UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADEMICA PROFESIONAL DE INGENIERÍA EN ENERGIA

"CONSTRUCCIÓN E IMPLEMENTACIÓN DE UN CONCENTRADOR SOLAR CILÍNDRICO PARABÓLICO PARA EL PRE-CALENTAMIENTO DE AGUA REQUERIDA POR EL INTERCAMBIADOR DE CALOR A CONTRAFLUJO DEL LABORATORIO DE TERMO-FLUIDOS DE LA UNIVERSIDAD NACIONAL DEL SANTA".

TESIS PARA OPTAR EL TITULO PROFESIONAL DE

INGENIERO EN ENERGÍA

AUTOR:

Bach. CARBAJAL CANO, Jonathan

ASESOR:

Mg. GUEVARA CHINCHAYAN, Robert

NUEVO CHIMBOTE-PERU

2018

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADEMICA PROFESIONAL DE INGENIERÍA EN ENERGIA

CARTA DE CONFORMIDAD DEL ASESOR

La presente tesis ha sido revisada y desarrollada en cumplimiento del objetivo propuesto y reúne las condicione formales y metodológicas, estando encuadrado dentro de las áreas y líneas de investigación conforme al reglamento general para obtener el título profesional en la Universidad Nacional del Santa (R.D N°492-2017.CU-R-UNS) de acuerdo a la denominación siguiente:

"CONSTRUCCIÓN E IMPLEMENTACIÓN DE UN CONCENTRADOR SOLAR CILÍNDRICO PARABÓLICO PARA EL PRE-CALENTAMIENTO DE AGUA REQUERIDA POR EL INTERCAMBIADOR DE CALOR A CONTRAFLUJO DEL LABORATORIO DE TERMO-FLUIDOS DE LA UNIVERSIDAD NACIONAL DEL SANTA".

AUTOR: Bach. Carbajal Cano, Jonathan Kevin.

Mg. Robert Guevara Chinchayan ASESOR

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADEMICA PROFESIONAL DE INGENIERÍA EN ENERGIA

CARTA DE CONFORMIDAD DEL JURADO EVALUADOR DE TESIS

La presente jurado evaluador da la conformidad del presente informe, desarrollado en el cumplimiento del objetivo propuesto y presentado conforme al reglamento General para obtener el grado Académico de Bachiller y Título Profesional en la Universidad Nacional del Santa (R.D N°492-2017.CU-R-UNS) de acuerdo a la denominación siguiente:

"CONSTRUCCIÓN E IMPLEMENTACIÓN DE UN CONCENTRADOR SOLAR CILÍNDRICO PARABÓLICO PARA EL PRE-CALENTAMIENTO DE AGUA REQUERIDA POR EL INTERCAMBIADOR DE CALOR A CONTRAFLUJO DEL LABORATORIO DE TERMO-FLUIDOS DE LA UNIVERSIDAD NACIONAL DEL SANTA".

AUTOR: Bach. Carbajal Cano, Jonathan Kevin.

Revisado y evaluado por el siguiente jurado evaluador:

M. Sc. Hugo R. Calderón Torres PRESIDENTE Mg. Robert Guevara Chinchayan SECRETARIO

M. Sc. Christian Puican Farroñay INTEGRANTE

DEDICATORIA

A Dios, que desde el cielo ilumina mi vida.

A mis padres: Marina Cano Alba y Florencio Pedro Carbajal Gonzales

A mis hermanos: Elmer, Jaimito, Mayreli, Isaura, Anali. Quienes me brindaron todo su apoyo para progresar en este tiempo. A nuestros entrañables profesores de la Escuela Académica Profesional de Ingeniería En Energía y compañeros quienes me permitieron la realización de la presente investigación.

Jonathan Kevin Carbajal Cano

AGRADECIMIENTO

A todas las personas que contribuyeron en mi formación, por que sin ellos hubiera sido imposible llegar hasta donde estoy, ya que su influencia fue necesaria para llegar mis objetivos.

Agradecer al M. Sc. Hugo R. Calderón Torres, Mg. Robert Guevara Chinchayan, M. Sc. Christian Puican Farroñay y al Ing. Neil Velásquez por su apoyo y asesoramiento.

Agradecer a la Escuela Académica Profesional de Ingeniería en Energía y a todos los docentes por sus enseñanzas y consejos que contribuyeron en mi formación ética, profesional y personal.

El autor

ÍNDICE

DEDICATORIA	
AGRADECIMIENTO	
RESUMEN	
ABSTRACT	
CAPITULO I	
I. INTRODUCCIÓN	1
1.1. Antecedentes	2
1.2. Formulación del problema	5
1.3. Objetivos	6
1.3.1. Objetivo General	6
1.3.2. Objetivos específicos	6
1.4. Formulación de la hipótesis	6
1.5. Justificación y limitaciones del trabajo	7
CAPITULO II	8
II. MARCO TEORICO	9
2.1. Energía solar	9
2.1.1. Naturaleza de la energía solar	9
2.1.2. Constante solar	9
2.2. Radiación solar	11
2.2.1. Tipos de radiación terrestre	11
2.3. Ángulos solares	13
2.4. Concentradores Solares	13
2.5. Tipos de concentradores solares	13
2.5.1. En función de la temperatura del fluido	14
2.5.2. En función de la razón de concentración	15
2.6. Colectores cilíndricos parabólicos (CCP)	18
2.6.1. Componentes	19
2.7. Aplicación de los concentradores solares	21
2.8. Intercambiador de calor	22
2.8.1. Tipos de intercambiadores de calor	22

