TESIS UNS

UNIVERSIDAD NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIÇÃO EN ENERGÍA UNIVERSOAD NACIONA

OFICINA CENTRAL DE INFORMACIÓN Y DOCUMENT
Nº do lingro 27249
Fecha de Ingreso:

"ESTUDIO ENERGÉTICO DE LOS COLECTORES SOLARES PARA EL CALENTAMIENTO DE AGUA EN EL SERVICIO HOTELERO, CHIMBOTE - PERÚ"

INFORME DE TESIS PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO EN ENERGÍA

TESISTAS:

Bach. VIVAR SAMANAMU, Even Junior

Bach. PRADO BOCANEGRA, Rony Adolfo

ASESOR:

Mg. ROJAS FLORES, Amancio Ramiro

NUEVO CHIMBOTE - PERÚ NOVIEMBRE 2014

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA EN ENERGÍA

HOJA DE CONFORMIDAD DEL ASESOR

El presente proyecto de Investigación de Tesis titulado; "Estudio Energético de los Colectores Solares para el Calentamiento de Agua en el servicio Hotelero, Chimbote-Perú", Elaborado por los Bachilleres; VIVAR SAMANAMU, Even Junior y PRADO BOCANEGRA, Rony Adolfo, para optar el título profesional de Ingeniero en Energía. Ha contado con el asesoramiento de quien deja constancia de su aprobación .Por tal motivo firmo el presente trabajo en calidad de Asesor.

ASESOR

Mg. ROJAS FLORES, Amancio Ramiro.

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA EN ENERGÍA

HOJA DE CONFORMIDAD DE JURADO EVALUADOR

El presente proyecto de Investigación de Tesis titulado; "Estudio Energético de los Colectores Solares para el Calentamiento de Agua en el servicio Hotelero, Chimbote-Perú", Elaborado por los Bachilleres; VIVAR SAMANAMU, Even Junior y PRADO BOCANEGRA, Rony Adolfo, para optar el título profesional de Ingeniero en Energía. Ha contado con la evaluación del presente jurado, quienes dejan constancia de su aprobación. Por tal motivo se firma el presente trabajo en calidad de Jurado Evaluador.

PRESIDENTE

M.Sc. CALDERON TORRES, Hugo.

SECRETARIO

Mg. GUEVARA CHINCHAYAN, Robert.

INTEGRANTE

Mg. ROJAS FLORES, Amancio.

INDICE

ÍNDICE	
a. Índice de Abreviaturas	vi
b. Índice de Imágenes	vii
DEDICATORIA	vii
AGRADECIEMIENTO	x
RESUMEN	xii
ABSTRACT	xii
INTRODUCCIÓN	01
1. GENERALIDADES Y OBJETIVOS DEL PROYECTO	04
1.1. GENERALIDADES	04
1.1.1. Antecedentes	04
1.1.2. Denominación del proyecto	06
1.1.3. Ubicación	06
1.1.4. Importancia y justificación del proyecto	07
1.2. OBJETIVOS DEL PROYECTO	07
1.2.1. Objetivo General	07
1.2.2. Objetivos Específicos	07
2. MARCO TEÓRICO	
2.1. COLECTOR SOLAR	09
2.2. TIPOS DE COLECTORES SOLARES	09
2.2.1. Colectores solares sin concentración	09
2.2.1.1. Colectores de placa plana	10
A. Elementos de un Colector Solar de Placa Plana	10
A.1 Cubierta	10
A.2 Placa Captadora	12
A.3 Parrilla o Circuito de Absorción	13
A.4 Aislante térmico	14
A.5 Carcasa	15

B. Funcionamiento	16
2.2.1.2. Colectores de Caucho	17
2.2.1.3. Colectores de Tubos de Vacío	17
2.2.1.4. Colectores de Aire	18
2.2.1.5. Colectores Cónicos	19
2.2.2. Colectores Solares de Concentración	19
2.2.2.1. Colectores cilíndricos	20
2.2.2.2. Colectores parabólicos	20
2.3. TIPOS BÁSICOS DE INSTALACIÓN	20
2.3.1. Según el Sistema de Transferencia de Calor	20
2.3.1.1. Instalación de Circuito Abierto	20
2.3.1.2. Instalación de Circuito Cerrado	21
2.3.2. Según el modo de circulación del fluido portador de calor	22
2.3.2.1. Circulación Natural	22
2.3.2.2. Circulación Forzada	23
2.3.3. Según la conexión y/o disposición de los colectores	24
2.3.3.1. Conexión en Serie	24
2.3.3.2. Conexión en Paralelo	25
2.3.3.3. Conexión Mixta	25
2.4. CONSIDERACIONES PARA INSTALAR UN COLECTOR	26
2.4.1. Angulo de orientación e inclinación	26
2.4.2. Identificación de las Sombras	27
2.4.3. Distancia entre Filas de Colectores	28
2.5. ELEMENTOS DE UNA INSTALACION SOLAR	28
2.5.1.Fluido Calo portador	28
2.5.2.Red de Tuberías	29
2.5.3. Acumuladores de ACS	29
2.5.4. Dimensionar la Capacidad del Acumulador	29
2.5.5.Otros Elementos de la Energía Solar Térmica	30
2.5.5.1. Bombas de impulsión	30
2.5.6.Depósito de Expansión	30

2.5.7. Sistema de Regulación	30
2.6. USOS Y APLICACIONES DE LA ENERGIA SOLAR TERMICA	30
2.6.1. Producción de ACS y ACI	30
2.6.2. Climatización de Piscinas	31
2.6.3.Calefacción	32
2.6.4. Producción de Aire Caliente	32
2.6.5.Refrigeración	32
2.7. MANTENIMIENTO BÁSICO DE LAS INSTALACIÓN	33
2.7.1. Acciones a Realizar por el Usuario de la Instalación	33
2.7.2. Acciones a Realizar por Personal Calificado	33
2.8. COSTO DE UNA INSTALACION SOLAR	34
2.9. VENTAJAS DE LA ENERGIA SOLAR TÉRMICA	35
2.10. INCOVENIENTES DE LA NERGIA SOLAR TÉRMICA	35
2.11. NATURALEZA DE LA INDUSTRIA HOTELERA	36
2.12. ANTECEDENTES HISTÓRICOS EN EL PERÚ	37
2.12.1 Primer Periodo	37
2.12.2 Segundo Periodo	37
2.12.3 Tercer Periodo	37
2.12.4 Cuarto Periodo	37
2.12.5 Quinto Periodo	38
2.12.6 Sexto Periodo	38
2.13 LAS EMPRESAS HOTELERAS	38
2.14 LAS EMPRESAS HOTELERAS EN LAS CIUDADES	39
3.0 Características de los Colectores Solares de Placa Plana	41
3.1Balance de Energía	41
4.0 INGENIERÍA DEL PROYECTO	43
4.1 CARACTERÍSTICAS DEL RECURSO SOLAR EN LA CIUDAD DE CHIMBOTE	43
4.2 CARACTERISTICAS DEL SERVICIO HOTELERO DOS ESTRELLAS	44
4.3 HALLANDO LA MUESTRA REPRESENTATIVA PARA CADA CATEGORI	
4.4 HALLAMOS LA DEMANDA DE AGUA CALIENTE	50
4.5 DETERMINACION DE LA DEMANDA ENERGETICA	57

4.6 AI	REA DE CAPTACION DEL COLECTOR	67
4.6.1	Pérdidas de calor	69
4.6.2	Calor útil	72
4.6.3	Calor disipado por el sistema de almacenamiento	73
4.6.4	Energía almacenada por el agua	74
4.7 CA	ÁLCULO DE LA MASA TOTAL DEL AGUA DE LAS CONEXIONES	S DEI
TA	ANQUE Y DE LA PLACA ABSORBEDORA	74
4.7.1	Cálculo de la masa total del agua	74
4.7.2	Cálculo de la masa de las conexiones	75
4.7.3	Cálculo de la masa del tanque	75
4.7.4	Cálculo de la masa de la placa absorbedora	76
5 ES	STUDIO ECONÓMICO DEL PROYECTO	77
5.1 PR	RESUPUESTO DEL PROYECTO	77
5.1.1	Vida Útil del Colector	77
5.1.2	Importes Parciales	77
5.1.2	.1 Precios de Algunas Empresas que Distribuyen C.S	77
5.1.2	.2 Costos Fijos si se Construye el Conjunto de Colectores	78
5.1.2	.3 Costos Variables	78
5. C	ONCLUSIONES	79
	a. Conclusiones	79
	b. Recomendaciones	80
6. B	IBLIOGRAFIA	81
7. A	NEXOS	83
a . 1	Indice de Cuadros	84
A	Anexo A: Promedio anual de la irradiación diaria en el Perú	85
A	Anexo B: Radiación solar en el Perú	89
A	Anexo C: Cantidad de agua caliente usada por diferentes sectores	90
A	anexo D: Encuesta realiza los huéspedes del hotel Mailly	91
A	Anexo E: Resultados de encuesta realizada a huéspedes del hotel Mailly	92
A	Anexo F: Establecimientos hoteleros en la ciudad de Chimbote 2013	93
A	Anexo G: Algunos datos técnicos de colectores	95

ÍNDICE DE ABREVIATURAS

- ACS: Agua caliente Sanitaria
- H_T : Radiación que llega a la superficie terrestre.
- A_c: Área del Colector.
- E: Energía calorífica requerida (MJ/día)
- M: Masa de agua a calentar en un día.
- C_e: Capacidad calorífica del agua (4.18 kJ/kg-°C)
- T_{H2O}: Temperatura inicial del agua (°C)
- T_{ACS}: Temperatura del agua caliente.
- ρ_t : Densidad del material del tanque (7898 kg/m3)
- D: Diámetro del tanque
- H: Altura del tanque
- e: Espesor del material
- τ: Transmitancia del vidrio (0.88)
- α: Absortancia de la placa (0.90)
- ρ_d : Reflectancia difusa.
- a: espesor de la placa de absorción

ÍNDICE DE IMÁGENES

- Figura N° 01: Colector de placa plana.
- Figura Nº 02: Elementos del colector solar.
- Figura Nº 03: Colector de Caucho.
- Figura Nº 04: Colector de tubos de vacío.
- > Figura N° 05: Colector de Aire.
- Figura N° 06: Colectores cilíndricos.
- Figura Nº 07: Colectores parabólicos.
- Figura Nº 08: Circuito abierto.
- Figura Nº 09: Circuito cerrado.
- > Figura N° 10: Circulación natural
- > Figura Nº 11: Circulación forzada
- Figura Nº 12: Conexión en serie
- Figura Nº 13: Conexión en paralelo
- > Figura Nº 14: Conexión mixta
- Figura Nº 15: Angulo de Inclinación
- Figura N° 16: Distancia entre colectores

DEDICATORIA

VIVAR SAMANAMU, Even Junior

A Dios; por iluminarme y estar siempre presente en mi vida.

A mis padres **María Isabel** y **Antonio**; y a mi abuela **Yolanda** por ser siempre las fuerzas que me impulsa para poder seguir adelante; el apoyo más grande en mi realización profesional, mi eterna gratitud. A mi hermana **Tarik** y mis sobrinas: **Camila** y **Nicol** por su sacrificio día a día, mi agradecimiento infinito.

A mis tíos: **Jorge, Pedro, Héctor** y **Enrique** por los buenos consejos que siempre me dieron, mi agradecimiento infinito.

DEDICATORIA

PRADO BOCANEGRA, Rony Adolfo

Gracias a esas personas importantes en mi vida, que siempre estuvieron listas para brindarme toda su ayuda, ahora me toca regresar un poquito de todo lo inmenso que me han otorgado. Con todo mi cariño está tesis se las dedico a ustedes:

A mis queridos;

Mama Mary, Papa Pedro, Papa Willy, Abuelita Malila, Tía Ivonne, Tío Julio, Tía Zoila.

AGRADECIMIENTOS

VIVAR SAMANAMU, Even Junior

Al Mg. Amancio Rojas Flores, Docente de la Escuela Académica Profesional de Ingeniería en Energía de la Universidad Nacional del Santa por sus lecciones brindadas en aula y por ser mis asesor de este Trabajo de Ingeniería.

A mis tíos que están siempre presentes: Jorge R., Héctor S., Pedro S., Miguel S., Enrique Z., y a toda mi familia por su apoyo incondicional.

A mis amigos: Héctor C., Cristian S., Julio V., Jean Pool R., Emilio G., Andrés U., Oscar G., Lionel L., David A., Frank O., y a todos mis compañeros que cursamos el décimo ciclo de E.A.P de Ingeniería en Energía de la UNIVERSIDAD NACIONAL DEL SANTA

AGRADECIMIENTOS

PRADO BOCANEGRA, Rony Adolfo

El presente trabajo de tesis primeramente me gustaría agradecerte a ti Dios por bendecirme para llegar hasta donde he llegado, porque hiciste realidad este sueño anhelado.

A la UNIVERSIDAD NACIONAL DEL SANTA por darme la oportunidad de estudiar y ser un profesional.

A mi asesor de tesis, **M.Sc Amancio Rojas Flores** por su esfuerzo y experiencia, su paciencia y su motivación ha logrado en mí que pueda terminar mis estudios con éxito.

A mis profesores durante toda mi carrera profesional porque todos han aportado con un granito de arena a mi formación, y en especial al **M.Sc Hugo Calderón Torres** y Mg. **Robert Guevara** por sus consejos, su enseñanza y más que todo por su amistad.

A mis padres y familia en general consejos y por sus lecciones.

También me gustaría agradecer a mis amigos porque siempre conté con ellos para todo Y a todas aquellas personas que de una u otra forma, colaboraron participaron en la realización de esta investigación, hago extensivo

RESUMEN

En la ciudad de Chimbote existen muchas zonas comerciales dentro de la cuales se ubican los centros recreativos, los hoteles y hostales, estos lugares tienen un alto consumo de energía eléctrica, siendo uno de los factores predominantes en el consumo eléctrico el uso de termas eléctricas para calentamiento de agua, siendo el colector solar de placa plana una alternativa económica y eficaz a este inconveniente.

Es por ello que el presente trabajo es acerca del análisis de un sistema de calentamiento de agua mediante colectores solares de placa plana, para cubrir la necesidad de agua caliente del servicio hotelero de categoría de dos estrellas; para la cual se calculará la demanda de agua caliente, se dimensionará el colector solar de placa plana y se realizará el cálculo de indicadores energéticos y económicos de los colectores de placa plana.

El presente trabajo es una investigación del tipo deductivo-inductivo, descriptivo, correlacional, y los mismos que estarán basados en las leyes física, termodinámica y otros.

De acuerdo al estudio realizado se obtuvo un consumo promedio de agua caliente anual de 46,171 litros en la hostales y un consumo de agua caliente de 19,248 litros en hoteles, para la cual en hostales necesita un promedio de 9 colectores solares con un tanque de almacenamiento de 1993 lt de un diámetro de 1.33m y una altura de 1.43m; y los hoteles necesita un promedio de 11 colectores con un tanque de almacenamiento, y realizando el estudio económico en hostales el costo fijo promedio por los 9 colectores solares que necesita es aproximadamente de US\$ 3 600 y hoteles por los 11 colectores solares un costo fijo aproximado de US\$ 4 400, a lo que agregaremos 600 US\$/año por costos de operación y mantenimiento.

Este proyecto demuestra que este tipo de sistema de calentamiento de agua es muy conveniente y rentable, aparte que no generan emisiones contaminantes y el recurso a utilizar es gratis y siempre estará presente en nuestras vidas.

ABSTRACT

In the city of Chimbote are many shopping areas within which recreation centers, hotels and hostels are located, these places have a high consumption of electricity, one of the predominant factors in electricity consumption usage for electrical spas water heating, with solar flat plate collector an economical and effective alternative to this problem.

That is why this paper is on the analysis of a system of water heating solar collectors flat plate to cover the hot water needs of hotel service fantastic location; for which the hot water demand is calculated, solar flat plate collector shall be dimensioned and calculation of energy and economic indicators of flat plate collectors is performed. The present work is an investigation of inductive-deductive, descriptive, correlational, and the same type will be based on physical laws, thermodynamics, and others.

According to the study made an average annual consumption of hot water 46.171 liters in hostels and hot water consumption of 19.248 liters in bhoteles was obtained for which in hostels needs an average of 9 solar collectors with storage tank 1993 l of a diameter of 1.33 m and a height of 1.43 m; Hotels and requires an average of 11 collectors with a storage tank, and performing economic study B the average fixed cost for 9 solar collectors need is about \$ 3 600 hotels by the 11 solar collectors a fixed cost US approximately \$ 4,400, to which add 600 US \$ / year in operating costs and maintenance.

This project demonstrates that this type of water heating system is very convenient and cost effective, plus it does not generate polluting emissions and resource use is free and will always be present in our lives.

INTRODUCCIÓN

El desarrollo tecnológico es un factor importante para el aprovechamiento de los recursos energéticos; que el hombre puede aprovechar para poder satisfacer sus necesidades más básicas.

El sol es una fuente inagotable de energía, ha sido siempre un aliado fiel del hombre desde la antigüedad con el que se contaba para vencer al frio. Y las viviendas se edificaban pensando en un aprovechamiento racional de los rayos solares, práctica que se fue perdiendo con el paso de los siglos.

Con la crisis del petróleo se cayó en la cuenta de que convenía ahorrar energía y el de buscar nuevas fuentes de energía que pudieran reemplazar o ser una alternativa de solución, y aparecieron varias alternativas entre las cuales se está propiciando la rigurosa actualidad de este tema y el retorno al aprovechamiento máximo de la radiación solar como una energía limpia.

Las causas son fácilmente comprensibles. Por una parte el actual nivel de vida al que las personas llevan, y al que nadie quiere renunciar, obliga a un creciente consumo de energía artificial. Una energía que tiene un precio en constante aumento, y una demanda que se incrementa con extraordinaria rapidez, de acuerdo con las crecientes necesidades de confort. El aumento del consumo tiende a encarecer el producto, al mismo tiempo que amenaza con agotar sus reservas.

Por otro lado, no solo se trata de un problema económico y de abastecimiento, sino paralelamente el abuso del aprovechamiento de las fuentes de energías actuales, principalmente el petróleo y el carbón y de uranio enriquecido son una fuente de destrucción para la naturaleza. Donde estas materias primas y sus derivados son aprovechados para convertirse en fuerzas mecánicas, térmicas, eléctricas, etc., generando diversos residuos contaminantes provocando alteraciones ambientales, siendo un gran factor en el calentamiento global. El ecosistemas se ha deteriorado y su degradación

Continúa a medida que pasa el tiempo, precisamente como consecuencia de tales sistemas de energía.

Como respuesta a esta situación se cae en la cuenta de que tenemos a nuestro alcance una nueva fuente de energía poco conocida y peor explotada que cuenta con millones de año de existencia, pero que en los últimos años ha tomado gran importancia gracias al avance tecnológico y ha sido estudiada en diferentes países para mejorar su aprovechamiento. El sol envía a nuestro planeta inagotables radiaciones que, aprovechadas técnicamente pueden suminístranos la energía que precisamos para mantener nuestro actual nivel de vida. Siendo una energía que no genera residuos y no es contaminante, y es gratuita.

A pesar de todo, es ya una realidad tangible la inmediata aplicación de dicha energía, aprovechando las radiaciones solares, en las construcciones aisladas, así como en las pequeñas aglomeraciones urbanas que disponen de una superficie de insolación capaz de captar la energía necesaria para el consumo de sus habitaciones. La a climatización de viviendas, calefacción, secado, etc., son aplicaciones de aprovechamiento, además tienen las siguientes ventajas: se logran un sustancial ahorro de combustible que se transforma en un ahorro económico, por lo que no se necesita un operario para su funcionamiento y como se menciono es una energía limpia que no genera contaminación.

Por esta razón en este informe de trabajo de suficiente profesional se aplica la tecnología solar para satisfacer la demanda de agua caliente, determinar el recurso solar, describe la tecnología de colectores solares térmicos de placa plana, diseñar el sistema de abastecimiento de ACS, seleccionar los equipos y materiales y calcular el ahorro del sistema solar de abastecimiento de agua caliente sanitaria comparativo frente a los sistemas convencionales.

