UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"EVALUACION Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NUEVO CHIMBOTE, PROVINCIA DE SANTA-ANCASH"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

TESISTAS:

Bach. RAMÍREZ SALAZAR, Silvia Jhoanna

Bach. ZAVALETA CUARESMA, Jaime

ASESOR:

Ms. LÓPEZ CARRANZA, Atilio Rubén.

NUEVO CHIMBOTE - PERÚ 2019

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"EVALUACION Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NUEVO CHIMBOTE, PROVINCIA DE SANTA-ANCASH"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

REVISADO POR:

Ms. LÓPEZ CARRANZA, Atilio Rubén.

ASESOR

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"EVALUACION Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NUEVO CHIMBOTE, PROVINCIA DE SANTA-ANCASH"

REVISADO Y APROBADO POR EL JURADO EVALUADOR:

Ms. LEÓN BOBADILLA, Abner

Presidente

Ms. LÓPEZ CARRANZA, Atilio R.

Integrante

MS. ALVAREZ ASTO, Luz

Integrante

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

Siendo las once horas del día dieciocho de julio del año dos mil diecinueve, en el Pabellón de la Escuela Profesional de Ingeniería Civil del Campus Universitario de la Universidad Nacional del Santa, El Jurado Evaluador integrado por los docentes Ms. Abner León Bobadilla (Presidente), Ms. Felipe Villavicencio González (Secretario) y Ms. Atilio Rubén López Carranza (Integrante), en cumplimiento a la Resolución Nº 250-2019-UNS-CFI y Resolución Decanal Nº 376-2019-UNS-FI, dan inicio a la sustentación de la Tesis titulada: "EVALUACIÓN Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NVO. CHIMBOTE, PROVINCIA DE SANTA-ANCASH" presentado por los Bachilleres: RAMIREZ SALAZAR SILVIA JHOANNA y ZAVALETA CUARESMA JAIME, quienes fueron asesorados por el Ms. Atilio Rubén López Carranza, según Resolución Decanal Nº 305-2017-UNS-FI.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
RAMIREZ SALAZAR SILVIA JHOANNA	16	BUENO

Siendo las doce horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 18 de julio 2019

Ms. Abner León Bobadilla

Presidente

Mg. Jenisse Fernández Mantilla

Secretaria

Ms. Atilio Ruben López Carranza

Integrante

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

Siendo las once horas del día dieciocho de julio del año dos mil diecinueve, en el Pabellón de la Escuela Profesional de Ingeniería Civil del Campus Universitario de la Universidad Nacional del Santa, El Jurado Evaluador integrado por los docentes Ms. Abner León Bobadilla (Presidente), Ms. Felipe Villavicencio González (Secretario) y Ms. Atilio Rubén López Carranza (Integrante), en cumplimiento a la Resolución Nº 250-2019-UNS-CFI y Resolución Decanal Nº 376-2019-UNS-FI, dan inicio a la sustentación de la Tesis titulada: "EVALUACIÓN Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NVO. CHIMBOTE, PROVINCIA DE SANTA-ANCASH" presentado por los Bachilleres: RAMIREZ SALAZAR SILVIA JHOANNA y ZAVALETA CUARESMA JAIME, quienes fueron asesorados por el Ms. Atilio Rubén López Carranza, según Resolución Decanal Nº 305-2017-UNS-FI.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
ZAVALETA CUARESMA JAIME	16	BUENO

Siendo las doce horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 18 de julio 2019

Ms. Abner León Bobadilla

Presidente

Mg. Jenisse Fernandez Mantilla

Secretaria

Ms. Atilio Rubén Lopez Carranza

Integrante

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE IGENIERIA

FACULTAD DE IGENIERIA ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

DEDICATORIA

A Dios, por darme la fortaleza espiritual día a día para salir adelante en el proceso de mi

formación profesional.

A mi madre Juana, por su constante apoyo que me permitió terminar esta maravillosa

profesión. Por sus consejos, principios e ideales que influyeron en mi formación personal

y profesional.

A mi padre Jaime, por haber sido una maravillosa persona y por dejarme enseñanzas

invalorables, que de donde esta sigue guiándome.

A mi hermano Jhan Franco, por el apoyo incondicional y desinteresado. Ensenándome

el amor hacia la familia y que luchando contra todas las adversidades podremos seguir

adelante y cumplir nuestras metas.

A mis hermanos, Sandra Elizabeth y Jorge Luis, quienes son piezas importantes en mi

vida, dándome la fortaleza y la confianza en todo momento.

A mi Novia Juleisy Kateryn, por darme la motivación y el apoyo necesario para poder

lograr este gran paso en mi vida, ensenándome siempre a luchar por nuestras metas

propuestas.

Jaime Zavaleta

UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE IGENIERIA
ESCUELA PROFECIONAL DE INGENIERIA CIVIL
"Evaluación y Propuesta de un Sistema de Agua Potal

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

DEDICATORIA

A Dios que sobre todo está a mi lado, en cada paso que doy en todos los momentos y metas de mi vida tanto profesional y vida diaria.

A mis padres, Alicia y Carlos, por su apoyo constante e incondicional, en todos los aspectos de mi vida sin dudarlo, ya que ustedes siempre están ahí para mí; gracias por no soltarme de su mano a pesar de todo siempre están junto a mí en todos los amos padres.

A mis hermanos Jhonny, Santitos, Claudia, Doris y Sara; quienes no dudaron de mí y me apoyaron en diferentes formas para culminar mi carrera nunca me cansare de decir cuan importantes son para mí.

A mi esposo Wilson y a mis hijos Daniel y Sofia que son mis amores, que por su apoyo, comprensión y amor fueron mi constante para seguir adelante en cada uno de las metas que me trazo tanto profesional y personal, ya que siempre están ahí en cada instante.

A todos y cada uno de mis profesores que impartieron sus conocimientos y experiencias en el transcurso del presente.

Jhoanna Ramírez

UNIVERSIDAD NACIONAL DEL SANTA
FACULTAD DE IGENIERIA
ESCUELA PROFECIONAL DE INGENIERIA CIVIL
"Evaluación y Propuesta de un Sistema de Agua Potal

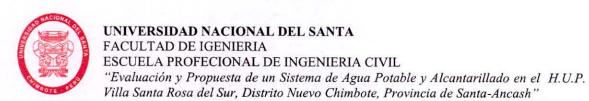
"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

AGRADECIMIENTO

En el transcurso de la realización de esta Tesis hemos recibido apoyo de muchas personas, a las cuales queremos expresar nuestro sincero agradecimiento:

En primer lugar y sobre todas las cosas, **a Dios** quién nos brinda constantemente la fortaleza espiritual, sabiduría y perseverancia para mantenernos firmes a lo largo del trayecto y permitirnos alcanzar esta meta.

A nuestros padres, por su motivación y apoyo incondicional en el día a día.


A nuestro Asesor Ms. Ing. López Carranza, Atilio Rubén. Quien con su experiencia y conocimientos supo guiarnos y ayudarnos durante todo el desarrollo del presente informe.

Al Ing. Edgar Sparrow Álamo por el apoyo del presente a base de su experiencia adquirida en su larga trayectoria profesional.

A nuestros Docentes de la Universidad Nacional Del Santa, por sus enseñanzas que moldearon nuestra formación académica y profesional.

A nuestros amigos y compañeros de Escuela de Ingeniería civil, con quienes compartimos gratos momentos a lo largo de estos años de estudio.

Jhoanna y Jaime

ÍNDICE GENERAL

	INDICE GENERAL	
DEDIC	CATORIA	
AGRA	DECIMIENTO	
ÍNDIC	E GENERAL	
INDIC	TE DE TABLAS	
INDIC	E DE FIGURAS	
RESU	MEN	
ABST	RACT	
CAPIT	TULO I: INTRODUCCIÓN	
1.1	ANTECEDENTES]
1.2	FORMULACIÓN DEL PROBLEMA	3
1.3	OBJETIVOS	4
1.3.1	OBJETIVO GENERAL	5
1.3.2	OBJETIVOS ESPECÍFICOS	5
1.4	FORMULACIÓN DE LA HIPÓTESIS	(
1.5	JUSTIFICACIÓN	6
1.6	LIMITACIONES DEL TRABAJO	-
1.7	VARIABLES	7
1.7.1	VARIABLE INDENDIENTE	7
1.7.2	VARIABLE DEPENDIENTE	7
CAPIT	TULO II: MARCO TEÓRICO	
2.1	MARCO REFERENCIAL	8
2.1.1	UBICACIÓN GEOGRÁFICA	8
2.1.2	LÍMITE GEOGRÁFICO	8

2.1.3

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

2.1.4	CARACTERÍSTICAS DEL SUELO
2.1.5	DESCRIPCIÓN CLIMÁTICA9
2.1.6	DESCRIPCIÓN SOCIAL
2.2	TEORÍAS Y PARÁMETROS DE DISEÑO PARA EL SISTEMA DE AGUA
POTAE	ILE
2.2.1	RED DE DISTRIBUCIÓN DE AGUA POTABLE10
2.2.2	SISTEMAS DE DISTRIBUCIÓN11
2.2.2.1	SISTEMA DE DISTRIBUCIÓN POR BOMBEO11
2.2.2.2	SISTEMA DE DISTRIBUCIÓN POR GRAVEDAD12
2.2.2.3	SISTEMA DE DISTRIBUCIÓN POR BOMBEO - GRAVEDAD13
2.2.3	TIPOS DE REDES DE DISTRIBUCIÓN
2.2.3.1	RED ABIERTA O RAMIFICADA
2.2.3.2	RED CERRADA O EN MALLAS
2.2.4	PARÁMETROS DISEÑO DE RED DE DISTRIBUCIÓN DE AGUA
POTAB	LE16
2.2.4.1	PERIODO DE DISEÑO
	PERIODO DE DISEÑO
2.2.4.2	
2.2.4.2 2.2.4.3	VARIACIONES DE CONSUMO
2.2.4.2 2.2.4.3 2.2.4.4	VARIACIONES DE CONSUMO
2.2.4.2 2.2.4.3 2.2.4.4 2.2.4.5	VARIACIONES DE CONSUMO
2.2.4.2 2.2.4.3 2.2.4.4 2.2.4.5 2.2.4.6	VARIACIONES DE CONSUMO
2.2.4.2 2.2.4.3 2.2.4.4 2.2.4.5 2.2.4.6	VARIACIONES DE CONSUMO
2.2.4.2 2.2.4.3 2.2.4.4 2.2.4.5 2.2.4.6 2.2.4.7	VARIACIONES DE CONSUMO
2.2.4.2 2.2.4.3 2.2.4.4 2.2.4.5 2.2.4.6 2.2.4.7 2.3	VARIACIONES DE CONSUMO

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

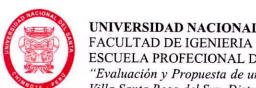
2.3.2.2	SEMIENTERRADOS	29
2.3.2.3	SUPERFICIALES	30
2.3.2.4	ELEVADOS	30
2.3.3	VOLUMEN TOTAL DEL RESERVORIO	. 31
2.3.3.1	VOLUMEN DE REGULACIÓN (V1)	31
2.3.3.2	VOLUMEN CONTRA INCENDIO (V2)	32
2.3.3.3	VOLUMEN DE RESERVA (V ₃)	32
2.3.3.4	VOLUMEN DE RESERVORIO (VT)	33
2.4	CALCULO DE LA POTENCIA DE LA BOMBA	. 33
2.5	TEORÍAS Y PARÁMETROS DE DISEÑO PARA EL SISTEMA	DE
ALCAN	NTARILLADO	. 34
2.5.1	SISTEMAS DE ALCANTARILLADO	. 34
2.5.1.1	ALCANTARILLADO SANITARIO	34
2.5.1.2	ALCANTARILLADO PLUVIAL	35
2.5.1.3	ALCANTARILLADO COMBINADO	36
2.5.2	COMPONENTES DE LAS REDES DE ALCANTARILLADO	. 36
2.5.2.1	RED DE RECOLECCIÓN:	36
2.5.2.2	RAMAL COLECTOR:	36
2.5.2.3	TUBERÍA PRINCIPAL:	37
2.5.2.4	TENSIÓN TRACTIVA:	37
2.5.2.5	PENDIENTE MÍNIMA:	. 37
2.5.2.6	PROFUNDIDAD:	. 37
2.5.2.7	RECUBRIMIENTO:	. 37
2.5.3	PARÁMETROS DISEÑO DE RED ALCANTARILLADO	. 38
2.5.3.1	PERIODO DE DISEÑO	. 38

FACULTAD DE IGENIERIA

2.5.3.2	VARIACIÓN DE CONSUMO
2.5.3.3	POBLACIÓN ACTUAL Y FUTURA
2.5.3.4	DEMANDA DE DOTACIONES DE AGUA
2.5.3.5	CAUDAL DE CONTRIBUCIÓN AL ALCANTARILLADO38
2.5.4	PROPIEDADES HIDRÁULICAS PARA LOS CONDUCTOS CIRCULARES
	39
2.5.4.1	FÓRMULA PARA EL DISEÑO39
2.5.4.2	FLUJO A TUBO LLENO
2.5.4.3	FLUJO A TUBO PARCIALMENTE LLENA
2.5.5	CRITERIOS DE DIMENSIONAMIENTO HIDRÁULICO42
2.5.5.1	CAUDAL MÍNIMO
2.5.5.2	TENSIÓN TRACTIVA
2.5.5.3	PENDIENTE MÍNIMA
2.5.5.4	PENDIENTE MÁXIMA Y VELOCIDAD MÁXIMA43
2.5.5.5	VELOCIDAD CRÍTICA
2.5.5.6	TIRANTE MÁXIMA 44
2.5.5.7	DIÁMETRO NOMINAL MÍNIMO44
2.5.6	CÁMARAS DE INSPECCIÓN
2.5.6.1	BUZONETAS45
2.5.6.2	BUZONES
2.5.6.3	DISTANCIA ENTRE CÁMARAS DE INSPECCIÓN45
CAPIT	ULO III: MATERIALES Y MÉTODOS
3.1	MATERIALES 48
3.1.1	MATERIALES DE GABINETE
3.1.1.1	MATERIAL BIBLIOGRÁFICO48

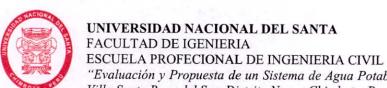
FACULTAD DE IGENIERIA

3.1.1.2	SOFTWARE	. 48
3.1.1.3	EQUIPOS	. 49
3.1.1.4	OTROS	. 50
3.1.2	MATERIALES UTILIZADOS EN CAMPO	50
3.1.3	SERVICIOS	50
3.2	MÉTODOS DE INVESTIGACIÓN	51
3.2.1	TIPO DE INVESTIGACIÓN	51
3.2.1.1	SEGÚN EL OBJETO DE ESTUDIO	51
3.2.1.2	SEGÚN EL TIEMPO A EFECTUARSE	51
3.2.1.3	SEGÚN LA NATURALEZA DE LA INFORMACIÓN	51
3.2.1.4	SEGÚN LA EXTENSIÓN DEL ESTUDIO	51
3.2.2	MÉTODO UTILIZADO	51
3.2.3	UNIVERSO Y/O POBLACIÓN	51
3.2.4	ESTRATEGIA DE ESTUDIO	52
3.2.5	TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS	52
3.2.5.1	EN GABINETE	52
3.2.5.2	EN CAMPO	53
3.2.6	TÉCNICAS PARA EL PROCESAMIENTO DE DATOS	54
CAPIT	ULO IV: RESULTADOS Y DISCUSIONES	48
4.1	SISTEMA DE AGUA POTABLE	55
4.1.1	CALCULOS DE LA POBLACION FUTURA Y DOTACION DE AGUA	55
4.1.1.1	POBLACION FUTURA	55
4.1.1.2	DOTACIÓN DE AGUA	57
4.1.2	CALCULO DEL CAUDAL	57
4.1.2.1	CAUDAL PROMEDIO DIARIA ANUAL (Qm)	57


FACULTAD DE IGENIERIA

4.1.2.2	CAUDAL MÁXIMO DIARIO (Qmd)	. 57
4.1.2.3	CAUDAL MÁXIMO HORARIO (Qmh)	. 58
4.1.3	MODELADO DEL SISTEMA DE AGUA POTABLE MEDIANTE EL U	SO
DE WA	TERCAD	. 58
4.1.3.1	CREACION DE ARCHIVOS PREVIOS	. 58
4.1.3.2	MODELADO DEL SISTEMA.	. 59
4.1.3.3	TABLAS DE RESULTADOS DE LAS TUBERIAS	. 66
4.1.3.4	TABLAS DE RESULTADOS DE LOS NODOS	. 70
4.1.4	CALCULO DEL VOLUMEN TOTAL DEL RESERVORIO	. 72
4.1.4.1	RESERVORIO PARA EL PROYECT-O	. 72
4.1.4.2	VOLUMEN DE REGULACIÓN	. 72
4.1.4.3	VOLUMEN CONTRA INCENDIOS	. 72
4.1.4.4	VOLUMEN DE RESERVA	. 72
4.1.4.5	VOLUMEN TOTAL	. 73
4.1.5	CALCULO DE LA POTENCIA DE LA BOMBA	. 73
4.2	SISTEMA DE ALCANTARILLADO	. 74
4.2.1	CALCULOS DE LA POBLACION FUTURA Y DOTACION DE AGUA	. 74
4.2.1.1	POBLACION FUTURA	. 74
4.2.1.2	DOTACIÓN DE AGUA	. 74
4.2.2	CALCULO DEL CAUDAL	. 74
4.2.2.1	CAUDAL PROMEDIO DIARIA ANUAL (Qm)	. 74
4.2.2.2	CAUDAL MÁXIMO DIARIO (Qmd)	. 75
4.2.2.3	CAUDAL MÁXIMO HORARIO (Qmh)	. 75
4.2.2.4	CAUDAL DE DISEÑO (q)	. 75
4.2.3	MODELADO DEL SISTEMA DE AGUA POTABLE MEDIANTE EL U	SO
DE WA	TERCAD	. 75

FACULTAD DE IGENIERIA


4.2.3.1	CREACION DE ARCHIVOS PREVIOS
4.2.3.2	MODELADO DEL SISTEMA76
4.2.3.3	TABLAS DE RESULTADOS DE LAS TUBERIAS82
4.2.3.4	TABLAS DE RESULTADOS DE BUZONES
4.2.3.5	TABLA DE RESULTADO DEL BUZONES DE DESCARGA91
4.3	ANALISIS DE RESULTADOS
4.3.1	SISTEMA DE AGUA POTABLE – REPRESENTACIONES GRÁFICAS 92
4.3.2	SISTEMA DE ALCANTARILLADO – REPRESENTACIONES GRÁFICAS
	94
4.4	DISCUSIÓN DE LOS RESULTADOS
4.4.1	DISCUSIÓN DE LOS RESULTADOS EN EL SISTEMA DE AGUA
POTAB	LE96
4.4.2	DISCUSIÓN DE LOS RESULTADOS EN EL SISTEMA DE
ALCAN	TARILLADO98
CAPIT	ULO V: CONCLUSIONES Y RECOMENDACIONES
5.1	CONCLUSIONES DEL SISTEMA DE AGUA POTABLE
5.2	CONCLUSIONES DEL SISTEMA DE ALCANTARILLADO
5.3	RECOMENDACIONES
CAPIT	ULO VI: REFERENCIAS BIBLIOGRÁFICAS
6.1	REFERENCIAS BIBLIOGRÁFICAS
CAPIT	ULO VII: ANEXOS
ANEXO	N°1 LEVANTAMIENTO TOPOGRAFICO
ANEXO	N°2 ESTUDIO DE SUELO
ANEXC	N°3 DISPOSITIVO DE CAÍDA DENTRO DEL BUZÓN120
ANEXO	N°4 PLANOS

ESCUELA PROFECIONAL DE INGENIERIA CIVIL
"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P.
Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

INDICE DE TABLAS

Tabla Nº 1 Coeficiente de variación de consumo (Habilitaciones urbanas)	18
Tabla N° 2 Coeficiente de variación de consumo (Ámbito rural)	18
Tabla N° 3 Dotación de agua (l/hab/d) (Habilitaciones Urbanas)	21
Tabla Nº 4 Dotación de agua (l/hab/d) (Ámbito Rural)	22
Tabla N° 5 Valores de rugosidad para algunos materiales.	24
Tabla Nº 6 Coeficientes de fricción «C» en la fórmula de Hazen Y Williams	25
Tabla N° 7 Coeficiente de pérdida local para distintos accesorios	27
Tabla Nº 8 Distancias máximas de acuerdo al diámetro de tubería	46
Tabla N° 9 Población total 1981 - 2017	55
Tabla N° 10 Resumen del método racional	56
Tabla N° 11 Resultados de las tuberías P-1 al P-16	66
Tabla N° 12 Resultados de las tuberías P-17 al P-34	67
Tabla N° 13 Resultados de las tuberías P-35 al P-54	68
Tabla N° 14 Resultados de las tuberías P-35 al P-54	69
Tabla N° 15 Resultados de presiones del Nodo N-1 al N-21	70
Tabla N° 16 Resultados de presiones del Nodo N-22 al N-42	71
Tabla N° 17 Resultados de las tuberías P-1 al P-15	82
Tabla N° 18 Resultados de las tuberías P-16 al P-32	83
Tabla N° 19 Resultados de las tuberías P-33 al P-49	84
Tabla N° 20 Resultados de las tuberías P-50 al P-66	85
Tabla N° 21 Resultados de las tuberías P-67 al P-83	86
Tabla N° 22 Resultados de las tuberías P-84 al P-100	87
Tabla N° 23 Resultados de las tuberías P-101 al P-105	88
Tabla N° 24 Resultados de Buzones Bz-1 al Bz-34	89
Tabla N° 25 Resultados de Buzones Bz-35 al Bz-69	90
Tabla N° 26 Resultados de buzones Bz-70 al Bz-90	91
Tabla N° 27 Cota de descarga del sistema al buzón existente	91

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

INDICE DE FIGURAS

Figura Nº 1 Configuración típica de un sistema de abastecimiento de agua en localidade	25
urbanas	1
Figura N° 2 Sistema de distribución por Bombeo	2
Figura N° 3 Sistema de distribución por Gravedad	3
Figura N° 4 Sistema de distribución por Bombeo - Gravedad	3
Figura N° 5 Tubería de alimentación y la red ramificada	4
Figura N° 6 Esquema de red mallada de una zona urbana	5
Figura N° 7 Variación de Consumo	9
Figura N° 8 Tanque Subterráneo	9
Figura N° 9 Tanque Semienterrado	9
Figura N° 10 Tanque Apoyado	0
Figura N° 11 Tanque Elevado	1
Figura N° 12 Esquema de una Red de Alcantarillado Sanitario	5
Figura N° 13 Sistema de Alcantarillado Pluvial	5
Figura N° 14 Sistema de Alcantarillado Combinado	6
Figura N° 15 Sección de tubería parcialmente llena	1
Figura N° 16 Iniciamos el software WaterCAD CONNECT Edition	9
Figura Nº 17 Ingreso de la red de Agua Potable mediante la herramienta ModelBuilde	er
5	9
Figura N° 18 Visualización de la Red de Agua Potable	0
Figura Nº 19 Asignación automatizada de elevaciones mediante la herramienta TRex 6	0
Figura N° 20 Visualización de las elevaciones a cada Nodo	1

FACULTAD DE IGENIERIA ESCUELA PROFECIONAL DE INGENIERIA CIVIL

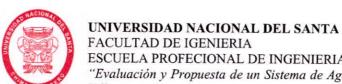

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Figura Nº 21 Asignación automatizada de caudal de diseño mediante la herramienta
LoadBuilder
Figura N° 22 Visualización de las demandas en cada nodo
Figura N° 23 Definimos la potencia de la bomba calculada
Figura N° 24 Definimos la eficiencia de la bomba
Figura N° 25 Parámetros de presiones y velocidades para el diseño optimizado 63
Figura Nº 26 Ingreso de costo unitario para un diseño optimizado con el menor precio
64
Figura Nº 27 Diseño optimizado bajo parámetros máximos, mínimos y menores costos
64
Figura N° 28 Visualización de presiones dentro del parámetro del diseño optimizado . 65
Figura N° 29 Validación del Diseño para verificar que no exista algún error 65
Figura N° 30 Iniciamos el software SewerCAD CONNECT Edition
Figura N° 31 Ingreso de la Red de Alcantarillado Sanitario mediante la herramienta
ModelBuilder
Figura N° 32 Visualización de la Red de Alcantarillado Sanitario
Figura N° 33 Asignación automatizada de elevaciones mediante la herramienta TRex 78
Figura N° 34 Visualización de las elevaciones en cada Buzón
Figura N° 35 Asignación automatizada de caudal de diseño mediante la herramienta
LoadBuilder
Figura N° 36 Visualización del caudal de retorno en cada Buzón
Figura N° 37 Parámetros de Velocidades, Tirante, Recubrimientos, Pendientes y de la
Tensión Tractiva para el diseño automatizado

FACULTAD DE IGENIERIA

Figura N° 38 Definición de Diámetros Comerciales y el coeficiente de Manning a las
tuberías de la Red de Alcantarillado Sanitario
Figura N° 39 Validación del Diseño para verificar que no exista alguna restricción 81 $$
Figura N° 40 Análisis Hidráulico del Sistema de Agua Potable
Figura N° 41 Dirección del flujo del Sistema de Agua Potable
Figura N° 42 Nodo (N-29) del Sistema Agua Potable con la Presión mínima de P=10mCa
93
Figura N° 43 Nodo (N-16) del Sistema Agua Potable con la Presión máxima de P=41mCa
93
Figura N° 44 Análisis Hidráulico del Sistema de Alcantarillado
Figura N° 45 Dirección del flujo del Sistema de Alcantarillado
Figura Nº 46 Tramo (P-105) del Sistema de Alcantarillado con la Tensión Tractiva
mínima de σt =43.105 Pa95
Figura N° 47 Tramo (P-74) del Sistema de Alcantarillado con la Tensión Tractiva mínima
de $\sigma_t = 1.001 \text{ Pa}$ 95

ESCUELA PROFECIONAL DE INGENIERIA CIVIL
"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P.
Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

INDICE DE ECUACIONES

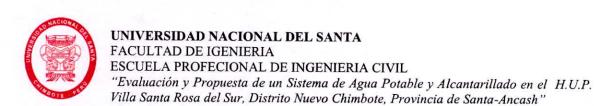
Ecuación Nº 1 Consumo promedio diario	17
Ecuación N° 2 Población futura (Método aritmético)	20
Ecuación N° 3 Población futura (Método racional)	20
Ecuación N° 4 Perdidas continuas	22
Ecuación N° 5 Perdida de carga (Darcy Weisbach)	23
Ecuación Nº 6 Perdida de carga en función del caudal (Darcy Weisbach)	23
Ecuación Nº 7 Coeficiente de fricción	24
Ecuación N° 8 Coeficiente de rugosidad	24
Ecuación Nº 9 Perdida de carga (Hazen y Williams)	25
Ecuación Nº 10 Perdidas locales	26
Ecuación Nº 11 Volumen de regulación	32
Ecuación Nº 12 Volumen de reserva	3
Ecuación Nº 13 Volumen de Almacenamiento del reservorio	13
Ecuación Nº 14 Potencia de la Bomba	3
Ecuación Nº 15 Caudal a extraerse para la bomba	34
Ecuación Nº 16 Velocidad (Formula de Manning)	19
Ecuación Nº 17 Radio hidráulico a tubo lleno	19
Ecuación N° 18 Velocidad de escurrimiento a tubo lleno	10
Ecuación Nº 19 Caudal de escurrimiento a tubo lleno	10
Ecuación Nº 20 Ángulo central (Grado sexagesimal)	1
Ecuación Nº 21 Radio hidráulico de tubo parcialmente llena	1
Ecuación Nº 22 Velocidad de flujo a tubo parcialmente llena	12
Ecuación Nº 23 Caudal de flujo a tubo parcialmente llena	12
Ecuación N° 24 Tensión tractiva	12
Ecuación N° 25 Pendiente mínima	13
Ecuación Nº 26 Velocidad crítica	14

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

RESUMEN


El principal objetivo de este proyecto ha sido la evaluación y propuesta de diseño de un sistema de agua potable y alcantarillado en el H.U.P Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash basado en el diseño hidráulico. Se identifica que el más grave problema que existe en nuestra zona de estudio es el deficiente sistema de agua potable y alcantarillado, además de que no existe propuestas de diseño para una posterior ejecución.