2.9. Diseño de un concentrador cilíndrico parabólico	24
2.9.1. Características generales	24
2.9.2. Balances energéticos del concentrador cilíndrico parabólico	24
CAPITULO III	31
III. MATERIALES Y MÉTODO	32
3.2. Método	32
3.2.1. Determinación de la radiación efectiva en Nuevo Chimbote	32
3.3.2. Dimensionamiento del concentrador solar cilíndrico	44
3.3.3. Cálculo de la energía solar incidente	50
3.3.4. Flujo másico a la entrada y salida en el concentrador solar (kg/s)	51
3.3.5. Gradiente de temperatura del concentrador solar (°C)	52
3.3.6. Rendimiento global del CSCP	52
3.3.7. Temperatura media logarítmica en el intercambiador de calor	59
3.3.8. Sistema de seguimiento solar	62
CAPITULO IV	65
IV. RESULTADOS Y DISCUSIÓN	66
4.1. Irradiación efectiva orientación del eje este-oeste y norte- sur	66
4.2. Dimensionamiento del concentrador solar cilíndrico parabólico	68
4.3. Características generales en el diseño del concentrador solar CSCP	69
4.4. Temperatura logarítmica en el intercambiador de calor (°C)	71
V. CONCLUSIONES Y RECOMENDACIONES	72
5.1. Conclusiones	72
5.2. Recomendaciones	73
VI. REFERENCIAS BIBLIOGRÁFICAS Y VIRTUALES	74
VII.ANEXOS	77

INDICE DE FIGURAS

Figura 1. Longitud de onda				
Figura 2. Tres clases de radiación solar.	12			
Figura 3. Colector plano.	14			
Figura 4. Colectores Cilíndricos Parabólicos.	15			
Figura 5. Principio de funcionamiento y componentes de un CCP.	18			
Figura 6. Esquema del seguimiento solar a un eje de un CCP.	20			
Figura 7. Intercambiador de calor a contra flujo.	23			
Figura 8. Balance energético de un CCP.	29			
Figura 9. Espectro de Radiación Solar.	33			
Figura 10. Relaciones angulares terrestres.	34			
Figura 11. Esquema solar frente al vector normal a la superficie	35			
Figura 12. Mapa del territorio de la loza sosal de la Universidad Nacional del Santa	37			
Figura 13. Perfil de la superficie captadora	44			
Figura 14. Esquema de relaciones y distancias dentro del perfil del CSCP	47			
Figura 15. Proyección del disco solar sobre el absorbedor	49			
Figura 16. Método volumétrico para hallar el flujo másico	51			
Figura 17. Medición del gradiente de temperatura	52			
Figura 18. Perdidas por conducción, convección y radiación en la tubería	54			
Figura 19. Intercambiador de calor a contraflujo	60			
Figura 20. Medición de temperatura en el intercambiador de calor	61			
Figura 21. Sistema de seguimiento solar	62			
Figura 22. Concentrador solar orientado hacia el este	63			
Figura 23. CS orientado perpendicularmente a la posición del sol (12:00 horas)	63			
Figura 24. Concentrador solar orientado hacia el oeste	64			
Figura 25. CSCP acoplado al intercambiador de calor a contra flujo	71			

INDICE DE GRAFICAS

Gráfica 1. Irradiación efectiva del mes de enero medida en W/m^2	41
Gráfica 2. Comparativa entre la I_o normal, la máxima y la efectiva	41
Gráfica 3. Gráfica 3. Irradiación media por mes y por año (E-O)	42
Gráfica 4. Irradiación media por mes y por año (N-S)	43
Gráfica 5. Relación de focos con sus respectivas coordenadas de abertura máxima	46
Gráfica 6. Perfil de la parábola de trabajo	47
Gráfica 7. Temperaturas reales obtenidas del intercambiador de calor a contra flujo	61
Gráfica 8. Comparación de las I_{efec} según diferentes orientaciones, N–S y E–O	63

INDICE DE TABLAS

Tabla 1. Clasificación en función del factor concentración. Fuente paredes	17
Tabla 2. Declinación media mensual en grados sexageciamal y en radianes	38
Tabla 3. Angulo horario en grados sexagesimales y en radianes	38
Tabla 4 . Cálculo del cos Θ y de Io para el mes de enero	39
Tabla 5. Cálculo del rendimiento óptico	40
Tabla 6. Cálculo de la Iefect para el mes de enero	40
Tabla 7. Relación de focos con sus respectivas coordenadas de abertura máxima	45
Tabla 8. Comparación de la irradiación efectiva $[W/m^2]$ con dos orientaciones	66
Tabla 9. Parámetro de diseño del concentrador solar cilíndrico parabólico	68
Tabla 10. Resultado de cálculos en el concentrador solar cilíndrico parabólico	70

INDICE DE ANEXOS

ANEXO 1. Comparación entre la irradiación media, efectiva y máxima para enero	74
ANEXO 2. Irradiación efectiva anual- orientación este-oeste / norte-sur	75
ANEXO 3. Cálculos para hallar vos valores máximos de la parábola	90
ANEXO 4: Gráfico para hallar el coeficiente conectivo "h"	91
ANEXO 5: Datos obtenidos en las mediciones del concentrador solar	92

RESUMEN

El objetivo del presente trabajo de investigación consistió en construir e implementar un concentrador solar cilíndrico parabólico para el precalentamiento de agua requerida en el intercambiador de calor a contraflujo del Laboratorio de Termo- Fluidos de la Universidad Nacional del Santa.