CAPÍTULO I ASPECTOS REFERENTES AL ESTUDIO

1. GENERALIDADES Y OBJETIVOS DEL PROYECTO

1.1. GENERALIDADES

1.1.1. Antecedentes

El Perú es un país con un potencial solar significativo, debido a su proximidad con la línea ecuatorial y a la existencia de los microclimas típicos como se puede apreciar en los mapas de radiación solar, por lo cual se puede aprovechar para cubrir algunas necesidades tales como iluminación, calentamiento de agua, secado de productos, etc. Debido a la poca difusión a la población peruana se desconoce el gran potencial del uso de la energía solar.

Los termas solares se usan en el Perú desde siglos pasado teniendo como mercado potencial la sierra, la costa y la selva. Se usan principalmente en residencias particulares para aseo personal, albergues, hoteles, baños públicos, lavanderías, comedores, etc.

Las termas solares están constituidas por un juego de colectores. Los que se encargan de transformar la radiación solar en calor, un tanque de almacenamiento que conserva el agua calentada y el soporte que orienta todo el sistema de norte a sur y da un ángulo de instalación de acuerdo al lugar de funcionamiento. Por no tener partes móviles se puede garantizar un funcionamiento por lo menos entre 15 a 20 años.

Y debido al gran aprovechamiento de estos sistemas ya se han desarrollado algunos trabajos de investigación como es el caso de la Escuela académica Profesional de ingeniería en Energía de la Universidad nacional del Santa como:

1.1.1.1 "Aplicación de un sistema de agua caliente sanitaria para demanda múltiple" desarrollada por el Bach. Edwin Alexis López Vallejos, en

el año 2003; obteniendo excelentes resultados en el ahorro económico y reducción de emisiones de Co2, en este trabajo se plantea el estudio de factibilidad de sustituir los sistemas de calentamiento de agua tradicionales: calderas diésel, calentadores eléctricos y calderas de gas, usados en hoteles, hospitales, industrias, círculos infantiles, etc., por sistemas solares de calentamiento de agua, demostrándose la reducción de la contaminación del medio ambiente, su eficiencia, ahorro energético, económico y de mantenimiento.

- 1.1.1.2 "Abastecimiento de agua caliente usando colectores solares para un hotel rural en la ciudad de Chimbote" desarrollado por el Bach. Eduardo Jhonny Varas Arteaga, en el año 2006; obteniendo resultados positivos en la aplicación del sistema; cumpliendo con la demanda de agua caliente requerida y reduciendo los soles por kilowatt y los cotos de mantenimiento.
- 1.1.1.3 "MONTOYA P, PALO T.(2011)" Evaluación de un Calentador Solar de Agua de Acuerdo a Norma Técnica Peruana", Universidad San Agustín Arequipa. Concluyen que los valores típicos del factor de remoción para el tipo de colectores solares como el que evalúan van entre 0.82 a 0.85 (Chasseriamx ,J.M,1990); para el caso del colector evaluado se obtuvieron un valor de 0.722; esto es debido a un mal contacto térmico entre placa absorvedora y los tubos de la rejilla.
- 1.1.1.4 "Evaluación energética de un sistema solar para calentamiento de agua en un establecimiento hotelero en Nuevo Chimbote" desarrollado por los Bach. Guzmán Coral Andy Enrique y Sánchez Pérez César, en el año 2012, cuya finalidad es desarrollar configuraciones de sistemas fotovoltaicos como generador de electricidad para uso múltiple; dicho sistema fotovoltaico básicamente consta de un módulo solar monocristalino o

policristalino de 36 celdas solares en serie, de un controlador de carga un inversor DC/AC y un Acumulador de energía.

- 1.1.1.5 "Diseño e Implementación de un Sistema de Control Difuso de Agua Temperada de Uso Doméstico", desarrollado por Jesus Martin Vilca Contreras y Carolina del Rosario Vidarte Chicchón, concluyeron que en uso de un controlador difuso, con resistencia eléctrica logro establecer el valor de la variable temperatura en un máximo de 12 segundos, con lo cual disminuyo el consumo de energía eléctrica en un 50%.
- 1.1.1.6 "Diseño y Prueba de un Calentador Solar de Agua de Bajo Costo", desarrollado por los bachilleres Yoali Berenice Gastelum Michael, Vicente Borja Ramírez. Concluyeron que el proyecto forjad con materiales de bajo costo logra un ahorro energético de 13% frente al consumo de energía eléctrica promedio consumido.

1.1.2. Denominación del proyecto

"Colectores solares de placa plana para el abastecimiento de agua caliente sanitaria para el servicio hotelero de la ciudad de Chimbote"

1.1.3. Ubicación

El hotel de estudio Meylli se encuentra en la ciudad de Chimbote se encuentra a de latitud sur y longitud oeste a 234 msnm, en el Jr. Manuel Villavicencio, en la provincia del Santa departamento de Ancash.

Cuenta con un área de 264 m², 12 metros de frontera y 22 metros de fondo, y está en la categoría de hotel de dos estrellas. Contiene 11 cuartos por piso y consta de 3 pisos, donde en el primer piso se encuentra la resección y la cochera en el segundo, tercero las habitaciones y en la azotea se encuentra la lavandería.

1.1.4. Importancia y justificación del proyecto

En la ciudad de Chimbote existen muchas zonas comerciales dentro de la cuales se ubican los centros recreativos, los hoteles y hostales, estos lugares tienen un alto consumo de energía eléctrica, siendo uno de los factores predominantes en el consumo eléctrico el uso de termas eléctricas para calentamiento de agua.

El colector solar de placa plana es una alternativa económica y eficaz a este inconveniente, al obtener resultados favorables en la experiencia, existe la seguridad de aportar con un sistema de calentamiento de agua que elimina los altos costos por consumo de energía eléctrica, en los diferentes lugares que requieren el servicio de calentamiento de agua.

Al mismo tiempo se busca incentivar el uso de energías renovables y que no causen impacto en el medio ambiente en la ciudad de Chimbote.

1.2. OBJETIVOS DEL PROYECTO

1.2.1. Objetivo General

Realizar el análisis de un sistema de calentamiento de agua mediante colectores solares de placa plana, para cubrir la necesidad de agua caliente del servicio hotelero de categoría de dos estrellas.

1.2.2. Objetivos Específicos

- Caracterizar el recurso solar de la ciudad de Chimbote.
- Calcular la demanda de agua caliente para el requerimiento de agua sanitaria en el hotel de estudio.
- Dimensionamiento del colector solar de placa plana.
- > Cálculo de indicadores energéticos y económicos de los colectores de placa plana.

CAPÍTULO II MARCO TEÓRICO

2.1 COLECTOR SOLAR

Un colector solar es un dispositivo capaz de captar la energía que aporta la radiación solar, utilizándola para calentar un determinado fluido (generalmente agua) a una cierta temperatura. En función de la misma, los colectores pueden ser de alta, media o baja temperatura, siendo estos últimos los que se han adquirido un mayor desarrollo comercial.

El colector solar es el elemento fundamental de todo sistema y es el encargado de transformar toda la energía solar térmica, la cual puede ser usada directamente como en el caso del calentamiento de agua o para producir vapor en una planta de generación eléctrica. La aplicación más generalizada de la energía solar térmica es complementar la producción de agua caliente sanitaria, pudiendo llegar a cubrir hasta un 60% de las necesidades de su empresa.

2.2 TIPOS DE COLECTORES SOLARES

Los colectores solares térmicos son dispositivos capaces de captar la radiación solar y trasmitírsela a un fluido, para su posterior aprovechamiento; dividiéndose en dos grandes grupos:

- > Colectores solares sin concentración.
- Colectores solares de concentración.

2.2.1 Colectores solares sin concentración

Los cuales no superan los 100°C grados centígrados aproximadamente, por lo que son usados en aplicaciones de la energía solar térmica de baja temperatura; estos colectores se caracterizan por no poseer métodos de concentración, por lo que la relación de la superficie del colector y la superficie de absorción es prácticamente la unidad, dentro de los cuales tenemos:

- Colectores de placa plana
- Colectores de placa caucho
- Colectores de tubos vacío
- Colectores de aire
- Colectores cónicos o esféricos.

2.2.1.1 Colectores de Placa Plana

Los colectores de placa plana son en la actualidad los más extendidos comercialmente. Su temperatura de trabajo se sitúa en un rango de 50°C – 70°C, por lo que están indicados para producir agua caliente para muy diversas aplicaciones: ACS, calefacción por suelo radiante, precalentamiento del fluido de entrada de una caldera, etc.

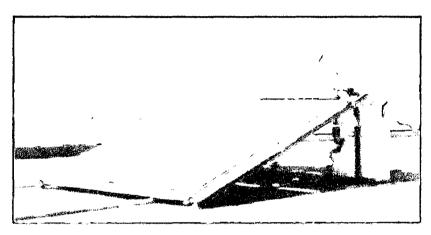


Figura N° 01: Colector de placa plana Fuente: Perú solar sac.

A. Elementos de un Colector de Placa Plana

A.1. Cubierta

La cobertura es vidrio templado y tiene la propiedad de reducir las pérdidas de calor por convección y radiación para el ambiente, y es el encargado de producir el efecto invernadero. El efecto invernadero logrado por la cubierta consiste en que la radiación que ha atravesado la cubierta transparente con una longitud de onda para la cual esta es opaca, con lo que se consigue retener la radiación en el interior.

Este efecto nos define las características de la cubierta:

Alto coeficiente de transmisión de la radiación de solar en la banda de 0.3 a 3 μm; el cual debe conservarse a lo largo de los años

- Bajo coeficiente de transmisión para las ondas largas, superiores a 3 mm.
- Bajo coeficiente de conductividad térmica, que dificulte el paso de calor desde la superficie interior hacia la exterior, minimizando así las pérdidas. Debido a esto la cara interior de la cubierta estará más caliente que la exterior, y por tanto se dilatara más, existiendo riesgo de rotura o deformación, por ende el coeficiente de dilatación será pequeño.
- Alto coeficiente de reflexión para la longitud de onda de la radiación emitida por la placa captadora, a fin de que este retorne a la placa. Se puede usar una doble cubierta o aumentar el espesor de la cubierta para tratar de minimizar las perdidas por convección, pero estas soluciones aumentan las perdidas por absorción del flujo solar incidente, además de encarecer el panel.
- En general se puede decir que la doble cubierta es tanto más interesante cuando más baja sea la temperatura exterior y más fuerte sea el viento.

Los principales materiales utilizados son:

- Vidrio: son transparentes a la radiación de onda inferior a 3μm y opacos a las radiaciones superiores. Existen Numerosas variedades de vidrio que se distinguen por su composición química, sus características mecánicas y ópticas, etc. Se debe elegir los vidrios térmicos ya que se mejoran sus propiedades mecánicas sin alterar a las ópticas
- Materiales plásticos: se presentan bajo la forma de películas flexibles de algunas décimas de milímetros de

espesor, o bajo forma de placa rígida de algunos milímetros. Sus características principales son: baja densidad, mala conductividad térmica, coeficiente de dilatación lineal importante, y sufren deterioró físico e inestabilidad química bajo acción de los elementos exteriores.

A.2. Placa Captadora

La pieza principal de un colector plano es la placa absorvedora. Esta consiste en una chapa metálica con buenas características de absorción de calor con revestimiento negro o con revestimiento selectivo y tupos de transferencia de calor ligados al colector. La función de esta placa es absorber la radiación solar y transferir el calor al fluido que está circulando por los tubos. La optimización de la placa absorbedora es posible a través del tratamiento de la placa metálica, con un revestimiento de pintura negra común o selectiva. Un revestimiento selectivo es formado por una estructura con diferentes camadas que mejoran la calidad de la placa metálica. Generalmente los revestimientos selectivos más utilizados de tratamiento son electroquímico, como es el caso del cromo-negro o níquel-negro.

Existen diferentes modelos, siendo los más usuales:

- Dos placas metálicas separadas uno milímetros entre las cuales circula el fluido Caloportador.
- Placa metálica la cual soldados o embutidos los tubos por los que circula el fluido Caloportador. En lugar de una placa metálica se puede dotar de unas aletas de aluminio a los tubos de cobre.

Características del absorbedor:

- Tratamiento de la superficie: las pinturas son más económicas que los tratamientos selectivos pero se estropean antes.
- Perdidas de carga: si la instalación va a funcionar por medio de termosifón estas no deben ser superiores a 3mm de columna de agua 'por metro cuadrado de colector, para que la circulación sea adecuada y no se produzcan grandes saltos térmicos.
- Corrosión térmica: no se debe mezclar el cobre y el cero, para evitar la corrosión de este último.
- Homogeneidad de la circulación del fluido calo portador por la placa, con el fin de que el fluido tenga reparto de temperas equilibrado. Esto es vital para los paneles con doble placa, en los que el diseño del circuito del fluido es de suma importancia para el rendimiento del panel.
- Entradas y salidas del fluido en la placa. Procurar que las pérdidas de cargas en estos lugares sean bajas y que las soldaduras no estén forzadas para impedir posibles fugas.
- Resistencia a la presión. Debe ser capaz de soportar la presión de la red.

A.3. Parrilla o Circuito de Absorción

Es la tubería o circuito que absorbe por transmisión de la energía captadora por la superficie de captación. Por esta

tubería o circuito recircula el fluido caloportador del sistema, encargado de absorber esta energía y transformarla hasta la acumulación o consumo.

Estas parrillas se pueden presentar de diferentes formas:

- Tipo parrilla. Consiste en una serie de tuberías en paralelo unida en los extremos por dos tuberías. Estas pueden ser abiertas por los dos extremos o con una sola salida. Son los más fabricados. Permiten conexiones en serie, paralelo y serie-paralelo. Son sólidos y resistentes, adaptándose a todo tipo de instalaciones.
- ➤ Tipo serpentín: lo forma una sola tubería que hace un recorrido a lo ancho y largo de la superficie de captación. No permite conexiones en serie a no ser diseños especiales. Requieren caudales muy controlados. Son una alternativa a los tipos de parrilla.
- Tipo roll bond: son aquellos en los que la superficie de captación y el circuito son un mismo componente. Se forma por la unión de dos superficies entre las cuales se crean unas canales para la circulación del fluido caloportador. Tienen poca inercia térmica, son ligeros, resisten más altas presiones de trabajo, su mantenimiento es complicado, requieren ser instalados en sistemas cerrados. Su proceso de fabricación es económico.

A.4. Aislamiento térmico

Las pérdidas de calor en las partes posteriores y laterales de una placa absorbente pueden ser reducidas por una

camada de material aislante. Este material debe tener una conductividad térmica baja, mantener su forma y soportar temperaturas y cargas encontradas durante la operación del colector. La mayoría de los fabricantes utilizan espuma de poliuretano, otros fabricantes utilizan fibra de vidrio. El poliuretano puede ser liquido o en planchas, con una espesura de 25mm.

Cualquier que sea el material escogido debe tener un coeficiente de dilatación compatible con el de los demás componentes del panel solar.

A.5. Carcasa

La función de la caja colectora es la de contener todo el conjunto. Como los esfuerzos mecánicos son reducidos, no es necesario grande resistencia. Generalmente la caja es colocada sobre un soporte de perfiles metálicos fijados en el suelo o en techo de las residencias.

Debe cumplir los siguientes requisitos:

Aireación del interior del colector para evitar la condensación del agua en el interior del colector. Se realiza por medio de dos técnicas:

- Vacío en el interior del colector cuando este esta frio, para que la carcasa no esté sometida a una presión muy alta cuando el aire en su interior se caliente.
 - ➤ Practicar unos orificios en la carcasa para permitir la aireación del colector así como la evacuación de la condensación. Los orificios se localizan en la parte posterior para evitar la entrada del agua de lluvia y la pérdida de aire caliente del interior del colector.
 - ➤ Evitar toda geometría que permita la acumulación de agua hielo o nieve en el exterior del colector.

> Facilitar el desmontaje de la cubierta para poder tener fácil acceso a la placa captadora

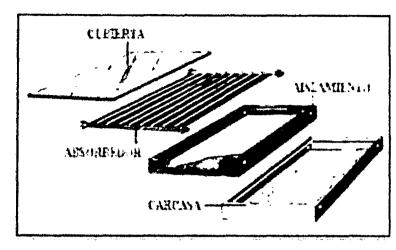


Figura Nº 02: Elementos del colector solar Fuente: Solary España

B. Funcionamiento

Los colectores solares planos funcionan aprovechando el efecto invernadero el mismo principio que se puede experimentar al entrar en un coche aparcado al sol en verano. El vidrio actúa como filtro para ciertas longitudes de onda de la luz solar: deja pasar fundamentalmente la luz visible, y es menos transparente a las ondas infrarrojas de menor energía. El sol incide sobre el vidrio del colector, que siendo transparente a la longitud de onda de la radiación visible, deja pasar la mayor parte de la energía. Ésta calienta entonces la placa colectora que, a su vez, se convierte en emisora de radiación en onda larga o (infrarrojos). Pero como el vidrio es opaco para esas longitudes de onda, a pesar de las pérdidas por transmisión, (el vidrio es un mal aislante térmico), el recinto de la caja se calienta por encima de la temperatura exterior. Al paso por la caja, el fluido calo-portador que circula por los conductos se calienta, y transporta esa energía térmica a donde se desee.

2.2.1.2 Colectores de Caucho

La principal aplicación de estos colectores es la climatización de piscinas abiertas y la extensión de la temporada de uso de la misma; van dotados de una doble cubierta envolvente, herméticamente sellada, aislada del interior y del exterior y en la cual se ha hecho el vacío. Su finalidad es reducir las pérdidas por convección. Son más caros, además de perder el efecto del vacío con el paso de tiempo. El sistema de climatización permite una temperatura dentro de la piscina entre 27°C a 32° C regulable.

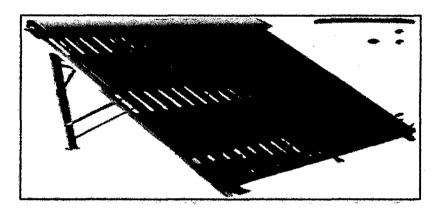


Figura Nº 03: Colector de Caucho Fuente: Energías Renovables SA.

2.2.1.3 Colectores de vació

Es un tipo de colector solar formado por colectores lineales alojados en tubos de vidrio al vacío y pueden alcanzarse temperaturas en el rango de 77 °C a 177 °C. Debido a su reducido coeficiente de pérdidas son especialmente aptos para el aprovechamiento de la radiación solar difusa, manteniendo un rendimiento eficaz, no sólo a mediodía o en días soleados, sino también cuando el sol está bajo o el tiempo es frío y parcialmente nuboso. Con este sistema las perdidas por convección y conducción son pequeñas, no produciéndose esta perjudicial pérdida de energía. Todo esto, proporciona una eficiencia térmica superior entorno al 45%.

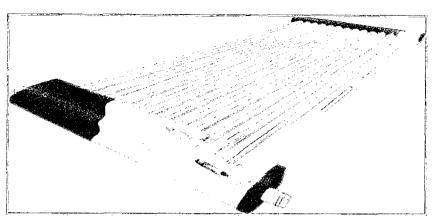


Figura Nº 04: Colector de tubos de vacío Fuente: Energías Renovables SA.

2.2.1.4 Colectores de Aire

Son colectores de tipo plano, cuya principal característica es tener como fluido calo-portador el aire. No tienen una temperatura máxima limite (los procesos convectivos tienen una menor influencia en el aire) y trabajan mejor en condiciones de circulación normal, pero en contraposición poseen una baja capacidad calorífica y el proceso de transferencia de calor entre placa y fluido es malo. Su principal aplicación es la calefacción.

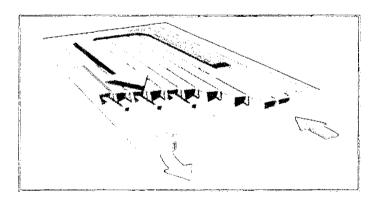


Figura N° 05: Colector de Aire Fuente: Energías Renovables SA.