Los resultados de esta investigación están sustentados en base a los parámetros descritos en Obras de Saneamiento del Reglamento Nacional de Edificaciones, lográndose satisfacer la demanda de consumo de agua, evacuación de aguas residuales y por lo tanto se contribuye al mejoramiento de la calidad de vida en la comunidad y del medio ambiente.

ABSTRACT

The main objective of this project has been the evaluation and design proposal of a potable water and sewerage system in the H.U.P Villa Santa Rosa del Sur, New District Chimbote, Province of Santa-Ancash based on the hydraulic design. It is identified that the most serious problem that exists in our area of study is the deficient system of drinking water and sewerage, besides that there are no design proposals for a later execution.

The results of this research are supported on the basis of the parameters described in Sanitation Works of the National Building Regulations, achieving the satisfaction of the demand for water consumption, wastewater evacuation and therefore contributing to the improvement of the quality of life in the community and the environment.

CAPITULO I: INTRODUCCIÓN

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

1.1 ANTECEDENTES

El agua es un recurso de volumen relativamente constante dentro del ciclo hidrológico, durante muchos años se consideró como un recurso infinito, pero en la actualidad se sabe que su disponibilidad es limitada.

Nuestro país enfrenta una disminución acelerada de la disponibilidad de agua en las zonas más pobladas y una creciente contaminación de los recursos hídricos susceptibles de utilizarse como fuente de abastecimiento.

El crecimiento demográfico del país ha propiciado un aumento en la extracción y consumo del vital líquido; lo cual ha ocasionado una mayor generación de aguas residuales.

Uno de los problemas más latentes en la zona rural del Distrito de Nuevo Chimbote, es la falta de agua potable y la deficiencia en la evacuación de las aguas procedentes de uso doméstico, las cuales son liberadas en las calles, por la falta de una infraestructura y un adecuado control de las aguas residuales.


Con este estudio se pretende proporcionar una alternativa de solución general sobre el Diseño de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, por lo cual consideramos que es de suma importancia hacer una evaluación y propuesta acorde y sostenible con el impacto general que tendrá dicho proyecto.

En este trabajo se desarrolla un documento que ofrecerá una solución técnica, que buscará satisfacer la creciente demanda de servicios de agua potable y alcantarillado, en un diagnóstico de la situación actual, considerando sus condiciones sanitarias así como también el diseño de la red de agua potable y alcantarillado beneficiando a la población en estudio.

Es por esta razón que para el estudio se ha tomado como referencias, estudios similares al planteado a nivel de tesis y/o proyectos similares.

La investigación titulada "EVALUACIÓN Y REDISEÑO HIDRÁULICO DE LOS RESERVORIOS Y LÍNEA DE ADUCCIÓN COMO ALTERNATIVA DE SOLUCIÓN PARA EL ABASTECIMIENTO DE AGUA EN LOS AA.HH NUEVO MORO Y EL ARENAL DEL DISTRITO DE MORO", está orientado a evaluar el actual sistema desde los reservorios hasta incluida la red de distribución y por lo que se evaluó los volúmenes que deben tener los reservorios los diámetros de las líneas de aducción y las presiones en la red de distribución para las condiciones actuales de población existente y luego con la proyección hecha para 20 años. Además cabe mencionar que en los AA.HH en estudio se encuentra ubicado en una de las pendientes variables razón por la cual se realizó una simulación de la red de abastecimiento para asegurar las presiones de servicio con el fin de proporcionar un buen servicio a los habitantes.

La investigación titulada "DISEÑO DE LA RED DE ALCANTARILLADO Y PROPUESTA PARA EL TRATAMIENTO DE LAS AGUAS RESIDUALES EN EL SECTOR PUNKURI DEL AA.HH. SAN CARLOS, DISTRITO DE SANTA", esta tesis optimiza la red de alcantarillado y presenta propuestas para el tratamiento de las aguas residuales, en el sector Punkuri del AA.HH San Carlos en el distrito de Santa con las restricciones existente del Reglamento Nacional de Edificaciones, como son la velocidad mínima de 0.3 m/s y velocidad máxima de 3.0 m/s, así como la tensión tractiva de 1 Pa como mínimo en todos los tramos de la red de alcantarillado. El diseño constó en la optimización, en esta parte se obtienen las pendientes y diámetros de los conductos de la red optimizada empleando un software que emplea el cálculo por los algoritmos genéticos. Se empleó el software SEWERCAD 81 teniendo como datos diámetros y

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

pendientes obtenidos de la optimización. Además con ayuda del software ARGIS 10.1 se empleó para el cálculo de áreas tributarias de cada cámara de inspección optimizando el diseño hidráulico.

La investigación titulada "DISEÑO DEL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE POR GRAVEDAD PARA EL CENTRO POBLADO DE CONÍN EN EL DISTRITO DE PONTO, PROVINCIA DE HUARI, DEPARTAMENTO DE ANCASH", esta tesis está orientada a la solución de un problema que viene afectando al centro Poblado que al no contar con la infraestructura para brindar este servicio, casina casos de enfermedades gastrointestinales y parasitarias en la localidad especialmente en los niño que son más vulnerables. Además cabe mencionar que el centro poblado en estudio se encuentra ubicado en una zona de difícil acceso razón por la cual se decidió realizar el proyecto, con el fin de proporcionar este servicio a los habitantes.

1.2 FORMULACIÓN DEL PROBLEMA

El acceso al agua potable y al saneamiento básico es una de las principales necesidades de la población nacional, regional y local, por lo tanto realizar el estudio, diseño y construcción de la infraestructura para estos servicios debe ser una de las principales prioridades para cualquier gestión ya que se constituye como una necesidad básica.

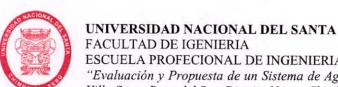
El problema principal del sector de saneamiento peruano es la sostenibilidad deficiente del servicio de aguas potables y de la gestión de aguas residuales.

En la actualidad nuestro país presenta un crecimiento poblacional del 11 % tomados como referencia del año 2007 al 2016 según los datos del Instituto Nacional de Estadísticas (INEI), este crecimiento origina que la población busque nuevos horizontes, es decir se

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"


asiente en diversas zonas, las cuales no cuentan con los servicios básicos, esta forma de vida con lleva a diversos problemas de bienestar y salud en la población.

El 24.8 % de la población peruana no cuenta con el abastecimiento de agua potable por un sistema de red pública y el 27.4 % no está conectada a un sistema de alcantarillado. Aunque la cobertura del servicio representa una mejora en los últimos años, estas estadísticas demuestran que esta situación la enfrentan diversas ciudades del Perú, en donde Nuevo Chimbote no es ajena a esta problemática.

Nuevo Chimbote es un distrito joven que está ubicado en la provincia del Santa, Región Ancash; desde 1993 la ciudad ha sufrido un crecimiento poblacional, siendo su población originaria, de dos grandes oleadas migratorias, la primera ocurrida en las décadas 60-70 del siglo pasado, relacionada con el auge de la industria pesquera y siderúrgica, la segunda, como resultado del sismo de 1970 que genera desplazamiento de población afectada hacia lugares más seguros.

En los últimos 10 años este crecimiento demográfico se observa en la aparición de asentamientos humanos en forma de Habilitaciones Urbanas Progresistas (HUP), Urbanizaciones Populares de Interés Social (UPIS) y Asentamientos Humanos (AA.HH). Actualmente estos asentamientos, se ubican en la periferia de Nuevo Chimbote y uno de estos sectores es H.U.P. Villa Santa Rosa del Sur el cual tiene 10 años de creación y no posee los servicios básicos.

En cuanto en el H.U.P. Villa Santa Rosa del Sur, desde hace muchos años ha percibido el problema que subsiste por la falta y deficiencia de un sistema de saneamiento que mejore la calidad de vida de los habitantes así como también mejore las condiciones de salud y contribuya a reducir las enfermedades que afectan la salud de la población. Las cuales se pueden describir:

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Agua Potable, cuenta con este servicio en forma deficiente, los pobladores no tienen

acceso por red pública en la vivienda y se abastecen acarreando agua de pilones de uso

público y del camión-cisterna u otro similar, que transportan agua potable para las zonas

que no cuentan con este recurso hídrico vital.

Alcantarillado, no tienen en sus viviendas desagüe por red pública de alcantarillado, su

forma de acceso es en pozo ciego y otros realizan sus necesidades a campo abierto.

El problema se genera por que la comunidad no cuenta con un acceso adecuado de

servicio de Agua potable y Alcantarillado y esto se convierte en una carencia de servicio

básico, el cual influye en la calidad de vida de los pobladores. Por ello nos lleva a plantear

el siguiente problema:

¿Desarrollando un adecuado diseño de sistema de agua potable y alcantarillado,

proporcionaremos a la entidad en el futuro a la elaboración del perfil, expediente

técnico y ejecución en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote,

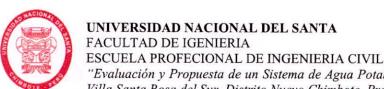
Provincia de Santa-Ancash?

1.3 OBJETIVOS

1.3.1 OBJETIVO GENERAL

Realizar una evaluación y propuesta de diseño de un sistema de agua potable y

alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote,


Provincia de Santa-Ancash.

1.3.2 OBJETIVOS ESPECÍFICOS

BACH. JAIME ZAVALETA CUARESMA

Determinar las características del terreno del H.U.P Villa Santa Rosa del Sur,

Distrito Nuevo Chimbote, Provincia de Santa-Ancash.

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

- Determinar el periodo de diseño y cálculo de la población futura para el diseño de la red de agua potable y alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash.
- Calcular de la dotación de agua, consumo promedio diario anual, consumo máximo diario y consumo máximo horario para el diseño de la red de agua potable y alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash.
- Determinar los parámetros hidráulicos de la red de agua potable y alcantarillado para el diseño de estas redes en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash.
- Diseño del Sistema de Agua Potable y Alcantarillado, utilizando los respectivos softwares; WATERCAD y SEWERCAD.

1.4 FORMULACIÓN DE LA HIPÓTESIS

Si se evalúa y propone un sistema de agua potable en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash, se lograría satisfacer la demanda de consumo de agua, evacuación de aguas residuales y por lo tanto ello contribuirá al mejoramiento de la calidad de vida en la comunidad.

1.5 JUSTIFICACIÓN

Ya habiendo planteado la realidad de la problemática del centro poblado Villa Santa Rosa del Sur del distrito de Nuevo Chimbote, provincia de Santa y sobre lo más importante las necesidades en la población, es de suma urgencia realizar estudios para mejorar la calidad de vida de los pobladores en este lugar, evitando enfermedades y así mismo propiciar su

desarrollo socioeconómico a través de este proyecto de tesis llamado: "EVALUACION Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NUEVO CHIMBOTE, PROVINCIA DE SANTA-ANCASH", dando así una alternativa de solución.

Este estudio tiene como objetivo realiza el Diseño del Sistema de Abastecimiento de Agua Potable y además la Evaluación del Sistema de Aguas Residuales, donde no cuentan con ningún servicio básico.

1.6 LIMITACIONES DEL TRABAJO

Tenemos un principal limitante en este proyecto dado que se destaca en plantear un diseño de un sistema de abastecimiento de agua potable y alcantarillado y los resultados de las propuestas son teóricos.

1.7 VARIABLES

1.7.1 VARIABLE INDENDIENTE

Inexistencia de los servicios de agua potable y alcantarillado en el H.U.P. Villa
 Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash.

1.7.2 VARIABLE DEPENDIENTE

 Conseguiremos el diseño del sistema de agua potable y alcantarillado para el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash.

CAPITULO II: MARCO TEÓRICO

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

2.1 MARCO REFERENCIAL

2.1.1 UBICACIÓN GEOGRÁFICA

El H.U.P "Villa Santa Rosa del Sur" se ubica en el distrito de Nuevo Chimbote, provincia de Santa, Región Ancash. El distrito limita por el Norte con el distrito de Chimbote, por el Sur con los distritos de Samanco y Nepeña, por el este con el distrito de Nepeña y por el Oeste con el Océano Pacífico.

La zona de estudio comprende en su totalidad el H.U.P "Villa Santa Rosa del Sur", terreno ubicado en la zona centro Sur B, intersección de la avenida Industrial Este y la Avenida Alcatraces.

2.1.2 LÍMITE GEOGRÁFICO

- Por el norte: Con el H.U.P. Houston-Parcela 6-7 y con el Lote 9-1 Sub Sector San Antonio.
- Por el sur: Con el H.U.P. Lomas del Sur y con el Lote 9-1 Sub Sector San Antonio.
- Por el Este: Con el Lote 9-1 Sub Sector San Antonio.
- Por el Oeste: Con el H.U.P. Houston-Parcela 6-7 y el A.H. Victoria del Sur-Parcela 2.

2.1.3 DESCRIPCIÓN FÍSICA

El H.U.P "Villa Santa Rosa del Sur" tiene un sistema de agua potable deficiente los pobladores se abastecen acarreando agua de pilones de uso público y del camión-cisterna u otro similar; además no cuenta con un sistema de alcantarillado y la forma de acceso es en pozos ciegos. Ambos servicios no están conectadas a un sistema de red pública en sus viviendas.

No cuentan con pistas, veredas ni áreas verdes.

2.1.4 CARACTERÍSTICAS DEL SUELO.

- Topografía

El distrito de Nuevo Chimbote se desarrolla entre la cota 10 m.s.n.m. en la margen izquierda del río Lacramarca hasta la cota 50 m.s.n.m., al Sur Este de la ciudad hasta las proximidades del Cerro Médano Negro (300m.s.n.m.).

- Suelos

El suelo está cubierto superficialmente de arenas eólicas, con el estrato superior de 20 m de profundidad contiene arena gruesa a fina pobremente graduada que en ciertos casos se observa pequeños porcentajes de arcilla. Así también se caracterizan por poseer napa freática profunda a partir de los 16 m. y capacidad portante del suelo que varía entre 1.4 a 2 kg./cm2.

- Uso del suelo

El H.U.P "Villa Santa Rosa del Sur" cuenta con un área total de 211.363 m2. El cual se dispone principalmente de 48.51 % de área de vivienda, 14.54 % de aire de equipamiento urbano y 0.85 % de área de comercio. El terreno se distribuye en 30 manzanas y un total de 364 - 940 lotes.

2.1.5 DESCRIPCIÓN CLIMÁTICA

- Velocidad del Viento

Los vientos a lo largo de un año presentan velocidades que están entre los 18 a 28 km/h.

- Precipitaciones

La temperatura durante el otoño e invierno son casi nulas desde 0 a 2mm y durante la primavera y verano varía entre 0 a 4 mm.

- Temperatura

La temperatura en la zona durante el verano y primavera en promedio varía entre los 16 a 32 °C y durante el invierno y otoño entre los 14 a 26 °C.

2.1.6 DESCRIPCIÓN SOCIAL

La cobertura de servicio de agua la administra SEDACHIMBOTE, la población tiene el abastecimiento a través de un pilón de uso público. La cobertura del servicio de alcantarillado, una parte de la población cuenta con pozo ciego y la otra no pose el servicio.

La distribución de la energía eléctrica está a cargo de la Empresa HIDRANDINA, la población cuenta con el servicio las 24 horas del día.

2.2 TEORÍAS Y PARÁMETROS DE DISEÑO PARA EL SISTEMA DE AGUA POTABLE

2.2.1 RED DE DISTRIBUCIÓN DE AGUA POTABLE

Como concepto una red de distribución es el conjunto de tubos, accesorios y estructuras que conducen el agua desde tanques de servicio o de distribución hasta la toma domiciliaria o hidrantes públicos. (Comisión Nacional del Agua, 2015)

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

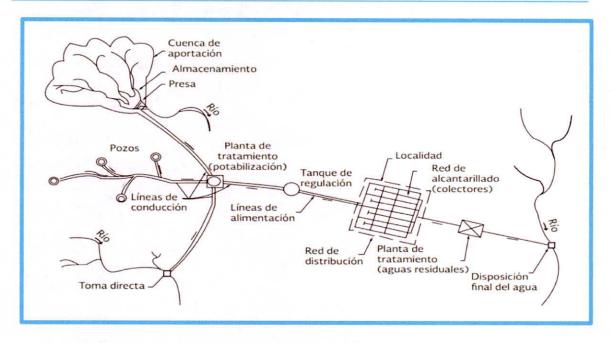


Figura Nº 1 Configuración típica de un sistema de abastecimiento de agua en localidades urbanas

FUENTE: (Comisión Nacional del Agua, 2015)

2.2.2 SISTEMAS DE DISTRIBUCIÓN

2.2.2.1 SISTEMA DE DISTRIBUCIÓN POR BOMBEO

La distribución por bombeo se requiere necesariamente para adicionar energía para transportar el gasto de diseño. Este tipo de sistema de distribución se utiliza generalmente cuando la elevación del agua en la fuente de abastecimiento es menor a la altura piezométrica del punto de entrega, por lo que el equipo de bombeo proporcionará la energía necesaria para lograr el transporte del agua. Durante el tiempo que se hará la entrega directa a la red se tomarán precauciones adicionales, como tener una fuente de poder alternativa en el bombeo, automatizar el mismo en su operación, dar un estricto mantenimiento a los equipos de bombeo y lo más primordial es que la fuente de abastecimiento debe ser capaz de proporcionar la demanda máximo horaria, de lo contario habrá un déficit en el suministro. (Comisión Nacional del Agua, 2007)

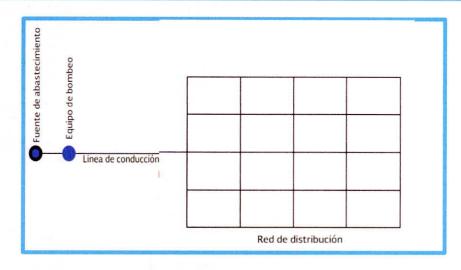


Figura N° 2 Sistema de distribución por Bombeo FUENTE: (Martinez García, 2016)

2.2.2.2 SISTEMA DE DISTRIBUCIÓN POR GRAVEDAD

Una distribución por gravedad se requiere cuando la elevación de la fuente de abastecimiento es mayor a la altura piezométrica requerida o existente en el punto de entrega del agua, el transporte del agua se logra por esa diferencia de energías disponible. Significa que se hará uso de la topografía existente de manera que la distribución se logra sin necesidad de bombeo y se alcanza un nivel adecuado de presión. Algunas ventajas de este sistema de distribución son las inexistencias de costos de energía, forma sencilla de operar, costos mínimos de mantenimiento y mínimos cambios de presión. (Comisión Nacional del Agua, 2007)

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

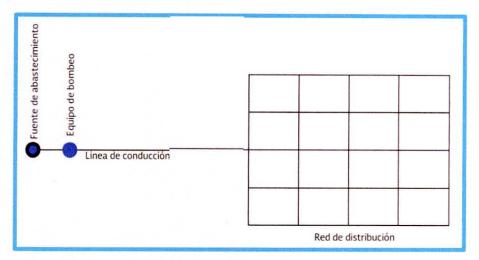


Figura N° 3 Sistema de distribución por Gravedad FUENTE: (Martinez García, 2016)

2.2.2.3 SISTEMA DE DISTRIBUCIÓN POR BOMBEO - GRAVEDAD

Se utiliza cuando la topografía del terreno obliga que el trazo de la conducción cruce por lugares con mayor elevación que la superficie del agua en el tanque de regularización, en estos casos conviene un análisis de una colocación de tanque intermedio. La instalación del tanque intermedio logra que se forme una distribución por bombeo - gravedad, donde inicia por bombeo y termina por gravedad. (Comisión Nacional del Agua, 2007)

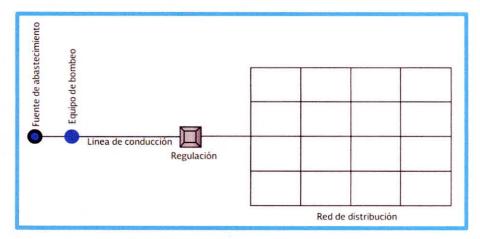


Figura N° 4 Sistema de distribución por Bombeo - Gravedad FUENTE: (Martinez García, 2016)

2.2.3 TIPOS DE REDES DE DISTRIBUCIÓN

2.2.3.1 RED ABIERTA O RAMIFICADA

El sistema ramificado consiste en una tubería principal o arteria maestra de la que se derivan arterias secundarias, de las que a su vez parten otras de tercero o cuarto órdenes cada vez menores y en forma análoga a los nervios de una hoja (Figura 2).

En este tipo de red cada punto recibe el agua sólo por un camino, siendo en consecuencia los diámetros cada vez más reducidos, a medida que las tuberías se alejan de las arterias principales. Este tipo de red presenta el problema de que una avería, en un punto de la misma, deja en seco toda la red a continuación del punto averiado.

Por eso, actualmente teniendo en cuenta las garantías de servicio exigidas en las instalaciones urbanas, no es aconsejable este sistema más que en caso de poblados rurales con caseríos muy diseminados, poblaciones muy pequeñas o con un desarrollo de la población prácticamente lineal.

En caso de emplearse este tipo de red, debe considerarse que el estancamiento del agua en los extremos de los ramales (testeros puede alterar sus cualidades)

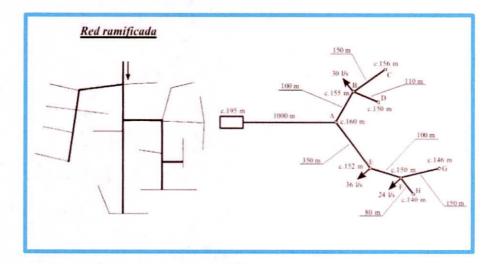


Figura N° 5 Tubería de alimentación y la red ramificada. FUENTE: (Martinez García, 2016)

2.2.3.2 RED CERRADA O EN MALLAS

El Sistema de redes Cerradas o Malladas, son aquellas redes conformadas por tuberías conectadas formando mallas o circuitos (Figura 3). Este tipo de red de distribución es el más favorable a utilizar dado que cuando se realice una reparación no afecta con el fluido ala viviendas consiguientes. En el dimensionado de una red cerrada se trata de encontrar los flujos que circulan en cada tramo de la red, donde el líquido total que ingresa a un nudo es igual al que sale, además la pérdida de carga entre dos puntos a lo largo de cualquier tramo de la red, es siempre la misma. (Lossio Aricoché, 2012)

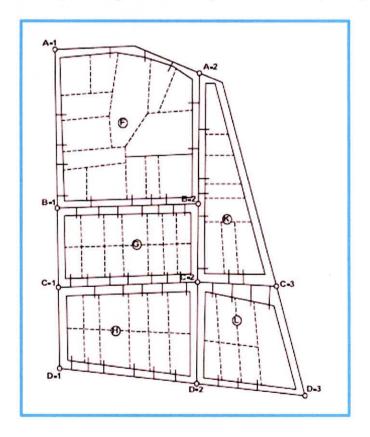


Figura N° 6 Esquema de red mallada de una zona urbana. FUENTE: (Lossio Aricoché, 2012)

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

2.2.4 PARÁMETROS DISEÑO DE RED DE DISTRIBUCIÓN DE AGUA

POTABLE

2.2.4.1 PERIODO DE DISEÑO

El periodo de Diseño es la determinación del tiempo para el cual se considera funcional

el sistema, intervienen una serie de variables que deben ser evaluadas para lograr un

proyecto económicamente viable. Para determinar el periodo de diseño se consideran

factores como: durabilidad o vida útil de las instalaciones, factibilidad de construcción y

posibilidades de ampliación o sustitución, tendencias de crecimiento de la población y

posibilidades de financiamiento.

A continuación se toma en consideración los factores señalados se debe establecer para

cada caso el periodo de diseño aconsejable. A continuación, se indican algunos rangos de

valores asignados para los diversos componentes de los sistemas de abastecimiento de

agua potable para poblaciones rurales. (Agüero, 1997)

- Obras de captación : 20 años

Conducción : 10 a 20 años

Reservorios : 20 años

- Redes : 10 a 20 años (tuberías principal 20 años, secundarias 10

años).

Para esta presente investigación se escogió un periodo de diseño de 20 años, de acuerdo a las recomendaciones debido a que se trata de tuberías de distribución.

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

2.2.4.2 VARIACIONES DE CONSUMO

Las variaciones de Consumo o Caudal de agua se debe suministran eficientemente a la

comunidad, donde es necesario que cada una de las partes que contribuyen el sistema

satisfaga las necesidades reales de la población; diseñando cada estructura de tal forma

que las cifras de consumo y variaciones de las mismas, no desarticulen todo el sistema,

sino que permitan un servicio de agua eficiente y continuo.