Dicho trabajo se realizó teniendo en cuenta las condiciones de radiación solar, y otros parámetros meteorológicos de la ciudad de Nuevo Chimbote, obteniendo 1128.69 W de energía incidente, 1.712 m^2 de área eficiente de la superficie reflectante, 0.55 de eficiencia óptica y 71 % de rendimiento global del concentrador solar cilíndrico parabólico.

El concentrador solar cilíndrico parabólico permitió obtener la energía térmica necesaria (50-70°C) para poder suplir las necesidades energéticas requeridas por el intercambiador de calor a contra flujo obteniendo un gradiente de temperatura de 44.3°C valor requerido y aceptable, y así poder realizar las prácticas de laboratorio del curso de Transferencia de Calor y Masa de la Escuela Profesional de Ingeniería en Energía de la Universidad Nacional del Santa.

Palabras Claves: Concentrador solar, pre - calentamiento, intercambiador de calor.

ABSTRACT

The aim of this research work was to build and implement a cylindrical parabolic solar concentrator for the preheating of water required in the counter-flow heat exchanger of the thermo-fluid laboratory of the National University of Santa.

The research work was done take into account the conditions of solar radiation, and other meteorological parameters of the city of Nuevo Chimbote, obtaining 1128.39 W of incident energy, 1,712 m^2 of efficient area of the reflecting surface, 0.55 of optical efficiency and 71% of global performance of the cylindrical parabolic solar concentrator.

The cylindrical parabolic solar concentrator made it possible to obtain the necessary thermal energy (50-70 °C) to be able to supply the energy needs required by the heat exchanger in the counter-flow, obtaining a temperature gradient of 44.3 °C, a value required and acceptable by it, and so to be able to made the laboratory practices of the court of Heat and Mass Transfer the professional career of Engineering in Energy at National University of Santa.

Keywords: Solar Concentrator, pre-heating, heat exchanger

CAPITULO I

I. INTRODUCCIÓN

En la actualidad se tiene una proyección mundial que tiene el valor más alto en la generación de energía térmica, puesto que su fuente de combustible es el petróleo y el gas natural, habiéndose realizado una estimación de 2 años para satisfacer la demanda. Hoy en día se tiene la problemática por la contaminación del medio ambiente, teniendo un aumento ascendente cada año en las emisiones de CO₂, afectando directamente al ecosistema (Tyner et al., 2001).

La comunidad internacional ha realizado muchos esfuerzos en la protección del medio ambiente, tales como el protocolo de Kyoto. Teniendo en cuenta dichos acuerdos internacionales se reconoce como una solución apropiada a la tecnología que hace uso de la radiación del sol para la generación de energía térmica y eléctrica. Se sabe también que la radiación solar es sumamente importante de las demás energías renovables, puesto que el viento, hidroeléctrica, olas y biomas dependen de la potencia proveniente del sol (Maxwell, et al. 1994, Norman Z. Shilling 2003).

Es claro que las fuentes de energías limpias poseen un elevado potencial económico, siendo en lo más mínimo el impacto con el medio ambiente, sabiendo que hasta la actualidad aún no se han explotado ni comercializado a gran escala. Lo anterior se da por el elevado costo de inversión en desarrollar estas tecnologías, puesto que, dichos sistemas no han tenido mucha aceptación debido a no ser muy continuo y siendo necesario el almacenamiento de energía, teniendo como consecuencia optar por las fuentes convencionales, sin embargo, en las tecnologías con fuentes de energías limpias, teniendo un bajo impacto ambiental, lo que se debe considerar es el costo de operación. De esta forma, el coste de los sistemas con fuentes de energía limpias se da por el ahorro en el consumo de combustible. Puesto que la energía renovable por si es gratuita, siendo el desafío diseñar métodos de captación y aprovechamiento que conviertan dicha energía limpia comparada con las fuentes de conversión. Teniendo otro problema en la discontinuidad, siendo por el ciclo día – noche ó también por las condiciones atmosféricas, tales como la lluvia o días nublados.

El siguiente trabajo de investigación tiene como objetivo de construir e implementar un concentrador solar cilíndrico parabólico (CSCP) para el pre-calentamiento de agua requerida `por un intercambiador de calor a contra flujo, es decir generar un gradiente de temperatura de 40°C.

1.1. Antecedentes

"Diseño de un de un secado industrial basado en la concentración de energía solar usando un colector tipo cilíndrico-parabólico acoplado a un intercambiador de calor de tubo/coraza".

Realizado por GUSTABO CARLOS ALMANZA GOMEZ Y JHON JAIRO CARBARCAS TOSCANO, el 20 de mayo del 2013.

