	Interaccion P-N 800	vin3		Corta	nte mínima Vu	12(-) =	-41.20
	800			D:			
		800					
				Ancho de alma		bw=	60.00 cr
600				Peralte efectiv	o	d =	54.10 cr
				Corte en Conci	reto	Vc =	24.93 To
	400			Corte en Acero	o de refuerzo	Vs =	30.00 To
				Espaciamiento		s =	20.00 cr
	200			Acero claculad	lo por corte	Avc =	0.003 cm
X0	8			Acero mínimo	por corte	Avmin =	0.828 cm
*	0			Acero requerid	lo por corte	Av =	0.828 cm
-100 -	-50 0	50	100	Utilizar: □3/8	"@0.2	Av =	1.418 cr

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-73

Resistencia a corte de columna C1 del 1er-piso para el eje local 3-3

	AJUSTE DE CORTANTE DE D	ISEÑO I	h.,	2 67			
	Art. 21.4.3(a)(b)			nn =	3.07	m	
Piso	Comb. art. 9.2 E.060	P(Ton)	Mua2(Ton-m)	Mn2(Ton-m)	V3-2.5E(Ton)	V3-Mn(Ton)	Vu3(Ton)
Piso-1	1.4D+1.7L	93.13	3.2058	72.20	1.44	39.34	39.34
Piso-1	1.25(D+L)+PTH Max	53.01	23.0779	65.67	21.98	35.79	35.79
Piso-1	1.25(D+L)+PTH Min	113.99	-16.3397	-75.59	-19.07	-41.20	-41.20
Piso-1	0.9D+PTH Max	25.31	22.1833	60.75	22.42	33.10	33.10
Piso-1	0.9D+PTH Min	86.30	-17.2344	-71.09	-18.63	-38.74	-38.74
		2	Corta	nte máxima Vu	12(+) =	39.34	
	Interaccion P-IVI	Corta	inte mínima Vi	12(-) =	-41.20		
	800			Diseño por co	<u>rte</u>		
		_		Ancho de alma	ı	bw=	60.00 cm
	600			Peralte efectiv	/0	d =	54.10 cm
				Corte en Conc	reto	Vc =	24.93 Ton
	400			Corte en Acer	o de refuerzo	Vs =	30.00 Ton
				Espaciamiento)	s =	20.00 cm
	200			Acero claculad	lo por corte	Avc =	0.003 cm2
	·····• 8 •····			Acero mínimo	por corte	Avmin =	0.828 cm2
	0			Acero requerio	do por corte	Av =	0.828 cm2
-100	-50 0	50	100	Utilizar: □Ø3	/8''@0.20	Av =	1.418 cm2
	-200						
	-400						

Fuente: Elaboración propia, Microsoft Excel, 2019

Se presenta el proceso de diseño de la placa P1 con la asistencia de ETABS:

Figura IV-50. Sección de placa P1 del 1er-piso definido en ETABS

Fuente: Elaboración propia, ETABS, 2019.

Tabla IV-74

Esfuerzos de carga axial, flexión y corte en placa P1 del primer piso, para cada combinación de diseño

ESFUERZOS EN PLACAS											
Piso Etiqu (Pie	Etiqueta	Comb Aut 0.2 E 060	Saasián	Р	V2	V3	M2	M3			
	(Pier)	Comp. <u>A11.9.2</u> E.000	Seccion	(tonf)	(tonf)	(tonf)	(tonf-m)	tonf-m			
Piso-1	P1Y	1.4D+1.7L	Bottom	-823.9931	58.366	-10.638	-38.6557	-70.658			
Piso-1	P1Y	1.25(D+L)+PTH Max	Bottom	-693.6711	358.324	11.7827	23.0225	2535.607			
Piso-1	P1Y	1.25(D+L)+PTH Min	Bottom	-726.8179	-217.7519	-34.3382	-103.3602	-2791.4712			
Piso-1	P1Y	0.9D+PTH Max	Bottom	-395.0241	335.0583	15.3873	36.6827	2591.2393			
Piso-1	P1Y	0.9D+PTH Min	Bottom	-428.1709	-241.0175	-30.7335	-89.7	-2735.839			

Fuente: Elaboración propia, Adaptado de ETABS, 2019

Diseño por flexión:

axial y esfuerzos de flexión P-M

Fuente: Elaboración propia, ETABS, 2019.

Diseño por corte:

Tabla IV-75

Resistencia a corte de placa P1 del 1er-piso para el eje local 2-2

AJUSTI	E DE CORTA	ANTE DE DISI	EÑO E.060 <u>4</u>	Art.21.9.5.3	R =	1	$Vu2 = Vua2 \left(-\frac{1}{2} \right)$	$\frac{Mn3}{Mua3}$
Piso	Comb. a	art. 9.2 E.060	P(Ton)	Mua3(Ton-m)	Mn3(Ton-m)	Mua3/Mn3	Vua2(Ton)	Vu2(Ton)
Piso-1	1.4D+1.7L		823.99	-70.658	-4563.68	1.00	58.37	58.37
Piso-1	1.25(D+L)+	-PTH Max	693.67	2535.607	4764.25	1.00	358.32	358.32
Piso-1	1.25(D+L)+	-PTH Min	726.82	-2791.4712	-4273.59	1.00	-217.75	-217.75
Piso-1	0.9D+PTH	Max	395.02	2591.2393	3886.86	1.00	335.06	335.06
Piso-1	0.9D+PTH	Min	428.17	-2735.839	-3382.05	1.00	-241.02	-241.02
	1		4		Cortante	max. (Sismo S	SX) Vu2 =	358.32
Interaction P-N			/IN3		Cortante	max. (Sismo S	SY) Vu2 =	-241.02
		6000			Diseño por cor	te		
		5000			Relacion hm/ln	n	hm/lm =	0.52
		5000			Factor ac		$\alpha c =$	0.80
		4000			Área Corte		Acw=	21000.00 cm2
		2000			Corte Concrete)	Vc =	756.59 Ton
		5000			Corte Acero de	e refuerzo	Vs =	0.00 Ton
		2000			cuantia horizon	tal calculada	phc =	0.0000
		1000 -			cuantia horizon	ıtal mínima	phmin =	0.0025
			88		Espaciamiento		s =	15.00 cm
		0			Acero horizont	al requerido	Ash =	1.13 cm2
-10000	-5000	-1000	5000	10000	Utilizar: 2Ø3/	/8''@0.15	Ash =	1.42 cm2
		-2000						

Fuente: Elaboración propia, Microsoft Excel, 2019

Tabla IV-76

Resistencia a corte de placa P1 del 1er-piso para el eje local 3-3

AJUSTI	E DE CORTANTE DE DISI	EÑO E.060 <u>4</u>	<u>Art.21.9.5.3</u>	R =	1	Vu 3 = Vua 3	$\left(\frac{Mn2}{Mua2}\right)$
Piso	Comb. art. 9.2 E.060	P(Ton)	Mua2(Ton-m)	Mn2(Ton-m)	Mua2/Mn2	Vua3(Ton)	Vu3(Ton)
Piso-1	1.4D+1.7L	823.99	-38.6557	-447.34	1.00	-10.64	-10.64
Piso-1	1.25(D+L)+PTH Max	693.67	23.0225	301.80	1.00	11.78	11.78
Piso-1	1.25(D+L)+PTH Min	726.82	-103.3602	-436.06	1.00	-34.34	-34.34
Piso-1	0.9D+PTH Max	395.02	36.6827	247.65	1.00	15.39	15.39
Piso-1	0.9D+PTH Min	428.17	-89.7	-401.39	1.00	-30.73	-30.73
				Corta	ante máxima ^v	Vu3 =	15.39
	Interaction P-N	/in2		Cort	ante mínima ^v	Vu3 =	-34.34
	6000			Diseño por cor	te		
	5000			Relacion hm/lm	n	hm/lm =	3.67
	5000			Factor ac		$\alpha c =$	0.53
	4000			Área Corte		Acw=	21000.00 cm2
	2000			Corte Concrete)	Vc =	501.24 Ton
	3000			Corte Acero de	refuerzo	Vs =	0.00 Ton
	2000			cuantia horizon	ital calculada	phc =	0.0000
	1000			cuantia horizon	ital mínima	ρhmin=	0.0020
	××			Espaciamiento		s =	15.00 cm
	0			Acero horizont	al requerido	Ash =	0.90 cm2
-600	-400 -200 0 200	400	600 800	Utilizar: 2Ø3/	8''@0.15	Ash =	1.42 cm2
	-2000						

Fuente: Elaboración propia, Microsoft Excel, 2019

- DISEÑO DE VIGAS MODIFICADAS

El diseño de los elementos horizontales como las vigas en las dos direcciones de análisis, se realizó utilizando el estado de cargas por flexión M, y el estado de cargas por corte V. Para este caso el diseño por resistencia se cumplió con:

Flexión : $M_u \le \phi M_n$ Corte : $V_u \le \phi V_n$

Se presenta el proceso de diseño de la viga V-104(0.35x0.90) entre los ejes A1 y A2:

Diseño por flexión

Figura IV-52. Diagrama de momentos flectores en viga V-104(0.35x0.90) en el primer piso entre los ejes A1 y A2, para la envolvente de combinaciones del <u>num. 9.3</u> de E.060 Fuente: Elaboración propia, ETABS, 2019.

Apoyo-C11: $b_w = 35.00 cm$, d = 83.78 cm

Momento ultimo: $M_{\mu 1} = 107.35Ton - m$

Cuantía balanceada y acero máximo:

$$\rho_b = 0.85\beta_1 \frac{f'c}{fy} \left(\frac{6000}{6000 + fy}\right) = 0.85 \times 0.85 \times \frac{210}{4200} \left(\frac{6000}{6000 + 4200}\right) = 0.0213$$

Bach. ESTEBAN KORAFI APONTE

 $A_{smáx} = 0.75 \,\rho_b b_w d = 0.75 \times 0.0213 \times 35 \times 83.78 = 46.73 \,cm^2$

Acero mínimo:

$$A_{smin} = 0.7 \frac{\sqrt{f'c}}{fy} b_w d = 0.7 \times \frac{\sqrt{210}}{4200} \times 35 \times 83.78 = 7.08 cm^2$$

Acero de refuerzo:

$$A_{s} = \frac{M_{u}}{\phi f y \left(d - \frac{a}{2} \right)} = \frac{107.35 \times 10^{5}}{0.9 \times 4200 \times \left(83.78 - \frac{27.21}{2} \right)} = 40.47 cm^{2}, \ a = 27.21 cm$$