Las variaciones de consumo está influenciada por diversos factores tales como: tipo de

actividad, hábitos de la población, condiciones de clima, etc. (Agüero, 1997)

Consumo promedio diario anual (Qm)

El consumo promedio diario anual, se define como el resultado de una estimación

del consumo per cápita para la población futura del periodo de diseño, expresada

en-litros por segundo (l/s) y se determina mediante la siguiente relación: (Agüero,

1997)

Ecuación Nº 1 Consumo promedio diario

 $Q_{m} = \frac{P_{f} \times dotación (d)}{86400 \text{ s/día}}$

Dónde:

Qm : Con

: Consumo promedio diario (l/s)

 $P_{\rm f}$

: Población (hab)

d

: Dotación (l/hab/dia)

Consumo máximo diario (Q_{md}) y horario (Q_{mh})

Según el Reglamento Nacional de Edificaciones (Norma O.S.100) en los

abastecimientos por conexiones domiciliarias, los coeficientes de las variaciones

de consumo, referidas al promedio diario anual de la demanda, deberán ser fijados en base al análisis de información estadística comprobada. De lo contrario se podrán considerar los siguientes coeficientes, indicados en la Tabla 1:

Tabla Nº 1 Coeficiente de variación de consumo (Habilitaciones urbanas)

COEFICIENTE	VALOR
Coeficiente Máximo Anual de la Demanda Diaria (K ₁)	1.3
Coeficiente Máximo Anual de la Demanda Horaria (k ₂)	1.8 - 2.5

FUENTE: (Ministerio de Economía y Finanzas, 2011, pág. 23)

Según la Guía simplificada para la Identificación, Formulación y Evaluación Social de Proyectos - Saneamiento Básico en el Ámbito Rural, a nivel de Perfil, del Ministerio de Economía y Finanzas, para los coeficientes de variación se tienen los siguientes valores recomendados, indicados en la Tabla 2:

Tabla Nº 2 Coeficiente de variación de consumo (Ámbito rural)

COEFICIENTE	VALOR
Coeficiente Máximo Anual de la Demanda Diaria (K ₁)	1.3
Coeficiente Máximo Anual de la Demanda Horaria (k ₂)	2.0

FUENTE: (Ministerio de Economía y Finanzas, 2011, pág. 23)

Consumo máximo diario (Qmd) = $1.3 \times Qm (1/s)$.

Consumo máximo horario (Qrnh)= 2 .5 x Qm (l/s).

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

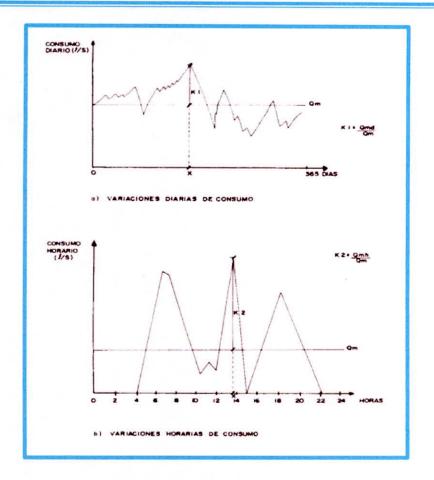


Figura N° 7 Variación de Consumo FUENTE: (Agüero, 1997)

2.2.4.3 POBLACIÓN ACTUAL Y FUTURA

Para el cálculo de la población futura se han utilizado los siguientes métodos de crecimiento:

Método Aritmético

Es un método de proyección completamente teórico y rara vez se da el caso de que una población presente este tipo de crecimiento. En la estimación de la población de diseño, a través de este método, sólo se necesita el tamaño de la población en dos tiempos distintos. (UDEP, 2018)

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

La población futura a través de este método se calcula a través de la siguiente fórmula:

Ecuación Nº 2 Población futura (Método aritmético)

$$P_f = P_a (1 + rt)$$

Donde:

P_f: Población futura.

Pa : Población actual

r : Tasa de crecimiento

t : Número de años

Método Racional

En este caso para determinar la población, se realiza un estudio socio económico del lugar considerando el crecimiento vegetativo que es función de los nacimientos, defunciones, inmigraciones, emigraciones y población flotante. El método más utilizado para el cálculo de la población futura en las zonas rurales es el analítico y con más frecuencia el de crecimiento aritmético. Este método se utiliza para el cálculo de poblaciones bajo la consideración de que estas van cambiando en la forma de una progresión aritmética y que se encuentran cerca del límite de saturación. (Agüero, 1997)

Ecuación Nº 3 Población futura (Método racional)

$$P_f = P_a \left(1 + \frac{rt}{1000} \right)$$

Donde:

P_d: Población de diseño (hab)

Pa : Población actual (hab)

r : Tasa de crecimiento anual

t : Periodo de diseño (años)

2.2.4.4 DEMANDA DE DOTACIONES DE AGUA

Según el Reglamento Nacional de Edificaciones (Norma OS.100) la dotación promedio diaria anual por habitante, se fijará en base a un estudio de consumos técnicamente justificado, sustentado en informaciones estadísticas comprobadas. Si se comprobara la no existencia de estudios de consumo y no se justificará su ejecución se considerara, los valores indicados en el Tabla N° 3:

Tabla N° 3 Dotación de agua (l/hab/d) (Habilitaciones Urbanas)

DESCRIPCIÓN	CLIMA TEMPLADO Y CÁLIDO	CLIMA FRIO
Sistemas con conexiones domiciliarias	220	180
Lotes de área menor o igual a 90 m²	150	220
Sistemas de abastecimiento por surtidores, camión cisterna o piletas publicas	30 - 50	30 - 50

FUENTE: (Ministerio de Vivienda, Construcción y Saneamiento, 2006, pág. 105)

Según la Guía simplificada para la Identificación, Formulación y Evaluación Social de Proyectos-Saneamiento Básico en el Ámbito Rural, a nivel de Perfil, del Ministerio de Economía y Finanzas, para sistemas de disposición de excretas, puedes tener en consideración estos valores indicados en la Tabla N° 4:

Tabla Nº 4 Dotación de agua (l/hab/d) (Ámbito Rural)

DESCRIPCIÓN	COSTA	SIERRA	SELVA
Letrinas sin Arrastre Hidráulico	50 - 60	40 - 50	60 - 70
Letrinas con Arrastre Hidráulico	90	80	100

FUENTE: (Ministerio de Economía y Finanzas, 2011, pág. 21)-

2.2.4.5 VELOCIDADES

Según el Reglamento Nacional de Edificaciones (Norma OS.050), la velocidad máxima será de 3 m/s. En casos justificados por el proyectista se aceptará una velocidad máxima de 5 m/s. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.2.4.6 PÉRDIDA DE CARGA

- PÉRDIDAS CONTINUAS

En conductos rectilíneos las pérdidas de carga o perdidas principales vienen a ser las perdidas debido al rozamiento del flujo entre sí con las paredes de la tubería. Si el flujo del fluido es uniforme, de tal manera que la sección es constante, y además la rapidez también viene a ser constante, el teorema de Bernoulli, parados puntos puede escribirse en la manera siguiente:

Ecuación Nº 4 Perdidas continuas

$$\frac{p_1}{\gamma} + Z_1 + \frac{V_1^2}{2g} = \frac{p_2}{\gamma} + Z_2 + \frac{V_2^2}{2g} + \sum \lambda$$

Donde:

g : Aceleración de la gravedad.

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Z_i: Altura geométrica en la dirección de la gravedad.

p : Presión a lo largo de la línea de corriente.

v : Velocidad del fluido.

 $\sum \lambda$: Perdida de carga.

- DARCY WEISBACH

Para el autor las fórmulas más exactas con los que cuenta la hidráulica, está la de Darcy Weisbach. A pesar de ello por su complejidad al momento de calcular el coeficiente de fricción ha caído en desuso. Sin embargo puede ser utilizada en el cálculo de pérdidas de carga para tuberías de fierro fundido. La fórmula original es:

Ecuación Nº 5 Perdida de carga (Darcy Weisbach)

$$h = f\left(\frac{L}{d}\right)\frac{V^2}{2g}$$

Y expresada como una función del caudal toma la forma:

Ecuación Nº 6 Perdida de carga en función del caudal (Darcy Weisbach)

$$h = 0.0826 f \frac{Q^2 L}{D^5}$$

Donde:

h : Pérdida de carga o de energía (m)

f : Coeficiente de fricción (adimensional)

L : Longitud de la tubería (m)

D : Diámetro interno de la tubería (m)

v : Velocidad media (m/s)

g : Aceleración de la gravedad (m/s2)

Q : Caudal (m3/s)

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

El coeficiente de fricción f es una función del número de Reynolds (Re) y el coeficiente de rugosidad o rugosidad relativa en las paredes de la tubería (εr):

Ecuación Nº 7 Coeficiente de fricción

$$f = f(R_e; \varepsilon_r)$$

Ecuación Nº 8 Coeficiente de rugosidad

$$R_e = \frac{D \ v \ \rho}{\mu}$$

Donde:

: Densidad del agua (kg/m3).

: Viscosidad del agua (Ns/m2).

: Rugosidad absoluta de la tubería (m)

Tabla N° 5 Valores de rugosidad para algunos materiales.

RUGOSIDAD ABSOLUTA DE MATERIALES

Material	(mm)
PVC	0.0016
Acero	0.0025
Cobre	0.0016
Fundición	0.0025
Madera	0.19-0.91
Hormigón	0.4-3.1
Fierro galvanizado	0.07-0.25
Fundición con cemento	0.0025

FUENTE: (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

- HAZEN Y WILLIAMS

El método de Hazen y Williams, tiene validez tan solo para el caso del agua en temperaturas ordinarias (5°C- 25°C). La fórmula resulta muy sencilla, ya que el coeficiente de rugosidad "C" no depende de la rapidez del flujo ni del diámetro de la tubería.

Ecuación Nº 9 Perdida de carga (Hazen y Williams)

$$h = 10.674 \frac{Q^{1.852}L}{C^{1.852}D^{4.871}}$$

En donde:

h : Pérdida de carga o de energía (m)

Q : Caudal (m^3/s)

C : Coeficiente de rugosidad (adimensional)

D : Diámetro interno de la tubería (m)

L : Longitud de la tubería (m)

Tabla Nº 6 Coeficientes de fricción «C» en la fórmula de Hazen Y Williams

TIPO DE TUBERÍA	"C"
Acero sin costura	120
Acero soldado en espiral	100
Cobre sin costura	150
Concreto	110
Fibra de vidrio	150
Hierro fundido	100
Hierro fundido dúctil con revestimiento	140
Hierro galvanizado	100
Polietileno	140
Poli(cloruro de vinilo) (PVC)	150

FUENTE: (Ministerio de Vivienda, Construcción y Saneamiento, 2006, pág. 34)

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

PÉRDIDAS LOCALES

Las pérdidas locales o también llamadas pérdidas secundarias, son pérdidas de carga localizadas, provocadas por la existencia de accesorios en el sistema, por ejemplo: codos, reducciones, válvulas. Las pérdidas secundarias se expresan una parte de la denominada "altura de velocidad" de la forma:

Ecuación Nº 10 Perdidas locales

$$h = K \frac{c^2}{2g}$$

Donde:

h : Pérdida de carga localizada

c : velocidad media del agua, antes o después del punto singular, conforme el caso

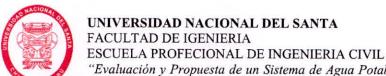
K : Coeficiente determinado en forma empírica para cada tipo.

En la siguiente (Tabla 7) se proporcionan valores de K en los diferentes tipos de accesorios con singularidades:

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"


Tabla Nº 7 Coeficiente de pérdida local para distintos accesorios

TIPOS DE SINGULARIDAD	K
Válvula de compuerta totalmente abierta	0.2
Válvula de compuerta semi abierta	5.6
Curva de 90°	1.0
Curva de 45°	0.4
Válvula de pie	2.5
Emboque (entrada de una tubería)	0.5
Salida de una tubería	1.0
Ensanchamiento brusco	$(1-(D_1/D_2)^2)^2$
Reducción brusca de sección	$0.5(1-(D_1/D_2)^2)^2$

FUENTE: (Sarmiento, Rivas, & Guzmán, 2015, págs. 15,16)

2.2.4.7 PRESIONES

Según el Reglamento Nacional de Edificaciones (Norma OS.050), la presión estática no será mayor de 50 m en cualquier punto de la red. En condiciones de demanda máxima horaria, la presión dinámica no será menor de 10 m. En caso de abastecimiento de agua por piletas, la presión mínima será 3,50 m a la salida de la pileta. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

2.3 DISEÑO DE RESERVORIO

2.3.1 RESERVORIO

El reservorio debe disponer una capacidad para un abastecimiento constate y satisfacer la demanda horario en el día, como también el periodo de bombeo. También se debe tener en cuenta el volumen contra incendios, este cálculo depende del tamaño de la población. A continuación recalcaremos lo mencionado por la norma OS. 100. Deberá realizarse periódicamente muestreo y control de la calidad del agua a fin de prevenir o localizar focos de contaminación y tomar las medidas correctivas del caso.

Periódicamente, por lo menos 2 veces al año deberá realizarse lavado y desinfección del reservorio, utilizando cloro en solución con una dosificación de 50 ppm u otro producto similar que garantice las condiciones de potabilidad del agua. (Ministerio de Vivienda, Construcción y Saneamiento, 2006).

2.3.2 CLASIFICACIÓN

Realizaremos la clasificación del reservorio por su ubicación.

2.3.2.1 ENTERRADOS

Estos tanques se construyen bajo el nivel del suelo. Se emplean preferentemente cuando existe terreno con una cota adecuada para el funcionamiento de la red de distribución y de fácil excavación (Figura 7). Los tanques enterrados tienen como principal ventaja proteger el agua de las variaciones de temperatura y una perfecta adaptación al entorno. Tienen el inconveniente de requerir importantes excavaciones para el propio tanque, para todas sus instalaciones de conexión con la red de distribución y la línea de conducción;

además se dificulta el control de filtraciones que puedan presentarse. (Comisión Nacional del Agua, 2015)

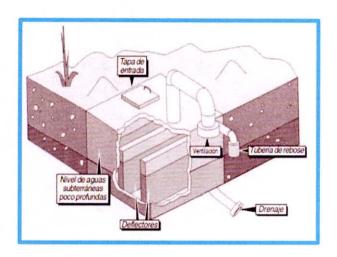


Figura Nº 8 Tanque Subterráneo FUENTE: (Manual del Inspertor, 2001)

2.3.2.2 SEMIENTERRADOS

Los tanques semienterrados tienen parte de su estructura bajo el nivel del terreno y parte sobre el nivel del terreno (Figura 8). Se emplean generalmente cuando la altura topográfica respecto al punto de alimentación es suficiente y el terreno presente dificultad para excavación. (Comisión Nacional del Agua, 2015)

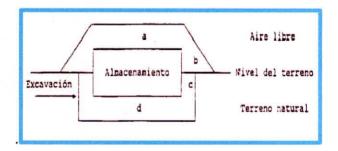


Figura N° 9 Tanque Semienterrado FUENTE: (Varela, 2010)

2.3.2.3 SUPERFICIALES

Los tanques superficiales están construidos sobre la superficie del terreno. La construcción de este tipo de tanques es común cuando el terreno es 'duro' o conviene no perder altura y se tiene la topografía adecuada. Los tanques superficiales se sitúan en una elevación natural en la proximidad de la zona por servir, de manera que la diferencia de nivel del piso del tanque con respecto al punto más alto por abastecer sea de 15 m y la diferencia de altura entre el nivel del tanque en el nivel máximo de operación y el punto más bajo por abastecer sea de 50 m (Comisión Nacional del Agua, 2015)

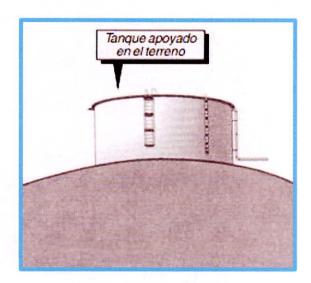
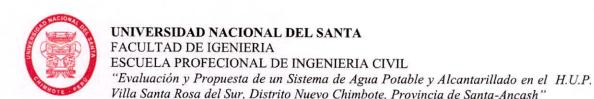



Figura N° 10 Tanque Apoyado FUENTE: (Manual del Inspertor, 2001)

2.3.2.4 ELEVADOS

Los tanques elevados son aquellos cuya base está por encima del nivel del suelo y se sustenta a partir de una estructura. Generalmente son construidos en localidades con topografía plana donde no se dispone en su proximidad de elevaciones naturales con altimetría apropiada. El tanque elevado refiere una estructura integral que consiste en el tanque, la torre y la tubería de alimentación y descarga (Ilustración 2.41). Para tener un

máximo beneficio, los tanques elevados, generalmente con torres de 10, 15 y 20 m de altura, se localizan cerca del centro de uso. En grandes áreas se colocan varios tanques en diversos puntos. La localización central decrece las pérdidas por fricción y permite equilibrar las presiones lo más posible. (Comisión Nacional del Agua, 2015)

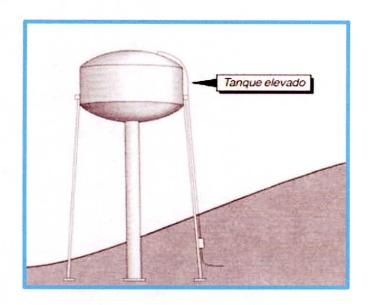


Figura N° 11 Tanque Elevado FUENTE: (Manual del Inspertor, 2001)

2.3.3 VOLUMEN TOTAL DEL RESERVORIO

2.3.3.1 VOLUMEN DE REGULACIÓN (V1)

El volumen de regulación será calculado con el diagrama masa correspondiente a las variaciones horarias de la demanda. Cuando se comprueba la no disponibilidad de esta información, se deberá adoptar como mínimo el 25% del promedio anual de la demanda como capacidad de regulación, siempre que el suministro de la fuente de abastecimiento sea calculado para 24 horas de funcionamiento. En caso contrario deberá ser determinado en función al horario del suministro. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

Ecuación Nº 11 Volumen de regulación

 $V_1 = 0.25 \times Q_P$

Donde:

Qp : Caudal Promedio (Agüero, 1997)

2.3.3.2 VOLUMEN CONTRA INCENDIO (V2)

En los casos que se considere demanda contra incendio, deberá asignarse un volumen mínimo adicional de acuerdo al siguiente criterio:

- a) Para habilitaciones urbanas en poblaciones menores de 10,000 habitantes, no se considera obligatorio demanda contra incendio.
- b) Para habilitaciones en poblaciones mayores de 10,000 habitantes, deberá adoptarse el siguiente criterio:
 - El caudal necesario para demanda contra incendio, podrá estar incluido en el caudal doméstico; debiendo considerarse para las tuberías donde se ubiquen hidrantes, los siguientes caudales mínimos:
 - Para áreas destinadas netamente a viviendas: 15 I/s.
 - Para áreas destinadas a usos comerciales e industriales: 30 I/s. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.3.3.3 VOLUMEN DE RESERVA (V₃)

De ser el caso, deberá justificarse un volumen adicional de reserva. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

Se considera abastecer a la población en caso de anormalidades como fallas en servicios mecánicas, desperfectos en las líneas de impulsión o interrupción del flujo eléctrico.

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Ecuación Nº 12 Volumen de reserva

$$V_3 = 0.33 x (V_1 + V_2)$$

Donde:

V₁: Volumen de regulación.

V₂: Volumen contra incendio.

2.3.3.4 VOLUMEN DE RESERVORIO (VT)

Ecuación Nº 13 Volumen de Almacenamiento del reservorio

$$V_{almacenamiento} = (V_1 + V_2 + V_3)$$

Donde:

V₁: Volumen de regulación.

V₂ : Volumen contra incendio.

V₃: Volumen de Reserva

2.4 CALCULO DE LA POTENCIA DE LA BOMBA

Para la demanda y oferta de agua, se determina con caudal en tiempo de bombeo en horas por día. La altura de bombeo en base a las cotas de ingreso y salida. Las pérdidas de fricción de tubería de impulsión de acuerdo al caudal y diámetro de la tubería. Además la fuente de energía y eficiencia de las bombas de acuerdo a la altitud de la zona.

Se determinará con la siguiente formula:

Ecuación Nº 14 Potencia de la Bomba

$$P_B = \frac{\gamma Q_B x HDT}{76 x n} \dots (14)$$

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Donde:

 P_{B}

: Potencia en HP

HDT : Altura de bombeo (m)

 $Q_{\rm B}$

: Caudal a extraerse (lt/seg)

Ecuación Nº 15 Caudal a extraerse para la bomba

$$Q_B = \frac{Q_{maxd} \times 2.4}{N}$$

n

: Eficiencia de la bomba (0.60 - 0.70)

Y

: Peso específico del Agua ($\gamma = 1 \text{ kg/lt}$)

2.5 TEORÍAS Y PARÁMETROS DE DISEÑO PARA EL SISTEMA DE

ALCANTARILLADO

2.5.1 SISTEMAS DE ALCANTARILLADO

Los sistemas de alcantarillado constan de conductos de servicio público cerrado, destinado a recolectar y transportar aguas residuales que fluyen por gravedad libremente bajo condiciones normales. (Organización Panamericana de la Salud, 2005)

Los sistemas de alcantarillado se clasifican en:

2.5.1.1 ALCANTARILLADO SANITARIO

Es el sistema de recolección diseñado para llevar exclusivamente aguas residuales domesticas e industriales. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

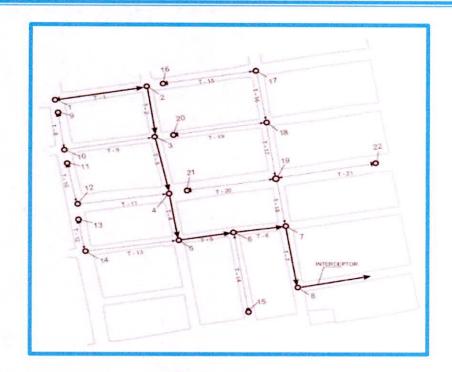


Figura Nº 12 Esquema de una Red de Alcantarillado Sanitario FUENTE: (Organización Panamericana de la Salud, 2005)

2.5.1.2 ALCANTARILLADO PLUVIAL

Este Alcantarillado Pluvial se utiliza para captar y encauzar las aguas producidas por las lluvias. (Nogales & Quispe, 2009)

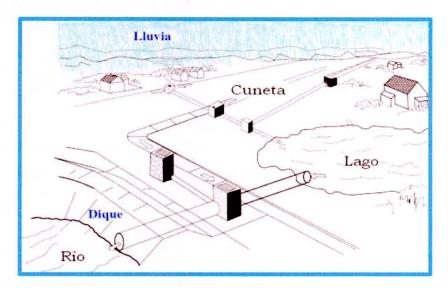


Figura N° 13 Sistema de Alcantarillado Pluvial FUENTE: (Cabrera, Castro, & Mendez, 2011)

2.5.1.3 ALCANTARILLADO COMBINADO

Es un alcantarillado combinado porque transporta las aguas residuales (domesticas e industriales) y las aguas de las lluvias. (Nogales & Quispe, 2009)

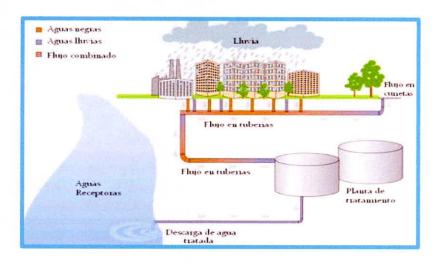
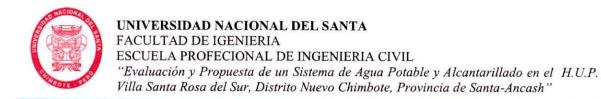


Figura Nº 14 Sistema de Alcantarillado Combinado FUENTE: (Cabrera, Castro, & Mendez, 2011)

2.5.2 COMPONENTES DE LAS REDES DE ALCANTARILLADO


Los componentes principales de una red de alcantarillado son:

2.5.2.1 RED DE RECOLECCIÓN:

Las redes son un conjunto de tuberías principales y ramales colectores que permiten la recolección de las aguas sobrantes de las viviendas. (Ministerio de Vivienda, Construcción y Saneamiento, 2006).

2.5.2.2 RAMAL COLECTOR:

El ramal colector es la tubería que se ubica en la vereda de los lotes, recolecta las aguas residuales de las viviendas y la descarga de una tubería principal. (Ministerio de Vivienda, Construcción y Saneamiento, 2006).

2.5.2.3 TUBERÍA PRINCIPAL:

Es el colector que recibe todos los fluidos secundarios provenientes de otras redes y/o ramales colectores. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.5.2.4 TENSIÓN TRACTIVA:

Es el esfuerzo tangencial unitario asociado al escurrimiento por gravedad en la tubería de alcantarillado, ejercido por el líquido sobre el material depositado. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.5.2.5 PENDIENTE MÍNIMA:

Valor mínimo de la pendiente determinada utilizando el criterio de la tensión tractiva que permite mantener limpia la tubería. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.5.2.6 PROFUNDIDAD:

Diferencia de nivel entre la superficie de terreno hasta la parte inferior externa de la tubería. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.5.2.7 RECUBRIMIENTO:

Diferencia de nivel entre la superficie de terreno hasta la parte superior externa de la tubería (clave de la tubería). (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.5.3 PARÁMETROS DISEÑO DE RED ALCANTARILLADO

2.5.3.1 PERIODO DE DISEÑO

Para esta presente investigación se escogió un periodo de diseño de 20 años, de acuerdo a las recomendaciones debido a que se trata de tuberías de distribución. (Ver Capitulo 2.3.4).

2.5.3.2 VARIACIÓN DE CONSUMO

Para esta presente investigación adoptamos los valores (Ver Capítulo 2.3.4)

Consumo máximo diario (Qmd) = $1.3 \times Qm (l/s)$.

Consumo máximo horario (Qrnh)= 2 .5 x Qm (1/s).

2.5.3.3 POBLACIÓN ACTUAL Y FUTURA

Para el cálculo de la población futura se han utilizado los siguientes métodos de crecimiento: Método aritmético y Racional (Ver Capitulo 2.3.4).

2.5.3.4 DEMANDA DE DOTACIONES DE AGUA

Para esta presente investigación adoptamos una dotación de 220 lt/hab/dia según el clima templado o cálido. (Ver Capitulo 2.3.4)

2.5.3.5 CAUDAL DE CONTRIBUCIÓN AL ALCANTARILLADO

El caudal de contribución al alcantarillado debe ser calculado con un coeficiente de retorno (C) del 80% del caudal de agua consumida. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

Caudal de diseñó (q)= 0.80 x Q_{mh} (1/s).

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

2.5.4 PROPIEDADES HIDRÁULICAS PARA LOS CONDUCTOS

CIRCULARES

2.5.4.1 FÓRMULA PARA EL DISEÑO

La fórmula de Manning es la más sencilla y práctica, actualmente es la más usada para un diseño de Alcantarillado en conductos cerrados.