2.2.1.5 Colectores Cónicos

Su principal característica es que constituyen simultáneamente la unidad de captación y de almacenamiento. Su superficie de captación es cónica o esférica con una cubierta de vidrio de la misma geométrica. Con esta geométrica se consigue que la

superficie iluminada a lo largo del día, en ausencia de sombra, sea constante. Su instalación es sencilla, pero presenta problemas de estratificación del agua y la superficie útil de captación es pequeña. Su aplicación principal es la producción sanitaria de agua caliente.

2.2.2 Colectores Solares de Concentración

Usan sistemas especiales con la finalidad de aumentar la intensidad de la radiación sobre la superficie absorbente y de este modo conseguir altas temperaturas en el fluido calo-portador; estos se aplican en la energía solar térmica de media (100°C -400°C) y alta temperatura (400°C>). La principal complicación que presentan es la necesidad de un sistema de seguimiento para conseguir que el colector este permanentemente orientado en dirección al Sol.

- > Colectores cilíndricos
- Colectores parabólicos

2.2.2.1 Colectores cilíndricos

Su superficie colectora es la mitad de un cilindro. Su principal aplicación es la producción de vapor para las centrales térmicas.

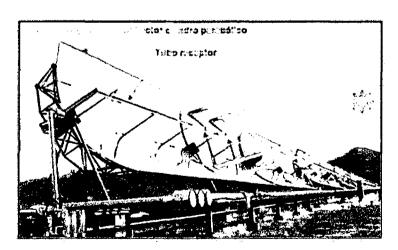


Figura N° 06: Colectores cilíndricos Fuente: Soluciones Energy Power.

2.2.2.2 Colectores Parabólicos

Su superficie reflectora representa una geometría de un paraboloide de revolución. Su principal aplicación es la producción de vapor en una central térmica.

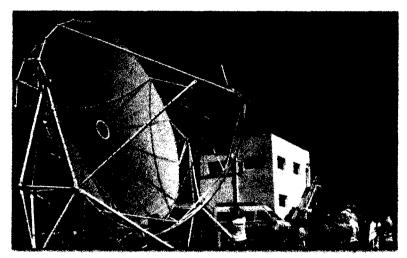


Figura N° 07: Colectores parabólicos Fuente: Soluciones Energy Power.

2.3 TIPOS BASICOS DE INSTALACIÓN

Según su instalación se diferencia tres tipos:

- Según el sistema de transferencia de calor.
- Según el modo de circulación del fluido portador de calor.
- Según la conexión y/o disposición de los colectores.

2.3.1 Según el Sistema de Transferencia de Calor

Donde podemos identificar dos sistemas de instalación.

- Instalación de circuito abierto
- > Instalación de circuito cerrado

2.3.1.1 Instalación de Circuito Abierto

Donde el agua de consumo pasa directamente por los colectores solares. Este sistema reduce costos y es más eficiente (energéticamente hablando), pero presenta problemas en zonas con temperaturas por debajo del punto de congelación del agua, así como en zonas con alta concentración de sales que acaban obstruyendo los paneles. Los inconvenientes son la dificultad para emplear materiales que no

contaminen el agua, el riesgo de vaporización y congelación, el funcionamiento a la presión de la red con peligro en los colectores, el no poder emplear anticongelante, el mayor riesgo de corrosión (aire en el agua), las posibles incrustaciones calcáreas. También están sometidos a más restricciones legales.

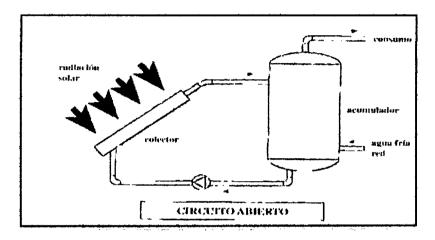


Figura N° 08: Circuito abierto Fuente: Soluciones Energy Power.

2.3.1.2 Instalación de Circuito Cerrado

Donde el agua de consumo no pasa directamente por los colectores solares. Este sistema es el más común. Se utiliza un líquido anticongelante que recorre los tubos dentro de los colectores y se calienta por la acción de la radiación solar. El líquido caliente atraviesa el circuito hidráulico primario hasta llegar al acumulador, en el interior del cual se produce un intercambio de calor entre el circuito primario y el secundario, es decir, entre el líquido anticongelante calentado en las placas solares y el agua que vamos a usar nosotros. En caso de que el agua contenida en el acumulador no alcance la temperatura de uso deseada, entra en funcionamiento automáticamente el sistema auxiliar, -caldera de gas o resistencia eléctrica-, que se encarga de generar el calor complementario. Todo el proceso es automático y vigilado por el sistema de control.

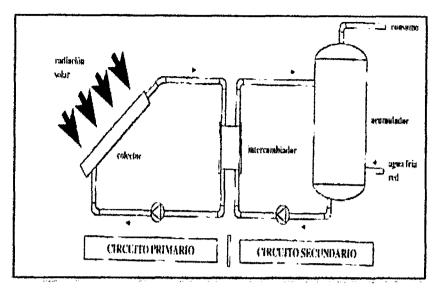


Figura N° 09: Circuito cerrado Fuente: Soluciones Energy Power.

2.3.2 Según el Modo de Circulación del Fluido Portador de Calor

Donde podemos identificar dos sistemas de circulación.

- Circulación natural
- Circulación forzada

2.3.2.1 Circulación Natural

En este caso el depósito debe colocarse en un nivel superior a los colectores para permitir la convección por diferencia de temperatura. Para facilitar el movimiento del agua tiene que haber una diferencia suficiente de temperatura entre el colector y el acumulador y una altura entre el acumulador y los colectores mayor de 30 centímetros. Para evitar el riesgo de temperaturas elevadas en el depósito este se diseña con volúmenes mayores de 70 l/m2 de colector. Los factores positivos de este sistema son de carácter económico y de simplicidad de instalación, porque los equipos termosifónicos no consumen energía eléctrica, ya que funcionan sin bomba. Esta característica ayuda a disminuir el consumo energético de la vivienda y convierte a los equipos en autónomos que siguen funcionando aunque el sistema eléctrico falle. El hecho de ser autónomo hace muy atractiva su aplicación

en aquellos lugares remotos donde no llega la red eléctrica. Los factores negativos son de carácter estético y de resistencia del tejado, porque el depósito tiene que estar encima de los paneles. La circulación natural reduce también un poco el rendimiento del sistema solar.

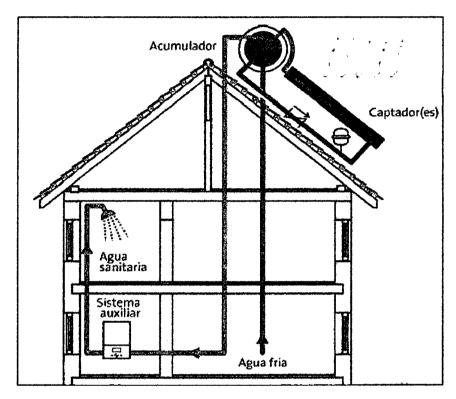


Figura N° 10: Circulación natural Fuente: Tecnology Sun SAC.

2.3.2.2 Circulación Forzada

Esta instalación evita los defectos propios de los sistemas de circulación natural. Como inconvenientes se encuentran las necesidades de energía eléctrica y de regulación y control de la circulación. Cuando el intercambiador está a una altura inferior a los colectores, el electro circulador es imprescindible. Hay que incluir además una válvula anti retorno para evitar el posible efecto termosifónico nocturno.

Los factores positivos de este sistema son de carácter estético y de rendimiento del sistema. Es posible colocar el acumulador en el interior de la vivienda, y entonces el tejado no tiene que soportar el peso del acumulador (que puede ser de hasta 300 - 500 Kg.). La

circulación forzada ofrece un rendimiento superior al de un sistema de circulación natural, porque el fluido anticongelante circula de manera más rápida que el agua. Los factores negativos son de carácter económico y de gestión del sistema: la inversión inicial es más alta y también el sistema utiliza energía para el funcionamiento de la bomba. Sin embargo, este uso de energía va a ser compensado por una mayor producción de agua caliente en comparación con el sistema precedente.

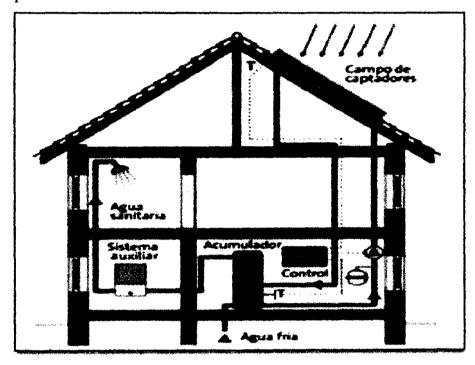


Figura N° 11: Circulación forzada Fuente: Tecnology Sun SAC.

2.3.3 Según la Conexión y/o Disposición de los Colectores

- > Conexión en serie
- > Conexión en paralelo
- Conexión mixta.

2.3.3.1 Conexión en Serie

En la conexión en serie el agua atraviesa todos los colectores para realizar un ciclo, adquiriendo mayor temperatura. Los inconvenientes que se presentan son que el agua debe vencer una resistencia mayor para atravesar los circuitos. Además en cada colector la temperatura del agua iría en aumento hasta llegar al

último colector donde se producirían muchas pérdidas de calor por lo cual hay que evitar colocar muchos colectores den serie ya que reduce su eficiencia.

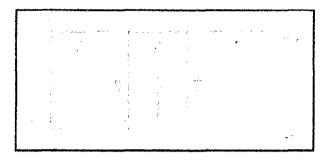


Figura N° 12: Conexión en serie Fuente: Tecnology Sun SAC.

2.3.3.2 Conexión en Paralelo

La conexión en paralelo es mucho más efectiva puesto que la resistencia al paso del agua es mucho menor. Incluso si un colector dejara de funcionar los demás no se verían afectados; los paneles trabajan con alto rendimiento, si bien la temperatura de salida de los mismos es moderada, generalmente, este sistema es el utilizado para el calentamiento del agua caliente sanitaria, calefacción por suelo radiante y calentamiento de piscinas.

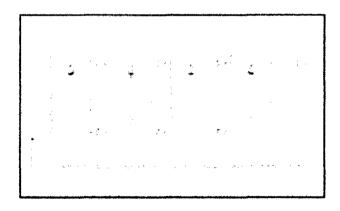


Figura N° 13: Conexión en paralelo Fuente: Tecnology Sun SAC.

2.3.3.3 Conexión Mixta

Es la utilización de la circulación en serie y circulación en paralelo para poder aprovechar los beneficios que brinda cada

sistema para poder aprovechar la temperatura de la circulación en serie y el alto rendimiento de los colectores en paralelo.

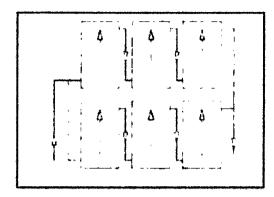


Figura Nº 14: Conexión mixta Fuente: Tecnology Sun SAC.

2.4 CONSIDERACIONES PARA INSTALAR UN COLECTOR

El montaje de los colectores es la operación más importante y debe caracterizarse por la rapidez y la seguridad en el anclaje y sujeción. El tipo de anclaje de un colector depende de su ubicación (terraza), y tiene que ser capaz de soportar las fuerzas que actúan sobre el debido a la presión del viento a que se encuentra sometido. Se debe buscar también la integración arquitectónica de los colectores, buscando la continuidad u uniformidad del edifico y su entorno, con objeto de minimizar el impacto visual y conseguir un diseño estético.

2.4.1 Ángulos de Orientación e Inclinación

El posicionamiento de los colectores está definido por el ángulo de acimutal, el cual describe la desviación del plano del colector con respecto a la dirección sur.

En la siguiente tabla se muestran las inclinaciones orientativas que se suelen dar a los colectoras, según la época del año y el uso a que se destinan. No obstante hay que señalar que variaciones de $\pm 10^{\circ}$ con respecto al ángulo de inclinación indicado no afectan sensiblemente al rendimiento del equipo. Tampoco se verá afectada la energía térmica útil aportada por el colector.

Periodo de utilización	Inclinación
Anual, con consumó constante	β°

Preferentemente en invierno	(β+10)°
Preferentemente en verano	(β-10)°

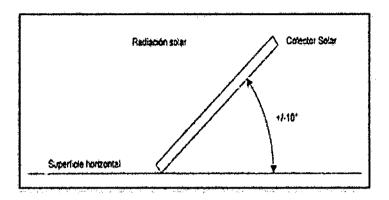


Figura N° 15: Angulo de Inclinación Fuente: Odese Solar company.

Generalmente el ángulo acimutal óptimo para una instalación de colectores solares es de 0° (plano de los colectores orientados hacia el Sur), si bien desviaciones de ±20° con respecto a la orientación Sur no afectan mucho. Así una orientación hacia el Este adelanta el periodo (una hora cada 15°), mientras que una orientación hacia el Oeste retarda dicho periodo (una hora cada 15°), mejorando ligeramente el rendimiento por funcionar más horas con temperatura ambiente más alta.

2.4.2 Identificación de las Sombras

Si tenemos más del 20% de la superficie del colector con sombras, nuestro colector estará inoperativo, por ello es aconsejable que el día más desfavorable, en cuanto a oportunidad se refiere, no tenga más del 5% de sombra.

Para hallar las sombras proyectadas sobre nuestros colectores debido a obstáculos próximos del colector, tomando como referencia la línea Norte-Sur y haciendo un barrido angular a ambos lados de dicha línea. Si la ubicación es adecuada no se deberían ver obstáculos frente al campo de colectores, con una altura angular superior a 15° (valido para latitudes en torno a los 40°).

2.4.3 Distancia Entre Filas de Colectores

Si se instalan varias filas de colectores hay que dejar una separación suficiente entre dichas filas para que no se hagan sombra entre si. Para fijar esta distancia, el criterio más utilizado es que en el medio día solar del día más desfavorable (altura solar mínima) del periodo de utilización, la sombra de la arista superior de una fila se proyecte que se utilicen todo el año, la altura solar mínima al mediodía solar se producirá el 21 de Diciembre.

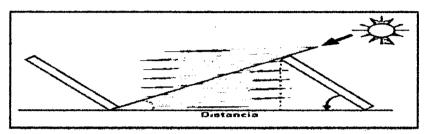


Figura N° 16: Distancia entre colectores Fuente: Tecnology Sun SAC.

2.5 ELEMENTOS DE UNA INSTALACION SOLAR

2.5.1 Fluido Calo portador

Un fluido calo portador es aquel que pasa por los tubos de absorbedor, transfiriendo la energía absorbida a otra parte del sistema (intercambiador de calor o deposito acumulador).

Los principales problemas a considerar en la elección de un determinado tipo de fluido son los riesgos de congelación y de ebullición. Los tipos de fluido caloportador más utilizados son los siguientes:

- Agua natural: La característica fundamental es que es el único tipo de fluido que se puede utilizar en circuito abierto.
- Agua con adición de anticongelantes (20%-30%): El fluido resultante protege al circuito primario contra la congelación, si bien presenta algunos inconvenientes con respecto al agua natural como son la toxicidad, el aumento de la viscosidad y del coeficiente de

dilatación, la disminución del calor específico, y el mayor riesgo de corrosión.

- Fluidos Orgánicos: Engloban tanto a líquidos orgánicos sintéticos como a ciertos derivados del petróleo. Son químicamente estables a altas temperaturas y protegen el circuito primario de la congelación, aunque presentan una alta toxicidad y viscosidad, además de ser inflamables.
- Aceites de Silicona: Se caracteriza por su gran calidad y estabilidad, y por no ser tóxicos, ni inflamables. El único inconveniente para su utilización generalizada es su elevado costo.

2.5.2 Red de Tuberías

Es una instalación solar, el dimensionamiento del diámetro de las tuberías debe ser el mínimo posible que haga que las pérdidas de carga no supuren un límite razonable.

Los materiales más frecuentemente empleados para las tuberías son el cobre, por sus buenas técnicas y bajo costo, y los materiales plásticos siempre que puedan soportar temperaturas de hasta 120°C.

2.5.3 Acumulador de ACS

La función del depósito acumulador es almacenar el agua caliente generada en los colectores para posibilitar su uso posterior. Los materiales más comúnmente utilizados en su construcción son el acero inoxidable, la fibra de vidrio reforzada, y el acero con protección interior contra la corrosión (ánodo anticorrosión, pintura especial o galvanizado).

2.5.4 Dimensionar la Capacidad del Acumulador

El dimensionamiento del depósito depende de la superficie de colectores instalada, de la temperatura de utilización, y del desfase que se produzca entre la captación – almacenamiento y el consumo:

- ✓ Coincidencia captación: consumo de 35 a 50 lt por m2
- ✓ Desfases no superiores a 24 hr: 60 a 90 lt por m2

2.5.5 Otros Elementos de la Instalación

2.5.5.1 Bombas de Impulsión

Su función es impulsar el fluido de tal forma que se puedan vencer las pérdidas de carga existentes, proporcionándole a la vez la presión adecuada para el correcto funcionamiento de la instalación. El caudal mínimo necesario debe ser 50 litros por hora y m2 de colector, optando por mayores caudales en caso de que el fluido a impulsar no sea agua.

2.5.6 Depósito de Expansión

El sistema de regulación está compuesto por termostatos, reguladores proporcionales, sensores (termopares y/o termo resistencias), y elementos actuadores (relés y contacto res).

Existe una gran diversidad de sistemas de regulación para una instalación solar en función de su aplicación, si bien, el sistema más usual es por medio de termostato diferencial. En este método, el regulador compara la temperatura del colector con la del acumulador, y en caso de que la sobrepase en más de un cierto nivel (5°C-6°C) pone en marcha la bomba del primario, mientras que cuando la temperatura baja por debajo de ese nivel, apaga dicha bomba.

2.6 USOS Y APLICACIONES DE LA ENERGIA SOLAR TERMICA DE BAJA TEMPERATURA

2.6.1 Producción de Agua Caliente Sanitaria o Industrial (ACS y ACI)

Es la aplicación más habitual más extendida y hoy por hoy más rentable. Empleando simples y eficaces, obtiene temperaturas en torno a los 50°C, a lo largo de los 12 meses del año. La aplicación más generalizada de los sistemas solares es la generación de agua caliente sanitaria, tanto en servicios de hoteles como viviendas, residenciales, hospitales, camping, instalaciones deportivas y otro tipos de dependencias. Los porcentajes de energía aportada 'por el sistema de energía solar suelen ser del orden del 70% u 80% del total, como media anual.

Las aplicaciones de ACS tienen gran potencial de desarrollo, tanto en los hogares como en la hostelería, restaurantes, instalaciones deportivas y en general en las instalaciones sanitarias de cualquier empresa. Además es aplicable en la industria, especialmente cuando se trabaja a temperaturas similares a las del agua caliente sanitaria, o bien para precalentar agua y luego alcanzar la temperatura necesaria por otros medios. Los elementos y diseño para esta utilización pueden ser los mismos que para agua caliente sanitaria.

Algunos ejemplos de aplicaciones industriales de baja temperatura:

- Lavado de botellas
- Descortezados
- Separación de fibras
- > Tratamiento de alimentos
- > Túneles de lavado de coches

027249

Lavado de textiles

2.6.2 Climatización de Piscinas

En esta aplicación las temperaturas necesarias se obtienen muy fácilmente con instalaciones sencillas. Su uso es estacional, y coincide con los meses de mayor radiación solar.

El caso más simple es la climatización de piscinas descubiertas, que según la normativa vigente se debe realizar mediante energías alternativas. En este caso se pueden emplear colectores de plástico o caucho sin ningún tipo de cubierta, carcasa ni material aislante, pues la temperatura de trabajó es menor de 30°C. son instalaciones baratas, que tienen como objetivo extender la temporada de baño elevando la temperatura del agua de las piscinas hasta unos 25°C.