Utilizar: $8\phi 1'': A_s = 40.54 cm^2$

Apoyo-C9: $b_w = 35.00 cm$, d = 83.78 cm

Momento ultimo: $M_{u1} = 89.71Ton - m$

Cuantía balanceada y acero máximo:

$$\rho_b = 0.85 \beta_1 \frac{f'c}{fy} \left(\frac{6000}{6000 + fy} \right) = 0.85 \times 0.85 \times \frac{210}{4200} \left(\frac{6000}{6000 + 4200} \right) = 0.0213$$
$$A_{smáx} = 0.75 \rho_b b_w d = 0.75 \times 0.0213 \times 35 \times 83.78 = 46.73 cm^2$$

Acero mínimo:

$$A_{smin} = 0.7 \frac{\sqrt{f'c}}{fy} b_w d = 0.7 \times \frac{\sqrt{210}}{4200} \times 35 \times 83.78 = 7.08 cm^2$$

Acero de refuerzo:

$$A_{s} = \frac{M_{u}}{\phi fy \left(d - \frac{a}{2}\right)} = \frac{89.71 \times 10^{5}}{0.9 \times 4200 \times \left(83.78 - \frac{21.91}{2}\right)} = 32.59 cm^{2}, \ a = 21.91 cm$$

Utilizar: $8\phi 1'': A_{u} = 40.54 cm^{2}$

Centro de luz libre: $b_w = 35.00 cm$, d = 83.78 cm

Momento ultimo: $M_{uCL} = 55.77Ton - m$

Cuantía balanceada y acero máximo:

$$\rho_b = 0.85\beta_1 \frac{f'c}{fy} \left(\frac{6000}{6000 + fy}\right) = 0.85 \times 0.85 \times \frac{210}{4200} \left(\frac{6000}{6000 + 4200}\right) = 0.0213$$

 $A_{smáx} = 0.75 \,\rho_b b_w d = 0.75 \times 0.0213 \times 35 \times 83.78 = 46.73 cm^2$

Acero mínimo:

$$A_{smin} = 0.7 \frac{\sqrt{f'c}}{fy} b_w d = 0.7 \times \frac{\sqrt{210}}{4200} \times 35 \times 83.78 = 7.08 cm^2$$

Acero de refuerzo:

$$A_{s} = \frac{M_{u}}{\phi f y \left(d - \frac{a}{2} \right)} = \frac{55.77 \times 10^{5}}{0.9 \times 4200 \times \left(83.78 - \frac{12.82}{2} \right)} = 19.07 cm^{2}, \ a = 12.82 cm$$

Utilizar: $5\phi 1'': A_s = 25.34 cm^2$

Figura IV-53. Diagrama de fuerzas cortantes en viga V-104(0.35x0.90) en el primer piso entre los ejes A1 y A2, para la envolvente de combinaciones del <u>num. 9.3</u> de E.060 Fuente: Elaboración propia, ETABS, 2019.

<u>Cortante ultima:</u> $V_u = 64.50Ton$, para la sección crítica localizada a d de la cara del apoyo.

Momentos nominales:

Extremo-1: $A_{s1} = 8\phi 1'' = 40.54cm2$ $M_{n1} = 119.44Ton - m$ Extremo-2: $A_{s1} = 8\phi 1'' = 40.54cm2$ $M_{n1} = 119.44Ton - m$ Cortante ultima: $V_u = (M_{n1} + M_{n2})/l_n + w_u l_n/2$

$$V_u = \frac{119.44 + 119.44}{9.45} + \frac{10.08 \times 9.45}{2} = 72.95Ton$$
, en los extremos

<u>Resistencia al corte de concreto (Vc):</u> $b_w = 35.00 cm$, d = 83.78 cm

$$V_c = 0.53\sqrt{f'c} \times b_w \times d = 0.53\sqrt{210} \times 35 \times 83.78 = 22521.32 \, Kg = 22.52 Ton$$

Resistencia al corte de acero de refuerzo (Vs):

- $-V_s = \frac{V_u}{\phi} V_c = \frac{64.50}{0.85} 22.52 = 53.36Ton$
- Espaciamiento (s): s = 10.00cm
- Refuerzo mínimo a corte (Avmin): $A_{v \min} = 0.2\sqrt{f'_c} \frac{b_w s}{f_{yt}} = 0.2\sqrt{210} \frac{35 \times 10}{4200} = 0.24cm2$
- Área de refuerzo: $A_v = \frac{V_s s}{f_v d} = \frac{53360 \times 10}{4200 \times 83.78} = 1.52 cm2$

Utilizar Estribos: $\phi 3/8$: $A_v = 1.42cm^2$

g. <u>ESTIMACIÓN DE DAÑOS ARQUITECTÓNICO, ESTRUCTURAL Y DE</u> <u>CONTENIDO POR SISMO</u>

Se realizó la estimación de daño siguiendo el procedimiento y los criterios especificado en SISFC, tal y como fueron aplicados para el diseño anterior.

Se presenta a continuación el resumen de los valores de los parámetros de resiliencia utilizados para la estimación del daño en la estructura, así como las curvas de facilidad con la determinación del aporte de daño correspondiente a cada parámetro.