Formula de Manning:

Ecuación Nº 16 Velocidad (Formula de Manning)

$$V = \frac{1}{n} \times R^{2/3} \times S^{1/2}$$

Donde:

: Velocidad (m/s)

R : Radio hidráulico (m)

: Pendiente de la línea de agua (m/m)

:Coeficiente de Manning dependen de la rugosidad de las n paredes de la tubería (adimensional)

2.5.4.2 FLUJO A TUBO LLENO

Para un flujo a tubo lleno se tiene:

Radio Hidráulico:

Ecuación Nº 17 Radio hidráulico a tubo lleno

$$R=\frac{D}{4}$$

Para el cálculo en función de la velocidad de Aguas servidas de escurrimiento libre a tubo lleno, la ecuación de Manning genera la siguiente ecuación.

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

En función de la Velocidad:

Ecuación Nº 18 Velocidad de escurrimiento a tubo lleno

$$V = \frac{0.397 \times D^{2/3} \times S^{1/2}}{n}$$

Donde:

V: Velocidad (m/s)

D: Diámetro de la tubería (m)

S : Pendiente de la línea de agua en (m/km)

:Coeficiente de Manning dependen de la rugosidad de las paredes de la tubería (adimensional)

Para el cálculo en función del caudal de Aguas servidas de escurrimiento libre a tubo lleno, la ecuación de Manning genera la siguiente ecuación.

En función del caudal:

Ecuación Nº 19 Caudal de escurrimiento a tubo lleno

$$Q = \frac{0.312 \times D^{8/3} \times S^{1/2}}{n}$$

Donde:

Q: Caudal del Agua en m³/s

D : Diámetro de la tubería en m

: Pendiente de la línea de agua en m/km

:Coeficiente de Manning dependen de la rugosidad de las paredes de la tubería.

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

2.5.4.3 FLUJO A TUBO PARCIALMENTE LLENA

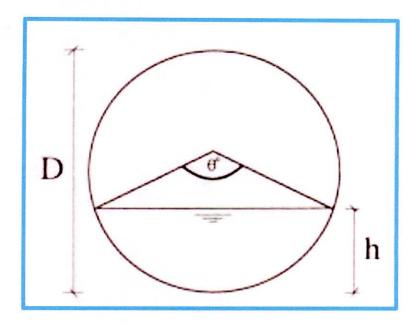


Figura N° 15 Combinado Sección de tubería parcialmente llena FUENTE: (Arias Govea, 1995)

El ángulo central θ° expresado en grado sexagesimal

Ecuación Nº 20 Ángulo central (Grado sexagesimal)

$$\theta^{\circ} = 2\arccos \times \left(1 - \frac{2h}{D}\right)$$

- Radio Hidráulico:

Ecuación Nº 21 Radio hidráulico de tubo parcialmente llena

$$R = \frac{D}{4} \times \left(1 - \frac{360 \ sen\theta^{\circ}}{2\pi\theta^{\circ}}\right)$$

Sustituyendo el valor del radio hidráulico (R) en la fórmula de Manning, se obtienen las siguientes expresiones en función de la velocidad y del caudal para tuberías con la sección parcialmente llena.

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

- En función de la velocidad:

Ecuación Nº 22 Velocidad de flujo a tubo parcialmente llena

$$V = \frac{0.397}{n} \times D^{2/3} \left(1 - \frac{360 \, sen\theta^{\circ}}{2\pi\theta^{\circ}} \right)^{2/3} \times S^{1/2}$$

En función del caudal:

Ecuación Nº 23 Caudal de flujo a tubo parcialmente llena

$$Q = \frac{D^{8/3}}{7257.15 \times n(2\pi\theta^{\circ})^{2/3}} \times (2\pi\theta^{\circ} - 360 \operatorname{sen}\theta^{\circ})^{5/3} \times S^{1/2}$$

2.5.5 CRITERIOS DE DIMENSIONAMIENTO HIDRÁULICO

2.5.5.1 CAUDAL MÍNIMO

En todos los tramos de la red se calcularán el caudal inicial (Q_i) y el caudal final (Q_f). Se considerará un caudal mínimo de 1.5 lt/s. (Ministerio de Vivienda, Construcción y Saneamiento, 2006).

2.5.5.2 TENSIÓN TRACTIVA

Cada tramo será verificado con un valor de Tensión tractiva (σ_t) para una capacidad de autolimpieza, con un valor mínimo $\sigma_t = 1.0$ Pa, calculado con el caudal inicial (Q_i). Este valor corresponde para un coeficiente de Manning n = 0,013. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

Ecuación Nº 24 Tensión tractiva

$$\sigma_t = g \times \gamma \times RH \times S \dots (23)$$

Donde:

 σ_t : Tensión tractiva en Pascal

g : Aceleración de la gravedad (m/s²)

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P.

Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash'

: 1000 kg/m3 Peso específico del líquido γ

S : Pendiente de la tubería en m/m

RH: Radio hidráulico en m.

2.5.5.3 PENDIENTE MÍNIMA

Las pendientes de las tuberías deben cumplir la capacidad de autolimpieza, se aplica el

criterio de tensión tractiva. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

La pendiente mínima para satisfacer esta condición se determina por la siguiente

expresión aproximada:

Ecuación Nº 25 Pendiente mínima

 $S_{o \ min} = 0.0055 \ Q_i^{-0.47}$

Donde:

: Pendiente mínima (m/m)

 Q_i : Caudal inicial (lt/s)

2.5.5.4 PENDIENTE MÁXIMA Y VELOCIDAD MÁXIMA

La máxima pendiente admisible es la correspondiente a una velocidad final V_f= 5 m/s.

Para situaciones especiales será sustentada por el proyectista. (Ministerio de Vivienda,

Construcción y Saneamiento, 2006).

2.5.5.5 VELOCIDAD CRÍTICA

Para una la velocidad final (V_f) superior a la velocidad crítica (V_c), la mayor altura

admisible de la lámina de agua debe ser el 50% del diámetro del colector, esto para

asegurar la ventilación del tramo. La velocidad crítica está definida por la siguiente

expresión:

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Ecuación Nº 26 Velocidad crítica

$$V_c = 6\sqrt{g \times R_H}$$

Donde:

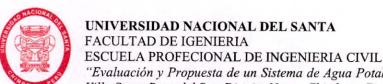
 V_c : Velocidad crítica (m/s)

g : Aceleración de la gravedad (m/s²)

 R_H : Radio hidráulico (m).

2.5.5.6 TIRANTE MÁXIMA

La altura de la lámina de agua será siempre calculada admitiendo un régimen de flujo uniforme y permanente. El valor máximo para el caudal final (Q_f) será igual o inferior al 75% del diámetro del colector. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)


2.5.5.7 DIÁMETRO NOMINAL MÍNIMO

Las tuberías principales que recolectan aguas residuales de un ramal colector, estos tendrán como diámetro mínimo 160 mm. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.5.6 CÁMARAS DE INSPECCIÓN

Según la Norma SO. 070 de (Ministerio de Vivienda, Construcción y Saneamiento, 2006) l, dice que las cámaras de Inspección podrán ser buzonetas y buzones de inspección. Se proyectaran cámaras de inspección en todos los lugares donde sea necesario por razones de inspección, limpieza y en los siguientes casos:

- En el inicio de todo colector

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

- En todos los empalmes de colectores
- En los cambios de dirección
- En los cambios de pendiente
- En los cambios de diámetro
- En los cambios de material de las tuberías.

2.5.6.1 BUZONETAS

Su uso es en vías peatonales cuando la profundidad sea menor de 1,00 m sobre la clave del tubo. Se proyectan para colectores de hasta 200 mm de diámetro. El diámetro es de 0.60 m. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.5.6.2 BUZONES

Se usan cuando la profundidad sea mayor de 1,0 m sobre la clave de la tubería. El diámetro interior de los buzones será de 1.20 m para tuberías hasta 800 mm y de 1.50 m para tuberías hasta 1200 mm. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

2.5.6.3 DISTANCIA ENTRE CÁMARAS DE INSPECCIÓN

De acuerdo a la siguiente tabla se tomarán las distancias entre cámaras de inspección y limpieza, donde las separaciones de estos mismos dependen del diámetro de la tubería. (Ministerio de Vivienda, Construcción y Saneamiento, 2006)

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

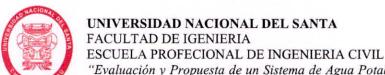

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla Nº 8 Distancias máximas de acuerdo al diámetro de tubería

DIÁMETRO NOMINAL DE LA TUBERÍA (MM)	DISTANCIA MÁXIMA (M)
100 - 150	60
200	80
250 - 300	100
Diámetros mayores	150

FUENTE: (Ministerio de Vivienda, Construcción y Saneamiento, 2006, pág. 79)

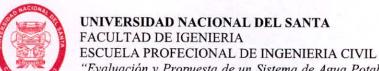
CAPITULO III: MATERIALES Y MÉTODOS

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

3.1 MATERIALES

Los materiales para el proyecto de investigación son utensilios o herramientas, estos utilizamos para la recolección de datos, que se obtendrán de los métodos y por consiguiente poder procesarlos, analizarlos y obtener los resultados.

3.1.1 MATERIALES DE GABINETE


3.1.1.1 MATERIAL BIBLIOGRÁFICO

Para el proyecto de investigación se utilizó material bibliográfico tanto físicos como digitales. Usamos libros de Hidráulica, Abastecimiento de Agua (materiales físicos y digitales), diferentes investigaciones científicas (como tesis y de instituciones de prestigio), Reglamentos (Reglamento Nacional de Edificaciones) y Manuales (Manual de proyectos de Agua Potable en Poblaciones Rurales), entre otros.

3.1.1.2 SOFTWARE

Para el proyecto de investigación utilizamos los siguientes softwares:

- Microsoft Word 2013, se utilizó como principal software para el procesamiento de textos en el informe de tesis.
- Microsoft Excel 2013, se utilizó para realizar operaciones numéricos (Calculo de población futura, cálculos de caudales máximos).
- AutoCAD Civil 3D 2018, se utilizó para la realización de curvas de nivel a partir de puntos obtenidos del levantamiento topográfico.
- AutoCAD 2016, se utilizó para la creación de archivos ".DXF y .DWG", estos ingresados al softwares de Bentley WaterCAD CONNECT Edition y Bentley

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

SewerCAD CONNECT Edition. Así mismo para la realización de los planos definitivos con los resultados de los softwares mencionados.

- ArcGIS 10.5, se utilizó para la transformación del archivo de conexiones domiciliarias AutoCAD (.DWG) a un archivo tipo punto Shapefile (.SHP), el cual tiene una base de datos del caudal unitario que servirá para la distribución de carga a cada nodo o buzón.
- Bentley WaterCAD CONNECT Edition, es un software de hidráulica, se utilizó
 para la modelación, el análisis y el diseño optimizado de redes a presión. Los
 elementos están representados por: Líneas (tramos de tuberías), Puntos (Nodos de
 Consumo de agua), entre otros.
- Bentley SewerCAD CONNECT Edition, es un software de hidráulica, se utilizó
 para la modelación, el análisis y el diseño de la red de alcantarillado. Los
 elementos están representados por: Líneas (tramos de tuberías), dos círculos
 (Buzones), entre otros.

3.1.1.3 EQUIPOS

Los equipos necesarios que se utilizó en el proyecto de investigación son los siguientes softwares:

- Estación Total, se utilizó para realizar el levantamiento topográfico de la "H.U.P.
 Villa Santa Rosa Del Sur".
- Smartphone, se utilizó para la toma fotográfica de los procesos de estudios de suelos realizados.
- Impresora y plotter, equipos necesarios para plasmar la información en hojas)

 CD, se utilizó para la grabación de toda la información del proyecto de investigación.

Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

3.1.1.4 OTROS

Los materiales para recolección de datos y para plasmar toda la información del proyecto de tesis son los siguientes:

- Papel Bond blanco A3, A1, A4
- Cuaderno de notas.
- Utensilios de escritorio.

3.1.2 MATERIALES UTILIZADOS EN CAMPO

Los materiales utilizados en campo para la recolección de datos y para la obtención de muestra de suelo son los siguientes:

- Materiales usados en la topografía: GPS, Estación Total, prisma y trípode, Wincha de 100 metros.
- Materiales usados en el estudio de suelo: Palana, costal, bolsas.
- Materiales para recolección de datos: Cuaderno de apuntes, folder, papel bond,
 lapicero, lápiz, corrector, tajador, borrador.

3.1.3 SERVICIOS

Los servicios utilizados para la elaboración del proyecto de investigación son los siguientes:

- Impresión y fotocopia del informe de investigación.
- Ploteo de los planos de la red de agua y desagüe.
- Servicio de taxis hasta el lugar de estudio.

3.2 MÉTODOS DE INVESTIGACIÓN

3.2.1 TIPO DE INVESTIGACIÓN

3.2.1.1 SEGÚN EL OBJETO DE ESTUDIO

Es una investigación aplicada, por lo que se realizaran y aplicaran en campo.

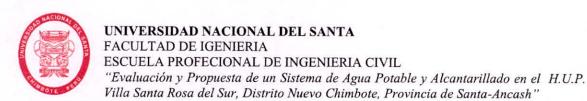
3.2.1.2 SEGÚN EL TIEMPO A EFECTUARSE

Es una investigación dinámica, al analizar los problemas e hipótesis en un tiempo variable y posiblemente largo.

3.2.1.3 SEGÚN LA NATURALEZA DE LA INFORMACIÓN

Es una investigación cuantitativa, por los análisis estadísticos y procedimientos basados en la medición.

3.2.1.4 SEGÚN LA EXTENSIÓN DEL ESTUDIO


Es una investigación de campo.

3.2.2 MÉTODO UTILIZADO

 Método Deductivo, se partió de la hipótesis planteada y por procedimientos tanto analíticos como métricos obtendremos los resultados.

3.2.3 UNIVERSO Y/O POBLACIÓN

Se consideró para el proyecto de investigación como zona de estudio el sector H.U.P. Villa Santa Rosa Del Sur en el Distrito de Nuevo Chimbote.

3.2.4 ESTRATEGIA DE ESTUDIO

Para el proyecto de investigación se utilizó una estrategia de estudio por etapas:

- Se realizó visitas a campo para el estudio de la zona, recopilando información

necesaria para los cálculos de población futura y los caudales de demandas

máximos diarios y horarios. Así como la recolección de muestra para el estudio

de suelo.

- Se realizó el levantamiento topográfico para la obtención de las curvas de nivel,

estos procesados en AutoCAD Civil 3D.

- Con los resultados obtenidos de las anteriores etapas se determinará los

parámetros para la modelación, análisis y el diseño del Sistema de Agua Potable

y del Sistema de Alcantarillado con las técnicas y métodos establecido en el

proyecto de investigación.

3.2.5 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

Para el proyecto de investigación, se recolectaron datos tanto de campo como de gabinete,

siendo una de las- fuentes principales para ello; los censos proporcionados por el INEI

y el plano de lotización proporcionados por la Municipalidad Distrital de Nuevo

Chimbote y SEDAPAL

3.2.5.1 EN GABINETE

La recopilación de datos mencionados anteriormente fue proporcionada por la parte

técnica de la Municipalidad Distrital de Nuevo Chimbote, del INEI y de SEDAPAL. Así

como también se obtuvo datos informativos por medio de entrevistas.

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P.

Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

3.2.5.2 EN CAMPO

Se realizó mediante visitas a campo recopilando información para una correcta selección

a la que mejor se adecue el área de estudio el Sistema de Agua Potable y del Sistema de

Alcantarillado, garantizando el diseño óptimo para ello.

Las actividades realizadas en campo son:

A. RECONOCIMIENTO DE LA ZONA DE ESTUDIO

Se realizó el recorrido, verificando el área de estudio para el desarrollo del proyecto.

Así mismo se realizó calicatas en diferentes puntos para verificar la napa freática y

el tipo de suelo.

En la zona de estudio se identificó que cuenta con un servicio de abastecimiento

por medio de piletas y un servicio de desagüe por medio de pozos ciegos/ letrina.

B. ESTUDIO DE POBLACIÓN

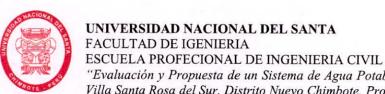
Se estimó un promedio de 6 pobladores por vivienda en el sector H.U.P. Villa Santa

Rosa Del Sur para la determinación de la población futura.

C. TOPOGRAFÍA

Se estableció con ayuda del GPS un punto de referencia (BM), luego se realizó el

levantamiento topográfico con el equipo de Estación Total del sector H.U.P. Villa


Santa Rosa Del Sur de todas las calles y manzanas.

D. SUELOS

- Se realizaron calicatas a diferentes profundidades con la finalidad de auscultar

las características del suelo del área de estudio y verificando las condiciones de

excavación a cierta profundidad.

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

- Se hicieron excavaciones extrayendo muestras representativas para realizar los ensayos en el laboratorio de suelos.
- Se realizaron los ensayos de laboratorio necesarios y suficientes para determinar los parámetros geotécnicos que se utilizaran para el desarrollo del proyecto, los resultados de los ensayos anteriores no serán utilizados para el modelado de los Sistemas de Agua y Alcantarillado, estos serán útiles en el futuro para la ejecución de los sistemas ya mencionadas.

3.2.6 TÉCNICAS PARA EL PROCESAMIENTO DE DATOS

Para el procesamiento de datos realizados en el desarrollo del proyecto de investigación, se procesaron estos datos recopilados tanto en campo como en gabinete.

Como apoyo para los diseños de los Sistemas de Agua y Alcantarillado, se procesaron en los siguientes softwares (Microsoft Word 2013, Microsoft Excel 2013, AutoCAD 2016, AutoCAD Civil 3D 2018, ArcGIS 10.5, Bentley WaterCAD CONNECT Edition, Bentley SewerCAD CONNECT Edition). Verificando parámetros en el desarrollo de la investigación y del Reglamento Nacional de Edificaciones.

CAPITULO IV: RESULTADOS Y DISCUSIONES

4.1 SISTEMA DE AGUA POTABLE

4.1.1 CALCULOS DE LA POBLACION FUTURA Y DOTACION DE AGUA

4.1.1.1 POBLACION FUTURA

Para el cálculo de la población futura se aplicara el método racional (ver el capítulo 2.3.4.3).

Se hará uso de los datos obtenidos de los censos nacionales que nos brinda el INEI de los años 1981, 1993, 2007 y 2017.

Población Total

Total de Manzanas : 30

Total de Lotes : 924

Densidad Poblacional (hab/lote) : 6

Población Actual (Pa)(hab) : 5544

Tabla Nº 9 Población total 1981 - 2017

DISTRITO	POBLACIÓN								
	12 de julio 1981	11 de julio 1993	21 de octubre 2007	22 de octubre 2017					
Nvo Chimbote	53 163	65 396	113 166	159 321					

FUENTE: (Instituto Nacional de Estadistica e Informática (INEI), 2017)

The state of the s

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE IGENIERIA ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

A continuación en la tabla N° 10 veremos el cálculo de la población futura utilizando el método racional.

Tabla Nº 10 Resumen del método racional

Año	Población Actual (Pa)(hab)	Tiempo (t)(años)	P=Pf-Pa	r=P/Pa.t	r.t
1981	53 163				
		12	12 233	0.019	0.230
1993	65 396				
		14	47 770	0.052	0.730
2007	113 166				
		10	46 155	0.040	0.407
2017	159 321				
	TOTAL	36		TOTAL	1.368

FUENTE: Elaboración Propia

A. Coeficiente de crecimiento

$$r = \frac{Total \ r \ x \ t}{Total \ t}$$
$$r = \frac{1.368}{36}$$

r = 39 Por cada 1000 habitantes (39%)

B. Población futura en un tiempo de 20 años

$$P_f = Pa(1 + \frac{rt}{1000})$$

$$P_f = 5544 (1 + \frac{39 \times 20}{1000})$$

 $P_f = 9869 \ habitantes$

4.1.1.2 DOTACIÓN DE AGUA

La dotación que abastecerá al lugar de estudio, de acuerdo al Clima (ver capítulo 2.3.4.4 – Tabla 3), la zona de estudio es de un clima templado por el cual se determina la dotación de: 200 lt/hab/día.

4.1.2 CALCULO DEL CAUDAL

4.1.2.1 CAUDAL PROMEDIO DIARIA ANUAL (Qm)

El Qm se obtendrá mediante la siguiente ecuación (ver capítulo 2.3.4.2 – ecuación 1)

$$Q_m = Q_p = \frac{P_f \ x \text{ Dotación}}{86400}$$
 $Q_m = Q_p = \frac{9869 \ x \ 220}{86400}$
 $Q_m = Q_p = 25.13 \ lt/s$

4.1.2.2 CAUDAL MÁXIMO DIARIO (Qmd)

El Q_{md} se obtendrá a partir del Qm multiplicado por el coeficiente recomendado $(K_1=1.3)$ (ver capítulo 2.3.4.2 – Tabla 2)

$$Q_{md} = 1.3 x Q_m$$

 $Q_{md} = 1.3 x 25.13$
 $Q_{md} = 32.69 lt/s$

4.1.2.3 CAUDAL MÁXIMO HORARIO (Qmh)

El Q_{md} se obtendrá a partir del Qm multiplicado por el coeficiente recomendado $(K_2=2.5)$ (ver capítulo -2.3.4.2 – Tabla 2)

$$Q_{mh} = 2.5 \times Q_m$$

$$Q_{mh} = 2.5 \times 25.13$$

$$Q_{mh} = 62.82 lt/s$$

4.1.3 MODELADO DEL SISTEMA DE AGUA POTABLE MEDIANTE EL USO DE WATERCAD

4.1.3.1 CREACION DE ARCHIVOS PREVIOS

Los archivos necesariamente deben estar en una extensión compatible con los softwares WaterCAD Y SewerCAD.

Los archivos de AutoCAD por defecto están en extensión .dwg a lo que guardaremos con la extensión .dxf, con este tipo de formato los softwares podrán leerlos.

Se realizó el trazado en AutoCAD el Sistema de Agua Potable y Conexiones Domiciliarias (Con sus respectivos layers).

Se realizó a través del software ArcGIS la transformación de las conexiones domiciliarias a una representación tipo puntos, guardando en formato ShapeFile, esto permitirá q el archivo se convierta a una base de datos almacenando un caudal unitario con lo cual se distribuirá la carga a cada nodo en el caso del programa WaterCAD

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

4.1.3.2 MODELADO DEL SISTEMA.

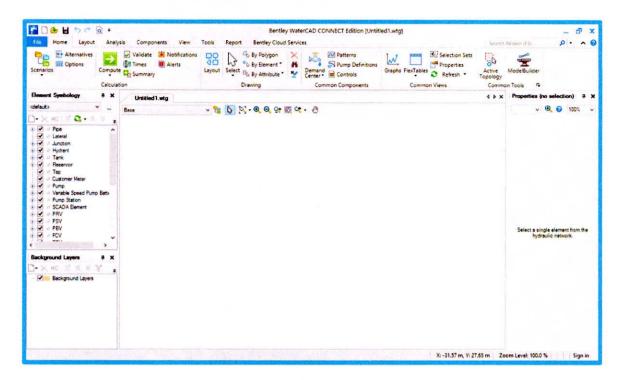


Figura N° 16 Iniciamos el software WaterCAD CONNECT Edition FUENTE: Elaboración Propia

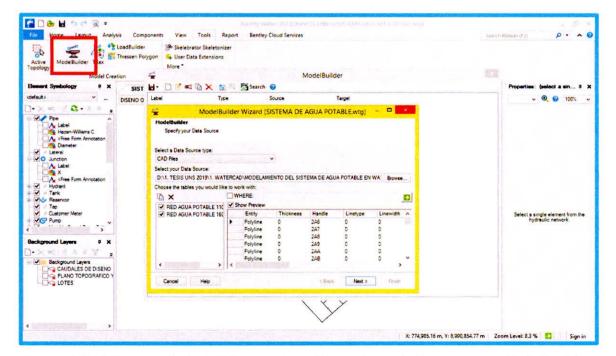


Figura N° 17 Ingreso de la red de Agua Potable mediante la herramienta ModelBuilder

FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

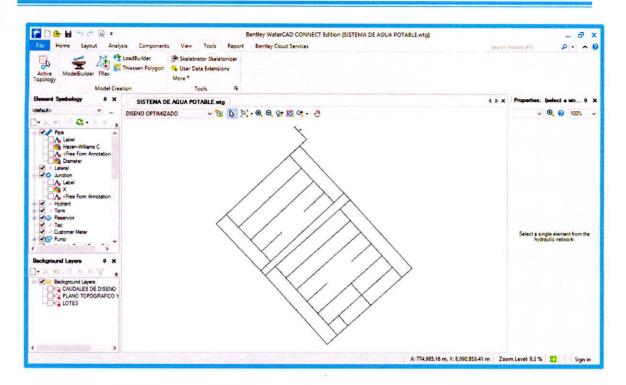


Figura Nº 18 Visualización de la Red de Agua Potable FUENTE: Elaboración Propia

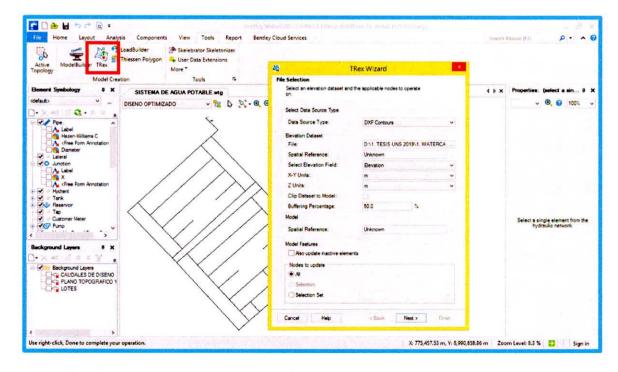


Figura Nº 19 Asignación automatizada de elevaciones mediante la herramienta TRex FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

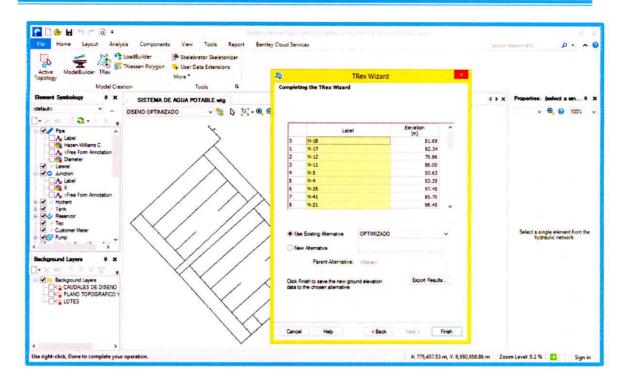


Figura N° 20 Visualización de las elevaciones a cada Nodo FUENTE: Elaboración Propia

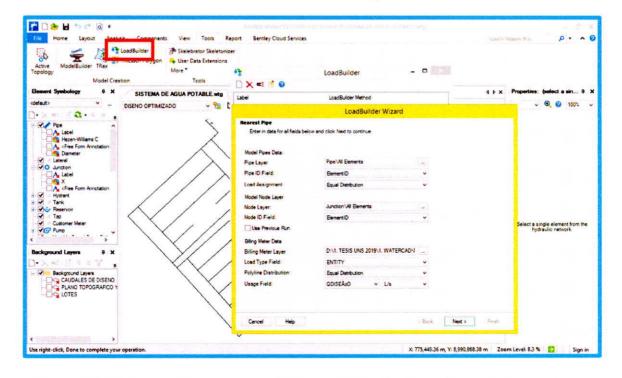


Figura N° 21 Asignación automatizada de caudal de diseño mediante la herramienta LoadBuilder