Para la climatización de piscinas cubiertas es necesario emplear colectores de placa plana, de circuito cerrado, con intercambiador de calor, que proporcionan fácilmente la temperatura necesaria. Es una aplicación especialmente rentable, ya que la instalación se amortiza en pocos años.

2.6.3 Calefacción

En esta aplicación se tropieza con la desventaja de que la demanda de energía para calefacción es máxima cuando la disponibilidad de energía solar es mínima. No obstante, resulta una aplicación interesante si se emplea una amplia superficie colectora (mayor que en el caso del agua caliente) y se combina con sistemas de calefacción que trabajen a baja temperatura, como los de suelo radiante. Se pueden utilizar colectores de vació, con temperaturas superiores a 70°C y fluido especial calo portador. El sistema también proporcionara agua caliente sanitaria y eventualmente calor para el agua de una piscina. Por todo ello, la instalación de sistemas solares para calefacción se debe tener en cuenta en el momento de construir o reformar una oficina o una vivienda.

Las necesidades de suministro de calor auxiliar con energía convencional en días nublados y muy fríos se pueden reducir al mínimo si el edificio tiene un buen aislamiento térmico. Una posibilidad interesante es combinar el uso de la instalación también para refrigeración, consiguiendo una climatización a lo largo de todo el año.

2.6.4 Producción de Aire Caliente

En este caso la EST se destina a la producción de aire caliente. Forzado. Las aplicaciones principales se encuentran en el secado de productos agrícolas, aunque se puede utilizar en otros procesos industriales de secado.

2.6.5 Refrigeración

Tal vez el más interesante sea el uso de la energía solar térmica para producir frio, acoplando una máquina de absorción al sistema. En este caso las máximas necesidades de frio coinciden con la máxima disponibilidad de energía solar. Resulta especialmente interesante si se combina con otras aplicaciones, como calefacción, ACS o climatización de piscinas.

La refrigeración mediante máquina de absorción se basa en que un líquido que se evapora absorbe gran cantidad de calor de su entorno. Si

empleamos un intercambiador de calor, obtendremos una notable reducción de la temperatura en el circuito secundario.

Empleando los fluidos apropiados, y mediante ciclos sucesivos de expansión y condensación, hasta el punto de congelación. En este caso, la energía solar térmica se obtiene para proporcionar la energía que necesita el sistema de absorción.

2.7 OPERACIONES DE MANTENIMIENTO BÁSICO DE LA INSTALACIÓN

2.7.1 Acciones a Realizar por el Usuario de la Instalación

El usuario deberá realizar dos operaciones básicas de mantenimiento y control preventivo:

- Comprobar la presión del circuito de forma periódica, y si es posible, antes de la bomba, realizando dicha operación en frio (por la mañana temprano), de tal forma que si la presión es inferior a la establecida por el fabricante (generalmente de 1.5 kg/cm²), en los sistemas cerrados hay que abrir la llave para hacer que entre agua de la red en nuestro circuito, y si el sistema es de vaso de expansión abierto, habrá que averiguar la causa del fallo del sistema de relleno.
- Purgar de forma periódica el sistema (con una periodicidad no superior a un mes), y conocer las operaciones mínimas necesarias para la actuación del sistema, como puedan ser el arranque y parada del sistema, así como la operación de los termostatos de control de temperatura de salida del agua.

2.7.2 Acciones a Realizar por Personal Calificado

- El preciso controlar la mezcla y la cantidad de anticongelante agua del sistema, especialmente a principios del invierno, para equilibrarla si es necesario.
- Con el circuito en frio y parado, es conveniente comprobar periódicamente la presión del aire en el vaso de expansión cerrado mediante un manómetro.

- Hay que calibrar el sistema de control para asegurar la correcta regulación de la instalación, asegurando además que todos los sensores y termostatos funcionen correctamente.
- Se deben revisar todas las tuberías y demás elementos para reparar cualquier rotura, así como el aislamiento o protecciones que dejen la tubería al descubierto.
- Es necesario comprobar la correcta estanqueidad al agua de los colectores, inspeccionando la junta del cristal del colector, las juntas de las salidas de las conexiones del colector y el cofre y comprobando que la caja del colector no presente ningún tipo de deformación.
- ✓ Hay que actuar sobre todas las válvulas manuales y de seguridad para asegurar su funcionamiento. El máximo periodo recomendado sin ser accionadas es de tres meses o antes en caso de mala calidad del agua.
- ✓ Durante los periodos en que el sistema solar de agua caliente no esté en funcionamiento deberá cubrirse el colector con el fin de minimizar la corrosión y la formación de sales en los tubos del absorbedor.
- ✓ En lugares próximos a zonas industriales, la cubierta transparente del colector deberá ser lavado con agua limpia al menos cada tres meses, si durante este periodo no ha llovido, además, las cubiertas deterioradas o rotas deberán ser sustituidas inmediatamente.
 - Se debe estar siempre atento al fenómeno de corrosión en colectores, tuberías y depósitos, realizando una limpieza periódica especial de los circuitos.
 - Hay que desmontar periódicamente los intercambiadores de placas existentes en la instalación para limpiarlos de las incrustaciones calcáreas que se forman en los mismos.

2.8 COSTO DE UNA INSTALACION SOLAR

El coste de los materiales de una instalación solar completa para calentar agua supone que por término medio un desembolso de 420-480€ por cada metro cuadrado de colector solar, en caso de tratarse de instalaciones pequeñas o

medianas. Para grandes instalaciones, el coste es algo inferior en las 300-420€ por metro de colector solar.

El reparto del coste de la instalación por equipos varía según el tipo de aplicación, calidad de los materiales, etc. No obstante para una instalación típica, el coste se podrían distribuir ente los distintos equipos según indica la figura.

2.9 VENTAJAS DE LA ENERGIA SOLAR TÉRMICA

- La energía solar térmica es una fuente energética gratuita e inagotable; y mucho más respetuosa con el medio ambiente que las energías convencionales, ya que el medio físico no existen afecciones, ni sobre la calidad del aire, ni sobre los suelos, como tampoco se provocan ruidos ni se afecta a la hidrología existente. Además los posibles impactos medioambientales en la fase de instalación no tienen un carácter permanente, desapareciendo en la fase de explotación.
- Las instalaciones solares térmicas tienen un carácter autónomo y descentralizado, lo que representa un equilibrio estratégico sobre el suministro de energía y un desarrollo más sostenible.
- ➤ La utilización de la energía solar térmica proporciona una alta rentabilidad económica. La vida útil de las instalaciones se encuentra en torno a los 15-20 años y los requerimientos de operación y manteniendo son mínimos. En general las instalaciones tienen unos gastos de mantenimiento comprendido entre el 4% y el 10% de los ahorros económicos derivados del ahorro de combustible.
 - ➤ Por término medio una instalación de colectores para generar ACS conlleva una reducción del combustible consumido por los equipos convencionales del 40-60% dependiendo de varios factores de diseño con el consiguiente ahorro energético y disminución del impacto medioambiental

2.10 INCOVENIENTES DE LA ENERGIA SOLAR TÉRMICA

➤ El uso generalizado de la energía solar térmica se ve dificultado por los altos costes de la instalación, y la técnica aún insuficiente en

cuanto al almacenamiento de la energía, y la calidad y eficiencia de los materiales.

- ➤ La necesidad de una inversión inicial elevada es uno de los condicionantes que más influyen, ya que realizar una instalación de energía solar térmica representa adelantar el pago de la energía futura a obtener del sistema. Lo que constituye ya de por si una barrera.
- ➤ En el sentido legislativo y normativo, el mercado solar térmico, hasta el momento, no se ha encontrado suficientemente regulado por prescripciones que aseguren su correcto desarrollo. La falta de una normativa específica para este tipo de instalaciones produce frecuentemente un cierto recelo frente a la adopción de esta nueva tecnología.
- ➤ Todo el proceso necesario relacionando con las subvenciones que se han venido otorgando al sector durante años sufre de cierta rigidez. Igualmente muchos programas de desarrollo y subvención no poseen la suficiente estabilidad, por lo que dan a lugar a ciertas incertidumbres en el mercado por falta de claridad en las condiciones de la inversión.

2.11 NATURALEZA DE LA INDUSTRIA HOTELERA

La hotelería se remonta a muchos siglos atrás y su evolución a través de las épocas ha surgido debido a los cambios y el desarrollo económico e industrial de Gran Bretaña. El crecimiento de la industria hotelera se debe también a la industrialización de los distintos medios de comunicación como son: ferroviaria, aéreas, marítima, terrestre y los accesos de carreteras a distintos lugares y otros medios, etc. También debe tener en cuenta el desarrollo económico, según el estilo de gobiernos, sus programas y metas y el comercio. En la actualidad sabemos que las empresas hoteleras están organizadas en distintas categorías. En el país los hoteles de primera categoría son altamente organizados administrativamente porque están orientados hacia sus objetivos y metas con mayor eficiencia y estilo de gerencia. Los de menor categoría son improvisados en los procesos administrativos y carecen de objetivos específicos, particularmente las empresas hotelera de la provincia del santa.

2.12 ANTECEDENTES HISTÓRICOS EN EL PERÚ

La evolución histórica de la estructura administrativa de los establecimientos se da en seis periodos:

2.12.1 PRIMER PERIODO:

Antes de 1945 la administración pública del turismo no estuvo estructurada en forma integral ni normada sus actividades, a pesar que existía la ley N. 7663 del 03 de noviembre de 1932, la que autoriza al Ministerio de Fomento y de Obras Publicas atenderla corriente turística del Cuzco. El 17 de julio de 1942, es creada la compañía hotelera del Perú la que desarrollo sus actividades hasta el 30 de abril de 1946.

2.12.2 SEGUNDO PERIODO:

De 1946 – 1950. El estado realizo un primer intento en organizar la administración del turismo mediante el organismo creado: CORPORACION NACIONAL DE TURISMO, con el objetivo principal de desarrollar el turismo.

2.12.3 TERCER PERIODO

De 1950 – 1964. Ante el cese de la corporación nacional de turismo, la administración del turismo se da a través de dos entidades, que son:

- El Touring
- Automóvil Club del Perú

Estas entidades eran subsidiadas por el estado mediante el Ministerio de Fomento y Obras Públicas para su desarrollo de carácter promocional. Adicionalmente la Compañía Hotelera del Perú, y los estatutos de los establecimientos hoteleros fueron aprobados según resolución suprema el 18 de agosto de 1950.

2.12.4 CUARTO PERIODO

De 1964 – 1969. Se crea la corporación de turismo del Perú, asumiendo el estado la administración del turismo.

2.12.5 QUINTO PERIODO

De 1969 – 1975. Durante este periodo se puede observar la creación y funcionamiento de:

- LA DIRECCION GENERAL DE TURISMO (DGTR)
- LA EMPRESA NACIONAL DE TURISMO (ENTURPERU)

2.12.6 SEXTO PERIODO

De 1976 hasta la actualidad. De este punto se han hecho cosas importantes a favor del turismo. Se produce la creación del CENTRO DE FROMACION EN TURISMO (CENFOTUR).

Asimismo se destaca en este periodo la creación del fondo de promoción turística (FOPTUR); también el 25 de abril de 1978 se aprueba la ley Orgánica del Ministerio de Industria y Comercio, Turismo e Integración y Negociaciones Comerciales Internacionales D.L. N. 25831. Esta última disposición es la que dirige actualmente el sistema de administración normativa en el Perú en lo concierne a las empresas hoteleras y turismo. A esta norma se acogen las empresas hoteleras del estado y privadas.

2.13 LAS EMPRESAS HOTELERAS

Son establecimientos de hospedajes que proporcionan a sus huéspedes o clientes alojamiento, alimentación y servicios auxiliares a un precio estipulado según la presentación de los servicios. Aparte de solucionar alojamiento a los viajeros, las empresas hoteleras solucionan problemas ante un evento que pueda realizar una entidad, como reuniones conferencia, congresos, actividades sociales; soluciona un problema de familia por visita, en la provincia del santa, en gran parte de las viviendas son de tipo básico y existe una demanda insatisfecha. Ante esta realidad las empresas hoteleras solucionan un problema inmediato; naturalmente para este tipo de usuarios la tarifa es baja, según la categoría del establecimiento.

2.14 LAS EMPRESAS HOTELERAS EN LAS CIUDADES

La concentración más grande de habitaciones de hotel, se encuentra en las ciudades más importantes en las que se centra la actividad comercial. La población por sí solo no es un elemento fundamental como guía para determinar el número de habitaciones de hotel de una ciudad. En el Perú, las actividades comerciales con mayor intensidad se realizan en Lima, Arequipa, Trujillo y Chiclayo, lugares donde se concentran los grandes mayoristas de distintas líneas de producción y esto determina gran volumen de la demanda de alojamiento; por lo que estos lugares existen los mejores y mayor número de los establecimientos de hospedajes. En la provincia del santa, difiere mucho de las ciudades mencionadas por que Chimbote es netamente zona industrial y sus productos salen al por mayor a las zonas comerciales y su población es más estable y la visita de los comerciantes es menor intensidad, por lo tanto actualmente existe más oferta que demanda por hospedaje. De igual manera en las ciudades turísticas como el Cuzco, Cajamarca y

2.14.1 ESTADISTICA DE ESTABLECIMIENTOS HOTELEROS EN CHIMBOTE

Cuadro Nº 01: Establecimientos hoteleros en Chimbote-Ancash (Año 2013)

CATEGORÍAS	CATEGORIZADOS	NO CATEGORIZADOS	TOTAL DE ESTABLECIMEINTOS HOTELEROS
1 ESTRELLA	19	-	
2 ESTRELLA	40	-	
3 ¹ ESTRELLA	12	*	
t TOTAL	71	54	125

Fuente: MINCETUR-Chimbote

CAPÍTULO III MATERIALES Y MÉTODOS

3.0 CARACTERÍSTICAS DE LOS COLECTORES SOLARES DE PLACA PLANA

- ✓ Se tendrá un total de 9 colectores para hostales y 11 colectores para hoteles, los colectores serán de 1m x 2m con un área de 2 m^2 .
- ✓ Los tubos internos en la placa estarán separadas a 10 cm cada uno y serán en número total de 9; de ½ pulgada de diámetro, el material será de fierro galvanizado.
- ✓ El tubo cabezal será de fierro galvanizado de 1 pulgada de diámetro.
- ✓ La placa absorbedora del colector será cobre de 1/16 pulgadas de espesor
- ✓ Los colectores estarán conectados en paralelo y estarán en 3 grupos de 3 colectores respectivamente para hostales y 2 grupos de 4 colectores y 5 colectores respectivamente para hoteles, separados en 2.5 m uno del otro para evitar que se hagan sombra.
- ✓ El ángulo de inclinación será de 25°; y su circulación del fluido será natural por el cual en tanque de almacenamiento deberá estar una altura mayor de 30 cm de los colectores.

3.1 BALANCE DE ENERGIA

Para el análisis del balance de energía se realiza lo siguiente:

$$H_T A_C (\tau \alpha) = q_{util} + q_{perd} + d_{\mu}/d_t.....(7)$$

Dónde:

HT: Radiación que llega a la superficie terrestre

Ac: Área del colector

τ: Transmitancia de la placa

a: Absortancia de la placa

quiil: Energía aprovechable

q_{perd}: Energía que se disipa

CAPÍTULO IV CÁLCULOS Y RESULTADOS

4.0 INGENIERIA DEL PROYECTO

El trabajo de investigación será desarrollado en el Perú; departamento de Ancash-Chimbote donde:

Las coordenadas geográficas del lugar son:

o Latitud: 9°

Longitud: 78° 35′ 37"

Altitud: 5msnm

Características climáticas y meteorológicas del lugar

Humedad relativa: 75%

o Temperatura mínima: 22°C

o Temperatura máxima: 26°C

o Clima: Cálido

Velocidad del viento promedio anual: 4.1 m/s

4.1 CARACTERÍSTICAS DEL RECURSO SOLAR EN LA CIUDAD DE CHIMBOTE

Cuadro $N^{\circ}02$: Variación de la Radiación Según el Angulo de Inclinación del Colector Para el Lugar en Mención - Mi/m^2*dia (Enero-Diciembre, 2012)

INCLINACION ANUAL		PERIODO	PERIODO	MES MAS
INCLINACION	ANUAL	FRIO	CALIDO	BAJO
0	217.8	99	118.8	14.4
5	218.8	101.5	117.3	15.07
10	218.7	103.4	115.3	15.65
15	217.4	104.8	112.6	16.15
20	215	105.6	109.4	16.55
25	211.4	105.8	105.6	16.86
30	206.8	105.4	101.1	17.08
35	201.1	104.4	96.7	17.19
40	194.5	102.9	91.6	17.21
45	186.8	100.8	86	17.23
50	178.4	98.1	80.3	16.95

Fuente: Proyecto de investigación - diseño construcción y evaluación del funcionamiento de una terma solar de placa plana para ser instalada en un domicilio de Urb. Carmen-Chimbote. Autores: Mariños, Calderón y Benites.

4.2 CARACTERÍSTICAS DEL SERVICIO HOTELERO -DOS ESTRELLAS

Cuadro N°03: Cantidad de habitaciones de Hostales dos Estrellas-Chimbote (Año 2013)

#	NOMBRE COMERCIAL	CLASE	CATEGORIA	
1	J&L	HOSTAL	2 ESTRELLAS	6
2	EL GOLF	HOSTAL	2 ESTRELLAS	17
3	MIS DOS AMORES	HOSTAL	2 ESTRELLAS	8
4	ENCUENTRO	HOSTAL	2 ESTRELLAS	12
5	JUNNIOR	HOSTAL	2 ESTRELLAS	10
6	PK2	HOSTAL	2 ESTRELLAS	12
7	MIRAMAR	HOSTAL	2 ESTRELLAS	9
8	FLORIDA	HOSTAL	2 ESTRELLAS	19
9	AUIN	HOSTAL	2 ESTRELLAS	12
10	DOS FLAMENGO'S	HOSTAL	2 ESTRELLAS	18
11	DIAMANTE	HOSTAL	2 ESTRELLAS	13
12	CESAR'S	HOSTAL	2 ESTRELLAS	16
13	LA CUEVA DEL OSO	HOSTAL	2 ESTRELLAS	16
14	DON ALFONSO INN	HOSTAL	2 ESTRELLAS	8
15	HOSTAL EL CAUTIVADOR	HOSTAL	2 ESTRELLAS	7
16	ROMANCES GJL	HOSTAL	2 ESTRELLAS	9
17	LOS DELFINES	HOSTAL	2 ESTRELLAS	17
18	MELODY	HOSTAL	2 ESTRELLAS	6
19	LE PARIS	HOSTAL	2 ESTRELLAS	15
20	EL POSEIDON	HOSTAL	2 ESTRELLAS	11
21	HAVANA	HOSTAL	2 ESTRELLAS	13
22	LIBERTAD	HOSTAL	2 ESTRELLAS	8
23	HOSTAL MONTERRICO	HOSTAL	2 ESTRELLAS	11
24	EL EMBRUJO	HOSTAL	2 ESTRELLAS	10
25	EL EMBRUJO II	HOSTAL	2 ESTRELLAS	10
26	AMERICA	HOSTAL	2 ESTRELLAS	10
27	CHICAGO	HOSTAL	2 ESTRELLAS	14
28	REAL BOLIVAR	HOSTAL	2 ESTRELLAS	12
29	D'SOTO	HOSTAL	2 ESTRELLAS	14
30	D'RICHARD	HOSTAL	2 ESTRELLAS	17
31	TURISMO SIEMPRE FELIZ	HOSTAL	2 ESTRELLAS	9 .
32	EL SUEÑO	HOSTAL	2 ESTRELLAS	12
		1		·

CuadroN°04: Promedio de concurrencia de huéspedes en periodo frio en Hostales dos Estrellas-Chimbote. (Año 2013)