Tabla IV-77

Resumen de los valores de los parámetros resilientes para la estimación del daño del diseño con aislamiento FPT

RESUME	RESUMEN DE VALORES DE PARÁMETROS RESILIENTES PARA LA									
ESTIMACIÓN DEL DAÑO										
EJE X-X										
	DERIVA	DERIVA	DERIVA	DERIVA	ACEL.					
BLOQUE	ULT.	ULT.	RES.	RES.	ESPEC.					
	PROMEDIO	MÁXIMA	PROMEDIO	MÁXIMA	PISO					
ÚNICO	0.11%	0.16%	0.00%	0.00%	0.29g					
EJE Y-Y										
	DERIVA	DERIVA	DERIVA	DERIVA	ACEL.					
BLOQUE	ULT.	ULT.	RES.	RES.	ESPEC.					
	PROMEDIO	MÁXIMA	PROMEDIO	MÁXIMA	PISO					
ÚNICO	0.11%	0.16%	0.00%	0.00%	0.29g					
MÁXIMO	0.11%	0.16%	0.00%	0.00%	0.29g					

Fuente: Elaboración propia, Microsoft Excel, 2019

Con el aporte al daño de cada parámetro de resiliencia, se determinó la estimación global de daño del diseño con aisladores FPT del bloque aislado del Hospital de Pacasmayo:

Tabla IV-78

Porcentaje y balance de pérdidas en bloque con aislamiento FPT del Hospital de Pacasmayo

para las propiedades de límite superior y el sismo de diseño DE

	PC	ORCENTAJ	E DE PÉRDID	AS EN SUPE	RESTRUCTU	RA		-
	LÍM	ITE SUPER	IOR (Upper b	ound) Y SISM	O DE DISEÑ	O DE		
	(Asumienc	lo que los ais	sladores y la su	bestructura ma	ntienen su fund	cionalidad)		-
			EJE	<u>E X-X</u>				
	DERIVA	DERIVA DERIVA DERIVA		DERIVA	ACEL.		CLASIF REDi/	
VALOR	ULT.	ULT.	RES.	RES.	ESPEC.	TOTAL	EEMA P-58	
	PROMEDIO	MÁXIMA	PROMEDIO	MÁXIMA	PISO		<u>1 Emil_1 30</u>	
PROMEDIO 0.07% 0.03% 0.00% 0.00% 1.65% 1.75% PLATIN								
			<u>EJE</u>	<u>E Y-Y</u>				-
	DERIVA	DERIVA	DERIVA	DERIVA	ACEL.		CLASIE REDi/	
VALOR	ULT.	ULT.	RES.	RES.	ESPEC.	TOTAL	FEMA P-58	
	PROMEDIO	MÀXIMA	PROMEDIO	MÀXIMA	PISO		<u></u>	-
PROMEDIO	0.07%	0.03%	0.00%	0.00%	1.65%	1.75%	PLATINUM	-
MAXIMO	0.07%	0.03%	0.00%	0.00%	1.65%	1.75%	PLATINUM	-
D T D 'T V D '1'	BALA	NCE DE PE	RDIDAS - CL	ASIFICACIO	N REDi/FEM	<u>A P-58</u>		-
RED1 TM Resili	ence Objectives			<u>COSTO DE C</u>	CONSTRUCCI	ON Y EQUP	<u>AMIENTO</u>	-
				Valor referen	icial	VR =	70,194,259.26	Soles
	for Design Level Earthquake			Factor relacio	ón	FR =	0.96623	
	Tor Design	n Lever Laruiquake		Valor de ejec	ución	VE =	67,823,799.13	Soles
Platinum	Immadiata Ra Or	Downtime:	ted)	EVALUACIÓ	<u>)N DE PERDI</u>	DAS		_
	Function	and al Recovery < 72 hours		CLASIFICACION REDi/FEMA_P-58			PLATINUM	
	Dire	ct Financial Loss:		Porcentaje de	e pérdida total	L% =	1.75	%
	Oc	ccupant Safety:		Perdida finan	ciera directa	LF =	1,186,916.48	Soles
	Physical injury due to fa	ilure of building componer	ats unlikely	Tiempo de re	posición	$T_{RO} =$	72.00	Meses
Gold	Immediate Re-Oc	Downtime: cupancy (Green Tag expec	ted)					
	Functiona	and al Recovery < 1 month ¹						
	Direc Scenario	ct Financial Loss: • Expected Loss < 5%						
	Oc	cupant Safety:	te ere biler be					
	Physical injury due to fa	intre of building componer	IIS UNHKELY					
Silver	Re-Occupancy < 6	Downtime: 6 months (Yellow Tag poss	ible)					
	Functional	and 1 Recovery < 6 months ¹						
	Direc Scenario	ct Financial Loss: Expected Loss < 10%						
	Oc Physical injury may occur from fi fata	ccupant Safety: alling components (but not lities are unlikely	structural collapse),					

Fuente: Elaboración propia, Microsoft Excel, 2019

El costo de la construcción para el diseño con aislamiento FPT, fue obtenido al presupuestar todos los elementos que fueron modificados del diseño inicial tales como vigas, capiteles y pedestales, así como las placas que fueron incorporadas y las unidades de aislamiento reemplazadas. El presupuesto de los elementos modificados e incorporados son presentados en el Anexo-5 en suma del presupuesto de los elementos que no fueron modificados. Se mantuvo el mismo presupuesto para el equipamiento médico, y el mismo factor relación aplicado en el diseño anterior.