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

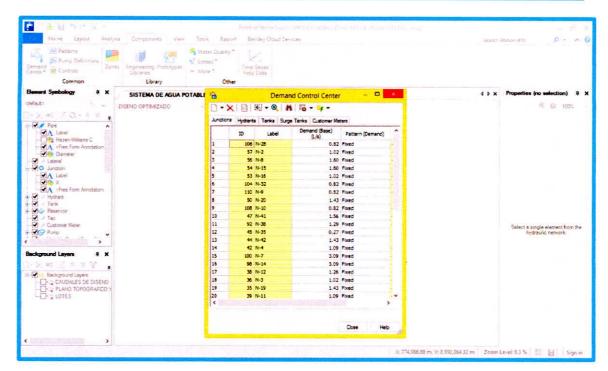


Figura N° 22 Visualización de las demandas en cada nodo FUENTE: Elaboración Propia

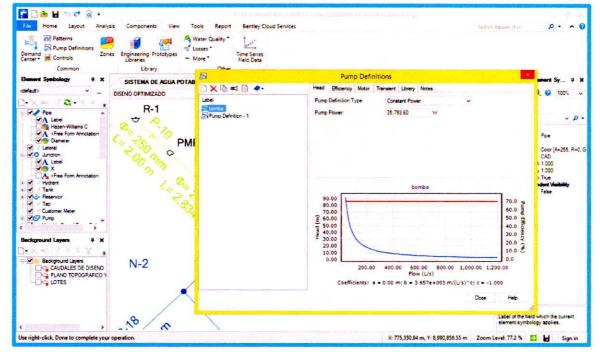


Figura N° 23 Definimos la potencia de la bomba calculada FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

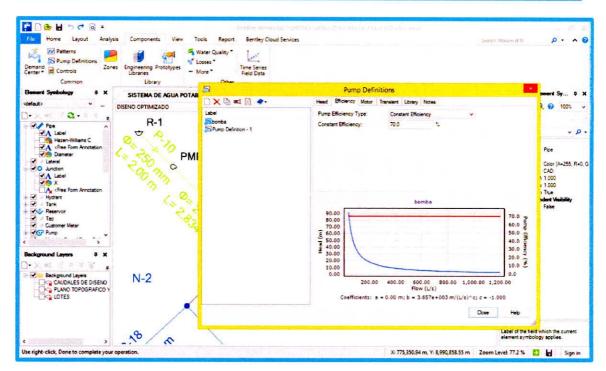


Figura N° 24 Definimos la eficiencia de la bomba FUENTE: Elaboración Propia

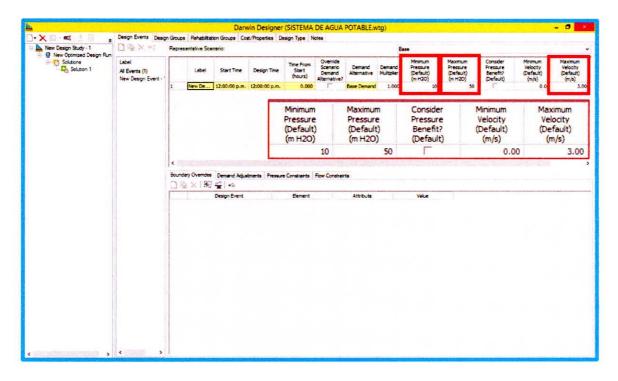


Figura N° 25 Parámetros de presiones y velocidades para el diseño optimizado FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

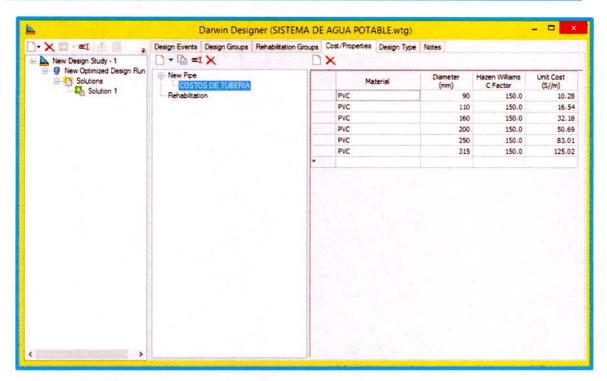


Figura N° 26 Ingreso de costo unitario para un diseño optimizado con el menor precio FUENTE: Elaboración Propia

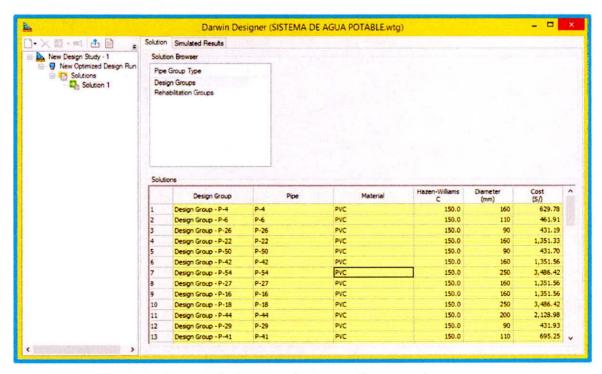


Figura N° 27 Diseño optimizado bajo parámetros máximos, mínimos y menores costos FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

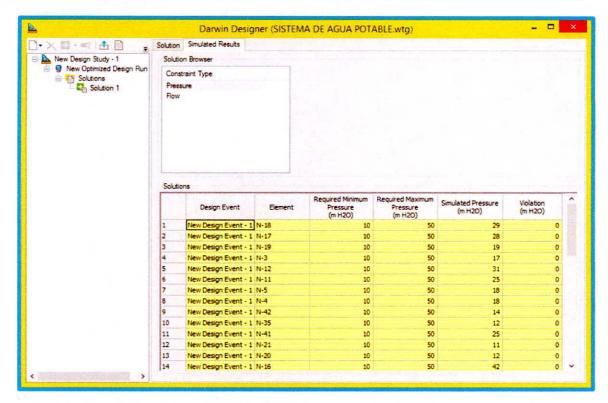


Figura N° 28 Visualización de presiones dentro del parámetro del diseño optimizado FUENTE: Elaboración Propia

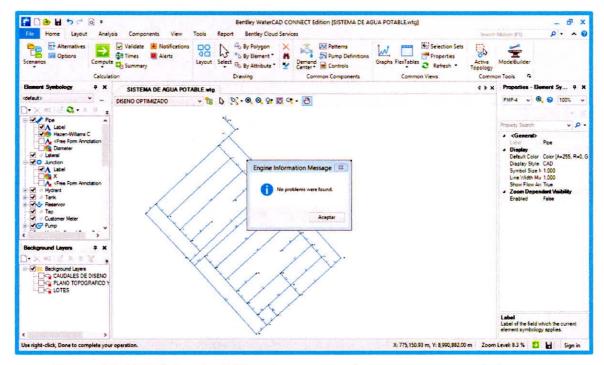


Figura N° 29 Validación del Diseño para verificar que no exista algún error FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

4.1.3.3 TABLAS DE RESULTADOS DE LAS TUBERIAS

Tabla Nº 11 Resultados de las tuberías P-1 al P-16

Tubería	Longitud (m)	Nodo Inicial	Nodo Final	Diámetro (mm)	Material	Hazen- Williams C	Caudal (L/s)	Velocidad (m/s)	Perdida de Carga (m/km)
P-1	15.93	R-1	PMP-4	250	PVC	150	62.83	1.28	5.067
P-2	36.01	PMP-4	N-1	250	PVC	150	62.83	1.28	5.067
P-3	29.54	N-1	N-2	200	PVC	150	62.83	2	15.026
P-4	27.93	N-3	N-19	160	PVC	150	26.9	1.34	9.258
P-5	42.88	N-2	N-8	160	PVC	150	29.79	1.48	11.183
P-6	197.51	N-2	N-3	160	PVC	150	32.02	1.59	12.788
P-7	283	N-19	N-20	160	PVC	150	12.84	0.64	2.355
P-8	43.05	N-35	N-34	110	PVC	150	0.98	0.1	0.124
P-9	54	N-15	N-14	110	PVC	150	2.35	0.25	0.631
P-10	263.98	N-4	N-11	110	PVC	150	4.51	0.47	2.102
P-11	19.57	N-17	N-18	110	PVC	150	10.91	1.15	10.796
P-12	41.94	N-12	N-11	110	PVC	150	3.78	0.4	1.516
P-13	41.99	N-5	N-4	110	PVC	150	1.49	0.16	0.271
P-14	41.99	N-42	N-35	110	PVC	150	3.37	0.35	1.227
P-15	42	N-18	N-41	110	PVC	150	4.68	0.49	2.253
P-16	42	N-20	N-21	110	PVC	150	11.42	1.2	11.742

ESCUELA PROFECIONAL DE INGENIERIA CIVIL
"Évaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia
de Santa-Ancash"

Tabla Nº 12 Resultados de las tuberías P-17 al P-34

Perdida de Carga (m/km)	Velocidad (s/m)	Caudal (E/s)	Hazen- Williams C	Material	Oiśmetro (mm)	oboV IsniA	oboV Isioial	Longitud (m)	
5.003	91.0	Z.7	120	bΛC	110	LI-N	II-N	77	71- 4
3.295	9.0	ST.S	120	PVC	110	91-N	SI-N	77	81- 4
14.156	1.33	12.63	120	$b\Lambda C$	110	L7-N	61-N	77	61-d
797.1	64.0	11.4	120	$b\Lambda C$	110	t-N	E-N	42.02	P-20
135.1	8£.0	rz.E	120	$b\Lambda C$	110	S-N	9-N	81	17-A
604.€	79.0	28.2	120	$b\Lambda C$	110	71-N	EI-N	81	P-22
489.82	26.I	18.49	120	$b\Lambda C$	110	L-N	8-N	<i>ts</i>	P-23
2.244	64.0	L9.4	120	$b\Lambda C$	110	EI-N	71-N	t S	P-74
591.6	20.1	86.6	120	$b\Lambda C$	110	9-N	L-N	<i>t</i> S	P-25
792.0	91.0	84.I	120	$b\Lambda C$	110	7E-N	67-N	96.56	97-d
2.616	£2.0	70.2	120	PVC	110	67-N	12-N	171	L7-4
2.295	2.0	EL.4	120	$_{ m b}\Lambda { m C}$	110	LI-N	91-N	46.791	82-A
1.106	45.0	3.19	120	$b\Lambda C$	110	It-N	12-N	797	67-d
889.8	1.02	L.9	120	$b\Lambda C$	110	SI-N	8-N	797	P-30
746.2	LS.0	14.2	120	$b\Lambda C$	110	71-N	L-N	797	1E-9
1.532	4.0	8.5	120	$b\Lambda C$	110	EI-N	9-N	797	P-37
2.36	12.0	8.4	120	$_{ m b}\Lambda { m C}$	110	77-N	81-N	283.04	FE-4
41.8	78.0	55.5	120	PVC	06	N-22	12-N	42.03	b-34

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla Nº 13 Resultados de las tuberías P-35 al P-54

Tubería	Longitud (m)	Nodo Inicial	Nodo Final	Diámetro (mm)	Material	Hazen- Williams C	Caudal (L/s)	Velocidad (m/s)	Perdida de Carga (m/km)
P-35	42.05	N-29	N-30	90	PVC	150	2.5	0.39	1.881
P-36	42.05	N-34	N-33	90	PVC	150	1.92	0.3	1.145
P-37	42.06	N-35	N-36	90	PVC	150	2.12	0.33	1.382
P-38	43.05	N-33	N-36	90	PVC	150	0.53	0.08	0.107
P-39	48	N-40	N-39	90	PVC	150	3.91	0.61	4.287
P-40	48	N-41	N-40	90	PVC	150	6.31	0.99	10.397
P-41	48.03	N-26	N-25	90	PVC	150	4.22	0.66	4.944
P-42	49	N-23	N-24	90	PVC	150	0.71	0.11	0.184
P-43	80.88	N-38	N-32	90	PVC	150	0.82	0.13	0.236
P-44	84	N-5	N-9	90	PVC	150	0.82	0.13	0.236
P-45	127.03	N-23	N-31	90	PVC	150	0.57	0.09	0.121
P-46	136.97	N-31	N-37	90	PVC	150	0.2	0.03	0.017
P-47	47.97	N-30	N-31	90	PVC	150	1.84	0.29	1.06
P-48	47.97	N-27	N-26	90	PVC	150	7.88	1.24	15.693
P-49	47.97	N-22	N-23	90	PVC	150	2.71	0.43	2.18
P-50	47.98	N-36	N-37	90	PVC	150	1.91	0.3	1.134
P-51	48	N-25	N-24	90	PVC	150	1.39	0.22	0.635
P-52	48	N-39	N-38	90	PVC	150	1.57	0.25	0.79

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla Nº 14 Resultados de las tuberías P-35 al P-54

Tubería	Longitud (m)	Nodo Inicial	Nodo Final	Diámetro (mm)	Material	Hazen- Williams C	Caudal (L/s)	Velocidad (m/s)	Perdida de Carga (m/km)
P-53	49	N-37	N-38	90	PVC	150	0.54	0.08	0.11
P-54	81	N-24	N-28	90	PVC	150	0.82	0.13	0.236
P-55	83.97	N-12	N-10	90	PVC	150	0.82	0.13	0.236
P-56	93.94	N-33	N-30	90	PVC	150	0.4	0.06	0.062
P-57	127.01	N-22	N-30	90	PVC	150	1.28	0.2	0.544
P-58	264	N-25	N-39	90	PVC	150	0.24	0.04	0.025
P-59	264	N-26	N-40	90	PVC	150	0.63	0.1	0.145

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

4.1.3.4 TABLAS DE RESULTADOS DE LOS NODOS

Tabla N° 15 Resultados de presiones del Nodo N-1 al N-21

NODO	Elevación (m)	Demanda (L/s)	Cota Piezométrica (m)	Presión (mCa)	
N-1	90.18	0	114.32	24	
N-2	90.28	1.02	113.88	24	
N-3	93.45	1.02	111.35	18	
N-4	93.35	1.09	111.28	18	
N-5	93.63	1.26	111.29	18	
N-6	91.45	2.62	111.35	20	
N-7	90.86	3.09	111.85	21	
N-8	91	1.6	113.4	22	
N-9	84.86	0.82	111.27	26	
N-10	81.97	0.82	110.77	29	
N-11	86	1.09	110.72	25	
N-12	79.86	1.26	110.79	31	
N-13	77.08	2.62	110.95	34	
N-14	77.59	3.09	111.07	33	
N-15	73.9	1.6	111.1	37	
N-16	70	1.02	110.97	41	
N-17	82.34	1.02	110.51	28	
N-18	81.69	1.43	110.3	29	
N-19	91.8	1.43	111.09	19	
N-20	97.56	1.43	110.43	13	
N-21	98.45	0.82	109.93	11	

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla N° 16 Resultados de presiones del Nodo N-22 al N-42

NODO	Elevación (m)	Demanda (L/s)	Cota Piezométrica (m)	Presión (mCa)	
N-22	94.1	1.53	109.59	15	
N-23	92.43	1.43	109.49	17	
N-24	96	1.29	109.48	13	
N-25	94.91	2.58	109.51	15	
N-26	90.74	3.03	109.75	19	
N-27	90.6	1.56	110.5	20	
N-28	94.57	0.82	109.46	15	
N-29	99.16	1.09	109.6	10	
N-30	96.08	2.35	109.52	13	
N-31	93.58	2.21	109.47	16	
N-32	91.11	0.82	109.44	18	
N-33	96.01	0.99	109.53	13	
N-34	96.58	0.54	109.58	13	
N-35	97.45	0.27	109.58	12	
N-36	93.64	0.75	109.52	16	
N-37	89.53	1.56	109.47	20	
N-38	91.23	1.29	109.46	18	
N-39	86.67	2.58	109.5	23	
N-40	86.22	3.03	109.71	23	
N-41	85.7	1.56	110.21	24	
N-42	94.86	1.43	109.63	15	

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

4.1.4 CALCULO DEL VOLUMEN TOTAL DEL RESERVORIO

4.1.4.1 RESERVORIO PARA EL PROYECTO

Se tiene un reservorio apoyado existente de volumen V= 5000 m3 con una Cota de Terreno de CT=70.50 msnm, este será habilitada para el abastecimiento de agua potable para el H.U.P Villa Santa Rosa del Sur.

4.1.4.2 VOLUMEN DE REGULACIÓN

El V₁ se calculó con un mínimo del 25% del Q_p (ver capítulo 2.3.3.1 – ecuación 11)

$$V_1 = 0.25 x Q_P$$

$$V_1 = 0.25 \times 25.13 \frac{lt}{seg} \times 86400 \frac{seg}{1dia} \times \frac{m^3}{1000 lt}$$

$$V_1 = 542.81 \, m^3$$

4.1.4.3 VOLUMEN CONTRA INCENDIOS

El V₂ por ser una población menor a los 10 000 habitantes, no se considera un volumen contraincendios (ver capítulo 2.3.3.2)

$$V_2 = 0.00 \ m^3$$

4.1.4.4 VOLUMEN DE RESERVA

El V₃ para el reservorio (ver capítulo 2.3.3.3 – ecuación 12)

$$V_3 = 0.33 x (V_1 + V_2)$$

$$V_3 = 0.33 x (542.81 + 0)$$

$$V_3 = 179.13 m^3$$

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

4.1.4.5 VOLUMEN TOTAL

El V_T para el reservorio es (ver capítulo 2.3.3.4 – ecuación 13)

$$V_T = (V_1 + V_2 + V_3)$$

$$V_T = 542.81 + 0 + 179.13$$

$$V_T = 721.94 \ m^3$$

4.1.5 CALCULO DE LA POTENCIA DE LA BOMBA

Para la potencia de la bomba (ver capítulo 2.4 – ecuación 14)

- Caudal de bombeo

El caudal de bombeo se calculara con el caudal máximo horario (Qmd), ya que es un diseño de distribución por bombeo.

$$Q_B = Q_{mh}$$

$$V_B = 60.82 \ lt/s$$

- Altura dinámica Total (HDT)

$$HDT = 58.20 m$$

- Eficiencia (n)

$$n = 70\%$$

Densidad de Agua (γ)

$$\gamma = 1kg/lt$$

- Potencia de la Bomba (PB)

$$P_B = \frac{\gamma Q_B x HDT}{76 x n}$$

$$P_B = \frac{1 \times 60.82 \times 58.2}{76 \times 0.70}$$

$$P_B = 68.72 \, HP$$

La potencia de la bomba será de un valor no menor a los 69 HP, para la simulación en el Software de WaterCAD se ingresó con una eficiencia del 70%.

4.2 SISTEMA DE ALCANTARILLADO

4.2.1 CALCULOS DE LA POBLACION FUTURA Y DOTACION DE AGUA

La población futura y de la dotación de agua requerida para la zona estudio se calcularon en el Sistema de Agua Potable (ver el capítulo 4.1.1).

4.2.1.1 POBLACION FUTURA

Se obtuvo una Población futura en un tiempo de 20 años:

$$P_f = 9869 habitantes$$

4.2.1.2 DOTACIÓN DE AGUA

La dotación que abastecerá al lugar de estudio es de: 200 lt/hab/día.

4.2.2 CALCULO DEL CAUDAL

El caudal Promedio Diaria Anual (Qm), Máximo Diario (Qmd) y el Máximo Horario (Qmh) se calcularon en el Sistema de Agua Potable (ver el capítulo 4.1.2).

4.2.2.1 CAUDAL PROMEDIO DIARIA ANUAL (Qm)

Se obtuvo un Caudal Promedio Diaria Anual:

$$Q_m = Q_p = 25.13 \ lt/s$$

4.2.2.2 CAUDAL MÁXIMO DIARIO (Qmd)

Se obtuvo un Caudal Máximo Diaria:

$$Q_{md} = 32.69 lt/s$$

4.2.2.3 CAUDAL MÁXIMO HORARIO (Qmh)

Se obtuvo un Caudal Máximo Horario:

$$Q_{mh} = 62.82 \ lt/s$$

4.2.2.4 CAUDAL DE DISEÑO (q)

El caudal de Diseño del Sistema de Desagüe (q) se calculó con un coeficiente de retorno (C) del 80% (ver el capítulo 2.6.3.5).

$$q=C\,x\,Q_{mh}$$

$$q = 80\% x 62.82$$

$$q=50.26\ lt/s$$

4.2.3 MODELADO DEL SISTEMA DE AGUA POTABLE MEDIANTE EL USO DE WATERCAD

4.2.3.1 CREACION DE ARCHIVOS PREVIOS

Los archivos necesariamente deben estar en una extensión compatible con los softwares WaterCAD Y SewerCAD.

Los archivos de AutoCAD por defecto están en extensión .dwg a lo que guardaremos con la extensión .dxf, con este tipo de formato los softwares podrán leerlos.

Se realizó el trazado en AutoCAD del Sistema de Alcantarillado y Conexiones Domiciliarias (Con sus respectivos layers).

Se realizó a través del software ArcGIS la transformación de las conexiones domiciliarias a una representación tipo puntos, guardando en formato ShapeFile, esto permitirá q el archivo se convierta a una base de datos almacenando un caudal unitario con lo cual se distribuirá la carga en cada buzón en el programa SewerCAD.

4.2.3.2 MODELADO DEL SISTEMA.

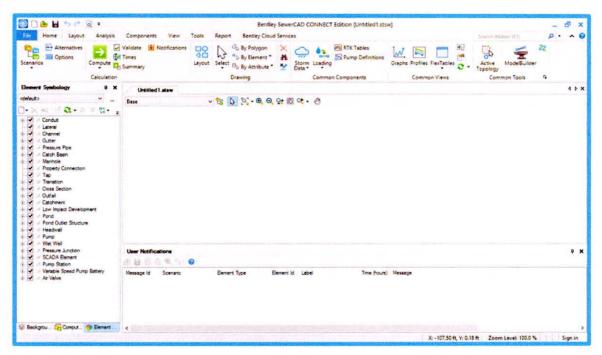


Figura N° 30 Iniciamos el software SewerCAD CONNECT Edition FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"



Figura N° 31 Ingreso de la Red de Alcantarillado Sanitario mediante la herramienta ModelBuilder

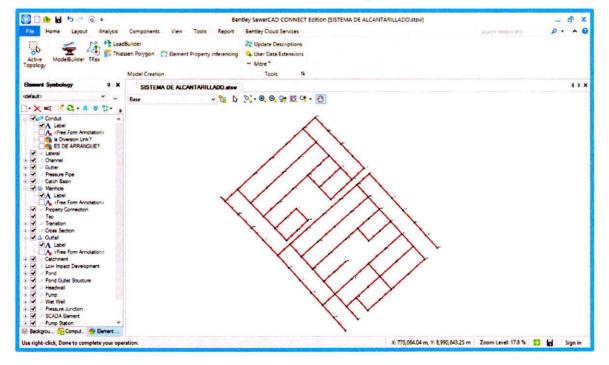


Figura N° 32 Visualización de la Red de Alcantarillado Sanitario FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

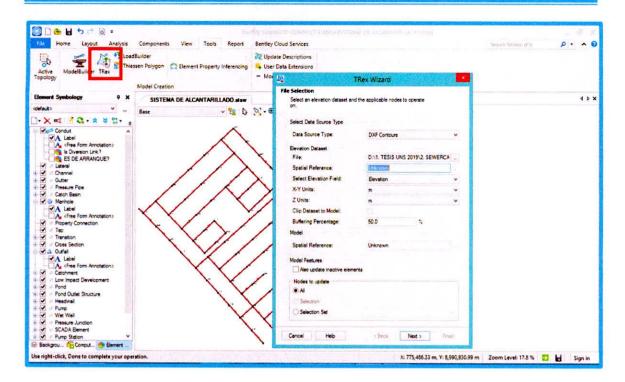


Figura N° 33 Asignación automatizada de elevaciones mediante la herramienta TRex FUENTE: Elaboración Propia

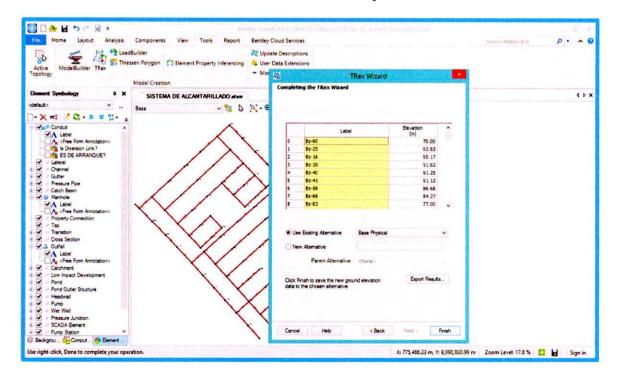


Figura N° 34 Visualización de las elevaciones en cada Buzón FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

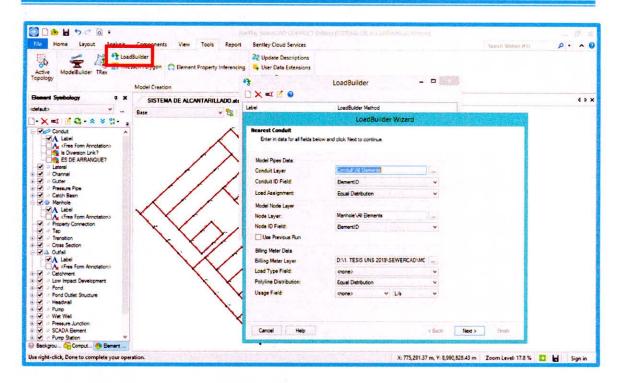


Figura N° 35 Asignación automatizada de caudal de diseño mediante la herramienta LoadBuilder