A modo de disyuntiva para el calentamiento del aire, en este trabajo de investigación se muestra el diseño de secado industrial basado en la concentración de energía solar usando un concentrador tipo cilíndrico-parabólico acoplado a un intercambiador de calor de tubo/coraza.

Se halló la radiación solar promedio en la ciudad de Cartagena haciendo uso de un radiómetro modelo PCE-SPM1, teniendo como resultado en el orden de 900 W/ m^2 de radiación solar promedio. Para determinar la cantidad energía solar dispone para la trasferencia de calor se tuvo que realizar un cincelado termodinámico del concentrador cilíndrico-parabólico. También, se diseñó el intercambiador de calor de tubo/coraza teniendo un paso por la coraza y dos pasos por los tubos teniendo un acomodo triangular. El patrón termodinámico planteado para determinar la capacidad de absorción del concentrador, posibilito hallar que en el diseño la potencia solar obtuvo el valor de 65.85kW, siendo 51.20 kW útiles, es decir, es un 77.7% de la potencia solar incidente. Sabiendo lo anterior, se desarrollaron 5 concentradores solares para poder alcanzar una temperatura de 250°C.

"Evaluación Experimental de un Concentrador Solar Cilíndrico Parabólico", (UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN DE TACNA – Perú).

Realizado por CARLOS POLO BRAVO, ELISBAN J. SACARI SACARI Y JORGE ARMANDO CHOQUE CHACOLLA, el 18 de octubre del 2011.

El colector solar cilíndrico parabólico (CCP), fue diseñado y construido por estudiantes de la Especialidad de Energías Renovables de la Escuela Académica Profesional de Física Aplicada.

Dicho trabajo se evaluó teniendo en cuenta las condiciones meteorológicas de radiación solar de la ciudad de Tacna, y conlleva a lo siguiente: definir la superficie reflectante más eficiente, perdidas de calor según el ángulo de inclinación del colector, determinar la eficiencia óptica, el coeficiente global de transferencia de calor y la eficiencia térmica.

Se obtuvo la eficiencia térmica del Concentrador Solar Cilíndrico Parabólico, teniendo un cobertor del tubo de vidrio incrementa en un 27%, por consiguiente, para calentar 20 litros de agua, el CSCP con un tubo avasallador implementado con una cobertura de vidrio, lo calienta aproximadamente en las 2/3 partes (66 min) efectuado por el mismo CSCP que no contiene un cobertor de vidrio (100 min). Los valores hallados y evaluados se encuentran en un 27% al estimar el concentrador solar y sin vidrio en el tubo absorbente.

"Control y monitoreo de un concentrador solar de disco parabólico reflector", (INSTITUTO POLITECNICO NACIONAL – México).

Realizado por ARELI CASTAÑEDA RUFINO Y JOSE LUIS HERNANDEZ MORALES, noviembre del 2013.

En este proyecto de investigación se desarrolló el diseño y e implementó el sistema de control y monitoreo para un Colector Solar de Disco Parabólico (CSDP) haciendo uso de una interfaz gráfica llamada HMI, como también los ensayos de funcionamiento y monitoreo de las variables de la temperatura en el foco, temperatura del ambiente y la ubicación de los 2 ejes de movimiento, elevación y acimut, así se pudo mantener al concentrador orientado siempre hacia el sol. La metodología de control en un sistema cerrado teniendo solamente una acción de control (PI) pudo ser suficiente para dirigir un

movimiento gradual de los dos ejes del concentrador solar, haciendo uso de una programación, el cual se realizó en el programa Labview, también se hizo uso de una tarjeta Microcontroladora Arduino y una verificación de la posición proveniente de dos sensores adaptados mediante instrumentos diseñados para fijación de estos a los ejes del concentrador solar.

El mando de motores se diseña en forma de un subprograma, el cual es usado por el programa principal de mando, entretanto en la etapa de potencia de los motores se realiza haciendo uso de una segunda tarjeta Microcontroladora el cual se usa al mismo tiempo para la obtención de datos y monitoreo de esta manera las variables del sistema el cual contienen un HMI diseñada y esquematizada en el entorno Labview.

La inyección de energía en los sensores es regulada haciendo uso de un circuito derivado de la batería de alimentación general y el acomodo de la señal que proviene del termopar se desarrolla mediante circuito integrado de dispositivos. Al no tener el modelo del sistema, se optó por usar el método de sintonización heurístico hallando un valor aproximado, más no exacta.

1.2. Formulación del problema

Actualmente la Escuela Académica Profesional de Ingeniería en Energía (EAPIE), tiene incluido en su currícula el curso de TRANFERENCIA DE CALOR Y MASA. El Laboratorio de Termo-Fluidos de la EAPIE cuenta con un intercambiador de calor a contra flujo, donde los alumnos realizan sus prácticas de laboratorio, para poder analizar y conocer el fenómeno de transferencia de calor. Para realizar dicha práctica y observar los fenómenos que se dan en el intercambiador de calor, se requiere de agua caliente aproximadamente 60 °C y agua fría a T ambiente (20 °C).