La Tabla IV-78 expresa que el bloque aislado del Hospital de Pacasmayo de haber diseñado con aislamiento FPT y los criterios del Estándar de aislamiento sísmico para la funcionalidad continua SISCF, según lo propuesto en la presente tesis; en el contexto del sismo de diseño DE y las propiedades de límite superior del sistema de aislamiento, tiene una clasificación **REDiTM Platinum**, con una pérdida aproximada del **1.75%** del valor de la construcción es decir un monto de **S/. 1,186,916.48**, y sus servicios quedarían postergados cerca de **setenta y dos (72) horas**.

4.1 DISCUSIÓN

Los resultados encontrados permiten aceptar parcialmente la primera hipótesis específica de la investigación, invalidándose el primer ítem, al encontrarse que el diseño basado en los criterios del Estándar de Funcionalidad Continua proporcionaría al Hospital de Pacasmayo un mejor desempeño en el Sismo Considerado, DE, que el obtenido del diseño basado en los criterios mínimos de las Normas E.030 y ASCE/SEI 7; y validándose el segundo ítem, que establece que el diseño basado en los criterios del Estándar de Funcionalidad Continua proporcionará al Hospital de Pacasmayo un mejor desempeño en el Sismo Considerado, MCE.

Así mismo, se valida la segunda hipótesis específica que corresponde al comportamiento sísmico de una estructura y su relación con los parámetros de evaluación del diseño por resiliencia: Derivas últimas, derivas residuales (deriva inelástica) y aceleraciones de piso. Encontrándose que es posible alcanzar valores bajos de estos parámetros para limitar el daño, al emplear sistemas de aislamiento con el periodo y el amortiguamiento adecuado para tal propósito. Esto guarda relación con lo encontrado en Zayas et al. (1989), Nagarajaiah y Sun (1996), Yucra (2018) y Moscoso (2019), donde se señala que los edificios apoyados sobre sistemas de aislamiento que desarrollen adecuadas características dinámicas durante una ocurrencia sísmica preponderante, presentarán bajas derivas y aceleraciones de piso, y por consiguiente daños leves y una condición de ocupación inmediata.

CAPITULO V CONCLUSIONES Y RECOMENDACIONES

5.1 <u>CONCLUSIONES</u>

- La edificación principal del Hospital de Pacasmayo, diseñado con aislamiento elastomérico del tipo LRB siguiendo los criterios mínimos de las normas E.030 y ASCE/SEI 7, específicamente ASCE/SEI 7-10, alcanza periodos fundamentales T_x=1.43seg y T_y= 1.49seg, y recibe una fuerza cortante máxima en su superestructura V_s=1420.39Ton, cuando la estructura es sometida al sismo de diseño DE y cuando el sistema de aislamiento adquiera mayor rigidez y alcance su límite superior. Todo ello indica que el sistema de aislamiento no es lo suficientemente flexible para reducir la fuerza sísmica, teniéndose una reducción del 38% del cortante total en base fija con R=1.
- El diseño del Hospital con aislamiento elastomérico LRB, utilizando los criterios mínimos de las normas E.030 y ASCE/SEI 7, presenta derivas ultimas máximas Δ_{máx-x}=0.0061 y Δ_{máx-y}=0.0048, y derivas promedio Δ_{prom-x}=0.0048 y Δ_{prom-y}=0.0039, cuando la estructura es sometida al sismo de diseño DE y cuando las propiedades del sistema de aislamiento alcancen su límite superior. Las derivas encontradas son menores que la deriva permisible en E.030, pero que afecta a los componentes arquitectónicos y las instalaciones, con un aporte al daño del 1.54% del costo total de reemplazo del hospital.
- El diseño con aislamiento elastomérico LRB, utilizando los criterios mínimos de las normas E.030 y ASCE/SEI 7, presenta derivas residuales Δr_{máx-x}=0.0008 y Δr_{máx-y}=0.0005, y derivas promedio Δr_{prom-x}=0.0003 y Δr_{prom-y}=0.0001, que implican que la estructura tendría una leve incursión inelástica cuando la estructura es sometida al sismo de diseño DE y cuando las propiedades del sistema de aislamiento alcancen su límite superior, desarrollándose pequeñas ductilidades del orden μ=1.50; con un aporte de daño de 0.22% del costo total.
- El diseño con aislamiento elastomérico LRB, utilizando los criterios mínimos de las normas E.030 y ASCE/SEI 7, presenta aceleraciones espectrales promedio de piso β=5% T=0.05-3.00seg, Sa_{prom-x}=0.46g y Sa_{prom-y}=0.47g, cuando la estructura es sometida al sismo de diseño DE y cuando las propiedades del sistema de aislamiento alcancen su límite superior. Estos valores de las aceleraciones encontradas afectan al equipamiento interior con un aporte al daño del 3.12% del costo total.
- La evaluación de los parámetros antes mencionados con las curvas de fragilidad de la figura C.3-2 (figura III-8) del Estándar de aislamiento sísmico para la funcionalidad continua, SISFC, y los objetivos de resiliencia de REDiTM; indica que el Hospital de

Pacasmayo diseñado con los criterios mínimos de las normas E.030 ASCE/SEI 7 tiene una clasificación **REDiTM Gold**, con una pérdida aproximada del **4.88%** del monto contratado de la construcción y adquisición de equipamiento médico **MC=S/.65,977,725.78**, es decir un monto de **S/. 3,219,713.02**, y postergación de sus servicios por cerca de **un (01) mes**, cuando la estructura es sometida al sismo de diseño DE y cuando las propiedades del sistema de aislamiento alcancen su límite superior. Cabe indicarse que el mayor aporte de daño es proporcionado por el valor de las aceleraciones promedio de piso, siendo su aporte el 65% de la pérdida total.