FUENTE: Elaboración Propia

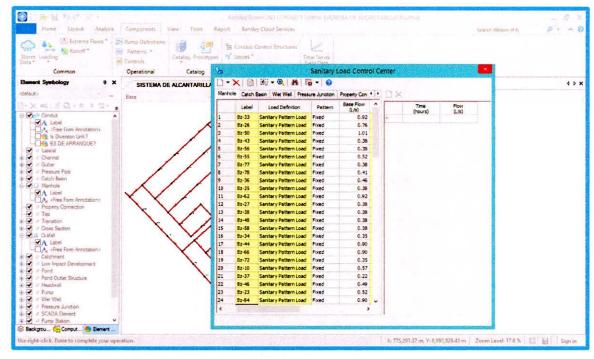


Figura N° 36 Visualización del caudal de retorno en cada Buzón

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

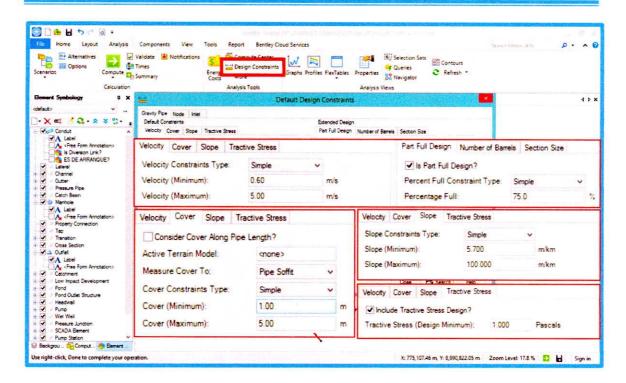


Figura N° 37 Parámetros de Velocidades, Tirante, Recubrimientos, Pendientes y de la Tensión Tractiva para el diseño automatizado

FUENTE: Elaboración Propia

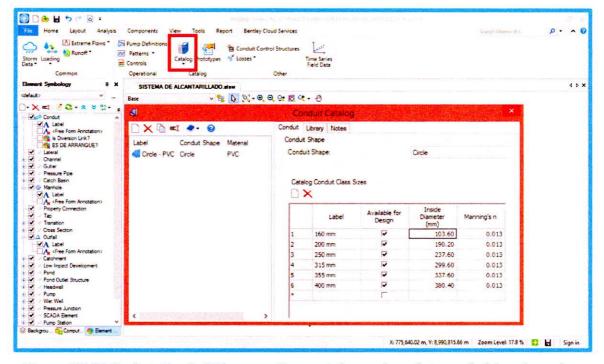


Figura N° 38 Definición de Diámetros Comerciales y el coeficiente de Manning a las tuberías de la Red de Alcantarillado Sanitario

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

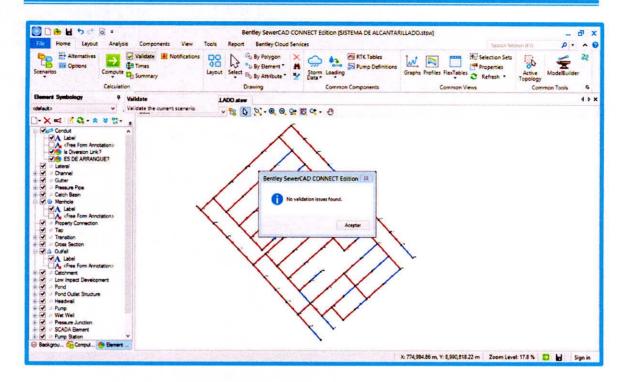


Figura N° 39 Validación del Diseño para verificar que no exista alguna restricción FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

4.2.3.3 TABLAS DE RESULTADOS DE LAS TUBERIAS

Tabla Nº 17 Resultados de las tuberías P-1 al P-15

Tubo	Longitud (m)	N. Inicial	N. Final	Mat.	Manning's n	Ф (mm)	Demanda (L/s)	S (‰)	Caudal a tubo lleno (L/s)	Velocidad (m/s)	y/D (%)	Tensión Tractiva (Pascal)
P-1	49.50	Bz-1	Bz-21	PVC	0.013	160	0.19	123.92	63.68	0.69	4	5.098
P-2	64.80	Bz-1	Bz-2	PVC	0.013	160	0.27	17.41	23.87	0.39	7.6	1.331
P-3	64.20	Bz-2	Bz-4	PVC	0.013	160	0.71	18.33	24.49	0.54	11.7	2.117
P-4	49.50	Bz-3	Bz-13	PVC	0.013	160	0.19	57.77	43.48	0.54	4.8	2.825
P-5	45.00	Bz-4	Bz-8	PVC	0.013	160	0.87	41.98	37.06	0.77	10.6	4.415
P-6	49.50	Bz-4	Bz-11	PVC	0.013	160	0.33	53.83	41.97	0.62	6.3	3.44
P-7	64.20	Bz-5	Bz-11	PVC	0.013	160	0.33	32.01	32.37	0.51	7.1	2.301
P-8	64.80	Bz-5	Bz-21	PVC	0.013	160	0.54	49.74	40.34	0.71	8.1	4.052
P-9	49.50	Bz-6	Bz-25	PVC	0.013	160	0.19	66.11	46.51	0.56	4.7	3.17
P-10	49.50	Bz-7	Bz-16	PVC	0.013	160	1.42	17.49	23.92	0.65	16.5	2.781
P-11	46.00	Bz-8	Bz-7	PVC	0.013	160	1.14	5.70	13.66	0.41	19.6	1.058
P-12	64.20	Bz-9	Bz-26	PVC	0.013	160	0.22	42.13	37.13	0.5	5.5	2.352
P-13	64.80	Bz-9	Bz-33	PVC	0.013	160	0.55	50.47	40.64	0.71	8.1	4.101
P-14	45.00	Bz-10	Bz-11	PVC	0.013	160	0.25	13.23	20.81	0.35	7.6	1.012
P-15	46.00	Bz-10	Bz-16	PVC	0.013	160	0.33	20.63	25.98	0.45	7.8	1.622

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla Nº 18 Resultados de las tuberías P-16 al P-32

Tubo	Longitud (m)	N. Inicial	N. Final	Mat.	Manning's n	Ф (mm)	Demanda (L/s)	S (‰)	Caudal a tubo lleno (L/s)	Velocidad (m/s)	y/D (%)	Tensión Tractiva (Pascal)
P-16	48.50	Bz-11	Bz-26	PVC	0.013	160	1.96	41.35	36.79	0.97	15.7	6.274
P-17	42.10	Bz-12	Bz-17	PVC	0.013	160	3.45	23.02	27.45	0.93	23.9	5.093
P-18	48.00	Bz-12	Bz-19	PVC	0.013	160	0.38	10.33	18.38	0.37	10	1.028
P-19	48.50	Bz-13	Bz-15	PVC	0.013	160	0.57	8.20	16.38	0.38	12.8	1.028
P-20	47.20	Bz-14	Bz-22	PVC	0.013	160	0.19	22.86	27.35	0.39	5.9	1.375
P-21	48.80	Bz-14	Bz-30	PVC	0.013	160	0.17	44.51	38.16	0.47	4.8	2.177
P-22	48.50	Bz-15	Bz-27	PVC	0.013	160	0.95	36.55	34.58	0.75	11.4	4.125
P-23	38.00	Bz-16	Bz-25	PVC	0.013	160	2.29	35.12	33.9	0.96	17.6	5.915
P-24	42.00	Bz-17	Bz-24	PVC	0.013	160	4.10	26.60	29.51	1.03	25.2	6.159
P-25	43.10	Bz-18	Bz-23	PVC	0.013	160	1.39	15.76	22.71	0.63	16.8	2.54
P-26	48.00	Bz-19	Bz-44	PVC	0.013	160	0.38	34.74	33.72	0.56	7.5	2.643
P-27	40.60	Bz-19	Bz-18	PVC	0.013	160	0.71	8.62	16.8	0.41	14	1.176
P-28	49.50	Bz-20	Bz-43	PVC	0.013	160	0.19	76.93	50.17	0.6	4.5	3.521
P-29	48.50	Bz-21	Bz-33	PVC	0.013	160	1.66	28.89	30.75	0.81	15.8	4.405
P-30	54.00	Bz-22	Bz-29	PVC	0.013	160	0.59	19.44	25.22	0.52	10.6	2.047
P-31	45.20	Bz-23	Bz-36	PVC	0.013	160	6.33	27.25	29.86	1.18	31.3	7.561
P-32	47.90	Bz-24	Bz-23	PVC	0.013	160	4.43	5.72	13.68	0.61	39.1	1.889

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla Nº 19 Resultados de las tuberías P-33 al P-49

Tubo	Longitud (m)	N. Inicial	N. Final	Mat.	Manning's n	Ф (mm)	Demanda (L/s)	S (‰)	Caudal a tubo lleno (L/s)	Velocidad (m/s)	y/D (%)	Tensión Tractiva (Pascal)
P-33	48.50	Bz-25	Bz-50	PVC	0.013	160	3.07	85.75	52.97	1.43	16.3	13.515
P-34	64.20	Bz-26	Bz-28	PVC	0.013	160	2.94	5.70	13.66	0.54	31.5	1.591
P-35	48.00	Bz-27	Bz-38	PVC	0.013	160	1.33	32.29	32.51	0.79	13.9	4.371
P-36	64.80	Bz-28	Bz-50	PVC	0.013	160	3.62	53.64	41.9	1.28	19.9	10.083
P-37	54.00	Bz-29	Bz-47	PVC	0.013	160	1.00	55.93	42.78	0.88	10.6	5.871
P-38	48.00	Bz-30	Bz-35	PVC	0.013	160	0.38	10.23	18.3	0.37	10	1.022
P-39	64.20	Bz-31	Bz-52	PVC	0.013	160	0.49	63.54	45.6	0.74	7.3	4.684
P-40	64.80	Bz-31	Bz-44	PVC	0.013	160	0.55	41.13	36.69	0.66	8.5	3.513
P-41	42.00	Bz-32	Bz-60	PVC	0.013	160	0.55	154.34	71.07	1.04	6.3	9.794
P-42	48.00	Bz-32	Bz-51	PVC	0.013	160	0.35	59.20	44.01	0.65	6.4	3.819
P-43	48.50	Bz-33	Bz-12	PVC	0.013	160	3.13	5.70	13.66	0.55	32.5	1.632
P-44	48.00	Bz-34	Bz-37	PVC	0.013	160	2.07	5.70	13.66	0.49	26.3	1.369
P-45	48.00	Bz-35	Bz-32	PVC	0.013	160	0.22	14.37	21.69	0.34	7.1	1.026
P-46	42.00	Bz-35	Bz-45	PVC	0.013	160	0.55	55.19	42.5	0.74	7.9	4.408
P-47	64.20	Bz-36	Bz-64	PVC	0.013	160	6.80	96.82	56.29	1.89	23.5	21.061
P-48	48.00	Bz-37	Bz-46	PVC	0.013	160	2.28	22.60	27.2	0.82	19.6	4.201
P-49	48.00	Bz-38	Bz-34	PVC	0.013	160	1.71	5.70	13.66	0.46	23.9	1.26

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla Nº 20 Resultados de las tuberías P-50 al P-66

Tubo	Longitud (m)	N. Inicial	N. Final	Mat.	Manning's n	Ф (mm)	Demanda (L/s)	S (‰)	Caudal a tubo lleno (L/s)	Velocidad (m/s)	y/D (%)	Tensión Tractiva (Pascal)
P-50	41.90	Bz-39	Bz-41	PVC	0.013	160	0.98	6.20	14.24	0.41	17.8	1.053
P-51	41.90	Bz-40	Bz-39	PVC	0.013	160	0.33	11.19	19.13	0.36	9.1	1.017
P-52	48.00	Bz-41	Bz-62	PVC	0.013	160	0.52	98.02	56.63	0.88	6.8	6.751
P-53	48.50	Bz-41	Bz-50	PVC	0.013	160	1.17	29.78	31.22	0.74	13.2	3.854
P-54	54.00	Bz-42	Bz-49	PVC	0.013	160	0.41	9.70	17.82	0.36	10.4	1.005
P-55	65.90	Bz-42	Bz-74	PVC	0.013	160	1.11	141.42	68.03	1.26	8.9	12.57
P-56	48.50	Bz-43	Bz-56	PVC	0.013	160	0.57	46.00	38.8	0.7	8.5	3.904
P-57	48.00	Bz-44	Bz-46	PVC	0.013	160	1.83	5.70	13.66	0.47	24.7	1.299
P-58	42.00	Bz-45	Bz-65	PVC	0.013	160	0.88	109.11	59.75	1.07	8.4	9.244
P-59	64.80	Bz-46	Bz-53	PVC	0.013	160	4.60	19.13	25.02	0.95	29	4.986
P-60	47.90	Bz-47	Bz-49	PVC	0.013	160	1.25	41.94	37.05	0.85	12.6	5.177
P-61	48.00	Bz-48	Bz-58	PVC	0.013	160	10.20	28.84	30.72	1.37	39.6	9.62
P-62	66.00	Bz-49	Bz-71	PVC	0.013	160	2.17	96.77	56.27	1.35	13.4	12.704
P-63	48.00	Bz-50	Bz-56	PVC	0.013	160	8.86	27.18	29.82	1.29	37.4	8.673
P-64	42.00	Bz-51	Bz-67	PVC	0.013	160	0.52	113.11	60.84	0.92	6.6	7.572
P-65	54.00	Bz-51	Bz-42	PVC	0.013	160	0.56	8.20	16.38	0.38	12.6	1.019
P-66	64.20	Bz-52	Bz-54	PVC	0.013	160	1.47	6.93	15.06	0.48	21.1	1.372

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla Nº 21 Resultados de las tuberías P-67 al P-83

Tubo	Longitud (m)	N. Inicial	N. Final	Mat.	Manning's n	Ф (mm)	Demanda (L/s)	S (‰)	Caudal a tubo lleno (L/s)	Velocidad (m/s)	y/D (%)	Tensión Tractiva (Pascal)
P-67	64.80	Bz-53	Bz-57	PVC	0.013	160	5.12	28.25	30.4	1.13	27.7	7.093
P-68	64.80	Bz-54	Bz-66	PVC	0.013	160	2.50	47.91	39.59	1.1	17	7.834
P-69	64.20	Bz-55	Bz-61	PVC	0.013	160	6.13	23.85	27.94	1.12	31.8	6.698
P-70	48.50	Bz-56	Bz-48	PVC	0.013	160	9.82	5.70	13.66	0.74	62.8	2.536
P-71	64.20	Bz-57	Bz-55	PVC	0.013	160	5.61	5.70	13.66	0.65	44.6	2.071
P-72	48.00	Bz-58	Bz-72	PVC	0.013	160	10.58	103.14	58.09	2.2	28.9	26.77
P-73	42.00	Bz-59	Bz-69	PVC	0.013	160	0.16	57.26	43.29	0.51	4.4	2.584
P-74	42.00	Bz-59	Bz-63	PVC	0.013	160	0.17	16.19	23.02	0.33	6.1	1.001
P-75	42.00	Bz-60	Bz-68	PVC	0.013	160	1.20	53.99	42.03	0.92	11.6	6.191
P-76	47.90	Bz-61	Bz-75	PVC	0.013	200	19.09	90.01	98.4	2.42	29.9	30.048
P-77	48.00	Bz-62	Bz-66	PVC	0.013	160	9.08	5.70	13.66	0.73	59.6	2.473
P-78	48.10	Bz-63	Bz-79	PVC	0.013	160	0.52	192.13	79.29	1.11	5.8	11.343
P-79	64.80	Bz-64	Bz-62	PVC	0.013	160	7.64	5.70	13.66	0.7	53.5	2.329
P-80	48.50	Bz-65	Bz-68	PVC	0.013	160	1.04	31.39	32.05	0.73	12.3	3.809
P-81	48.00	Bz-66	Bz-61	PVC	0.013	200	12.48	5.70	24.76	0.79	50.2	2.801
P-82	42.00	Bz-67	Bz-70	PVC	0.013	160	1.20	10.00	18.09	0.51	17.5	1.675
P-83	48.00	Bz-68	Bz-70	PVC	0.013	160	2.56	7.56	15.73	0.58	27.3	1.876

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla N° 22 Resultados de las tuberías P-84 al P-100

Tubo	Longitud (m)	N. Inicial	N. Final	Mat.	Manning's n	Ф (mm)	Demanda (L/s)	S (%0)	Caudal a tubo lleno (L/s)	Velocidad (m/s)	y/D (%)	Tensión Tractiva (Pascal)
P-84	48.00	Bz-69	Bz-73	PVC	0.013	160	0.32	52.98	41.64	0.61	6.3	3.378
P-85	58.00	Bz-70	Bz-76	PVC	0.013	160	4.31	61.59	44.89	1.41	20.9	12.129
P-86	63.00	Bz-71	Bz-81	PVC	0.013	160	2.69	68.09	47.2	1.27	16.2	10.64
P-87	48.00	Bz-72	Bz-75	PVC	0.013	160	10.93	16.61	23.31	1.14	48.1	6.352
P-88	42.00	Bz-73	Bz-83	PVC	0.013	160	0.65	112.73	60.74	0.98	7.3	8.319
P-89	63.00	Bz-74	Bz-80	PVC	0.013	160	2.14	53.36	41.79	1.09	15.4	7.953
P-90	61.40	Bz-75	Bz-77	PVC	0.013	200	30.43	22.25	48.92	1.64	57.1	11.796
P-91	58.00	Bz-76	Bz-85	PVC	0.013	160	4.83	74.17	49.27	1.56	21.1	14.737
P-92	48.10	Bz-77	Bz-78	PVC	0.013	200	30.81	13.21	37.7	1.34	68.8	7.625
P-93	54.00	Bz-78	Bz-87	PVC	0.013	200	31.22	87.67	97.11	2.76	39	36.091
P-94	47.90	Bz-79	Bz-84	PVC	0.013	160	2.53	20.20	25.71	0.81	21.2	4.019
P-95	64.50	Bz-80	Bz-86	PVC	0.013	160	3.12	40.94	36.6	1.11	19.7	7.653
P-96	64.50	Bz-81	Bz-89	PVC	0.013	160	3.18	54.56	42.25	1.24	18.5	9.631
P-97	54.00	Bz-82	Bz-88	PVC	0.013	160	14.17	25.17	28.7	1.42	49.6	9.818
P-98	42.00	Bz-83	Bz-79	PVC	0.013	160	1.30	5.70	13.66	0.43	20.9	1.119
P-99	54.00	Bz-84	Bz-82	PVC	0.013	160	9.07	14.84	22.04	1.04	44.7	5.397
P-100	58.00	Bz-85	Bz-84	PVC	0.013	160	5.64	5.70	13.66	0.65	44.8	2.076

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Tabla Nº 23 Resultados de las tuberías P-101 al P-105

Tubo	Longitud (m)	N. Inicial	N. Final	Mat.	Manning's n	Ф (mm)	Demanda (L/s)	S (%0)	Caudal a tubo lleno (L/s)	Velocidad (m/s)	y/D (%)	Tensión Tractiva (Pascal)
P-101	64.50	Bz-86	Bz-82	PVC	0.013	160	4.15	5.70	13.66	0.6	37.8	1.836
P-102	54.00	Bz-87	Bz-90	PVC	0.013	200	31.63	78.97	92.17	2.66	40.4	33.379
P-103	49.40	Bz-88	Bz-90	PVC	0.013	160	18.38	74.36	49.33	2.27	42.3	26.021
P-104	64.50	Bz-89	Bz-88	PVC	0.013	160	3.69	5.70	13.66	0.58	35.6	1.751
P-105	17.00	Bz-90	O-1	PVC	0.013	200	50.26	86.66	96.55	3.1	51.2	43.105

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

4.2.3.4 TABLAS DE RESULTADOS DE BUZONES

Tabla Nº 24 Resultados de Buzones Bz-1 al Bz-34

Buzón	Cota de Tapa (m)	Cota de Fondo (m)	Altura (m)	Diámetro (m)
Bz-1	100.49	99.29	1.20	1.20
Bz-2	99.36	98.16	1.20	1.20
Bz-3	98.45	97.25	1.20	1.20
Bz-4	98.19	96.99	1.20	1.20
Bz-5	97.58	96.38	1.20	1.20
Bz-6	97.11	95.91	1.20	1.20
Bz-7	96.71	94.83	1.87	1.20
Bz-8	96.29	95.09	1.20	1.20
Bz-9	96.22	95.02	1.20	1.20
Bz-10	96.12	94.92	1.20	1.20
Bz-11	96.06	94.32	1.74	1.20
Bz-12	96.00	91.48	4.52	1.20
Bz-13	95.59	94.39	1.20	1.20
Bz-14	95.36	94.16	1.20	1.20
Bz-15	95.32	93.99	1.33	1.20
Bz-16	95.17	93.97	1.20	1.20
Bz-17	95.03	93.83	1.20	1.20
Bz-18	94.77	93.12	1.65	1.20
Bz-19	94.67	90.98	3.69	1.20
Bz-20	94.41	93.21	1.20	1.20
Bz-21	94.35	93.15	1.20	1.20
Bz-22	94.28	93.08	1.20	1.20
Bz-23	94.12	92.44	1.68	1.20
Bz-24	93.91	92.71	1.20	1.20
Bz-25	93.83	92.63	1.20	1.20
Bz-26	93.52	92.32	1.20	1.20
Bz-27	93.42	92.22	1.20	1.20
Bz-28	93.38	91.95	1.43	1.20
Bz-29	93.23	92.03	1.20	1.20
Bz-30	93.19	91.99	1.20	1.20
Bz-31	93.18	91.98	1.20	1.20
Bz-32	93.11	90.81	2.30	1.20
Bz-33	92.95	91.75	1.20	1.20
Bz-34	92.85	90.40	2.45	1.20

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

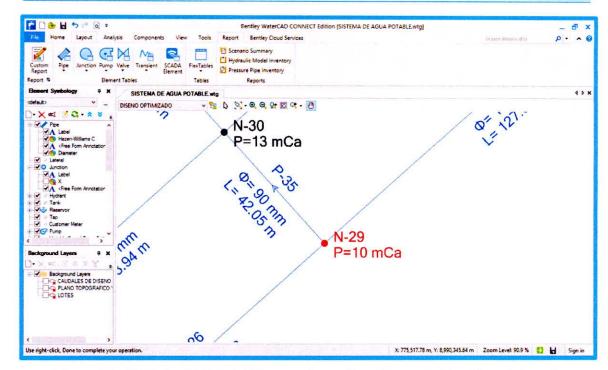


Figura N° 42 Nodo (N-29) del Sistema Agua Potable con la Presión mínima de P=10mCa

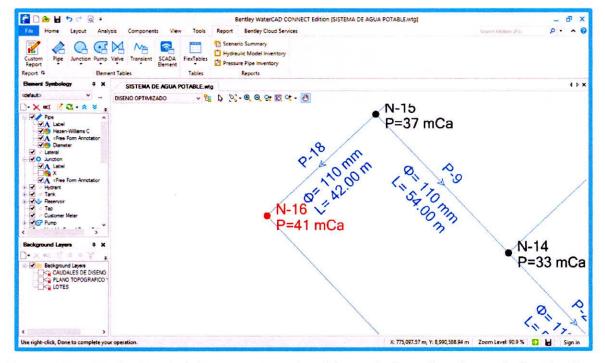
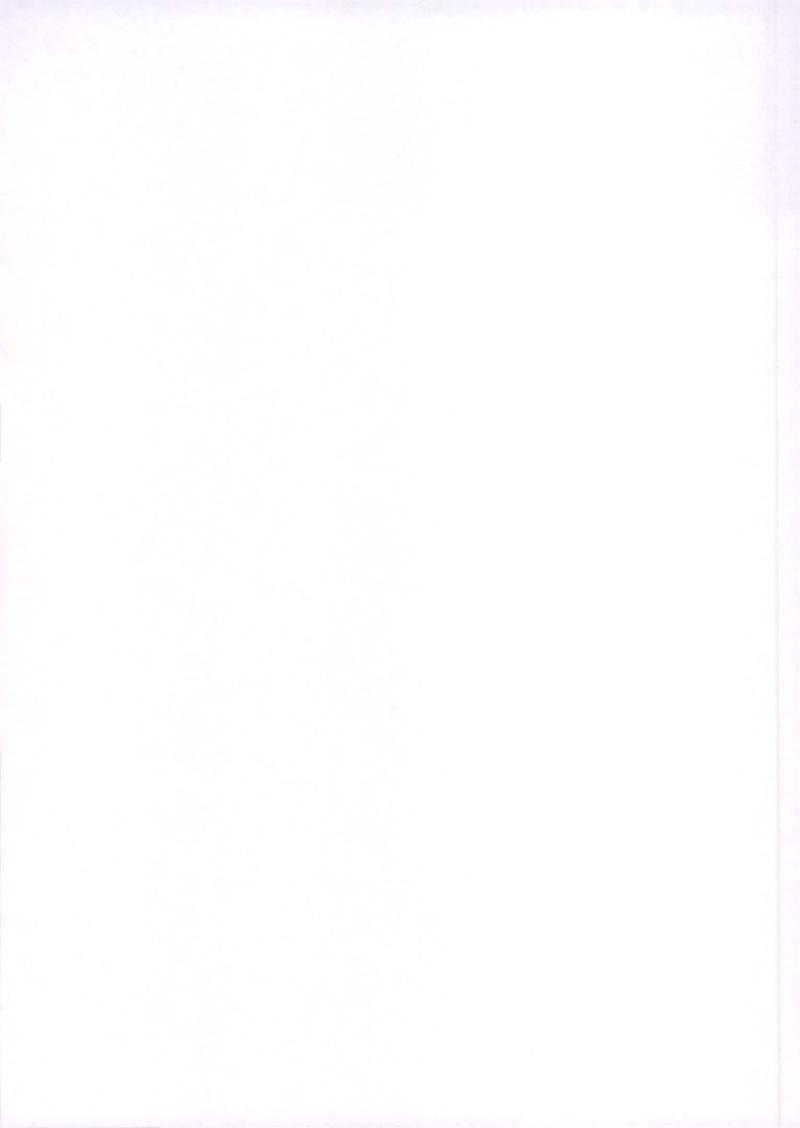



Figura N° 43 Nodo (N-16) del Sistema Agua Potable con la Presión máxima de P=41mCa FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

4.3.2 SISTEMA DE ALCANTARILLADO - REPRESENTACIONES

GRÁFICAS

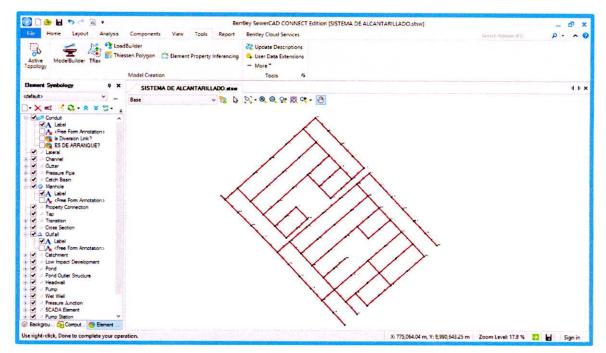


Figura N° 44 Análisis Hidráulico del Sistema de Alcantarillado FUENTE: Elaboración Propia