#	NOMBRE COMERCIAL	MAY	JUN	JUL	AGO	SET	OCT
1	J&L	201	198	220	258	257	301
2	EL GOLF	563	557	616	726	719	832
3	MIS DOS AMORES	268	264	293	344	343	401
4	ENCUENTRO	402	393	440	515	509	602
5	JUNNIOR	335	330	367	430	428	502
6	PK2	405	390	443	516	510	558
7	MIRAMAR	300	287	320	375	381	442
8	FLORIDA	637	627	697	817	814	953
9	AUIN	401	396	439	520	514	593
10	DOS FLAMENGO'S	603	594	660	774	771	903
11	DIAMANTE	436	429	477	559	557	652
12	CESAR'S	536	528	587	688	685	803
13	LA CUEVA DEL OSO	530	520	579	677	679	801
14	DON ALFONSO INN	259	260	279	340	342	395
15	HOSTAL EL CAUTIVADOR	235	231	257	301	300	351
16	ROMANCES GJL	289	293	327	375	377	400
17	LOS DELFINES	555	542	607	717	717	843
18	MELODY	201	198	220	258	257	301
19	LE PARIS	503	495	550	645	643	753
20	EL POSEIDON	369	363	403	473	471	552
21	HAVANA	450	463	492	610	620	617
22	LIBERTAD	263	259	278	342	343	397
23	HOSTAL MONTERRICO	380	673	420	463	468	560
24	EL EMBRUJO	332	327	358	427	415	500
25	EL EMBRUJO II	321	331	351	418	411	475
26	AMERICA	318	329	348	423	427	493
27	CHICAGO	469	462	513	602	600	702
28	REAL BOLIVAR	389	386	429	520	507	591
29	D'SOTO	450	468	532	520	510	685
30	D'RICHARD	570	561	623	731	728	853
31	TURISMO SIEMPRE FELIZ	302	297	330	387	386	452
32	EL SUEÑO	375	375	432	513	513	589

CuadroN°05: Promedio de concurrencia de huéspedes en periodo cálido en Hostales dos Estrellas-Chimbote (Año 2013)

#	NOMBRE COMERCIAL	NOV	DIC	ENE	FEB	MAR	ABR
1	J&L	332	317	321	380	307	275
$\frac{1}{2}$	EL GOLF	939	871	899	1009	863	763
3	MIS DOS AMORES	443	423	428	507	409	367
4	ENCUENTRO	664	617	642	742	614	534
5	JUNNIOR	553	528	535	633	512	458
6	PK2	632	607	638	723	611	547
7	MIRAMAR	475	478	450	542	432	408
8	FLORIDA	1051	1004	1017	1203	972	871
9	AUIN	627	634	627	760	603	550
10	DOS FLAMENGO'S	996	951	963	1140	921	825
11	DIAMANTE	719	687	696	823	665	596
12	CESAR'S	885	835	856	1013	819	733
13	LA CUEVA DEL OSO	875	845	851	1013	811	722
14	DON ALFONSO INN	440	417	423	505	398	363
15	HOSTAL EL CAUTIVADOR	387	370	375	443	358	321
16	ROMANCES GJL	493	475	481	559	459	410
17	LOS DELFINES	921	858	875	1032	849	759
18		,			380	307	275
	MELODY	332	317	321 803			
19	LE PARIS	830	793		950	768	688
20	EL POSEIDON	609	581	589	697	563	504
21	HAVANA	725	700	713	832	675	602
22	LIBERTAD	439	421	419	498	385	357
23	HOSTAL MONTERRICO	613	588	572	700	555	510 432
24	EL EMBRUJO	537	521	533	617	509	
25	EL EMBRUJO II	548	519	528	628	503	417
26	AMERICA	559	530	527	625	499	
27	CHICAGO	775	740	749	887	716	642
28	REAL BOLIVAR	635	629	638	732	617	539
29	D'SOTO	760	742	739	842	701	623
30	D'RICHARD	941	898	910	1077	870	779
31	TURISMO SIEMPRE FELIZ	498	476	482	570	461	413
32	EL SUEÑO	645	627	641	757	610	527

CuadroNº06: Cantidad de habitaciones de Hoteles dos Estrellas-Chimbote (Año 2013)

#	NOMBRE COMERCIAL	CLASE	CATEGORIA	NUM. HAB
1	MEYLLI	HOTEL	2 ESTRELLAS	22
2	LUZANTY	HOTEL	2 ESTRELLAS	20
3	PLAYA HOTEL	HOTEL	2 ESTRELLAS	20
4	HOTEL PALMA REAL	HOTEL	2 ESTRELLAS	20
5	LATINO	HOTEL	2 ESTRELLAS	24
6	HOSTAL BOULEVARD	HOTEL	2 ESTRELLAS	24
7	LIBRA'S	HOTEL	2 ESTRELLAS	26
8	CAMINO REAL	HOTEL	2 ESTRELLAS	20

CuadroN°07: Promedio de concurrencia de huéspedes en periodo frio en Hoteles dos Estrellas-Chimbote (Año 2013)

#	NOMBRE COMERCIAL	MAY	JUN	JUL	AGO	SET	OCT
1	MEYLLI	562	532	536	593	585	657
2	LUZANTY	507	453	475	528	530	595
3	PLAYA HOTEL	501	472	485	541	529	600
4	HOTEL PALMA REAL	520	493	490	542	545	599
5	LATINO	620	578	595	653	642	725
6	HOSTAL BOULEVARD	613	580	585	647	638	717
7	LIBRA'S	664	629	633	701	691	776
8	CAMINO REAL	511	484	487	539	532	597

CuadroN°08: Promedio de concurrencia de huéspedes en periodo cálido en Hostales dos Estrellas-Chimbote (Año 2013)

#	NOMBRE COMERCIAL	NOV	DIC	ENE	FEB	MAR	ABR
1	MEYLLI	747	751	740	795	693	499
2	LUZANTY	681	691	683	717	642	432
3	PLAYA HOTEL	693	695	680	728	625	438
4	HOTEL PALMA REAL	690	685	675	711	629	429
5	LATINO	830	829	825	880	742	560

6	HOSTAL BOULEVARD	815	819	807	867	756	544
7	LIBRA'S	883	888	875	940	819	590
8	CAMINO REAL	679	683	673	723	630	454

4.3 HALLANDO LA MUESTRA REPRESENTATIVA PARA CADA CATEGORÍA

Utilizamos la formula estadística de "Tamaño de muestra"-(Davis S. Moré; Estadística básica aplicada, Segunda Edición, 2000)

$$n = \frac{n_0}{1 + \frac{n_0}{N}} \tag{1}$$

$$n_0 = \frac{Z_{\alpha/2}^2 PQ}{E^2} \tag{2}$$

Donde:

n: tamaño de muestra

n₀: tamaño de muestra aproximada

N: Tamaño de la población bajo estudio

 Z_{α} : Valores correspondiente al nivel de Significancia (1.96)

E: Error de tolerancia de la estimación (5%)

α: Nivel de significancia (96%)

 σ^2 =PQ: Varianza de la variable (p=0.5; q=0.5)

✓ HOSTALES:

	CUADRO Nº 09: MUESTRA ALEATORIA SIMPLE-MUESTRA					
	REPRESNTATIVA					
N	31	Tamaño de la población bajo estudio				
Ζα	1.96	Valores correspondiente al nivel de Significancia				
σ	0.25	Varianza de la variable				
E	5%	Error de tolerancia de la estimación				
no	96	tamaño de muestra aproximada				
P	0.5					
Q	0.5					
n	20	tamaño de muestra				

Fuente: Elaboración propia

La muestra representativa es de 20 Hostales; las cuales son las siguientes:

	CUADRO Nº10: MUESTRA I	REPRESEN'	TATIVA DE HOS	TALES
#	NOMBRE COMERCIAL	CLASE	CATEGORIA	NUM. HAB
1	J&L	HOSTAL	2 ESTRELLAS	6
2	MIS DOS AMORES	HOSTAL	2 ESTRELLAS	8
3	ENCUENTRO	HOSTAL	2 ESTRELLAS	12
4	JUNNIOR	HOSTAL	2 ESTRELLAS	10
5	PK2	HOSTAL	2 ESTRELLAS	12
6	MIRAMAR	HOSTAL	2 ESTRELLAS	9
7	AIJIN	HOSTAL	2 ESTRELLAS	12
8	DIAMANTE	HOSTAL	2 ESTRELLAS	13
9	DON ALFONSO INN	HOSTAL	2 ESTRELLAS	8
10	HOSTAL EL CAUTIVADOR	HOSTAL	2 ESTRELLAS	7
11	ROMANCES GJL	HOSTAL	2 ESTRELLAS	9
12	LE PARIS	HOSTAL	2 ESTRELLAS	15
13	EL POSEIDON	HOSTAL	2 ESTRELLAS	11
14	HAVANA	HOSTAL	2 ESTRELLAS	13
15	LIBERTAD	HOSTAL	2 ESTRELLAS	8
16	HOSTAL MONTERRICO	HOSTAL	2 ESTRELLAS	11
17	EL EMBRUJO II	HOSTAL	2 ESTRELLAS	10
18	CHICAGO	HOSTAL	2 ESTRELLAS	14
19	D'SOTO	HOSTAL	2 ESTRELLAS	14
20	EL SUEÑO	HOSTAL	2 ESTRELLAS	12

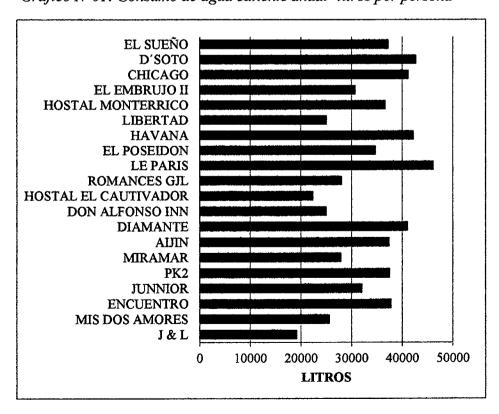
Fuente: MINCETUR

✓ HOTELES:

	CUADRO Nº 11: MUESTRA ALEATORIA SIMPLE-MUESTRA								
	REPRESNTATIVA								
N	8	Tamaño de la población bajo estudio							
Ζα	1.96	Valores correspondiente al nivel de Significancia							
σ	0.25	Varianza de la variable							
E	5%	Error de tolerancia de la estimación							
no	96	tamaño de muestra aproximada							
P	0.5								
Q	0.5								
n	7	tamaño de muestra							

La muestra representativa es de 7 Hoteles; las cuales son las siguientes:

	CUADRO Nº 12: MUESTRA REPRESENTATIVA DE HOTELES								
#	NOMBRE COMERCIAL	CLASE	CATEGORIA	NUM. HAB					
1	MEYLLI	HOTEL	2 ESTRELLAS	22					
2	LUZANTY	HOTEL	2 ESTRELLAS	20					
3	PLAYA HOTEL	HOTEL	2 ESTRELLAS	20					
4	HOTEL PALMA REAL	HOTEL	2 ESTRELLAS	20					
5	LATINO	HOTEL	2 ESTRELLAS	24					
6	HOSTAL BOULEVARD	HOTEL	2 ESTRELLAS	24					
7	LIBRA'S	HOTEL	2 ESTRELLAS	26					


Fuente: MINCETUR

4.4 HALLAMOS LA DEMANDA DE AGUA CALIENTE

Se estima que el consumo de ACS es de 70 litros por persona-ducha y para labores menores de aseo es de 3 litros por persona-día según (según OLADE: Organismo Latinoamericano de Energía) a una temperatura de agua de 40°C (temperatura obtenida a las encuestas realizadas en el hotel Mailly)

✓ Hostales:

Grafico N°01: Consumo de agua caliente anual-litros por persona

En el grafico observamos que el hostal de mayor consumo de agua caliente anual es LE PARIS con 46171 litros y el de menor consumo de agua caliente es J&L con 19248 litros.

CuadroN°13: Demanda de agua caliente en periodos fríos en Hostales (litros/persona)

CONSUMO EN	70	LITROS POR
DUCHAS		PERSONA
CONSIDERANDO UN	95%	
USO		

Se considera el uso al 95%, por los hábitos de demanda para el uso de ACS según la encuesta

#	NOMBRE	NUM	MAY	JUN	JUL	AGO	SET	OCT
	COMERCIAL	НАВ				<u> </u>		
1	J&L	6	13,789	13,583	15,092	17,699	17,630	20,649
2	MIS DOS	8	18,385	18,110	20,123	23,598	23,507	27,531
	AMORES							
3	ENCUENTRO	12	27,577	26,960	30,184	35,329	34,917	41,297
4	JUNNIOR	10	22,981	22,638	25,153	29,498	29,384	34,414
5	PK2	12	27,783	26,754	30,409	35,398	34,986	38,279
6	MIRAMAR	9	20,580	19,688	21,952	25,725	26,137	30,321
7	AIJIN	12	27,509	27,166	30,109	35,672	35,260	40,680
8	DIAMANTE	13	29,875	29,429	32,699	38,347	38,199	44,739
9	DON ALFONSO	8	17,767	17,836	19,139	23,324	23,461	27,097
	INN							
10	HOSTAL EL	7	16,087	15,847	17,607	20,649	20,569	24,090
	CAUTIVADOR							
11	ROMANCES GJL	9	19,825	20,100	22,432	25,725	25,862	27,440
12	LE PARIS	15	30,870	32,585	33,788	44,247	44,076	51,622
13	EL POSEIDON	11	25,279	24,902	27,669	32,448	32,322	37,856
14	HAVANA	13	30,870	31,762	33,751	41,846	42,532	42,326
15	LIBERTAD	8	18,042	17,767	19,071	23,461	23,507	27,234
16	HOSTAL	11	26,068	46,168	28,812	31,762	32,105	38,416
	MONTERRICO							
17	EL EMBRUJO II	10	22,021	22,707	24,102	28,675	28,195	32,585
18	CHICAGO	14	32,173	31,693	31,556	33,820	35,672	37,387
19	D'SOTO	14	30,870	32,105	36,495	35,672	34,986	46,991

20	EL SUEÑO	12	25,725	25,725	29,635	35,192	35,192	40,405
			·			. ,		

CuadroNº14: Demanda de agua caliente en periodos cálidos en Hostales (litros/persona)

CONSUMO EN LAVATORIO	3.5	LITROS POR PERSONA
CONSIDERANDO UN	60%	
USO		

Se considera el uso al 95%, por los hábitos de demanda para el uso de ACS según la encuesta

#	NOMBRE COMERCIAL	NOV	DIC	ENE	FEB	MAR	ABR	PROM
								ANUAL
1	J&L	22,775	21,746	22,021	26,068	21,060	18,865	17,767
2	MIS DOS AMORES	30,367	28,995	29,361	34,757	28,080	25,153	23,690
3	ENCUENTRO	45,550	42,326	44,041	47,540	42,120	36,632	34,960
4	JUNNIOR	37,959	36,244	36,701	43,447	35,100	31,442	29,613
5	PK2	43,355	41,640	43,767	49,598	41,915	37,524	34,724
6	MIRAMAR	32,585	32,791	30,870	37,181	29,635	27,989	25,805
7	AUIN	43,012	43,492	43,012	44,933	41,366	37,730	34,611
8	DIAMANTE	49,346	47,117	47,711	49,461	45,630	40,874	37,957
9	DON ALFONSO INN	30,184	28,606	29,018	32,516	27,303	24,902	23,166
10	HOSTAL EL CAUTIVADOR	26,571	25,371	25,691	30,413	24,570	22,009	20,729
11	ROMANCES GJL	33,820	32,585	32,997	36,632	31,487	28,126	25,926
12	LE PARIS	53,508	54,366	54,263	54,949	52,651	47,163	42,623
13	EL POSEIDON	41,755	39,868	40,371	41,366	38,610	34,586	32,080
14	HAVANA	49,735	48,020	48,912	50,421	46,305	41,297	39,061
15	LIBERTAD	30,115	28,881	28,743	34,163	26,411	24,490	23,223
16	HOSTAL MONTERRICO	42,052	40,337	39,239	42,601	38,073	34,986	33,895
17	EL EMBRUJO II	37,593	35,603	36,221	39,102	34,506	28,606	28,456
18	CHICAGO	44,590	50,741	51,381	52,685	49,140	44,018	38,067
19	D'SOTO	52,136	50,901	50,695	51,724	48,089	42,738	39,494
20	EL SUEÑO	44,247	43,012	43,973	46,442	41,846	36,152	34,428

CuadroN°15: Demanda de agua caliente en periodos frioss en Hoteles (litros/persona)

CONSUMO EN DUCHAS	70	LITROS POR
		PERSONA
CONSIDERANDO UN USO	95%	

Se considera el uso al 95%, por los hábitos de demanda para el uso de ACS según la encuesta

#	NOMBRE	NUM.	MAY	JUN	JUL	AGO	SET	OCT
	COMERCIAL	HAB					=	
1	MEYLLI	22	38,553	36,495	36,770	40,680	40,131	45,070
2	LUZANTY	20	34,780	31,076	32,585	36,221	36,358	40,817
3	PLAYA HOTEL	20	34,369	32,379	33,271	37,113	36,289	41,160
4	HOTEL PALMA	20	35,672	33,820	33,614	37,181	37,387	41,091
	REAL							
5	LATINO	24	42,532	39,651	40,817	44,796	44,041	49,735
6	HOSTAL	24	42,058	39,813	40,112	44,378	43,779	49,167
	BOULEVARD							
7	LIBRA'S	26	45,563	43,131	43,455	48,076	47,428	53,265

Fuente: Elaboración propia

CuadroNº16: Demanda de agua caliente en periodos cálidos en Hoteles (litros/persona)

CONSUMO EN LAVATORIO	3.5	LITROS POR PERSONA
CONSIDERANDO UN USO	60%	

Se considera el uso al 60%, por el uso habitual según encuesta a los clientes.