- El sistema de aislamiento LRB tiene un desplazamiento máximo D=0.31m cuando la estructura es sometida al máximo sismo considerado MCE y contando con que las propiedades del sistema alcanzan su límite inferior haciéndose más flexible, desplazamiento que no supera la deformación máxima por corte de las unidades de aislamiento, lo que permite establecer que el sistema de aislamiento mantendrá su funcionalidad en este nivel de sismo e implícitamente en el sismo de diseño DE.
- El bloque principal del Hospital de Pacasmayo, diseñado con aislamiento de triple péndulo de fricción FPT, siguiendo los criterios del Estándar de aislamiento para la funcionalidad continua concordantes con las Normas E.030 y ASCE/SEI 7, alcanza periodos fundamentales T_x=2.51seg y T_y= 2.67seg, y recibe una fuerza cortante máxima en su superestructura V_s=738.48Ton, cuando la estructura es sometida al sismo de diseño DE y cuando el sistema de aislamiento adquiera mayor rigidez y alcance su límite superior. Todo ello indica que el sistema de aislamiento es lo suficientemente flexible para reducir la fuerza sísmica, teniéndose una reducción del 20% del cortante total en base fija con R=1.
- El diseño del Hospital con aislamiento FPT, utilizando los criterios del Estándar de aislamiento para la funcionalidad continua concordantes con las Normas E.030 y ASCE/SEI 7, presenta derivas ultimas máximas Δ_{máx}=0.0016, y derivas promedio Δ_{prom}=0.0011 en ambas direcciones, cuando la estructura es sometida al sismo de diseño DE y cuando las propiedades del sistema de aislamiento alcancen su límite superior. Las derivas encontradas son relativamente pequeñas, y afectan a los componentes arquitectónicos y las instalaciones, con un aporte al daño del 0.10% del costo total.
- El diseño con aislamiento FPT, utilizando los criterios del Estándar de aislamiento para la funcionalidad continua concordantes con las Normas E.030 y ASCE/SEI 7, presenta derivas residuales y derivas promedio nulas en ambas direcciones, lo que implica que

la estructura permanece elástica cuando la estructura es sometida al sismo de diseño DE y cuando las propiedades del sistema de aislamiento alcancen su límite superior, debido a que se el diseño fue realizado con $R_I=1$.

- El diseño con aislamiento FPT, utilizando los criterios del Estándar de aislamiento para la funcionalidad continua concordantes con las Normas E.030 y ASCE/SEI 7, presenta aceleraciones espectrales promedio de piso β =5% T=0.05-3.00seg, Sa_{prom-x}=0.29g en ambas direcciones, cuando la estructura es sometida al sismo de diseño DE y cuando las propiedades del sistema de aislamiento alcancen su límite superior. Estos valores de las aceleraciones encontradas afectan al equipamiento interior con un aporte al daño del 1.65% del costo total.
- La evaluación de los parámetros antes mencionados con las curvas de fragilidad de la figura C.3-2 (figura III-8) del Estándar de aislamiento sísmico para la funcionalidad continua, SISFC, y los objetivos de resiliencia de REDiTM, para el diseño con aislamiento FPT; indica que el Hospital de Pacasmayo diseñado con los criterios del Estándar de aislamiento para la funcionalidad continua concordantes con las Normas E.030 y ASCE/SEI 7 tiene una clasificación **REDiTM Platinum**, con una pérdida aproximada del **1.75%** del costo total de inversión **VE=S/.67,823,799.13**, es decir un monto de **S/. 1,186,916.48**, y postergación de los servicios por cerca de **setenta y dos** (**72**) horas, cuando la estructura es sometida al sismo de diseño DE y cuando las propiedades del sistema de aislamiento alcancen su límite superior. Está clasificación, categoriza a la estructura en la funcionalidad continua.
- El sistema de aislamiento FPT propuesto para el bloque aislado del Hospital de Pacasmayo tiene un desplazamiento máximo D=0.41m cuando la estructura es sometida al máximo sismo considerado MCE y cuando el sistema de aislamiento alcanza sus propiedades de límite inferior, no llegando a superarse la capacidad de deslizamiento contra el colapso de los aisladores D_{cap} =0.51m, lo que permite establecer que este sistema de aislamiento mantendrá su funcionalidad en este nivel de sismo e implícitamente en el sismo de diseño DE.
- En el sismo de diseño DE y bajo el desfavorable contexto de que se las propiedades del sistema de aislamiento alcancen su límite superior, el Hospital de Pacasmayo que ha sido diseñado con los criterios mínimos de las Nomas E.030 y ASCE/SEI 7, presenta un balance económico total de S/. 69,197,438.80 aproximadamente, y perdería su funcionalidad por espacio de un (01) mes. Por otro lado, al ser diseñado con los criterios del Estándar de aislamiento para la funcionalidad continua en concordancia

con las Normas E.030 y ASCE/SEI 7, hubiese presentado un balance económico aproximadamente igual, del orden de **S/. 69,010,715.61**, pero su funcionalidad sería repuesta en un tiempo de **setenta y dos (72) horas**.