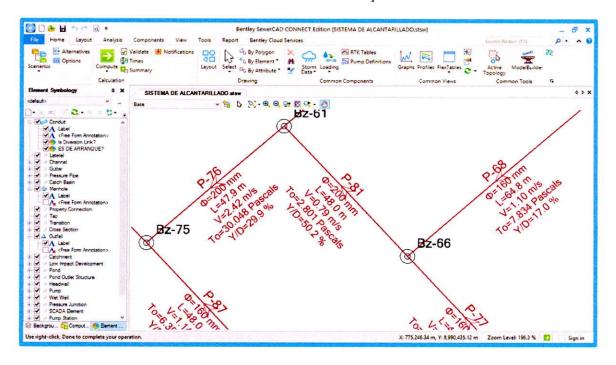


Figura N° 45 Dirección del flujo del Sistema de Alcantarillado FUENTE: Elaboración Propia

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

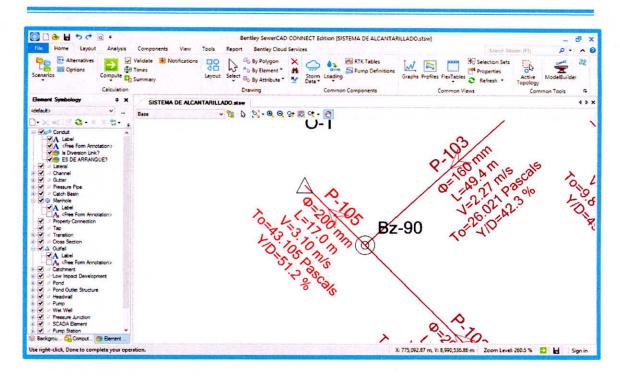
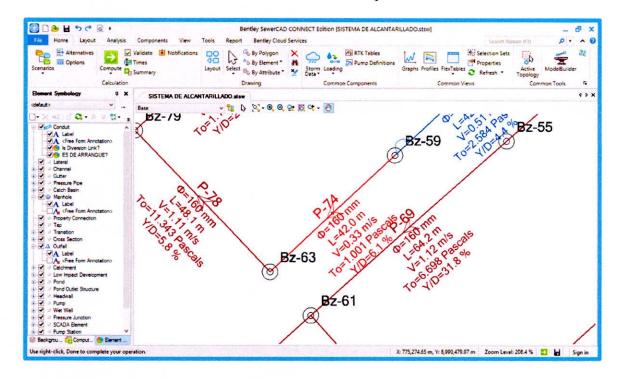
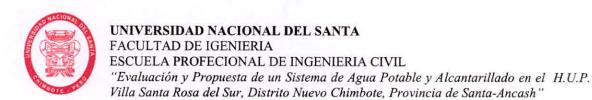
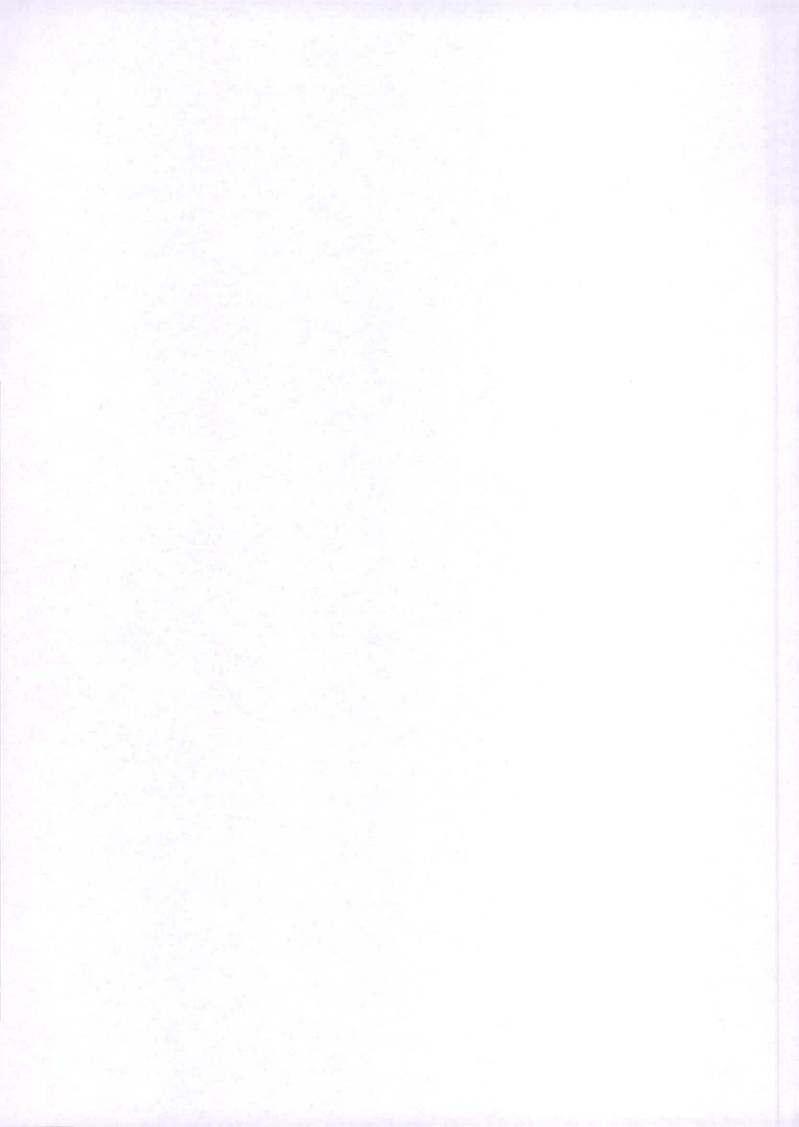


Figura N° 46 Tramo (P-105) del Sistema de Alcantarillado con la Tensión Tractiva mínima de σt =43.105 Pa

FUENTE: Elaboración Propia

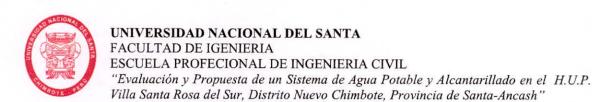




Figura N° 47 Tramo (P-74) del Sistema de Alcantarillado con la Tensión Tractiva mínima de σ_t =1.001 Pa

4.4 DISCUSIÓN DE LOS RESULTADOS

4.4.1 DISCUSIÓN DE LOS RESULTADOS EN EL SISTEMA DE AGUA POTABLE

- La tubería de Aducción de la Bomba al Sistema de Agua Potable es de 250 mm
 (10 pulg) esto garantiza las presiones mínimas.
- El caudal de diseño del Sistema de Agua Potable es de Qmh= 62.82 lt/s.
- Se obtuvo una longitud de L= 5 491.24 m de tuberías principales en el Sistema de Agua Potable.
- Se obtuvo un total de 42 Nodos en el diseño del Sistema de Agua Potable.
- Se obtuvo una velocidad máxima de V_{max}= 2.00 m/s en el tramo (P-3), los cuales se encuentran dentro de los parámetros de la Norma OS.050 del RNE con una velocidad máxima de V_{max}= 3.00 m/s.
- Se obtuvo una presión mínima de P= 10.0 mCa en el Nodo (N-29), y una presión máxima de P= 41.0 mCa en el Nodo (N-16), los cuales se encuentran dentro de los parámetros de la Norma OS.050 del RNE que indica una presión mínima P= 10.0 mCa y una presión máxima de P= 50.0 mCa.
- Se obtuvo un diámetro mínimo para tuberías principales en el Sistema de Agua
 Potable de **DN90mm**, el cual se encuentran dentro de los parámetros de la Norma
 OS.050 del RNE que nos indica que debe tener un diámetro mínimo de **DN75mm**.
- Se obtuvo el Volumen del Reservorio de V=721.94 m3, este no será mayor al Volumen del Reservorio Existente de V=5 000 m3. Este reservorio será habilitado para el Sistema de Agua Potable.



FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

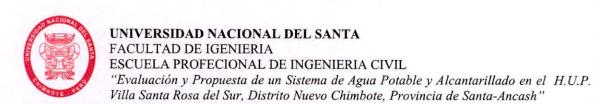
 Se obtuvo el valor de la potencia, este no será menor a los 69 HP con una eficiencia del 70%. Este abastecerá satisfactoriamente el agua potable a todo el Sistema de Agua Potable.

4.4.2 DISCUSIÓN DE LOS RESULTADOS EN EL SISTEMA DE

ALCANTARILLADO

- El caudal de diseño del Sistema de Alcantarillado es de q= 50.26 lt/s.
- Se obtuvo una longitud de L= 5 425.30 m d-e colectores del Sistema de Alcantarillado.
- Se obtuvo una cantidad de **90 Buzones** en todo el Sistema de Alcantarillado.
- Se obtuvo para la tubería parcialmente llena una velocidad mínima de V_{min} = 0.33 m/s en el tramo (P-74) y una velocidad máxima de V_{max} = 3.10 m/s en el tramo (P-105), los cuales se encuentran dentro de los parámetros de la Norma OS.070 del RNE que indica una velocidad mínima que satisface una Tensión tractiva mínima de σ_t =1.0 Pa y una velocidad máxima de V_{max} = 5.00 m/s.
- Se obtuvo una pendiente mínima de S_{min} = 5.700 ‰ en los tramos P-11, P-34, P-43, P-44, P-49, P-57, P-70, P-71, P-77, P-79, P-81, P-98, P-100, P-101, P-104 y una pendiente máxima de S_{min} = 192.131 ‰ en el tramo P-78, los cuales se encuentran dentro de los parámetros de la Norma OS.070 del RNE con una pendiente mínima que satisface una Tensión tractiva mínima de σ_t =1.0 Pa.
- La longitud mínima del Sistema de Alcantarillado en el tramo P-105 es de L= 17.00 m y la longitud máxima en el tramo P-62 es de L= 66.00 m, este último se encuentran dentro de los parámetros para tuberías con un diámetro nominal entre 150mm y 200mm según la Norma OS.070 del RNE con una longitud máxima entres buzones de L= 80.00 m.
- Se obtuvieron diámetros de colectores de DN160 mm y DN 200mm, los cuales se encuentran dentro de los parámetros de la Norma OS.070 del RNE, el cual nos indica que debe tener un diámetro nominal mínimo de DN160mm.

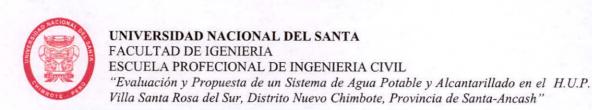
FACULTAD DE IGENIERIA ESCUELA PROFECIONAL DE INGENIERIA CIVIL


- La cota de fondo del buzón existente es de CF= 65.06 msnm y la cota de descarga del sistema de alcantarillado es de CF=67.29 msnm. La diferencia entre cotas nos indica una caída del flujo mayor a 1.0 m, por lo tanto se proyectara un dispositivo de caída (Ver anexo 3).
- La profundidad mínima es de H=1.20 m y la profundidad máxima es de 4.52 m en el Bz-12, los cuales se encuentran dentro de los parámetros de la Norma OS.070 del RNE, el cual nos indica que debe tener un recubrimiento mínimo de h= 1.0 m en vías vehiculares.

CAPITULO V: CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES DEL SISTEMA DE AGUA POTABLE

- Se realizó un diseño optimizado al Sistema de Agua Potable para el H.U.P. Villa
 Santa Rosa Del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash.
- Todos los Nodos del Sistema de Agua Potable cumplieron con la presión mínima
 P=10.0 mCa y máxima P=50.0 mCa de esta misma garantiza que el sistema funcione correctamente.
- La velocidad máxima de V_{max}= 3.00 m/s cumple con los parámetros del diseño hidráulico.
- El diseño realizado para el H.U.P. Villa Santa Rosa Del Sur del Distrito Nuevo
 Chimbote es para un periodo de t= 20 años con una población futura calculada de
 P_f= 9 869 habitantes.
- El volumen del Reservorio calculado es de V=721.94 m3 y el volumen del Reservorio existente es de V=5 000 m3, entonces significa que no habrá ningún inconveniente con el funcionamiento del Sistema.
- Al realizar el diseño del Sistema de Agua Potable aplicando el software
 WaterCAD CONNECT Edition, se logró minimizar el tiempo del desarrollo del proyecto de investigación.
- Se realizó un diseño optimizado ingresando los diámetros comerciales con sus respectivos precios unitarios en el software WaterCAD CONNECT Edition, por tanto se obtuvo resultados de diámetros mínimos para las tuberías garantizando un menor costo al proyecto.
- Los resultados obtenidos del diseño aplicando el software WaterCAD CONNECT
 Edition cumplen con las restricciones establecidas en el Reglamento Nacional de
 Edificaciones.


5.2 CONCLUSIONES DEL SISTEMA DE ALCANTARILLADO

- Se realizó un diseño optimizado al Sistema de Alcantarillado para el H.U.P. Villa
 Santa Rosa Del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash.
- Todos los tramos del Sistema de Alcantarillado cumplieron con una tensión tractiva mínima σt =1.0 Pa, esta misma garantiza una autolimpieza de las tuberías.
- La velocidad mínima de Vmin= 0.33 m/s y la velocidad máxima de Vmax= 3.10
 m/s cumplen con los parámetros del diseño hidráulico.
- El diseño realizado para el H.U.P. Villa Santa Rosa Del Sur del Distrito Nuevo
 Chimbote es para un periodo de t= 20 años con una población futura calculada de
 Pf= 9 869 habitantes.
- Al realizar el diseño del Sistema de Alcantarillado aplicando el software
 SewerCAD CONNECT Edition, se logró minimizar el tiempo del desarrollo del proyecto de investigación.
- Se optimizó la altura de los buzones con un mínimo de H= 1.20 m en el software
 SewerCAD CONNECT Edition, esto minimizará el costo del proyecto.
- Los resultados obtenidos del diseño aplicando el software SewerCAD CONNECT
 Edition cumplen con las restricciones establecidas en el Reglamento Nacional de
 Edificaciones.

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

5.3 RECOMENDACIONES

- Se debe realizar el trazado del sistema de acuerdo a la topografía y teniendo en cuenta que la parte económica sea mínima.
- Se debe realizar los cálculos teniendo en cuenta un periodo de diseño de acuerdo a la norma vigente del Reglamento Nacional de Edificaciones, considerando la vida útil de los materiales.
- En la aplicación de los softwares WaterCAD CONNECT Edition y SewerCAD
 CONNECT Edition, se debe introducir la información correcta, el cual debe encontrarse dentro de los parámetros establecidos en el Reglamento Nacional de Edificaciones, así mismo como el catálogo de tuberías comerciales.
- Se deben verificar que todos los tramos cumplan con los parámetros establecidos en el Reglamento Nacional de Edificaciones.
- Para evitar malos olores y que se produzcan sedimentaciones en todo el Sistema de Agua Potable se recomienda la instalación de válvulas de purga en los puntos finales de la red de distribución.

CAPITULO VI:

REFERENCIAS

BIBLIOGRÁFICAS

6.1 REFERENCIAS BIBLIOGRÁFICAS

- Agüero, R. (1997). Agua Potable para Poblaciones Rurales. Lima: Asociacion Servicios Educativos Rurale (SER).
- Arias Govea, E. (1995). Alcantarillado y drenaje pluvial. Lima: Universitaria.
- Cabrera, E., Castro, J., & Mendez, R. (2011). Diseño del Sistema de Alcantarillado Sanitario, Aguas Lluvias y Planta de Tratamiento de Aguas Residuales para el Area Urbana del Municipoio de San Matias, Departamento de la Libertad. Salvador: Universidad de el Salvador.
- Comisión Nacional del Agua. (2015). *Manual de Agua Potable, Alcantarillado y Saneamiento*. Coyoacán: Secretaría de Medio Ambiente y Recursos Naturales.
- Garcia, E. (2009). Manual de Agua Potable en Poblaciones Rurales. Lima: FONDO PERU-ALEMANIA.
- Instituto Nacional de Estadistica e Informática (INEI). (2017).
- Lossio Aricoché, M. M. (2012). SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE

 PARA CUATRO POBLADOS RURALES DEL DISTRITO DE LANCONES. Piura:

 Universidad de Piura.
- Manual del Inspertor. (2001). Como Realizar Inspecciones Sanitarias en Pequeños Sistemas de Agua. Washington, Estados Unidos. Obtenido de http://www.bvsde.paho.org/CD-
 - GDWQ/Biblioteca/Manuales_Guias_LibrosDW/Inspecciones%20Sanitarias.pdf
- Martinez García, L. (2016). Propuesta de rehabilitación para la red de abasto de agua potable de la Universidad Central "Marta Abreu" de Las Villas. Santa Clara: Universidad Central "Marta Abreu" de Las Villas.

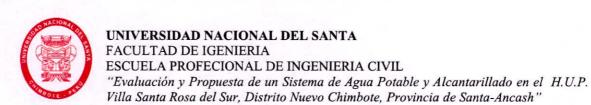
- Ministerio de Economía y Finanzas. (2011). Guía Simplificada para la Identificación,

 Formulación y Evaluación Social de Proyectos Saneamiento Básico en el Ámbito

 Rural, a Nivel de Perfil. Lima: MINISTERIO DE ECONOMÍA Y FINANZAS.
- Ministerio de Vivienda, Construcción y Saneamiento. (2006). Reglamento Nacional de Edificaciones. Lima: SENCICO.
- Nogales, S., & Quispe, D. (2009). Material de Apoyo Didáctico de "Diseño y Métodos Construcctivos de Sistemas de Alcantarillado y Evacuación de Aguas Residuales" para la Materia de Ingeniería Sanitarias II. Cochabamba: Universidad Mayor de San Simón.
- Organización Panamericana de la Salud. (2004). Guía de Diseño para Líneas de Conducción e Impulsión de Sistema de Abastecimiento de Agua Rural. Lima: COSUDE.
- Organización Panamericana de la Salud. (2005). Guía para el Diseño de Tecnologías de Alcantarillado. Lima: COSUDE.
- Pérez, L., & Sandra, P. (2007). Pautas para el Diseño, Cálculo y Sección de Tuberías en Base al Criterio de Prestaciones Equivalentes.
- Sarmiento, C., Rivas, G., & Guzmán, J. (2015). Análisis de Optimización energética de un sistema de acarreo de recursos geotérmico. Salvador: Programa Reginal de Entreamiento Geotérmico (PREG).
- SIAPA. (Febrero de 2014). SIAPA. Obtenido de Alcantarillado Sanitario: http://www.siapa.gob.mx/sites/default/files/capitulo_3._alcantarillado_sanitario. pdf
- UDEP. (26 de Noviembre de 2018). *Biblioteca Virtual*. Obtenido de ANÁLISIS DEL CRECIMIENTO POBLACIONAL Y CALCULO DE CAUDALES:

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL


"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

http://www.biblioteca.udep.edu.pe/bibvirudep/tesis/pdf/1_133_183_86_1214.pd f

Varela, C. (6 de 6 de 2010). INSTALACIONES INDUSTRIALES. Obtenido de Instrucción técnica complementaria MI-IP03. Instalaciones de almacenamiento para su consumo en la propia instalación.:

http://www.instalaciones industriales.es/normativa/combustibles/ITC%20MI-normativa/combustibles/Combu

IP/MI-IP-03.html

CAPITULO VII:

ANEXOS

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

ANEXO Nº1

LEVANTAMIENTO TOPOGRAFICO

PANEL FOTOGRÁFICO

Foto Nº 01

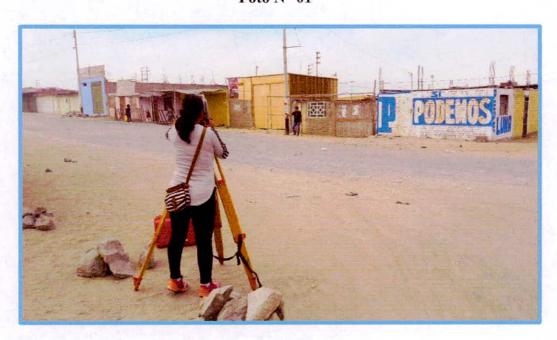


Foto Nº 02

Foto Nº 01 y Foto Nº 02 Levantamiento Topográfico de la I Etapa del H.U.P. Villa

Santa Rosa del Sur.

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

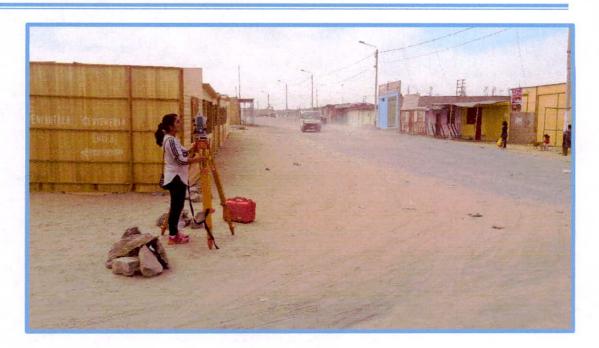


Foto Nº 03

Foto Nº 04

Foto N° 03 y Foto N° 04 Levantamiento Topográfico de la II Etapa del H.U.P. Villa Santa Rosa del Sur.

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P.

Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

DATA DE PUNTOS

Pto.	Norte	Este	Cota	Des.
1	775342.317	8990792.24	90.83	TN
2	775338.689	8990792.49	89.86	TN
3	775337.131	8990789.85	90.48	TN
4	775314.12	8990770.42	91.76	TN
5	775312.876	8990765.56	91.79	TN
6	775313.958	8990763	91.41	TN
7	775337.754	8990737.05	90.7	TN
8	775333.171	8990726.35	89.77	TN
9	775341.805	8990718.44	90.5	TN
10	775354.241	8990719.57	90.43	TN
11	775372.021	8990698.42	90.3	TN
12	775373.225	8990697.63	89.86	TN
13	775379.483	8990696.04	89.63	TN
14	775380.249	8990695.48	89.18	TN
15	775401.608	8990714.48	93.8	TN
16	775403.298	8990720.33	91.59	TN
17	775403.654	8990724.09	89.81	TN
18	775387.401	8990743.46	94.1	TN
19	775349.416	8990785.11	91.44	TN
20	775414.563	8990711.18	96.95	TN
21	775387.663	8990686.14	92.25	TN
22	775379.91	8990678.33	93.25	TN
23	775397.571	8990671.57	94.35	TN
24	775404.362	8990651.71	94.43	TN
25	775412.66	8990643.02	93.36	TN
26	775441.784	8990624.12	93.61	TN
27	775445.085	8990624.21	93.52	TN
28	775447.612	8990623.86	93.42	TN
29	775437.667	8990617.18	92.3	TN

Pto.	Norte	Este	Cota	Des.
30	775467.652	8990643.08	95.16	TN
31	775470.875	8990647.93	94.2	TN
32	775470.472	8990653.25	93.8	TN
33	775490.867	8990628.43	91.04	TN
34	775495.581	8990626.29	91.62	TN
35	775487.233	8990627.79	92.2	TN
36	775464.872	8990607.03	90.42	TN
37	775464.086	8990604.71	90.31	TN
38	775465.915	8990598.83	90.8	TN
39	775455.122	8990596.69	89.57	TN
40	775479.02	8990569.64	89.7	TN
41	775485.222	8990575.79	89.35	TN
42	775488.095	8990561.83	91.83	TN
43	775509.793	8990550.5	93.04	TN
44	775511.101	8990548.83	94.54	TN
45	775521.941	8990541.89	95.13	TN
46	775512.324	8990534.99	93.96	TN
47	775545.717	8990560.54	92.17	TN
48	775547.407	8990566.39	91.7	TN
49	775547.323	8990570.16	91.35	TN
50	775531.506	8990588.97	91.22	TN
51	775515.569	8990606.23	95.2	TN
52	775496.999	8990624.62	90.21	TN
53	775566.66	8990551.43	92.32	TN
54	775609.773	8990503.88	94.35	TN
55	775613.459	8990496.22	92.43	TN
56	775591.867	8990475.23	90.31	TN
57	775586.228	8990470.95	90.68	TN
58	775584.028	8990470.86	92.9	TN

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

Pto.	Norte	Este	Cota	Des.
59	775568.522	8990487.01	96.16	TN
60	775551.596	8990504.5	96.17	TN
61	775530.688	8990534.42	94.94	TN
62	775520.399	8990525.75	93.92	TN
63	775546.179	8990500.45	95.43	TN
64	775548.843	8990488.14	92.48	TN
65	775543.814	8990492.5	90.62	TN
66	775553.808	8990490.43	90.06	TN
67	775554.477	8990491.65	90.69	TN
68	775554.477	8990491.65	94.99	TN
69	775617.575	8990487.11	96.75	TN
70	775619.684	8990489.87	95.3	TN
71	775596.324	8990467.78	92.58	TN
72	775594.317	8990463.81	92.36	TN
73	775594.615	8990459.28	92.19	TN
74	775585.247	8990456.35	94.01	TN
75	775611.427	8990441.23	95.18	TN
76	775610.695	8990430.72	95.79	TN
77	775610.562	8990427.4	95.23	TN
78	775619.103	8990422.03	93.61	TN
79	775630	8990423.28	93.87	TN
80	775647.691	8990405.23	94.82	TN
81	775651.302	8990402.55	95.27	TN
82	775652.955	8990402.98	95.9	TN
83	775676.073	8990421.97	98.21	TN
84	775676.513	8990421.97	96.38	TN
85	775677.757	8990426.83	95.8	TN
86	775692.271	8990410.57	99.71	TN
87	775732.651	8990365.47	104.64	TN
88	775705.755	8990340.87	104.33	TN
89	775701.215	8990336.47	105.22	TN
90	775664.832	8990386.97	103.26	TN

Pto.	Norte	Este	Cota	Des
91	775661.401	8990383.89	101.79	TN
92	775634.606	8990358.07	100.33	TN
93	775629.747	8990355.23	100.88	TN
94	775670.901	8990310.68	100.04	TN
95	775675.217	8990314.52	99.9	TN
96	775643.334	8990284.53	99	TN
97	775639.138	8990282.23	98.38	TN
98	775611.684	8990256.42	100.05	TN
99	775598.297	8990245.11	102.37	TN
100	775571.408	8990221.51	102.09	TN
101	775567.748	8990217.11	102.04	TN
102	775541.968	8990194.93	99.19	TN
103	775536.429	8990189.1	98.97	TN
104	775508.658	8990165.28	99.65	TN
105	775505.219	8990160.99	98.59	TN
106	775478.768	8990137.27	94.96	TN
107	775438.271	8990181.26	93.83	TN
108	775441.073	8990188.88	93.8	TN
109	775464.837	8990205.87	95.86	TN
110	775468.715	8990209.94	96.01	TN
111	775495.716	8990233.87	97.15	TN
112	775500.37	8990238.82	95.35	TN
113	775527.151	8990262.65	95.9	TN
114	775559.02	8990290.65	96.54	TN
115	775572.519	8990302.4	100.18	TN
116	775597.33	8990327.57	101.88	TN
117	775601.853	8990329.53	100.8	TN
118	775629.635	8990355.01	100.65	TN
119	775634.285	8990359.4	101.22	TN
120	775642.23	8990394.87	98.83	TN
121	775630.804	8990380.67	95.71	TN
	775607.569	8990360.8	97.15	TN