Para lograr las condiciones de temperatura requerida por el intercambiador de calor, los estudiantes hacen uso de los recursos disponibles en dicho laboratorio, en la actualidad únicamente se cuenta con una cocina a gas para calentar el agua, siendo este un método eficaz, pero no eficiente para esta práctica, puesto que demanda tiempo, coste, una combustión que emite CO_2 y contamina el medio ambiente.

Por ello este proyecto de investigación pretende construir un concentrador solar cilíndrico parabólico para generar agua caliente e inyectar al intercambiador de calor a contraflujo como un pre-calentador de manera que el agua a calentar no esté a temperatura ambiente sino más caliente, haciendo este un método más eficaz, eficiente, por ende, efectivo.

¿Mediante la construcción e implementación de un concentrador solar cilíndrico parabólico, que porcentaje del gradiente de temperatura optimo requerido por el intercambiador de calor a contra flujo del Laboratorio de Termo-Fluidos de la Universidad Nacional del Santa puede abastecer?

1.3. Objetivos

1.3.1. Objetivo General

 Construir e implementar el concentrador solar cilíndrico parabólico para el precalentamiento de agua requerida en el intercambiador de calor a contraflujo del laboratorio de termo- fluidos de la Universidad Nacional del Santa.

1.3.2. Objetivos específicos

- Determinar el potencial de irradiación efectiva incidente en el concentrador solar cilíndrico parabólico.
- Evaluar el área de captación y el material con el que se construya el concentrador.
- Determinar el flujo másico de trabajo en concentrador solar cilíndrico parabólico.
- Determinar el gradiente de temperatura en el concentrador solar cilíndrico parabólico.
- Determinar el rendimiento del concentrador solar cilíndrico parabólico.
- Determinar la temperatura media logarítmica en el intercambiador de calor a contra flujo.

1.4. Formulación de la hipótesis

a. La hipótesis que se ha planteado a este problema es:

"Mediante la construcción e implementación de un concentrador solar cilíndrico parabólico se podrá abastecer el 80% del gradiente de temperatura requerido por el intercambiador de calor a contraflujo ubicado en el Laboratorio de Termo-Fluidos de la Universidad Nacional del Santa".

b. Variables

Las variables para la presente investigación se consideran de la siguiente forma:

Variable independiente: Construcción e implementación de un concentrador solar cilíndrico parabólico.

Variable dependiente: Gradiente de temperatura del intercambiador de calor.

1.5. Justificación y limitaciones del trabajo

El siguiente trabajo de investigación permitirá realizar de manera eficiente y eficaz las prácticas de laboratorio y se podrá apreciar los principios básicos de un intercambiador de calor a contra flujo, teniendo un mayor aprovechamiento para el mejor aprendizaje del estudiante. Así mismo tener una práctica de laboratorio más limpia y acorde con el medio ambiente, debido a que la obtención del agua caliente se realiza usando una fuente de energía limpia, en este caso la energía solar. Otro de los beneficios es poder usar la energía renovable, en este caso como fuente de energía la radiación solar, ayudando a contribuir con el medio ambiente. Finalmente reducir las emisiones de CO_2 y por ende reducir considerablemente la contaminación ambiental.

CAPITULO II

II. MARCO TEORICO

2.1. Energía solar

La energía solar es una energía limpia, que se obtiene a partir de la radiación electromagnética procedente del Sol. La radiación solar que incide sobre la Tierra ha sido empleada por el ser humano desde la Antigüedad, haciendo uso de diferentes tecnologías que han ido evolucionando en el tiempo (Vásquez & Zuñiga, 2015). En la actualidad, el calor y la luz del Sol puede usar por medio de múltiples captadores como células fotovoltaicas, helióstatos o concentradores térmicos, logrando transformarse en energía térmica o eléctrica. Es conocida con fuentes de energías renovables o energías limpias, que podrían apoyar en resolver muchos de los problemas más inminente que enfrenta la humanidad.

Abril (2010), indica que la energía solar térmica es la energía que transforma la radiación solar en calor, y cede este calor a un líquido, comunmente agua. Se puede aprovechar el calor del líquido calentado para conseguir agua caliente sanitaria, calefacción de viviendas, calefacción en las piscinas, etc. El propósito prinicipal de cualquier sistema térmico solar es lograr la energía proveniente del sol para convertirla y transportarla de la forma más económica y eficaz posible. La utilización del aprovechamiento solar pueden ser directas, en modo de calor, o bien indirectas, empleando este calor para hallar trabajo mecánico en un eje y finalmente energía eléctrica (Paredes, 2012). A partir de 1973, la energía solar ha sido objeto de diversas investigaciones, y sin obligación de técnicas complicadas, cada vez se conoce más estudios que son sumamente prácticas y atractivas en el calentamiento de agua.

2.1.1. Naturaleza de la energía solar

El sol tiene un radio de aproximadamente 700 000 km. Su masa es tan grande que equivale al resultado de juntar unos 334 000 planetas iguales a la tierra, 1.41 g/cm^3 es su densidad media, se ubica a 30 000 años luz del centro de la galaxia, donde gira todo el sistema planetario. Gira sobre su propio eje y tiene un periodo de rotación aproximadamente de 30 días cerca de los polos (Castañeda & Hernández, 2013).