- La diferencia de la respuesta entre los dos tipos de diseño comparados, está dada por los criterios utilizados para ambos casos, ya que por intermedio de ellos se establece el periodo que alcanzará el sistema de aislamiento y su cercanía con el periodo fundamental de la estructura que protege, independiente del tipo de sistema de aislamiento utilizado sea LRB o FPT. Así para el diseño basado en los criterios mínimos de E.030 y ASCE/SEI 7 en el contexto de sismo de diseño DE y las propiedades de límite superior, el sistema de aislamiento presenta un periodo del orden T=1.50seg y tiene que armonizar con una superestructura dividida en módulos aporticados de periodo fundamental T=0.70seg; mientras que para su par con los criterios de SISCF en concordancia con E.030 y ASCE/SEI 7, el sistema de aislamiento presenta un periodo del orden T=2.50seg y armoniza con una superestructura de T=0.50seg que incluye placas rígidas. Comprobándose que una estructura asume una mayor fuerza sísmica cuando el periodo del sistema de aislamiento no es muy grande y es cercano a su periodo en base fija.
- La fuerza sísmica que ingresa a la estructura cuando es sometida al sismo DE, es aproximadamente el 80% de la fuerza correspondiente al sismo MCE, tanto para el diseño con aislamiento LRB como para el diseño con aisladores FPT; así mismo la respuesta de la estructura bajo DE, a nivel de entrepiso, es casi igual e incluso mayor a la respuesta bajo MCE. Es decir, la diferencia del comportamiento de la estructura sometida a los sismos DE y MCE y cuando las propiedades del sistema de aislamiento alcanzan su límite máximo, es mínima, pudiendo asumirse que en ambos niveles la estructura tendrá el mismo comportamiento.
- La evaluación de la estructura cuando las propiedades del sistema de aislamiento disminuyan hasta su límite inferior, haciendo que el sistema cuente con mayor flexibilidad; presenta valores más bajos que para las propiedades de límite superior, no pudiendo representar el contexto más desfavorable.
- La respuesta de la estructura y su desempeño alcanzado en el máximo sismo considerado MCE, contándose con las propiedades de límite superior, es bastante cercano a los valores correspondientes al sismo de diseño DE, asumiéndose para efectos de la presente tesis que se igualan.

5.2 <u>RECOMENDACIONES</u>

- Realizar el diseño de la estructura con un aislamiento LRB, que alcance el periodo obtenido al aplicar los criterios de Funcionalidad Continua indicados en el Estándar SISCF, con el fin de demostrar que el desempeño alcanzado por una estructura es independiente del tipo de sistema de aislamiento utilizado, dejando como último criterio de elección de los aisladores la mejor propuesta económica.
- Realizar el análisis de Tiempo-Historia no-lineal, para la evaluación de la estructura con aislamiento LRB en construcción, de esta manera se tendrá una respuesta no-lineal más exacta que la de los resultados encontrados con la metodología de ajuste a la respuesta no-lineal dinámica desde un análisis estático no-lineal (Pushover).
- Diseñar las estructuras aisladas siguiendo los criterios del Estándar SISCF, combinados con los criterios de peligro sísmico, categoría y regularidad de las edificaciones indicados en la normatividad peruana, y los criterios del capítulo 17 del documento ASCE/SEI 7 más reciente que no se encuentren directamente indicados en SISCF. Esto dará como resultado estructuras resilientes que podrán mantener su funcionalidad después del evento sísmico, o que puedan alcanzar el nivel de desempeño más adecuado según su uso.
- Implementar los criterios resilientes del Estándar SISCF y el sistema de clasificación REDiTM en las actualizaciones futuras de la norma E.030. Esto dará una guía más completa al proyectista del nivel de desempeño que debe alcanzar una estructura de cierta categoría, y de los parámetros que debe cumplir para alcanzarlo.
- Efectuar rigurosamente el plan de mantenimiento de los aisladores elastoméricos instalados en obra o realizar periódicamente el cambio de las unidades, a fin de que el sistema de aislamiento mantenga sus propiedades nominales de rigidez y resistencia, y no alcance las propiedades de límite superior que situarían al Hospital en un contexto desfavorable en el sismo de diseño DE o en el máximo sismo considerado MCE. Dado que las propiedades nominales de los aisladores LRB harían que la estructura alcance un periodo T=2.00seg; suficiente para reducir las pérdidas económicas al 2.5% y que el establecimiento reanude inmediatamente su funcionamiento.