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

Pto.	Norte	Este	Cota	Des.
123	775584.658	8990339.94	98.7	TN
124	775561.434	8990321.51	100.84	TN
125	775556.352	8990318.22	99.94	TN
126	775544.51	8990307.57	100.79	TN
127	775543.435	8990311.12	100.56	TN
128	775552.53	8990322.12	99.94	TN
129	775515.398	8990280.66	96.59	TN
130	775493.581	8990259.01	97.44	TN
131	775485.192	8990254.53	97.18	TN
132	775478.843	8990258.89	98.09	TN
133	775463.015	8990276.04	96.22	TN
134	775460.954	8990280.15	92.57	TN
135	775449.884	8990285.65	91.18	TN
136	775448.897	8990286.1	92.03	PILET
137	775430.411	8990268.97	94.4	POSTE
138	775425.328	8990265.57	92.25	POSTE
139	775421.318	8990258.29	92.35	POSTE
140	775423.291	8990257.28	91.91	TN
141	775423.835	8990256.4	93.37	TN
142	775421.924	8990266.26	93.42	TN
143	775475.231	8990308.94	94.97	TN
144	775475.343	8990309.16	95.29	TN
145	775498.698	8990330.68	96.85	TN
146	775511.869	8990342.66	94.7	TN
147	775518.742	8990334.53	96.41	TN
148	775532.678	8990345.83	96.88	TN
149	775524.871	8990330.28	96.65	TN
150	775535.726	8990341.38	95.78	TN
151	775509.709	8990348.31	96.41	TN
152	775511.537	8990342.33	95.48	TN
153	775519.231	8990357.54	95.91	TN
154	775545.414	8990358.58	97.59	TN

Pto.	Norte	Este	Cota	Des.
			(Express)	
155	775548.815	8990373.16	95.33	TN
156	775566.899	8990379.9	97.9	TN
157	775566.857	8990389.75	97.38	TN
158	775587.552	8990408.2	96.21	TN
159	775611.374	8990417.77	95.74	TN
160	775608.693	8990427.64	95.7	TN
161	775574.16	8990459.42	94.04	TN
162	775574.1	8990450.79	94.6	TN
163	775552.135	8990439.54	95.69	TN
164	775553.162	8990429.02	95.84	TN
165	775530.71	8990410.92	96.79	TN
166	775521.52	8990417.84	94.17	TN
167	775524.6	8990417.93	94.26	TN
168	775526.798	8990417.8	95	TN
169	775508.133	8990390.71	93.37	TN
170	775499.923	8990380.36	92.8	TN
171	775501.441	8990377.26	93.24	TN
172	775492.011	8990365.48	95.67	TN
173	775486.969	8990367.95	94.28	TN
174	775480.026	8990366.01	94.37	TN
175	775457.444	8990344.92	93.96	TN
176	775446.916	8990349.3	92.62	TN
177	775443.991	8990355.74	90.92	TN
178	775434.211	8990325.27	92.67	TN
179	775426.311	8990327.98	92.38	TN
180	775409.537	8990303.86	93.82	TN
181	775403.401	8990307.22	91.88	TN
182	775396.446	8990303.4	86.98	TN
183	775401.876	8990293.51	90.69	TN
184	775402.405	8990290.41	90.57	TN
185	775398.837	8990283.46	89.48	TN
186	775394.123	8990285.6	88.42	TN

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

Pto.	Norte	Este	Cota	Des.	Pto.	Norte	Este	Cota	Des.
187	775389.607	8990284.63	87.55	TN	219	775318.277	8990370.89	84.32	TN
188	775385.126	8990288.76	85.64	TN	220	775319.04	8990369.89	82.27	TN
189	775386.482	8990293.95	84.23	TN	221	775338.386	8990368.32	85.23	TN
190	775394.565	8990301.75	86.58	TN	222	775343.211	8990382.12	83.3	TN
191	775381.795	8990300.07	88.99	TN	223	775360.415	8990388.86	84.97	TN
192	775366.94	8990267.3	89.73	TN	224	775354.44	8990383.7	87.13	PILET
193	775365.262	8990263.22	90.68	TN	225	775366.118	8990402.43	85.91	TN
194	775358.474	8990267.69	85.99	TN	226	775383.768	8990410.05	86	TN
195	775358.036	8990267.92	86.16	TN	227	775388.084	8990413.9	85.53	TN
196	775440.424	8990237.91	93.86	TN	228	775386.94	8990423.42	84.14	TN
197	775446.197	8990229.9	95.89	TN	229	775394.769	8990410.42	85.46	TN
198	775467.584	8990237.17	101.24	POSTE	230	775409.159	8990392.06	88.52	TN
199	775451.826	8990232.74	100.96	ROCA	231	775414.609	8990384.94	89.5	TN
200	775450.122	8990224.89	98.6	TN	232	775422.03	8990376.59	91.17	TN
201	775442.681	8990214.54	95.57	TN	233	775426.202	8990375.56	91.11	TN
202	775423.542	8990198.41	94.08	TN	234	775417.493	8990372.64	90.98	TN
203	775413.697	8990206.11	96.71	TN	235	775411.712	8990379.54	90.14	TN
204	775399.047	8990218.61	90.77	TN	236	775389.242	8990358.89	91.85	TN
205	775393.606	8990227.06	87.7	TN	237	775366.333	8990338.35	92.57	TN
206	775368.498	8990254.01	87.9	TN	238	775370.922	8990333.9	91.12	TN
207	775352.534	8990267.51	87.68	TN	239	775367.586	8990328.72	90.86	TN
208	775329.833	8990292.79	90.44	TN	240	775361.598	8990321.68	91.65	TN
209	775305.805	8990316.97	87.81	TN	241	775409.605	8990440.53	92.53	TN
210	775299.972	8990332.17	88.56	TN	242	775412.516	8990447.92	91.38	TN
211	775290.9	8990340.32	87.42	TN	243	775408.811	8990452.82	89.67	TN
212	775294.426	8990341.4	86.34	TN	244	775426.563	8990459.34	90.56	TN
213	775318.542	8990361.48	87.67	TN	245	775454.543	8990481.61	94.72	TN
214	775319.877	8990363.69	87.64	TN	246	775476.449	8990500.27	97.71	TN
215	775327.407	8990355.22	88.37	TN	247	775491.869	8990503.48	95.23	TN
216	775333.223	8990353.3	86.97	TN	248	775499.04	8990522.57	95.77	TN
217	775336.376	8990363.9	85.75	TN	249	775514.556	8990523.68	96.71	TN
218	775327.958	8990371.27	86.04	TN	250	775511.558	8990535.44	95.28	TN

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

Pto.	Norte	Este	Cota	Des.
251	775518.607	8990473.64	96.72	TN
252	775523.739	8990468.18	95.35	TN
253	775500.609	8990447.53	95.4	TN
254	775499.163	8990445.22	95.12	TN
255	775500.879	8990438.9	94.01	TN
256	775490.304	8990452.36	93.92	TN
257	775468.669	8990472.65	92.84	TN
258	775440.303	8990584.95	92.39	TN
259	775417.515	8990566.08	88.44	TN
260	775395.048	8990545.76	88.72	TN
261	775372.035	8990526.11	87.65	TN
262	775368.915	8990520.27	87.69	TN
263	775355.864	8990509.74	86.67	TN
264	775361.557	8990505.93	85.98	TN
265	775350.876	8990504.13	83.42	TN
266	775328.639	8990485.25	87.96	TN
267	775304.857	8990465.6	88.96	TN
268	775282.272	8990444.29	89.48	TN
269	775269.659	8990433.42	86.62	TN
270	775284.316	8990405.99	83.39	TN
271	775300.499	8990408.2	87.81	TN
272	775306.186	8990403.62	84.61	TN
273	775303.618	8990397.99	85.16	TN
274	775294.655	8990406.02	86.88	TN
275	775306.295	8990403.51	85.29	TN
276	775326.396	8990431.48	87.91	TN
277	775332.517	8990425.9	88.59	TN
278	775352.17	8990452.88	88.27	TN
279	775357.409	8990446.98	88.78	TN
280	775377.957	8990476.05	90.76	TN
281	775383.203	8990471.26	91.29	TN
282	775381.956	8990481.78	88.72	TN

Pto.	Norte	Este	Cota	Des.
283	775388.28	8990473.77	88.99	TN
284	775392.334	8990471.64	89.16	TN
285	775402.219	8990485.51	89.21	TN
286	775393.577	8990492.32	88.4	TN
287	775377.479	8990486.46	86.83	TN
288	775409.962	8990587.05	87.57	PILET
289	775427.916	8990606.73	88.95	TN
290	775407.767	8990587.73	90.46	TN
291	775387.506	8990568.39	92.09	TN
292	775381.764	8990565.11	91.47	TN
293	775376.619	8990568.46	90.48	TN
294	775306.626	8990498.68	84.31	TN
295	775302.724	8990491.18	86.14	TN
296	775282.354	8990471.96	85.58	TN
297	775262.88	8990455.05	87.11	TN
298	775255.35	8990447.58	86.43	PILET
299	775254.03	8990447.58	84.55	TN
300	775242.916	8990446.78	83.67	TN
301	775243.982	8990441.9	85.21	TN
302	775242.409	8990437.15	86.12	TN
303	775221.583	8990415.61	85.06	TN
304	775217.747	8990417.51	81.69	TN
305	775214.327	8990415.99	81.44	TN
306	775236.707	8990391.93	81.33	TN
307	775234.031	8990402.57	80.74	TN
308	775259.037	8990424.2	85.06	TN
309	775260.911	8990424.85	84.64	PILET
310	775297.296	8990390.4	87.66	TN
311	775315.299	8990369.58	88.11	TN
312	775317.591	8990367.13	88.07	TN
313	775328.172	8990370.38	86.25	TN
314	775295.065	8990338.3	82.73	TN

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P.

Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Pto.	Norte	Este	Cota	Des.
315	775285.182	8990340.47	81.47	TN
316	775260.18	8990366.98	81.46	TN
317	775259.181	8990365.66	81.03	PILET
318	775223.243	8990417.03	81.04	TN
319	775219.504	8990417.06	80.65	TN
320	775214.76	8990414.99	79.75	TN
321	775174.594	8990459.31	78.45	TN
322	775167.156	8990465.12	78.9	TN
323	775161.313	8990478.99	79.25	TN
324	775144.674	8990490.28	77.82	TN
325	775151.045	8990489.13	77.12	TN
326	775178.133	8990509.64	76.56	TN
327	775178.376	8990512.96	77.12	TN
328	775178.024	8990509.86	77.49	TN
329	775188.095	8990502.93	77.63	TN
330	775189.865	8990520.29	76.95	TN
331	775187.89	8990521.08	77.34	TN
332	775197.497	8990510.72	77.8	TN
333	775201.376	8990515.01	76.36	TN
334	775199.466	8990525.1	75.88	TN
335	775221.538	8990536.01	78.09	TN
336	775220.944	8990545.42	76.02	TN
337	775243.357	8990557.99	75.52	TN
338	775249.858	8990559.61	76.19	TN
339	775240.898	8990568.08	79.69	TN
340	775268.122	8990592.35	78.88	TN
341	775270.905	8990597.2	79.56	TN
342	775268.311	8990603.74	80.41	TN
343	775284.739	8990609.61	82.13	TN
344	775289.595	8990612.01	81.53	TN
345	775325.676	8990628.91	84.6	TN
346	775329.007	8990633.42	83.04	TN

Pto.	Norte	Este	Cota	Des.
347	775335.092	8990654.41	83.2	TN
348	775350.489	8990654.41	83.67	TN
349	775361.68	8990666.29	83.91	TN
350	775356.996	8990672.85	86.01	TN
351	775369.744	8990687.26	88.17	TN
352	775378.372	8990678.56	86.33	TN
353	775402.924	8990650.51	87.23	TN
354	775412.747	8990639.7	88.03	TN
355	775399.801	8990644.33	87.12	TN
356	775355.092	8990604.47	84.9	TN
357	775359.203	8990594.7	84.87	TN
358	775360.487	8990589.49	83.11	TN
359	775286.327	8990521.39	83.21	TN
360	775282.607	8990524.3	82.02	TN
361	775269.301	8990540.44	80.3	TN
362	775271.19	8990527.25	78.72	TN
363	775276.423	8990520.69	77.51	TN
364	775255.288	8990502.13	76.46	TN
365	775249.167	8990507.6	77	TN
366	775226.91	8990485.95	82.62	TN
367	775233.566	8990478.27	81.94	TN
368	775230.244	8990474.97	80.81	TN
369	775231.249	8990461.35	78.51	TN
370	775214.425	8990477.63	77.97	TN
371	775220.509	8990482.68	77.59	TN
372	775168.693	8990528.19	79.51	TN
373	775167.384	8990529.74	78.75	TN
374	775147.729	8990550.24	76.81	TN
375	775149.669	8990560.41	76.68	TN
376	775157.422	8990552.28	77.29	TN
377	775160.864	8990557.01	77.78	TN
378	775156.396	8990562.91	77.29	TN

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

Pto.	Norte	Este	Cota	Des.
379	775179.457	8990573.82	75.5	TN
380	775181.859	8990587.08	74.68	TN
381	775198.825	8990591.17	74.76	TN
382	775206.536	8990608.82	76.49	TN
383	775220.717	8990607.84	77.15	TN
384	775236.356	8990626.76	80.7	TN
385	775232.209	8990631.44	80.48	TN
386	775234.563	8990637.95	79.66	TN
387	775229.341	8990646.18	79.18	TN
388	775237.204	8990638.04	78.72	TN
389	775242.531	8990629.15	78.22	TN
390	775248.225	8990625.57	78.09	TN
391	775258.13	8990642.33	77.69	TN
392	775248.943	8990649.69	79.05	TN
393	775253.029	8990652.21	79.08	TN
394	775260.14	8990646.74	79.83	TN
395	775278.584	8990673.72	80.93	TN
396	775286.147	8990669.91	82.26	TN
397	775310.295	8990694.75	80.89	TN
398	775305.695	8990697.44	80.96	TN
399	775335.188	8990715.94	83.79	TN
400	775330.174	8990722.39	83.73	TN
401	775291.983	8990750.21	83.03	TN
402	775270.268	8990727.45	82.41	TN
403	775245.384	8990707.48	81.12	TN
404	775246.043	8990707.37	80.42	TN

Pto.	Norte	Este	Cota	Des.
405	775225.235	8990688.48	78.87	TN
406	775218.797	8990679.89	76.74	TN
407	775219.344	8990679.56	76.64	TN
408	775209.133	8990666.13	76.53	TN
409	775204.308	8990668.15	76.2	TN
410	775200.886	8990666.4	75.93	TN
411	775177.312	8990645.1	73.87	TN
412	775178.64	8990646.2	74.34	TN
413	775157.489	8990625.43	73.13	TN
414	775133.48	8990604.9	73.87	TN
415	775122.058	8990591.37	73.9	TN
416	775118.362	8990581.65	73.47	TN
417	775133.958	8990562.73	72.05	TN
418	775110.233	8990583.15	74.93	TN
419	775087.513	8990558.08	69.02	TN
420	775068.218	8990551.13	73.45	BZ
421	775068.999	8990552.67	72.25	TN
422	775059.503	8990563.14	72.45	TN
423	775059.723	8990563.14	71.94	TN
424	775064.504	8990570.63	72.03	TN
425	775063.953	8990570.52	71.75	TN
426	775064.065	8990570.74	71.77	TN
427	775064.398	8990571.18	71.6	TN
428	775053.981	8990559.86	71.92	TN
429	775053.551	8990561.3	72.12	TN
430	775053.33	8990561.19	71.91	TN

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

ANEXO N°2

ESTUDIO DE SUELO

PANEL FOTOGRÁFICO

Foto N° 05 Excavación de calicata "C1 – M1"

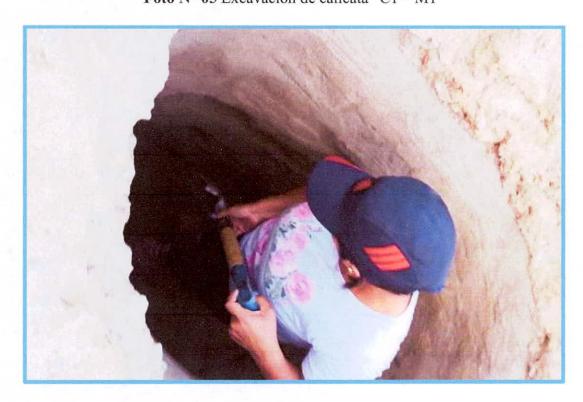


Foto Nº 06 Excavación de calicata "C1 – M2"

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

Foto N° 07 Excavación de calicata "C2 – M1"

Foto Nº 08 Excavación de la calicata "C2 – M2"

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

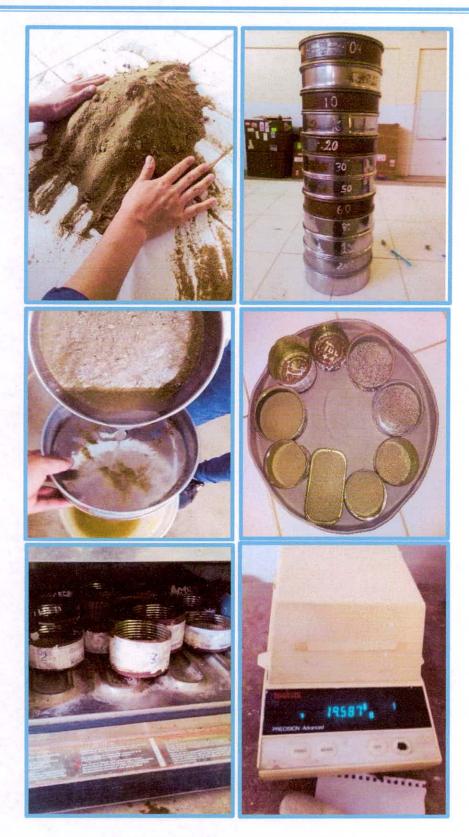


Foto Nº 09 Ejecución de Ensayos de Laboratorio

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

- EVALUACIÓN Y CONFORMIDAD DE LOS TRABAJOS REALIZADOS

EN LABORATORIO Y EN CAMPO POR PARTE DE LA UNS

LABORATORIO DE MECANICA DE SUELOS Y ENSAYO DE MATERIALES

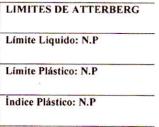
PROYECTO: "EVALUACION Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NUEVO CHIMBOTE, PROVINCIA DE SANTA-ANCASH"

UBICACIÓN PROYECTO: EL H.U.P. VILLA SANTA ROSA DEL SUR

DATOS DE LABORATORIO

MUESTRA: 01

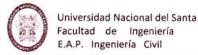

MATERIAL: C-01


ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM-D421)

Mallas	Abertura (mm)	Peso Retenido (gr)	Retenido Parcial (%)	Retenido Acumulado (%)	% que Pasa
4	4.75	32.0	6.441	6.441	93.56
8	2.38	23.8	4.791	11.232	88.77
10	2.00	10.2	2.046	13.278	86.72
16	1.18	10.0	. 2.015	15.293	84.71
20	0.85	20.0	4.030	19.323	80.68
3 0	0.60	38.7	7.790	27.113	72.89
50	0.30	77.6	15.636	42.749	57.25
60	0.25	72.2	14.541	57.290	42.71
1 00	0.150	143.4	28.887	86.177	13.82
200	0.075	57.1	11.498	97.676	2.32
cazoleta		11.5	2.324	100.000	0.00
MUESTRA		496.3	100.000		

Conter	nido de Humedad: 1.07 %
Clasifi	cación SUCS: SP
NOME	BRE DE GRUPO (S.U.C.S)
Arenas	finas mal graduadas.
Clasif	icación AASHTO: A-3
Arenas	finas.

D ₁₀ =	0.13	Cu=	2.82
D ₃₀ =	0.21	Cc=	0.96
D ₆₀₌	0.35		



FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

LABORATORIO DE MECANICA DE SUELOS Y ENSAYO DE MATERIALES

PROYECTO: "EVALUACION Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NUEVO CHIMBOTE, PROVINCIA DE SANTA-ANCASH"

UBICACIÓN PROYECTO: EL H.U.P. VILLA SANTA ROSA DEL SUR

DATOS DE LABORATORIO

MUESTRA: 01

MATERIAL: C-02

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM-D421)

Mallas	Abertura (mm)	Peso Retenido (gr)	Retenido Parcial (%)	Retenido Acumulado (%)	% que Pasa
4	4.75	3.0	0.593	0.593	99.41
8	2.38	4.9	0.979	1.572	98.43
10	2.00	3.0	0.596	2.169	97.83
16	1.18	17.2	3.457	5.625	94.37
20	0.85	62.2	12.493	18.119	81.88
30	0.60	122.6	24.612	42.730	57.270
50	0.30	50.4	10.112	52.842	47.158
60	0.25	58.2	11.692	64.535	35.465
1 00	0.15	84.9	17.042	81.577	18,423
200	0.08	68.9	13.832	95.408	4.59
cazoleta		22.9	4.592	100.000	0.00
MUESTRA		498.0	100.000		

(Contenido de Humedad: 1.72
(Clasificación SUCS: SP
N	OMBRE DE GRUPO
(S.U.C.S)
A	arenas finas mal graduadas.
(Clasificación AASHTO: A-3
A	arenas finas.

D ₁₀ -	0.10	Cu =	6.02 0.73	
D ₃₀	0.22	Cc = .		
D ₆₀₌	0.63			

LIMITES DE ATTERBERG

Límite Liquido: N.P

Límite Plástico: N.P

Índice Plástico: N.P

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería Civil

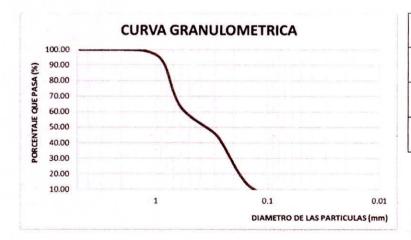
LABORATORIO DE MECANICA DE SUELOS Y ENSAYO DE MATERIALES

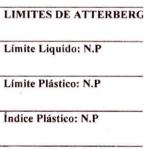
PROYECTO: "EVALUACION Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NUEVO CHIMBOTE, PROVINCIA DE SANTA-ANCASH"

UBICACIÓN PROYECTO: EL H.U.P. VILLA SANTA ROSA DEL SUR

DATOS DE LABORATORIO

MUESTRA: 02


MATERIAL: C-01


ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM-D421)

Mallas	Abertura (mm)	Peso Retenido (gr)	Retenido Parcial (%)	Retenido Acumulado (%)	% que Pasa
4	4.75	0.0	0.000	0.000	100.00
8	2.38	0.0	0.000	0.000	100.00
10	2.00	0.0	0.000	0.000	100.00
16	1.180	5.8	1.166	1.166	98.83
20	0.85	36.8	7.448	8.614	91.39
30	0.600	138.8	28.090	36.704	63.30
50.00	0.300	84.0	17.001	53.706	46.29
60.00	0.25	37.5	7.598	61.304	38.70
1 00	0.150	127.2	25.751	87.054	12.95
200	0.075	49.0	9.923	96.977	3.02
cazoleta		14.9	3.023	100.000	0.00
MUESTRA		494.1	100,000		

C	ontenido de Humedad: 1.48
C	lasificación SUCS: SP
N	OMBRE DE GRUPO
(5	S.U.C.S)
A	renas finas mal graduadas.
C	Clasificación AASHTO: A-3
A	renas finas.

D ₁₀ -	0.13	Cu =	4.24
D ₃₀ =	0.22	Cc =	0.68
D ₆₀ =	0.54		

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería Civil

LABORATORIO DE MECANICA DE SUELOS Y ENSAYO DE MATERIALES

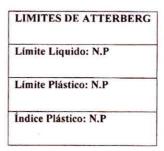
PROYECTO: "EVALUACION Y PROPUESTA DE UN SISTEMA DE AGUA POTABLE Y ALCANTARILLADO EN EL H.U.P. VILLA SANTA ROSA DEL SUR, DISTRITO NUEVO CHIMBOTE, PROVINCIA DE SANTA-ANCASH"

UBICACIÓN PROYECTO: EL H.U.P. VILLA SANTA ROSA DEL SUR

DATOS DE LABORATORIO

MUESTRA: 02

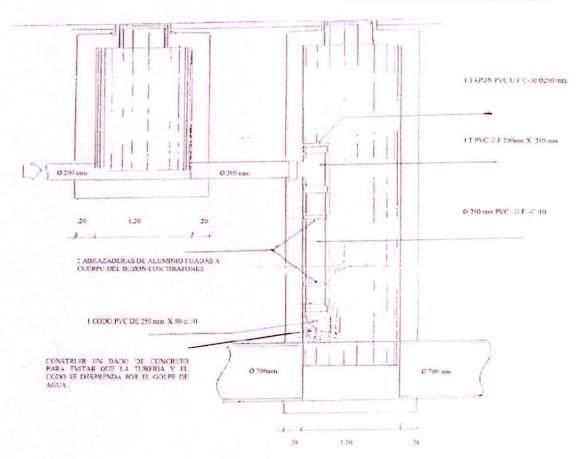
MATERIAL: C-02


ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM-D421)

Mallas .	Abertura (mm)	Peso Retenido (gr)	Retenido Parcial · (%)	Retenido Acumulado (%)	% que Pasa
4	4.75	0.0	0.000	0.000	100.00
8	2.38	0.0	0.000	0.000	100.00
10	2.00	0.1	0.013	0.013	99.99
16	1.180	4.8	0.963	0.976	99.02
20	0.85	9.0	1.812	2.788	97.21
3 0	0.600	17.0	3.430	6.218	93.78
50	0.300	20.6	4.156	10.374	89.63
60	0.25	66.4	13.417	23.791	76.21
1 00	0.150	267.5	54.067	77,857	22.14
200	0.075	92.8	18.748	96.606	3.39
cazoleta		16.8	3.394	100.000	0.00
MUESTRA		494.8	100.000		

(Contenido de Humedad: 2.02 %
(Clasificación SUCS: SP
1	NOMBRE DE GRUPO (S.U.C.S)
F	Arenas finas mal graduadas.
-	Clasificación AASHTO: A-3
1	Arenas finas.

D ₁₀₌	0.10	Cu =	2.17
D ₃₀ =	0.09	Cc =	1.21
D ₆₀ -	0.16		



ANEXO N°3

DISPOSITIVO DE CAÍDA DENTRO DEL BUZÓN

OS.070 REDES DE AGUAS RESIDUALES

FACULTAD DE IGENIERIA

ESCUELA PROFECIONAL DE INGENIERIA CIVIL

"Evaluación y Propuesta de un Sistema de Agua Potable y Alcantarillado en el H.U.P. Villa Santa Rosa del Sur, Distrito Nuevo Chimbote, Provincia de Santa-Ancash"

ANEXO Nº4

PLANOS