	NOMBRE	NOV	DIC	ENE	FEB	MAR	ABR	PROM
#	COMERCIAL							ANUAL
1	MEYLLI	51,244.20	51,518.60	50,764.00	54,537.00	47,539.80	34,231.40	40,579.62
2	LUZANTY	46,716.60	47,402.60	46,853.80	49,186.20	44,041.20	29,635.20	36,590.34
3	PLAYA HOTEL	47,539.80	47,677.00	46,648.00	49,940.80	42,875.00	30,046.80	36,870.09
4	HOTEL PALMA	47,334.00	46,991.00	46,305.00	48,774.60	43,149.40	29,429.40	36,980.98
	REAL							
5	LATINO	56,938.00	56,869.40	56,595.00	60,368.00	50,901.20	38,416.00	44,743.42
6	HOSTAL	55,902.76	56,202.11	55,378.91	59,494.91	51,861.60	37,343.35	44,269.05
	BOULEVARD							
7	LIBRA'S	60,561.33	60,885.62	59,993.82	64,452.82	56,183.40	40,455.29	47,958.17
	T . T	·		L		L	L	

CuadroN°17: Demanda de agua caliente en periodos fríos en Hostales (litros/dia)

#	NOMBRE COMERCIAL	MAY	JUN	JUL	AGO	SET	OCT
1	J&L	445	453	487	571	588	666
2	MIS DOS AMORES	593	604	649	761	784	888
3	ENCUENTRO	890	899	974	1140	1164	1332
4	JUNNIOR	741	755	811	952	979	1110
5	PK2	896	892	981	1142	1166	1235
6	MIRAMAR	664	656	708	830	871	978
7	AIJIN	887	906	971	1151	1175	1312
8	DIAMANTE	964	981	1055	1237	1273	1443
9	DON ALFONSO INN	573	595	617	752	782	874
#	HOSTAL EL CAUTIVADOR	519	528	568	666	686	777
#	ROMANCES GJL	640	670	724	830	862	885
#	LE PARIS	996	1086	1090	1427	1469	1665
#	EL POSEIDON	815	830	893	1047	1077	1221
#	HAVANA	996	1059	1089	1350	1418	1365
#	LIBERTAD	582	592	615	757	784	879
#	HOSTAL MONTERRICO	841	1539	929	1025	1070	1239
#	EL EMBRUJO II	710	757	777	925	940	1051
#	CHICAGO	1038	1056	1018	1091	1189	1206
#	D'SOTO	996	1070	1177	1151	1166	1516
#	EL SUEÑO	830	858	956	1135	1173	1303

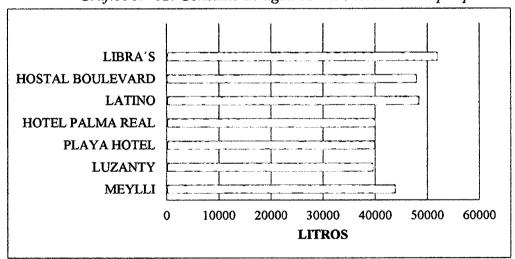
CuadroN°18: Demanda de agua caliente en periodos cálidos en Hostales (litros/dia)

#	NOMBRE	NOV	DIC	ENE	FEB	MAR	ABR	PROM
	COMERCIAL							ANUAL
1	J&L	759	701	710	931	679	629	635
2	MIS DOS AMORES	1012	935	947	1241	906	838	847
3	ENCUENTRO	1518	1365	1421	1698	1359	1221	1248
4	JUNNIOR	1265	1169	1184	1552	1132	1048	1058
5	PK2	1445	1343	1412	1771	1352	1251	1241
6	MIRAMAR	1086	1058	996	1328	956	933	922

7	AIJIN	1434	1403	1387	1605	1334	1258	1235
8	DIAMANTE	1645	1520	1539	1766	1472	1362	1355
9	DON ALFONSO INN	1006	923	936	1161	881	830	828
#	HOSTAL EL	886	818	829	1086	793	734	741
	CAUTIVADOR							
#	ROMANCES GJL	1127	1051	1064	1308	1016	938	926
#	LE PARIS	1784	1754	1750	1962	1698	1572	1521
#	EL POSEIDON	1392	1286	1302	1477	1245	1153	1145
#	HAVANA	1658	1549	1578	1801	1494	1377	1394
#	LIBERTAD	1004	932	927	1220	852	816	830
#	HOSTAL	1402	1301	1266	1521	1228	1166	1211
	MONTERRICO							
#	EL EMBRUJO II	1253	1148	1168	1397	1113	954	1016
#	CHICAGO	1486	1637	1657	1882	1585	1467	1359
#	D'SOTO	1738	1642	1635	1847	1551	1425	1410
#	EL SUEÑO	1475	1387	1418	1659	1350	1205	1229

CuadroN°19: Demanda de agua caliente en periodos fríos en Hoteles (litros/dia)

#	NOMBRE COMERCIAL	MAY	JUN	JUL	AGO	SET	OCT
1	MEYLLI	1244	1217	1186	1312	1338	1454
2	LUZANTY	1122	1036	1051	1168	1212	1317
3	PLAYA HOTEL	1109	1079	1073	1197	1210	1328
4	HOTEL PALMA REAL	1151	1127	1084	1199	1246	1326
5	LATINO	1372	1322	1317	1445	1468	1604
6	HOSTAL BOULEVARD	1357	1327	1294	1432	1459	1586
7	LIBRA'S	1470	1438	1402	1551	1581	1718



CuadroN°20: Demanda de agua caliente en periodos cálidos en Hostales (litros/dia)

#	NOMBRE COMERCIAL	NOV	DIC	ENE	FEB	MAR	ABR	PROM
								ANUAL
1	MEYLLI	1708	1662	1638	1948	1534	1141	1448
2	LUZANTY	1557	1529	1511	1757	1421	988	1306
3	PLAYA HOTEL	1585	1538	1505	1784	1383	1002	1316
4	HOTEL PALMA REAL	1578	1516	1494	1742	1392	981	1320
5	LATINO	1898	1834	1826	2156	1642	1281	1597
6	HOSTAL	1863	1813	1786	2125	1673	1245	1580
	BOULEVARD							
7	LIBRA'S	2019	1964	1935	2302	1812	1349	1712

✓ Hoteles

Grafico Nº 02: Consumo de agua caliente anual- litros por persona

Fuente: Elaboración propia

En el grafico observamos que el hostal de mayor consumo de agua caliente anual es LIBRA'S con 51954 litros y el de menor consumo de agua caliente es LUZANTY con 39639 litros.

4.5 DETERMINACIÓN DE LA DEMANDA ENERGÉTICA

Es la energía necesaria para elevar la temperatura de un volumen determinado de agua, desde un valor inicial (T_{H2O}) hasta la temperatura de consumo (T_{ACS}).

$$E = MC_e(T_{ACS} - T_{H2O})n \dots (3)$$

Dónde:

E: Energía calorífica requerida (MJ/día)

M: Masa de agua a calentar en un día.

Ce: Capacidad calorífica del agua (4.18 kJ/kg-°C)

T_{H2O}: Temperatura inicial del agua (°C)

T_{ACS}: Temperatura del agua caliente (40°C)

Reemplazando en la formula (1) se obtiene la tabla N°02

CUADRO Nº 21: Valores utilizados para hallar la demanda energética

MES	TACS (°C)	TH2O (°C)	n (días)	Ce
Enero 2013	40	20.2	31	4.18
Febrero 2013	40	19.75	28	4.18
Marzo 2013	40	15.23	31	4.18
Abril 2013	40	16.98	30	4.18
Mayo 2013	40	16.52	31	4.18
Junio 2013	40	17.05	30	4.18
Julio 2013	40	18.12	31	4.18
Agosto 2013	40	18.92	31	4.18
Septiembre 2013	40	19.45	30	4.18
Octubre 2013	40	22.15	31	4.18
Noviembre 2013	40	22.54	30	4.18
Diciembre 2013	40	21.06	31	4.18

Fuente: Elaboración propia

La temperatura ambiente y del agua fue proporcionada por la Capitanía de Puerto de Chimbote. Dirección de Hidrografía y Navegación.

CUADRO Nº 22: Demanda energética en periodo frio en hostales (MJ/Año)

Ce	4.18	4.18	4.18	4.18	4.18	4.18
TACS(°C)	40	40	40	40	40	40
TH20(°C)	16.52	17.05	18.12	18.92	19.45	22.15

#	NOMBRE COMERCIAL	MAY	JUN	JUL	AGO	SET	OCT
1	J&L	1,353.30	1,303.01	1,380.29	1,559.52	1,514.42	1,540.65
2	MIS DOS AMORES	3,073.94	1,737.35	1,840.39	2,079.36	2,019.22	2,054.21
3	ENCUENTRO	4,610.91	2,586.28	2,760.58	3,112.99	2,999.37	3,081.31
4	JUNNIOR	3,842.42	2,171.69	2,300.48	2,599.20	2,524.03	2,567.76
5	PK2	4,645.32	2,566.54	2,781.18	3,119.04	3,005.26	2,856.10
6	MIRAMAR	3,440.98	1,888.71	2,007.69	2,266.74	2,245.11	2,262.36
7	AIJIN	4,599.44	2,606.02	2,753.71	3,143.22	3,028.83	3,035.24
8	DIAMANTE	4,995.15	2,823.19	2,990.63	3,378.96	3,281.24	3,338.08
9	DON ALFONSO INN	2,970.71	1,711.03	1,750.46	2,055.18	2,015.29	2,021.79
10	HOSTAL EL	2,689.70	1,520.18	1,610.34	1,819.44	1,766.82	1,797.43
	CAUTIVADOR						
11	ROMANCES GJL	3,314.81	1,928.19	2,051.61	2,266.74	2,221.54	2,047.38
12	LE PARIS	5,161.46	3,125.91	3,090.20	3,898.80	3,786.04	3,851.63
13	EL POSEIDON	4,226.67	2,388.85	2,530.53	2,859.12	2,776.43	2,824.53
14	HAVANA	5,161.46	3,046.94	3,086.83	3,687.24	3,653.46	3,158.08
15	LIBERTAD	3,016.59	1,704.44	1,744.18	2,067.27	2,019.22	2,032.03
16	HOSTAL MONTERRICO	4,358.57	4,428.92	2,635.10	2,798.67	2,757.77	2,866.33
17	EL EMBRUJO II	3,681.84	2,178.27	2,204.34	2,526.66	2,421.89	2,431.26
18	CHICAGO	5,379.39	3,040.36	2,886.06	2,980.01	3,064.19	2,789.56
19	D'SOTO	5,161.46	3,079.85	3,337.79	3,143.22	3,005.26	3,506.14
20	EL SUEÑO	4,301.22	2,467.82	2,710.39	3,100.90	3,022.94	3,014.77

Fuente: Elaboración propia

CUADRO Nº 23: Demanda energética en periodo cálido en hostales (MJ/Año)

Ce	4.18	4.18	4.18	4.18	4.18	4.18
TACS(°C)	40	40	40	40	40	40
TH20(°C)	22.54	21.06	20.2	19.75	15.23	16.98

#	NOMBRE COMERCIAL	NOV	DIC	ENE	FEB	MAR	ABR	PROMEDIO
								ANUAL
1	J&L	1,662	1,722	1,823	2,207	2,181	1,815	1,672
2	MIS DOS AMORES	2,216	2,296	2,430	2,942	2,907	2,420	2,335
3	ENCUENTRO	3,324	3,351	3,645	4,024	4,361	3,525	3,448
4	JUNNIOR	2,770	2,869	3,038	3,678	3,634	3,025	2,918
5	PK2	3,164	3,297	3,622	4,198	4,340	3,611	3,434
6	MIRAMAR	2,378	2,596	2,555	3,147	3,068	2,693	2,546
7	AIJIN	3,139	3,443	3,560	3,803	4,283	3,631	3,419
8	DIAMANTE	3,601	3,730	3,949	4,187	4,725	3,933	3,744
9	DON ALFONSO INN	2,203	2,265	2,402	2,752	2,827	2,396	2,281
10	HOSTAL EL CAUTIVADOR	1,939	2,009	2,126	2,574	2,544	2,118	2,043
11	ROMANCES GJL	2,468	2,580	2,731	3,101	3,260	2,706	2,556
12	LE PARIS	3,905	4,304	4,491	4,651	5,451	4,538	4,188
13	EL POSEIDON	3,047	3,156	3,341	3,501	3,998	3,328	3,165
14	HAVANA	3,630	3,802	4,048	4,268	4,794	3,974	3,859
15	LIBERTAD	2,198	2,286	2,379	2,892	2,735	2,357	2,286
16	HOSTAL MONTERRICO	3,069	3,193	3,248	3,606	3,942	3,366	3,356
17	EL EMBRUJO II	2,744	2,819	2,998	3,310	3,573	2,753	2,803
18	CHICAGO	3,254	4,017	4,253	4,460	5,088	4,236	3,787
19	D'SOTO	3,805	4,030	4,196	4,378	4,979	4,112	3,894
20	EL SUEÑO	3,229	3,405	3,639	3,931	4,333	3,479	3,386

CUADRO Nº 24: Demanda energética en periodo frio en hoteles (MJ/mes)

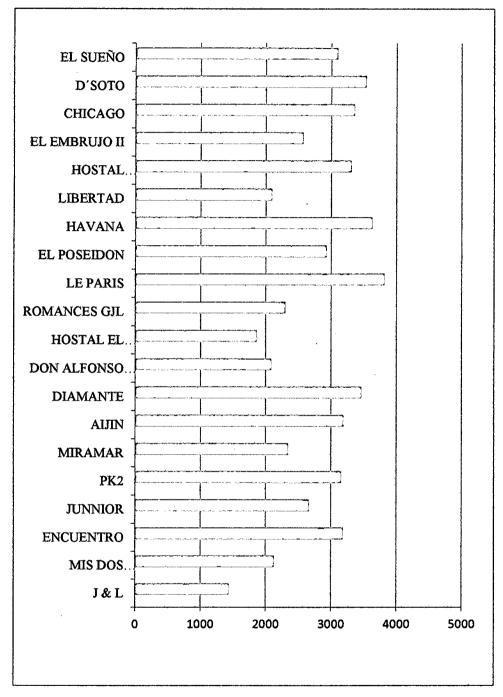
Се	4.18	4.18	4.18	4.18	4.18	4.18
TACS(°C)	40	40	40	40	40	40
TH20(°C)	16.52	17.05	18.12	18.92	19.45	22.15

#	NOMBRE COMERCIAL	MAY	JUN	JUL	AGO	SET	OCT
1	MEYLLI	6,446	3,501	3,363	3,584	3,447	3,363
2	LUZANTY	5,815	2,981	2,980	3,192	3,123	3,045
3	PLAYA HOTEL	5,746	3,106	3,043	3,270	3,117	3,071
4	HOTEL PALMA REAL	5,964	3,244	3,074	3,276	3,212	3,066
5	LATINO	7,111	3,804	3,733	3,947	3,783	3,711

6	HOSTAL BOULEVARD	7,032	3,819	3,669	3,910	3,761	3,669
7	LIBRA'S	7,618	4,138	3,974	4,236	4,074	3,974

CUADRO Nº 25: Demanda energética en periodo cálido en hoteles (MJ/mes)

Ce	4.18	4.18	4.18	4.18	4.18	4.18
Tacs(°C)	40	40	40	40	40	40
TH20(°C)	22.54	21.06	20.2	19.75	15.23	16.98


#	NOMBRE COMERCIAL	NOV	DIC	ENE	FEB	MAR	ABR
1	MEYLLI	3,740	4,079	4,201	4,616	4,922	3,294
2	LUZANTY	3,410	3,753	3,878	4,163	4,560	2,852
3	PLAYA HOTEL	3,470	3,775	3,861	4,227	4,439	2,891
4	HOTEL PALMA REAL	3,455	3,720	3,832	4,129	4,468	2,832
5	LATINO	4,155	4,502	4,684	5,110	5,270	3,697
6	HOSTAL BOULEVARD	4,080	4,449	4,583	5,036	5,370	3,593
7	LIBRA'S	4,420	4,820	4,965	5,456	5,817	3,893

Fuente: Elaboración propia

✓ Hostales:

Grafico 03: Demanda Energética en periodo frio-MJ

En el grafico observamos en el periodo frio el hostal que tiene mayor promedio de demanda energética es LE PARIS 3819 MJ con y el de menor promedio de demanda energética es J&L con 1442 MJ.

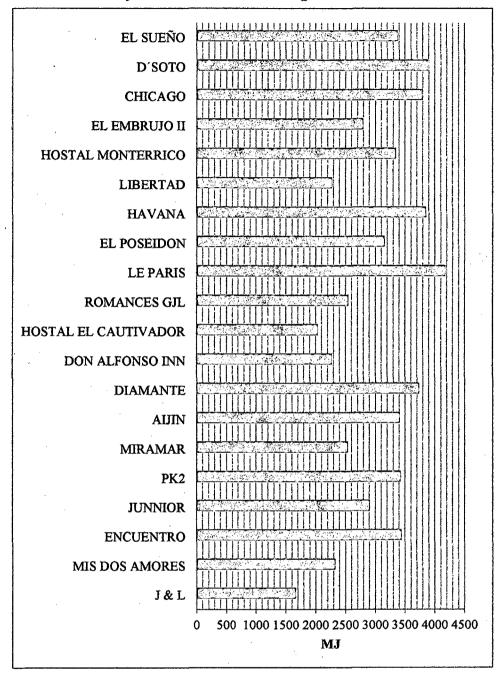
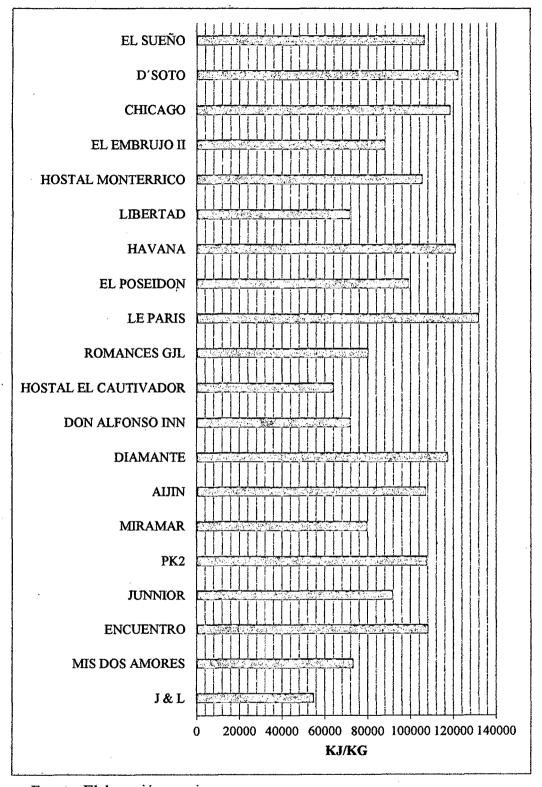

EL SUEÑO D'SOTO **CHICAGO** EL EMBRUJO II **HOSTAL MONTERRICO LIBERTAD HAVANA EL POSEIDON LE PARIS** ROMANCES GJL HOSTAL EL CAUTIVADOR DON ALFONSO INN DIAMANTE AIJIN **MIRAMAR** PK₂ JUNNIOR **ENCUENTRO** MIS DOS AMORES J&L 2000 3000 4000 1000 5000

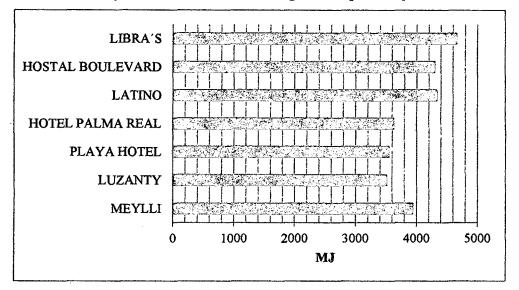
Grafico Nº 04: Demanda Energética en periodo cálido- MJ-Anual.

En el grafico observamos en el periodo frio el hostal que tiene mayor promedio de demanda energética es LE PARIS 4557 MJ con y el de menor promedio de demanda energética es J&L con 1901 MJ.


Grafico Nº 05: Demanda Energética Anual -MJ

En el grafico observamos que el mayor promedio de demanda energética anual es LE PARIS 4188 MJ con y el de menor promedio de demanda energética anual es J&L con 1672 MJ.

Grafico Nº06: Demanda Energética Anual - KJ / Kg



En el grafico observamos que el mayor promedio de demanda energética anual es LE PARIS 132 079 KJ/Kg con y el de menor promedio de demanda energética anual es J&L con 55 124 KJ/Kg

✓ Hoteles:

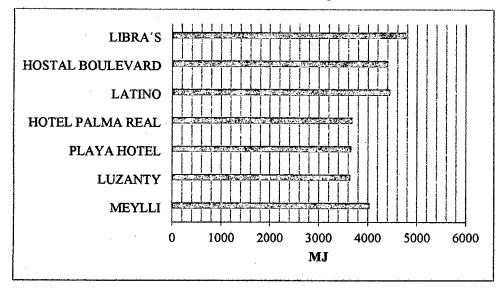
Grafico Nº 07: Demanda Energética en periodo frio- MJ Anual

Fuente: Elaboración propia

En el grafico observamos en el periodo frio el hotel que tiene mayor promedio de demanda energética es LIBRA'S 4669 MJ con y el de menor promedio de demanda energética es LUZANTY con 3523 MJ.

LIBRA'S
HOSTAL BOULEVARD
LATINO
HOTEL PALMA REAL
PLAYA HOTEL
LUZANTY
MEYLLI

0 1000 2000 3000 4000 5000 6000
MJ


Grafico Nº 08: Demanda Energética en periodo cálido- MJ

Fuente: Elaboración propia

En el grafico observamos en el periodo cálido el hotel que tiene mayor promedio de demanda energética es LIBRA'S 4895 MJ con y el de menor promedio de demanda energética es LUZANTY con 4142 MJ.