El sol a través de reacciones nucleares que se dan en su interior genera su propia energía. En estas reacciones nucleares los átomos de hidrogeno (elemento abundante del sol), se combinan entre si y se obtiene átomos de hielo. Es importante mencionar que una pequeña parte de la masa de los átomos de hidrogeno, se transforman en energía según la famosa ecuación de Einstein, $E = m.c^2$, donde E = cantidad de energía liberada cuando desaparece la masa m; C = velocidad de la luz. Esta energía fluye desde el interior hasta la superficie (fotosfera) y es irradiada cada segundo una energía de $4x 10^{20}$ J en todas las direcciones al espacio, lo que genera una potencia de $4x 10^{23}$ kW (Salgado, 2013). En un solo segundo, el sol irradia más energía que la consumida por todo el género humano desde sus albores hasta nuestros días.

Constante solar

Sobre la atmosfera terrestre, llega una cantidad de radiación solar constante. Debido a la radiación que emite el sol y sus condiciones geométricas que presenta respecto de la tierra. Lo explicado define lo denominado constante solar. La constante solar (I_{cs}), es la cantidad de energía que recibe una superficie de área unitaria que se encuentra perpendicular a la radiación, esta energía es emitida por el sol en unidad de tiempo. (Castañeda & Hernández, 2013). El valor normal o estándar que tiene la constante solar (I_{cs}) propuesto por Thekaekara & Drumnond es de 1.37 kW/m²h ó 428 BTU/ft². Este valor ha variado en los últimos años, por las técnicas de medición empleadas, lo cual no implica que haya variado la magnitud de la energía del Sol.

La constante solar, está distribuida según distancias de onda. Sin embargo, la radiación solar adquiere solamente valores significativos de longitud de onda, entre 0.2 y 0.4 μ m como se muestra en la figura 1.

Figura 1. Longitud de onda. Fuente: Castañeda & Hernández (2013)

2.2. Radiación solar

El conjunto de radiaciones electromagnéticas emitidas por el sol se denomina radiación solar. El sol emite energía a una temperatura de unos 6000 °K siguiendo la ley de Planck. Esta radiación se distribuye desde el infrarrojo hasta el ultravioleta. Debido a que los gases de la atmosfera principalmente el ozono absorbe las ondas ultravioletas más cortas, no toda la radiación solar llega a la superficie de la tierra. La irradiación es la magnitud que mide la radiación solar que recibe la tierra, esta magnitud mide la energía por unidad de tiempo y área alcanzada. Su unidad es el W/m² (vatio por metro cuadrado) (Sánchez, *et al.*, 2008).

2.2.1. Tipos de radiación terrestre

La energía del sol se puede captar por medio de tres formas en función de cómo reciben según Solartronic (2003), en función de cómo la superficie de la tierra recibe la radiación solar, la energía del sol puede ser captada de tres diferentes formas (Fig. 2).

- Radiación directa: Es aquella radiación solar que incide en la superficie de la tierra sin tener cambios en su trayectoria lineal desde el disco solar. Esta radiación está caracterizada por proyectar una sombra definida de los objetos opacos que la interceptan.
- Radiación difusa: Esta radiación va en todas las direcciones, como consecuencia de las reflexiones y absorciones, que se dan por las nubes, de las partículas del polvo atmosférico, edificios, arboles, el propio suelo, etc.
- Radiación reflejada: Es la radiación reflejada por la superficie terrestre. La cantidad de esta radiación depende del albedo (coeficiente de reflexión de la superficie).

Figura 2. Tres clases de radiación solar. Fuente: Sánchez et al. (2008)

Conocer la radiación solar directa y difusa es necesario para el análisis y diseño de algunos sistemas solares. Por ejemplo, el valor de la radiación directa normal es necesario para el cálculo de la radiación solar sobre superficies inclinadas, así como para establecer el desempeño de colectores concentradores. (Solartronic, 2003).

2.3. Ángulos solares

La ubicación del sol en el firmamento esta definido sobre dos variables angulares: se tiene la altura solar (A) y el acimut sola (γ). Como se deriva de la primera de estas variables se tiene el ángulo que se ve del sol como forma con el horizonte (Figura 6), puesto que la segunda describe la desviación que realizan los rayos del sol en referencia al sur verdadero. La operación correcta y precisa de estas variables estan en función la la operación de los siguinetes parámetros: la latitud (λ), la declinación (δ), el ángulo horario (τ), ángulo cenital solar (Θ_s) y longitud (L). (Bagarozza & Del Risco, 2002).

2.4. Concentradores Solares

Los concentradores solares son instrumentos diseñados en la captación de la radiación solar en una superficie pequeña, convertirla en energía térmica y de eta forma, aprovechar el fluido caliente, para luego hacer uso en sector doméstico o industrial. (Salgado, 2013). También, Echeverría (2011) determina que los concentadores solares que son de tipos especiales de transferencia de calor que tranfieren dicha energía, por lo general se usa como fluido agua, aceite o aire, que fluye a traves del tubo receptor.