REFERENCIAS BIBLIOGRÁFICAS

- Bozzo, L. y Barbat, A. (2000). *Diseño sismorresistente de edificios: Técnicas convencionales y avanzadas*. Barcelona, España: Editorial Reverte.
- Naeim, F. y Kelly J. (1999). *Design of Seismic Isolated Structures: From Theory to Practice*. New York, NY, USA: John Wiley & Sons.
- Aguiar, R., Almazán, J., Dechent, P. y Suarez V. (2016). Aisladores de base elastoméricos y FPS. Recuperado de http://repositorio.espe.edu.ec.
- Fenz, D. y Constantinou, M. (2008). Mechanical Behavior of Multi-Spherical Sliding Bearings (Technical Report MCEER-08-0007). Buffalo, NY, USA: MCEER.
- Earthquake Protection System, EPS. (2007). *Friction Pendulum[™] Seismic Isolation* [Brochure]. Vallejo, CA, USA: EPS.
- Cango, A. (2018). *Diseño y análisis de edificaciones con aisladores de base tipo FPT* (Trabajo de titulación, previo a la obtención del título de Ingeniero Civil). Universidad de Cuenca, Cuenca, Ecuador.
- Aguiar, R., Morales, E., Guaygua, B. y Rodríguez, M. (2017). Método simplificado para el análisis sísmico de estructuras con aisladores FPS de tercera generación. Métodos Numéricos para Cálculo y Diseño en Ingeniería, 33(1-2), 103-109.
- Gómez S. (2007). Análisis Sísmico Moderno: Ética Aplicada. México D.F., México: Trillas.
- Toledo, V. (2018). Curso Cálculo y Diseño de Edificios con Sistemas Avanzados de Protección Sísmica, Aisladores Sísmicos en la Base y Sistemas de Amortiguamiento y Disipadores Sísmico, según el ASCE/SEI 7 [CD-ROM]. Barcelona, España: CingCivil.
- Zayas, V. (octubre 2017). Salvando Vidas: Construyendo Hospitales que funcionen después de terremotos. En C. Oviedo (Presidencia), Actualidad y Futuro de la Protección Sísmica en el Perú. Simposio llevado a cabo en el I Simposio Internacional Ministerio de Vivienda, Construcción y Saneamiento, Lima, Perú.

- Zayas, V. (setiembre 2018). Estándar de Aislamiento Sísmico para la Funcionalidad Continua. En M. Soriano (Presidencia). Conferencia llevada a cabo en el II Congreso Internacional de Estructuras de Edificación COINESED, Lima, Perú.
- Muñoz, A. (setiembre 2018). Diseño de Edificaciones Hospitalarias con Aislamiento Sísmico empleando la Norma Peruana E.031. En M. Soriano (Presidencia). Conferencia llevada a cabo en el II Congreso Internacional de Estructuras de Edificación COINESED, Lima, Perú.
- Computers and Structures, Inc. (2017). *ETABS version 17: CSI Analysis Reference Manual*. Walnut Creek, CA, USA: CSI.
- Instituto Geofísico del Perú. (2017). Actualización del Escenario por Sismo, Tsunami y exposición en la Región Central del Perú. Recuperado de http://repositorio.igp.gob.pe.
- American Society of Civil Engineers (2017). Minimum Design Loads for Buildings and Other Structures: ASCE/SEI 7-16 (Modification ASCE/SEI 7-10). Reston (Virginia), USA: American Society of Civil Engineers.
- Zayas, V., Mahin, S., Constantinou, M. (2019). Seismic Isolation Standard for Continued Functionality (UCB/SEMM-2017/03). Berkeley, CA, USA: University of California, Berkeley.
- Applied Technology Council ATC (2012). Seismic Performance Assessment of Buildings Volume 1 – Methodology: FEMA P-58-1. Washington D.C., USA: FEMA.
- Almufti, I. y Willford, M. (2013). *Resilience-based Earthquake Design Initiative: REDi*[™] *Rating System (Version 1.0).* London, UKA: Arup
- Ministerio de Vivienda, Construcción y Saneamiento (2018). *Diseño Sismorresistente: NTE E.030.* Lima, Perú: El peruano.
- Ministerio de Vivienda, Construcción y Saneamiento (2009). *Concreto Armado: NTE E.060*. Lima, Perú: El Peruano.

- Nagarajaiah, S. y Sun X. (1996). Seismic performance of base isolated buildings in the 1994 Northridge earthquake (Paper N° 598. Eleventh World Conference on Earthquake Engineering). Amsterdam, Paises Bajos: Elsevier Science Ltd.
- Zayas, V., Low, S., Bozzo, L. y Mahin, S. (1989). Feasibility and Performance Studies on Improving the Earthquake Resistance of New and Existing Buildings Using the Friction Pendulum System (Report No. UCB/EERC-89/09). Richmond, CA, USA: EERC.
- Valerio, J. (2015). Análisis comparativo de un edificio fijo en la base vs un edificio aislado utilizando 4 tipos de aisladores elastoméricos (Tesis de master en ingeniería estructural y de la construcción). Escuela de Caminos, Barcelona, España.
- Yucra, M. (2018). Evaluación del desempeño sísmico de hospitales aislados en el Perú (Tesis para optar el grado académico de magister en ingeniería civil). PUCP, Lima, Perú.
- Moscoso, J. (2019). Evaluación del desempeño de edificaciones hospitalarias prefabricadas con aislamiento sísmico en el Perú (Tesis para optar el grado académico de magister en ingeniería civil). PUCP, Lima, Perú.
- Molinares, N. y Barbat, A. (1994). *Edificios con aislamiento de base no-lineal: Monografía CIMNE IS-5*. Barcelona, España: A.H. Barbat.
- Lucho, M. (2012). Aislamiento elastomérico para el control de estructuras ubicadas en la costa de guerrero (Tesis para obtener el grado de maestro en ingeniería estructural). Universidad Autónoma Metropolitana, México D.F., México.

Bazán, R. y Mali E. (1999). Diseño Sísmico de Edificios. México D.F., México: Limusa.

Chopra, A. (2014). Dinámica de estructuras. México D.F., México: Pearson Educación.

Morales, R. (2006). Diseño en Concreto Armado. Lima, Perú: Fondo Editorial ICG.