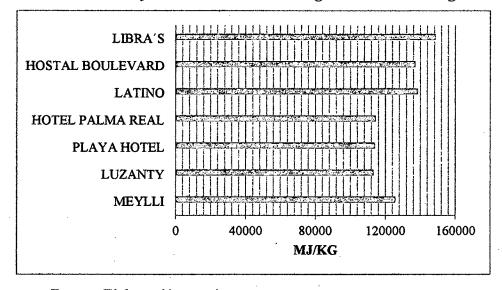


Grafico Nº 09: Demanda Energética Anual -MJ

En el grafico observamos que el mayor promedio de demanda energética anual es LIBRA'S 4782 MJ con y el de menor promedio de demanda energética anual es LUZANTY con 40436 MJ

Grafico Nº 10: Demanda Energética Anual -MJ/Kg

Fuente: Elaboración propia

En el grafico observamos que el mayor promedio de demanda energética anual es LIBRA'S 148 856 KJ/Kg con y el de menor promedio de demanda energética anual es LUZANTY con 125 955 KJ/Kg

4.6 AREA DE CAPTACION DEL COLECTOR

Es el área necesaria para satisfacer la demanda energética, está relacionada con la radiación global y la eficiencia total del sistema de calentamiento del agua.

Para garantizar nuestro abastecimiento de ACS, los cálculos se realizaran en función del mes menos promedio de radiación solar, en este caso será en el mes de JUNIO la radiación solar promedio es 16 861 KJ/m²-dia (ver CUADRO N°02) la eficiencia a efectos de cálculo se consideran de 35%.

$$A_{cap} = \frac{E}{H_P \times \eta_g} \dots (4)$$

Dónde:

HP: Radiación solar promedio (16 860 KJ/m²-dia)

Ng: eficiencia del colector (35%)

Y además:

$$E = MC_e(T_{H2O} - T_{ACS}) \dots (5)$$

Dónde:

E: Energía calorífica requerida (MJ/día)

M: Masa de agua a calentar en un día (Kg/dia)

C_e: Capacidad calorífica del agua (4.18 kJ/kg-°C)

T_{H2O}: Temperatura inicial del agua (15.23°C)

T_{ACS}: Temperatura del agua caliente (40°C)

La temperatura de ambiente fue tomada en base a fundamentos técnicos del OLADE. Según el estudio ara el confort en sistemas de ACS.

Número de Colectores

$$N_C = \frac{A_{CAP} \times F.S}{A_C} \dots \dots (6)$$

Dónde:

N_c: Numero de colectores

Consideraremos para área de colector de:

 A_c : Área de un colector $(2 m^2)$

F.S: Factor de seguridad o de proyección de demanda (F.S [1 - 1.5])

Consideramos F.S=1

✓ Hostales:

CUADRO Nº 26: Área de captación y Número de Colectores

#	NOMBRE	AREA DE	COLECTO	NUMERO DE	COLECTO
	COMERCIAL	CAPATACION	RES	COLECTORES	RES
1	J&L	9.34	5	4.67	5
2	MIS DOS AMORES	12.46	7	6.23	7.
3	ENCUENTRO	18.37	10	9.18	10
4	JUNNIOR	15.57	9	7.78	8
5	PK2	18.29	10	9.14	10
6	MIRAMAR	13.56	7	6.78	7
7	AIJIN	18.20	10	9.10	10
8	DIAMANTE	19.94	11	9.97	10
9	DON ALFONSO INN	12.17	7	6.08	7
#	HOSTAL EL	10.90	6	5,45	6
	CAUTIVADOR				
#	ROMANCES GJL	13.64	8	6.82	7
#	LE PARIS	22.38	12	11.19	12
#	EL POSEIDON	16.85	9	8.43	9
#	HAVANA	20.55	11	10.28	11
#	LIBERTAD	12.19	7	6.10	7
#	HOSTAL	17.91	10	8.95	9
	MONTERRICO				
#	EL EMBRUJO II	14.95	8	7.47	8
#	CHICAGO	20.11	11	10.06	11
#	D'SOTO	20.74	11	10.37	11
#	EL SUEÑO	18.08	10	9.04	10
	P	ROMEDIO DE COI	LECTORES		9

El promedio de colectores solares que debe implementar en hostales es de nueve.

✓ Hoteles:

CUADRO Nº 27: Área de captación y Número de Colectores

#	NOMBRE	AREA DE	REDOND	NUMERO DE	REDOND				
	COMERCIAL	CAPATACION	EO	COLECTORES	EO				
1	MEYLLI	21.34	11	10.67	11				
2	LUZANTY	19.23	10	9.61	10				
3	PLAYA HOTEL	19.37	10	9.68	10				
4	HOTEL PALMA REAL	19.44	11	9.72	10				
5	LATINO	23.52	13	11.76	12				
6	HOSTAL BOULEVARD	23.29	12	11.64	12				
7	LIBRA'S	25.23	13	12.61	13				
	PROMEDIO DE COLECTORES								

El promedio de colectores solares que debe implementar en hoteles es de once colectores solares.

4.6.A Pérdidas de Calor

Las pérdidas de calor en el colector solar plano se expresan por la siguiente ecuación:

$$q_{perd} = U_L \times A_C \times (T_P - T_{Amb}).....(8)$$

Dónde:

 U_L : Coeficiente total de pérdidas de calor.

T_P: Temperatura promedio de la placa de absorción (asumiendo 60°C=333k)

 T_{Amb} : Temperatura ambiente (16.5°C = 289.5 K)

La ecuación fue tomada de la bibliografia de Energía Solar –Autor; Aníbal Valera-UNI, Perú.

4.6.A.1 Calculando los coeficientes de pérdidas

✓ Perdida por radiación de la placa al vidrio

$$h_{r,p-v} = \frac{\sigma(r_P + r_V)(r_P^2 + r_V^2)}{\left(\frac{1}{\epsilon_P} + \frac{1}{\epsilon_V} - 1\right)}....(9)$$

(

Dónde:

σ: Constante de Stefan-Boltzmann (5.67*10⁻⁸ w/m²*K)

 $T_{\rm V}$: Temperatura del vidrio (suponiendo 40°C= 313K)

 ε_P : Emitancia de la placa de absorción el infrarrojo (pintura negra=0.9)

 ε_{V} : Emitancia del vidrio en el infrarrojo (0.88)

Reemplazando en la ecuación (8) obtenemos:

$$h_{r,p-v} = 6.10 \; \frac{W}{m^2 * K}$$

✓ Pérdida por radiación del vidrio al aire

$$h_{r,v-a} = \sigma \varepsilon_v (T_P + T_a)(T_P^2 + T_a^2) \dots (10)$$

Reemplazando en la ecuación (9) obtenemos:

$$h_{r,v-a} = 5.46 \frac{W}{m^2 * K}$$

✓ Pérdida por convección de la placa al vidrio: Tomando un valor de $h_c = 0.1255$

$$h_{c,p-v} = h_C(T_P - T_v)......(11)$$

Reemplazando en la ecuación (10) obtenemos:

$$h_{c,p-v} = 2.51 \, \frac{w}{m^2 * K}$$

✓ Pérdida por convección del vidrio al aire:

$$h_{c,v-a} = 5.7 + 3.8V_V \dots (12)$$

Dónde:

 V_{ν} : Velocidad del viento (4.1 m/s)

Reemplazando en la ecuación (11) obtenemos:

$$h_{c,v-a} = 21.28 \; \frac{W}{m^2 * K}$$

4.6.A.2 Calculando el Coeficiente Total de Perdidas de Calor UL

✓ Coeficiente superior de perdidas

$$U_{SUP} = \left(\frac{1}{h_{c,p-\nu} + h_{r,p-\nu}} + \frac{1}{h_{c,\nu-a} + h_{r,\nu-a}}\right)^{-1} \dots (13)$$

Reemplazando las ecuaciones (9), (10), (11) y (12) en (13) obtenemos:

$$U_{SUP} = 6.51 \frac{W}{m^2 * K}$$

Coeficiente inferior de perdidas

$$U_{INF} = \frac{1}{R1} = \frac{Ka}{L}.....(14)$$

Dónde:

Ka: conductividad térmica del aislante (fibra de vidrio= 0.04 w/m-k).

L: espesor del aislante por el fondo y por los lados (5.08 cm).

Reemplazando en la ecuación (13) obtenemos:

$$U_{INE} = 0.79 \text{ W/m}^2\text{-K}$$

✓ Coeficiente de pérdidas por los lados U₁.

$$U_l = \frac{k_a MP}{lA_c} \dots (15)$$

Dónde:

M: altura del colector (8 cm)

P: perímetro del colector (6 m)

Reemplazando en la ecuación (15) obtenemos:

$$U_l = 0.19 \text{ W/m}^2\text{-K}$$

✓ Coeficiente global de pérdidas U_L.

$$U_L = U_{SUP} + U_{INF} + U_1 \dots \dots (16)$$

Reemplazando en la ecuación (15) obtenemos:

$$U_L = 7.49$$

✓ Hallamos las pérdidas de calor
 Reemplazamos en la ecuación (8) y obtenemos:

$$q_{perd} = 651.63 W$$

4.6.B Calor Útil

$$q_{util} = H_T A_C(\tau \alpha) + U_L A_C(T_P - T_a).....(17)$$

✓ Calculando el producto transmitancia-absortancia:

$$(\tau \alpha) = \frac{\tau \alpha}{1 - (1 - \alpha)\rho_d} \dots (18)$$

Dónde:

τ: Transmitancia del vidrio (0.88)

α: Absortancia de la placa (0.90)

 ρ_d : Reflectancia difusa (0.16)

La Transmitancia, absortancia y reflectancia difusa son tomadas de catálogo para el tipo de colector según especificaciones técnicas.

Reemplazando en la ecuación (18) obtenemos:

$$(\tau \alpha) = 0.80$$

Luego reemplazamos en la ecuación (17) y obtenemos:

$$q_{vtil} = 17\,275.63\,\mathrm{W}$$

✓ Eficiencia para la placa de absorción

$$F = \frac{\tanh M(W-D)/2}{M(W-D)/2}....(19)$$

Dónde:

W: distancia entre tubos (0.10 m)

D: diámetro del tubo (0.0127 m)

3: espesor de la placa de absorción (0.5 mm)

 Balance de energía en la placa de absorción Dónde:

$$M^2 = \frac{v_L}{\kappa_{\alpha\delta}}.....(20)$$

Reemplazando en la ecuación (20) obtenemos:

$$M = 6.11 \text{ m}^{-1}$$

o Por otro lado obtenemos:

$$M (W-D)/2 = 0.27$$

 En consecuencia obtenemos reemplazando en la ecuación (19):

$$F = 0.97$$

4.6.C Calor Disipado por el Sistema de Almacenamiento

✓ Calor disipado en las paredes

$$q_{paredes} = \frac{2\pi KaH\Delta T}{\ln(D_e/D_i)}.....(21)$$

Dónde:

$$\Delta T$$
: $T_{ACS} - T_a = 23.5$ °C

Reemplazando en la ecuación (21) obtenemos:

$$q_{paredes} = 76.12 \text{ W}$$

✓ Calor disipado en las tapas

$$q_{tapas} = 2\pi KaD_i \Delta T/4I.....(22)$$

Reemplazando en la ecuación (22) obtenemos:

$$q_{tapas} = 34.44 \text{ W}$$

✓ Total

4.6.D Energía Almacenada por el Agua

Cuando ΔT : $T_{ACS} - T_a = 23.5$ °C

Balance de energía:

$$\Delta U = m_{H2O} C_e \Delta T \dots (24)$$

Dónde:

 $m_{H2O}(hostales)$: 1 962 kg/día

 $m_{H2O}(hoteles)$: 2 302 kg/dia

Reemplazando en la ecuación (24) obtenemos:

$$\Delta U(hostales) = 192.727 \text{ MJ}$$

$$\Delta U(hoteles) = 226.125 \text{ MJ}$$

Los valores obtenidos son las cantidades de energía de las dos categorías de estudio en función a su demanda capacidad y afluencia de visitantes.

4.7 CALCULO DE LA MASA TOTAL DEL AGUA DE LAS CONEXIONES DEL TANQUE Y DE LA PLACA ABSORBEDORA

4.7.A Calculo de la Masa total del Agua

$$m_{TH2O} = m_{H2O} + \rho_{H2O}[(L_i \pi D_i^2/4) + (L_e \pi D_e^2/4)]......(25)$$

 $m_{H20}(hostales)$: Masa de agua en el tanque (1 962 Kg)

 $m_{H2O}(hoteles)$: Masa de agua en el tanque (2 302 Kg)

 ρ_{H20} : Densidad del agua (1000kg/m³)

 $L_i(hostales)$: Longitud total de los tubos internos (165 m)

 $L_i(hoteles)$: Longitud total de los tubos internos (200 m)

 $L_e(hostales)$: Longitud total de los tubos cabeceros y conexiones (20 m)

 $L_e(hoteles)$: Longitud total de los tubos cabeceros y conexiones (25 m)

D_i: Diámetro de los tubos internos (0.0127 m)

D_e: Diámetro de los tubos externos (0.0254 m)

Reemplazando datos en la ecuación (25) obtenemos:

$$m_{TH2O}(hostales) = 1993$$
kg
 $m_{TH2O}(hoteles) = 2340$ kg

4.7.B Calculo de la Masa de las Conexiones

$$m_{cc} = m_e * L_{cc} \dots (26)$$

Dónde:

m_e: Masa por metro lineal del material

Lcc: Longitud de las tuberías

El cálculo de la masa de las conexiones abarcará la masa de los tubos internos, cabeceros y de las conexiones.

Reemplazando en la ecuación (26) obtenemos:

$$m_{cc}(hostales) = \left(1.266 \frac{kg}{m} \times 165m\right) + \left(2.498 \frac{kg}{m} \times 20m\right) = 258.85 \text{ kg}$$

$$m_{cc}(hoteles) = \left(1.266 \frac{kg}{m} \times 200m\right) + \left(2.498 \frac{kg}{m} \times 25m\right) = 315.65 \text{ kg}$$

4.7.C Calculo de la masa del Tanque

$$m_t = \rho_t(\pi DH + \pi D^2/2).....(27)$$

Dónde:

 ρ_t : Densidad del material del tanque (7898 kg/m3)

D: Diámetro del tanque

H: Altura del tanque

e: Espesor del material

Cálculo de las dimensiones del tanque:

$$V_t = \pi D^2 / 4 * H \dots (28)$$

$$H = 1.075 * D.....(29)$$

$$D^3 = V/0.8443...$$
 (30)

Reemplazamos en la ecuación (30) y obtenemos:

$$D(hostales) = 1.33 m$$

$$D(hoteles) = 1.40 m$$

Reemplazamos el valor obtenido de la ecuación (30) en la ecuación (29) obtenemos:

$$H(hostales) = 1.43 m$$

$$H(hotales) = 1.50 m$$

Reemplazamos el valor obtenido de la ecuación (29) en la ecuación (28) obtenemos:

$$V_t(hostales) = 0.97m^3$$

$$V_t(hoteles) = 1.02m^3$$

El tanque será de fierro galvanizado de 1/8 de espesor; 3.175x 10⁻³, reemplazando en la ecuación (27) obtenemos.

4.7.D Calculo de la masa de la placa absorbedora

$$m_p = A_{cap} x 2.4 \frac{Kg}{m^2} \dots (31)$$

Peso por metro cuadrado de placa de 1/13" de espesor de 2.4 $\frac{Kg}{m^2}$, reemplazando en la ecuación (30) obtenemos.

$$m_p(hostales) = 17.91m^2x2.4\frac{Kg}{m^2} = 42.98 Kg$$

 $m_p(hoteles) = 21.34m^2x2.4\frac{Kg}{m^2} = 51.22 Kg$

5.0 ESTUDIO ECONOMICO DEL PROYECTO

5.1 PRESUPUESTO DEL PROYECTO

5.1.A Vida Útil del Colector

Este punto incide mucho en lo que va ser el costo final y la rentabilidad del proyecto en el estudio general. El núcleo del sistema de ACS son los colectores solares de placa plana estos dispositivos serán de construcción sólidas de componentes durables.

Se estima una vida útil de 20 años asumiendo que durante éste periodo no será necesario mantenimiento, ni reparaciones que incidan significativamente en el costo.

5.1.B Importes Parciales

Para determinar este costo habrá que considerar, en primer lugar todas las inversiones que serán necesarias para la construcción e instalación del equipo

5.1.B.1 Precios de Algunas Empresas que Distribuyen Colectores Solares

Cuadro Nº 28: precios actuales de colectores solares de placa plana

		Precio del	Precio del	
		Conjunto	Conjunto	
	Precio	de CSP	de CSP	
Marca-Modelo-website	(US\$/m²)	(US\$)	(US\$)	País
		categoría	categoría	
		A	В	

Sonnenkraft, C1500S,	390	3510,00	4290.00	Alemania
Velux, U10	265.59	2390.31	2921.49	España
Savoi,	240.00	2160.00	2640.00	Argentina
Inelsacontrols SL.	380.62	3425.58	4186.82	España
Chromagen,				
Energía solar Termica, CR10 Dsn	250.02	2250.18	2750.22	España

Naturalmente que los colectores que vienen del exterior se aplicara los costos de transporte y los impuestos.

5.1.B.2 Costos Fijos si se Construye el Conjunto de Colectores

Los costos de construcción de un colector solar de placa plana esta entre US\$ 300-400; (Trabajo de Investigación; Diseño, construcción y evaluación del funcionamiento de una terma solar de placa plana para ser instalada en un domicilio de la Urb. Carmen-Chimbote; 2005); por lo tanto:

Hostales:

El costo del sistema asciende a un promedio de US\$ 3600

Hoteles:

El costo del sistema asciende a un promedio de US\$ 4400

5.1.B.3 Costos Variables

Para la operación y limpieza del sistema se considera al personal del hotel previamente capacitado y manteniendo por una mes al año por la persona que instalo el sistema;

✓ Un costo de mantenimiento y operación: 600 US\$/año

6.0 CONCLUSIONES

- Se ha caracterizado el recurso solar de la ciudad de Chimbote la cual cuenta con radiación solar de 16 860 KJ/m²-dia; donde el ángulo de inclinación más óptimo es de 25°.
- Se obtuvo un consumo promedio de agua caliente anual de 46 171 litros en la hostales y un consumo de agua caliente de 19 248 litros en hoteles.
- Se obtuvo mayor demanda energética promedio en el periodo frio de 3 819 MJ y en periodo cálido de 4 557 MJ en hostales por el hostal LE PARIS y la mayor demanda energética promedio en el periodo frio de 4 669 MJ y en periodo cálido de 4 895 MJ en hoteles por el hotel LIBRA'S.
- Se concluye que el servicio hotelero de dos estrellas en hostales necesita un promedio de 9 colectores solares con un tanque de almacenamiento de 1993 lt de un diámetro de 1.33m y una altura de 1.43m; y los hoteles necesita un promedio de 11 colectores con un tanque de almacenamiento de 2340 lt de un diámetro de 1.4m y una altura de 1.5m.
- Se concluye que el servicio hotelero de dos estrellas en hostales necesita un promedio de 9 colectores solares lo cual representa un costo aproximado de US\$ 3 600 y hoteles un promedio de 11 colectores solares la cual representa un costo aproximado de US\$ 4 400.
- Se obtuvo mayor demanda energética promedio anual de 132 079 KJ/Kg en el hostal LE PARIS y la mayor demanda energética promedio anual de 148 856 KJ/Kg en hoteles por el hotel LIBRA'S.

7.0 RECOMENDACIONES

- > Se recomienda utilizar materiales en base a conductividades térmicas elevadas para el aprovechamiento máximo del calor.
- Se recomienda aplicar de manera inmediata los cambios de hábitos y usos de fuentes de energía como la eléctrica sustituidos por energía térmica a través de colector solar.
- Se recomienda que los Hostales y Hoteles de gran capacidad se orienten al uso de energías alternativas para calentamiento de ACS.
- ➤ Se recomienda aplicar el proyecto bajo el concepto económico y ecológico beneficioso ya que no contamina y el periodo de retorno de la inversión no pasa los 9 meses.

8.0 BIBLIOGRAFIA

8.1 LIBROS

- ➤ Duffie, J.A.; Beckman W.A., (1991). Solar Engineering Of Therma Processes. EE.UU: John Wiley & Sons Inc.
- Chasseriaux, J.M. (1990). Conversión Térmica de la Radiación Solar.
 Argentina: Hemisferio Sur
- Bernard, Roger. (1982). La Radiación Solar Conversión Térmica y Aplicaciones. España: Espasa-Calpe.
- Almanza, R.; Muñoz, F. (1994). Ingeniería de la Energía Solar. Mexico: El Colegio Nacional.
- Oliveros, A. (1990). Tecnología Energética y Desarrollada. Perú: Concytec.
- Montgomery, R. (1986). Energía Solar: Selección del Equipo, Instalación y Aprovechamiento. España: Limusa.