2.5. Tipos de concentradores solares

Se cuentan con diversas variedades de concentradores solares térmicos, puesto que, aunque cuenten con el mismo principio de funcionamiento, tienen diferentes características, Por tal motivo se pueden agrupar de distintas formas. Y se muestra a continuación:

2.5.1. En función de la temperatura del fluido

En esta definición se basa en las temperaturas que puede alcanzar el fluido, por consiguiente, las distintas aplicaciones que pueden aprovecharse. También, el rango de operación del campo solar está en función del tipo de fluido que utilice en dicho concentrador solar, siendo de mucha influencia para la obtención del rendimiento del ciclo de potencia. (Paredes, 2012).

2.5.1.1. Colectores solares de baja temperatura (30°C – 100°C)

Proporciona conseguir energía calorífica considerada como baja temperatura (inferior a 100°C) debido a que son instrumentos simples, teniendo a favor de usar solamente una orientación definida y se aprovecha la radiación directa y difusa, y no utiliza ningún sistema de control. Este tipo de concentrador solar se usa para producir energía térmica, específicamente en el calentamiento de agua, puesto que el rango de funcionamiento se encuentra entre 10 a 80°C, teniendo en cuenta que no puede calentar grandes cantidades de agua. (Montes, 2008).

Figura 3. Colector plano. Fuente: Salgado (2013)

2.5.1.2. Concentradores solares de alta temperatura (100°C – 500°C)

Se define como los que es necesario direccionar la energía dispersa en un único punto o de forma lineal con la finalidad de obtener temperaturas superiores a los 100 a 500 °C, estando en función de la construcción y son usados mayormente en

la producción de energía eléctrica. Asimismo, se conocen como colectores de concentración. Estando incluido los Concentradores Cilíndricos Parabólicos, siendo la mitad de un cilindro el área que recibe toda la energía del sol. (Fig. 4.), se hace uso de la energía solar directa y siempre se debe realizar una orientación hacia el sol, haciendo uso de un mecanismo apropiado.

Figura 4. Colectores cilíndricos parabólicos. Fuente: Salgado (2013)

2.5.2. En función de la razón de concentración

En esta distribución, se tiene que insertar un nuevo parámetro, se define como el factor o razón de concentración, definido por "C". Primeramente, se tiene que estar claros los dos elementos importantes dentro del concentrador y el tubo receptor. El primero consiste en el método óptico, y constituye la parte del concentrador que direcciona la radiación solar hacia el receptor. Siendo este el elemento del procedimiento donde la radiación que es absorbida y se transforma en una distinta energía. (Montes, 2008). Finalmente, se tiene que la razón de concentración de toda el área de captación se determina como la división entre el área de apertura del concentrador y el área que absorbe el receptor.

$$C = \frac{\text{Å}rea \ de \ apertura}{\text{\AA}rea \ de \ absorción}$$

2.5.2.1.Colectores no concentrados.

Los colectores solares sin concentración (C=1), se usan para temperaturas bajas. Debido a que las superficies de apertura y absorción son iguales, lo que significa que todo el elemento del subsistema solar tiene el mismo emplazamiento físico. Este tipo de concentradores son ampliamente utilizados en aplicaciones térmicas domésticas, pues su costo y rango de temperatura permite una buena adaptación a las necesidades del usuario (Castañeda & Hernández, 2013).

Se puede hacer una distinción de los colectores no concentradores, atendiendo al fluido que circula por los tubos:

Captador plano para agua. Es el más empleado en el ámbito doméstico y de bajas temperaturas. Ejemplo, calentamiento de agua sanitaria.

Captador plano de aire. Cuentan con respuestas rápidas a la radiación, no tienen problemas de congelación ni de corrosión. Presenta un proceso constructivo simple, la estanqueidad del sistema evita fugas de fluidos.

Tubos de vacío. Eliminan las perdidas por convección y aumentan la temperatura del fluido que porta el calor con menos requerimiento de superficie de captación efectiva aprovechando el vacío creado en su interior.

2.5.2.2. Colectores concentrados.

Para obtener mayores temperaturas en un concentrador, se necesita modificar el sistema de captación, de manera que se aumente la concentración. Los colectores concentrados pueden lograr captar estas temperaturas, y se pueden clasificar según dos características: la geometría del absorbedor (concentración lineal o puntual) y la forma de la concentración (reflexión o refracción) (Montes, 2008). A modo de resumen, en la tabla 1 se muestran los diferentes colectores en función de la razón de concentración.

Tabla 1. Clasificación en función del factor de concentración. Fuente: Paredes.

			Nombre	Croquis	Razón de concentració n "C"	Rango Temperatura alcanzada [C ⁹]
	cionario	edor plano	Capatador plano de agua/ aire		C≤1	30 < T≋ < 250
	Estac		Tubos de vacio		CS1	50 < T≊ <200
	into a un le	edores lares	Colector Parabólico Compuesto CPC		1 < C < 15	70 < T# <300
dores	Seguimie ej	Absorb	Colector Cilíndrico Parabólico CCP		15 < C < 40	70 < T≗ < 350
Seguio	nto a dos es	edores uales	Disco Parabólico	\bigcirc	100 < C < 1000	70 < T≇ < 1500
	Seguimie ej	Absorb	Torre Central		100 < C < 1500	150 < T# < 1500

De acuerdo a los colectores de concentración, de menor a mayor razón de concentración, según Velasquez (2014) se tiene:

Los **sistemas cilindro parabólicos** Este tipo de sistemas permiten obtener razones de concentración en un rango de 30-90. Este sistema cuenta con espejos cilíndricos cuya sección transversal es una parábola, permitiendo que la radiación solar se centre en el eje central focal.