8.2 TESIS

- ➤ Varas, E. (2009). Abastecimiento de Agua Caliente Usando Colectores Solares para un Hotel Rural en la Ciudad de Chimbote. Tesis de Grado, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, Perú.
- ➤ López, E.A. (2003). Aplicación de un Sistema de Agua Caliente Sanitaria para Demanda Múltiple. Tesis de Grado, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, Perú.

- Cruz, O. (2009). La Calidad del Servicio Hotelero en las Ciudades de Chimbote y Nuevo Chimbote. Tesis de Grado, Facultad de Ingeniería, Universidad San Pedro, Chimbote, Perú.
- Gutierrez, R. (2004), Diseño de un colector Solar para uso Convencional, Tesis de Grado, Facultad de Ingeniería, Universidad Nacional del Callao. Lima, Perú.
- ➤ Pacheco, L. (2009). Aplicación de un Tanque Estratificado para calentamiento de agua, Tesis de Grado, Facultad de Ingeniería, Universidad Nacional de Piura, Piura, Perú.
- ➢ Garay, C.; Chauca P. (2011). Tecnología para diseño de colectores solares Rurales, Tesis de Grado, Facultad de Ingeniería, Universidad Nacional de Ingeniería, Lima, Perú.

ANEXOS

INDICE DE CUADROS

ANEXO A:

PROMEDIO ANUAL DE LA IRRADIACIÓN DIARIA EN EL PERÚ

ANEXO B:

> RADIACIÓN SOLAR DEL PERÚ (promedio diario anual).

ANEXO C:

➤ CANTIDAD DE AGUA CALIENTE USADA POR DIFERENTES SECTORES DEMANDA DE ACS A 60°C.

ANEXO D:

ENCUESTA REALIZADA A LOS HUESPEDES DEL HOTEL MEYLLI.

ANEXO E:

RESULTADOS DE LA ENCUESTA REALIZADA A LOS HUESPEDES DEL HOTEL MEYLLI.

ANEXO F:

> ESTABLECIMIENTOS HOTELEROS EN LA CIUDAD DE CHIMBOTE-2013.

ANEXO G:

> ALGUNOS DATOS BASICO TÉCNICOS DE COLECTORES

ANEXO A

PROMEDIO ANUAL DE LA IRRADIACIÓN DIARIA EN EL PERÚ

ſ.	LOCALIDAD	DISTRITO	PROVINCI	DEPARTAMENT	ALTITUD	IRRADIACION
			A	o	(metros)	SOLAR
	•					(promedio anual)
1	iquitos	iquitos		LORETO	125	3.73
2	EL CEHEPA	EL CEHEPA		AMAZONAS	240	2.89
3	requeña	REQUEÑA		LORETO	180	3,66
4	HDA. EL VALOR	HDA. EL		AMAZONAS	421	4.49
		VALOR				
5	YURIMAGUAS	YURIMAGU		LORETO	185	4.14
		AS				
6	JUAN GUERRA	JUAN		SAN MARTIN	390	3.05
		GUERRA				
7	CAJAMARCA	CAJAMARC		CAJAMARCA	2640	4.47
		A				
8	PADRE ABAD	PADRE		UCAYALI	270	4.02
		ABAD				
9	TINGO MARIA	RUPA-RUPA		HUANUCO	640	4.02
10	HUANUCO	HUANUCO		HUANUCO	1895	4.52
11	HUMAYA	LEONCIO		LIMA	750	4.65
		PRADO				
12	SAN RAMON	SAN		NINUL	800	3.08
		RAMON				
13	IBERIA	IBERIA		MADRE DE DIOS	390	3.68
14	НИАСНО	HUACHO		JUNIN	3350	4.97
15	SANTA ANA	SANTA ANA		CUSCO	920	4.01
16	АУАСИСНО	AYACUCHO		AYACUCHO	2760	4.89
17	SAN JERONIMO	SAN		cusco	3220	4.69
		JERONIMO				
18	ABANCAY	ABANCAY		APURIMAC	2376	4.75
19	MANRIQUE	INDEPENDE		ICA	200	4.52
		NCIA				
20	PARCOHA	PARCOHA		ICA	380	5.04
21	ICA	ICO		ICA	300	4.89
22	HDA MUVORD	NAZCA		ICA	110	5.02
23	MARCONA	MARCONA		ICA	620	4.04

24	HUARAYA	моно	PUNO	3890	5.16
25	SIBAYO	SIBAYO	AREQUIPA	3847	4.04
26	PUNO	PUNO	PUNO	3875	5.19
27	JULI	JULI	PUNO	3852	5.05
28	PAMPA DE MAJE	SANTA	AREQUIPA	1440	5.61
		ISABEL DE			
		SIGUAS			
29	AREQUIPA	AREQUIPA	AREQUIPA	2390	5.31
30	CHARACATO	CHARACAJ	AREQUIPA	2451	5.32
		o			
31	MOQUEGUA	MOQUEGUA	MOQUEGUA	1412	5,36
32	PAUCARANIO	PACHIA	TACNA	4541	5.41
33	CALAHA	CALAMA	TACNA	675	4.99

ANEXO B RADIACIÓN SOLAR DEL PERÚ (promedio diario anual)

LUGAR	DEPARTAMENTO	ALTITUD (m)	Rad. Solar
			(kWh/m2-dia)
Zorritos	Tumbes	5	4.93
Guayabamba	Iquitos	122	4.46
Tablazo	Piura	147	5.12
Tarapoto	San martin	356	4.43
Lambayeque	Lambayeque	18	5.00
Cajamarca	Cajamarca	2750	6.58
Cartavio	La Libertad	51	4.86
Huaraz	Ancash	3207	5.79
Huánuco	Huánuco	1800	5.15
Atacocha	Cerro de Pasco	4023	5.45
Fdo. Ibera	Madre de Dios	180	4.52
Huancayo	Junin	3350	6.78
La Molina	Lima	251	4.09
Túnel Cerro	Huancavelica	4600	5.87
Kayra	Cusco	3219	5.28
Abancay	Apurimac	2398	5.21
Ica	Ica	398	5.28
Cachapampa	Ayacucho	2450	6.62
Puno	Puno	3825	6.80
Characato	Arequipa	2461	7.09
Moquegua	Moquegua	1420	6.14
Calana	Tacna	590	5.43

ANEXO C

CANTIDAD DE AGUA CALIENTE USADA POR DIFERENTES SECTORES DEMANDA DE ACS A 60°C

Tipo de Edificación	Litros de ACS/día	Por
Vivienda unifamiliar	30	Persona
Vivienda multifamiliar	22	Persona
Hospitales	55	Cama
Hotel ••••	70	Cama
Hotel ***	55	Cama
Hotel ••	40	Cama
Hostal•Pensión	35	Cama
Camping	40	Emplazamiento
Residencias	55	Cama
Vestuarios	15	Servicio
Escuelas	3	Alumno
Cuarteles	20	Persona
Oficinas	3	Persona
Gimnasios	20	Usuario
Lavanderías	5	Kilo de ropa
Restaurantes	5 a 10	Comida

FUENTE: OLADE (Organización Latinoamericana de Energía)

ANEXO D

ENCUESTA REALIZADA A LOS HUESPEDES DEL HOTEL MEYLLI

Leer las preguntas y marcar con un aspa la respuesta que usted crea conveniente

N°	PREGUNTA	ALTERNATIVA	RESPUESTA
1	¿Ha escuchado algunas ves de colectores	Si	
	solares de placa plana?	No	
2	¿Qué tipo de sistemas ha escuchado o	Colectores solares	
	conoce para calentar agua?	Termas eléctricas	
		Termas de gas	
3	¿Cuál cree que es la temperatura óptima	50°C	
	a la que tiene que estar el agua para su	45°C	
	uso a la hora del aseo personal?	40°C	
		35℃	
	ļ	30℃	
4	El servicio brindado por el hotel según su	Muy buena	
	criterio es	Buena	
		Mala	

ANEXO E

RESULTADOS DE LA ENCUESTA REALIZADA A LOS HUESPEDES DEL HOTEL MEYLLI

TEMPERATURA ADECUADA PARA EL ASEO PERSONAL SEGÚN LOS HUESPEDES DEL HOTEL MAILLY, CHIMBOTE-ANCASH

(grados Celsius)

			(8, 2			
Χı	fi	Fi	hi	hi%	Hi	Hi%
30	15	15	0.15	15	0.15	15
35	19	34	0.19	19	0.34	34
40	30	64	0.30	30	0.64	64
45	12	76	0.12	12	0.76	76
50	13	89	0.13	13	0.89	89
55	11	100	0.11	11	1.00	100
	100		1			


Chimbote, 28 de Octubre al 29 de diciembre del 2013

Fuente: Hotel Meylli

Responsable: Vivar Samanamu Even

Fi: Las 64 personas encuestadas en el hotel Meylli consideran que la temperatura apropiada para el aseo personal es de 40°C.

hi%: El 30% de los encuestados en el hotel Mailly consideran que la temperatura apropiada para el aseo personal es de 40°C.

ANEXO F

ESTABLECIMIENTOS HOTELEROS EN LA CIUDAD DE CHIMBOTE-2013

ORDEN	RUC	RAZON SOCIAL	NOMBRE COMERCIAL	CATEGORIA
1	10327372349	ARANDA IZAGUIRRE CESAR TADEO	SAND'S	
	20445250466	A.S.G. EIRL	A.S.G.	1 ESTRELLA
3	10328409149	AZAÑERO CHAUPIJULCA ROSA CARMELINA		1 ESTRELLA
4			GRAU	1 ESTRELLA
	10328682317	CHAUBULL CA CHAVEZ MULAA MARKOL	LAS TEJAS	1 ESTRELLA
5	10329082631	CHAUPIJULCA CHAVEZ WILMA MARISOL	BUENA VISTA	1 ESTRELLA
6	20531822910	CIA LLONPAHG S.R.L.	BRASIL	1 ESTRELLA
7	20445376486	CONSORCIO HOTELERA MIRANDA S.A.C	MIRANDA I	1 ESTRELLA
8	10460920022	FERNANDEZ QUISPE JESUS TEODORO PATRICIO	BAHÍA DE CHIMBOTE	1 ESTRELLA
9	20445620573	HOSPEDAJE POLO S.R.L.	POLO	1 ESTRELLA
10	10328055738	HUAMAN VERANO TEODORA	LA NONNA DE VERANO	1 ESTRELLA
11	10328019081	LESCANO CHAUCA LAURA N.	PERU	1 ESTRELLA
12	10328885331	OBREGON ALEJOS WILFREDO FERNANDO	MORO	1 ESTRELLA
13	10329688882	RAMIREZ SAENZ PEDRO ANGEL	NARDO	1 ESTRELLA
14	10327892628	RAVINES DE DE LA CRUZ MARIA ANTONIETA	ROMANO'S	1 ESTRELLA
15	10328041184	SANCHEZ ROJAS PEDRO CLAVER	CIELO	1 ESTRELLA
16	10328419829	VARGAS ARRESTEGUI JULIO CESAR	BOLOGNESI	1 ESTRELLA
17	10328299149	VARGAS PÉREZ GERMÁN	LA PALMERA	1 ESTRELLA
18	10412632198	VILLARREAL DIAZ WESLY ALEXANDER	TRUJILLO	1 ESTRELLA
19	10402414702	VINCES GARCIA VERONICA EROISA	EL RETABLO NORTEÑO	1 ESTRELLA
20	10329414251	ACERO RAMOS MARISA ZORAIDA	EL GOLF	2 ESTRELLAS
21	20445250466	A.S.G. EIRL	MIS DOS AMORES - LUGMIG	2 ESTRELLAS
22	10329070889	BALTAZAR MORA GENARO TEOFILO	ENCUENTRO	2 ESTRELLAS
23	10329070889	BALTAZAR MORA GENARO TEOFILO	JUNNIOR	2 ESTRELLAS
24	10191956724	BAZAN REYES FLAVIO	PK2	2 ESTRELLAS
25	10459551391	CANO VERGARAY SHARON NOHELIA	MIRAMAR	2 ESTRELLAS
26	10327975388	CAPORAL RAMOS JUAN ANDRES	FLORIDA	2 ESTRELLAS
27	10327976252	CASTILLO FACHO NORA LANI	AUIN	2 ESTRELLAS
28	20445520781	CERMEND E.I.R.LTDA.	DOS FLAMINGO'S	2 ESTRELLAS
29	20531625171	CF ROY'S E.I.R.L.	ROY'S	2 ESTRELLAS
30	10328661921	DE LA CRUZ SAGASTEGUI JUAN PEDRO	DIAMANTE	2 ESTRELLAS
31	10328100181	DESPOSORIO ABANTO ALEJANDRO	MELODY	2 ESTRELLAS
32	10327977402	FLORES ARTEAGA MELANIO	CAMINO REAL	2 ESTRELLAS
33	10328559710	GALVEZ GONZALEZ FRANCISCA JOSEFINA	CESAR'S	2 ESTRELLAS
34	10329112611	GAMBINI RODRIGUEZ FREDY WENCESLAO	LA CUEVA DEL OSO	2 ESTRELLAS
35	20283202560	HOSTAL DON ALFONSO INN S.R.L	DON ALFONSO INN	2 ESTRELLAS
36	20445693023	HOSTAL EL CAUTIVADOR E.I.R.L.	HOSTAL EL CAUTIVADOR	2 ESTRELLAS
37	20531625502	HOSTAL EROS E.I.R.L.	EROS	2 ESTRELLAS
38	20531802056	HOSTAL ROMANCES GJL S.R.L.	ROMANCES GJL	2 ESTRELLAS
39	20445423310	INVERSIONES CORPORATIVAS MARVEL'S S.A.C.	SAHARA	2 ESTRELLAS

40	20445462480	INVERSIONES GUEMER S.A.C.	SAN ANTONIO I	2 ESTRELLAS
41	20445386872	INVERSIONES TURISTICAS ALBRISH' E.I.R.L.	LOS DELFINES	2 ESTRELLAS
42	10327766002	LA PEÑA ROJAS LEONIDAS CESAR	LE PARIS	2 ESTRELLAS
43	10329458704	LLANOS LEZCANO CARLO RAFAEL	LATINO	2 ESTRELLAS
44	10080912442	LOERO LLANOS DE GARCIA MILAGROS ANTONIETA	EL POSEIDON	2 ESTRELLAS
45	10328186484	MARIN VELASQUEZ GLADYS VICTORIA	HOSTAL BOULEVARD	2 ESTRELLAS
46	10329438444	MARIN VELASQUEZ JUAN JOSE	HAVANA	2 ESTRELLAS
47	10328024913	MEJIA DE CHINCHA MARIA LIA	LIBERTAD	2 ESTRELLAS
48	10328410619	MENDOZA VILLACORTA HILDA EMERITA	HOSTAL MONTERRICO	2 ESTRELLAS
49	10328414819	MENESES BERMUDEZ RUTH ELENA	LAS PALMERAS	2 ESTRELLAS
50	10328109501	ORTIZ ORTEGA BEATRIZ ELIZABETH	MEYLLI	2 ESTRELLAS
51	10094564927	PAIRAZAMAN RODRIGUEZ OSCAR AUGUSTO	EL EMBRUJO	2 ESTRELLAS
52	10094564927	PAIRAZAMAN RODRIGUEZ OSCAR AUGUSTO	EMBRUJO II	2 ESTRELLAS
53	10329213698	PASTOR LA ROSA YVONNE MARGOT	AMERICA	2 ESTRELLAS
54	10108429904	PEREDA PAREDES VDA DE VIZCAINO AMPARO DORIS	LUZANTY	2 ESTRELLAS
55	10329840463	PETTJEAN CHRISTIANSEN ELISA NIEVES	PLAYA HOTEL	2 ESTRELLAS
56	20445677842	REPRESENTACIONES PALMA REAL S.A.C.	HOTEL PALMA REAL	2 ESTRELLAS
57	10328527443	RODRIGUEZ CRUZ AUGUSTO	CHICAGO	2 ESTRELLAS
58	10329241276	RODRIGUEZ YZAGUIRRE ANCELMA YRIS	REAL BOLIVAR	2 ESTRELLAS
59	10328495592	ROSALES ZUMARAN DAVID	BIENVENIDO	2 ESTRELLAS
60	10328857869	SIFUENTES ORELLANA DE DONACIMENTO JUDY EMILIA	1&L.	2 ESTRELLAS
61	10432669390	SOTO CASTRO RICHARD JONATHAN	D'SOTO	2 ESTRELLAS
62	10432669390	SOTO CASTRO RICHARD JONATHAN	D'RICHARD	2 ESTRELLAS
63	10329311932	TORRES BECERRA DAVID HUBER	LIBRA'S	2 ESTRELLAS
64	20445724191	TURISMO SIEMPRE FELIZ S.A.C.	TURISMO SIEMPRE FELIZ	2 ESTRELLAS .
65	10328658173	VELASQUEZ BARRENECHEA ZOILA HAYDEE	EL ENSUEÑO	2 ESTRELLAS
66	20523795555	ADMINISTRADORA Y SERVICIOS SANTIAGO S.A.C.	REAL HOTEL GRAN CHIMU	3 ESTRELLAS
67	20445241718	EMP DE SERV HOTEL.Y TURIST VERTIZ SAC	VERTIZ	3 ESTRELLAS
68	20445305970	HOSTAL CHIFA TUNG FON SAC	TUNG FON	3 ESTRELLAS
69	20282906679	HOSTAL EL PALACIO REAL E.I.R.L	EL PALACIO REAL	3 ESTRELLAS
70	20114393810	HOSTAL RESIDENCIAL IVANSINO INN S.A.	HOSTAL IVANSINO INN	3 ESTRELLAS
71	20114213773	HOTEL SAN FELIPE SRL.	SAN FELIPE	3 ESTRELLAS
72	20114211720	LAS ORQUIDEAS E.I.R.L.	LAS ORQUIDEAS	3 ESTRELLAS
73	10329690909	MEZZICH GIRALDO MONICA JANET	SAN PIETRO	3 ESTRELLAS
74	10328141669	OJEDA VILCA VICTOR	ROYAL PALACE	3 ESTRELLAS
75	20123469489	PER.SERVICIOS Y COMERCIO S.A.C.	PRESIDENTE	3 ESTRELLAS
76	10327958742	SAAVEDRA PADILLA DE ARIAS NORA MIRIAM	LA VIEJA CASONA	3 ESTRELLAS
77	15445696550	XIAN CHUYAO	CANTONES	3 ESTRELLAS

ESTABLECIMIENTOS NUEVOS
ESTABLECIMIENTOS CERRADOS

ANEXO G

ALGUNOS DATOS BASICO TÉCNICOS DE COLECTORES

	CONCEPTO	DATO
Descripción	Fabricante	Sunway de Mexico, S.A de
P		C,V
	Longitud	2.09 m
	Ancho	1.01 m
	Alto	0.076 m
	Área frontal	2.11 m ²
	Área transparente	1,90 m ²
	Capacidad volumétrica	1.95 Lt
;	Peso	40 kg
	Patrón de flujo	Paralelo
Ecuaciones diferenciales	Primer orden	η=63-593.8(Ti-Ta)/I
	Segundo orden	η=63-526.1(Ti-Ta)/I-
		$1021.7((Ti-Ta)/I)^2$
Capacidad	Temperatura baja	22 866 KJ/día
	(35°C9	
	Temperatura Media	16 575 KJ/día
	(50 C)	
	Temperatura Alta	2 618 KJ/día
	(100°C)	
Materiales	Caja	Marco y fondo de aluminio
	Cubierta	Vidrio templado de 4 mm
	Absorbedor	Tubo de cobre soldado a
		lámina de cobre, con
	,	recubrimiento de pintura
		selectiva negra
	Aislamiento	Policianurato