Los **sistemas de torre central** este tipo de sistemas permiten obtener factores de concentración entre 200 y 1000. Están compuesto por espejos cuasi-planos (helióstatos), que se distribuyen en una superficie horizontal, inclinados de tal forma que la radiación solar se refleje hacia la parte superior de la torre, donde generalmente se coloca el receptor.

Los **discos parabólicos** son sistemas que consiguen razones de concentración altas, entre 1000 y 5000. Consisten en espejos paraboloide de revolución, que giran siempre orientados al sol.

2.6. Colectores cilíndricos parabólicos (CCP)

Los colectores cilíndricos parabólicos (CCP), están compuestos por espejos cilíndricos parabólicos, estos espejos permiten que la radiación solar directa sea reflejada y concentradas en un tubo absorbedor que está ubicado en la línea focal de la parábola (Fig. 5). Esta radiación que es captada permite que el fluido que se encuentra circulando dentro del tubo absorbedor se caliente, obteniendo de esta manera energía térmica (Zarza, 2002). Los CCP, permiten obtener temperaturas de hasta 400°C con eficiencia de 60% - 70%.

La concentración óptica de radiación solar implica que la superficie del tubo absorbedor sea menor al área de abertura del captador, permitiendo de esta forma que se reduzca significativamente las pérdidas térmicas del colector, debido a que estas pérdidas están en función de la superficie del absorbedor, que es el componente "caliente" del captador. (Echeverría, 2011). Debido a que solo la radiación solar directa es aprovechable por el captador, es necesario que éste gire a lo largo del día en dirección al sol.

Figura 5. Principio de funcionamiento y componentes de un CCP. Fuente: Echeverría (2011)

2.6.1. Componentes

Los elementos principales de un CCP son (Fig. 5): el reflector cilindro parabólico, tubo absorbedor o receptor, sistema de seguimiento solar y fluido de trabajo

2.6.1.1.Reflector cilindro parabólico

Su función es reflejar la radiación solar captada en él y proyectarla de forma concentrada en el tubo absorbedor que se encuentra ubicado en la línea focal del reflector. Está compuesto por espejos que, por su forma geométrica, concentra toda la radiación solar directa que incide en su abertura sobre su línea focal. Los reflectores cilíndricos parabólicos utilizan películas de plata o aluminio depositadas en un soporte que le dan rigidez. Actualmente se utilizan diferentes medios soportes para la película reflectante: chapa metálica, plástico, o cristal (Zarza, 2002).

2.6.1.2. Tubo receptor

Es uno de los elementos más importantes de los CCP, puesto que de este elemento depende el rendimiento global del captador. El tubo receptor está compuesto por dos tubos: el primer tubo interior metálico (a través del cual circula el fluido que se calienta) y el segundo tubo exterior de cristal (Zarza, 2002). Según Paredes (2012), el tubo receptor también puede estar compuesto por un tubo de acero o cobre que cuente con una superficie selectiva y otro tubo de vidrio, que evite las pérdidas de calor, y tenga uniones flexibles de teflón como soporte que formen parte del sistema receptor de calor.

La función principal del tubo receptor es recibir la radiación solar concentrada y transformarla en energía térmica, esta energía es transportada posteriormente mediante un fluido calorífero. El tubo receptor está ubicado en la línea focal del colector, sujeto a la estructura por brazos de soporte (Velázquez, 2014).

En este trabajo de investigación, utilizamos un tubo receptor de cobre desnudo de ¹/₂" con recubrimiento selectivo, y materiales disponibles localmente, para disminuir costos (Venegas, *et al.*, 2012).

2.6.1.3. Sistema de Seguimiento Solar

Los CCP necesitan un sistema de seguimiento solar para poder seguir al sol durante el dia, esto exige que el sistema permita cambiar de posicion al CCP conforme el sol se mueva, y de esta forma concentrar la radiacion solar sobre el tubo receptor. Los sistemas de seguimiento solar consisten en un dispositivo que permita girar los reflectores cilindricos alrededor de un eje (Fig. 6). (Zarza, 2002). La orientación puede ser Norte-Sur o Este-Oeste.(Paredes, 2012).

Existen CCP que giran en dos ejes, sin embargo se ha demostrado que este tipo de captadores son poco rentables por que demandan de mayor mantenimiento (por su complejidad mecánica) a pesar de que el flujo útil de radiación solar sobre el área de abertura sea mayor a diferencia de los CCP con sistemas de seguimiento de un solo eje, las perdidas térmicas son mayores debido a que la longitud de tuberías pasivas dentro del captador es mayor, por tanto la potencia térmica útil que suministra es igual o incluso menor a los que suministra un CCP con sistemas de seguimiento en un solo eje.

2.6.1.4. Fluidos de Trabajo para los CSCP

Los CCP usan fluidos de transferencia de calor que, circulan en el tubo receptor, y absorben en forma de energía térmica la radiación solar, transportándola hasta el bloque de potencia. La función de los fluidos de trabajo es transportar el calor producido a tanques de almacenamiento térmicos, que posteriormente son usados en sistemas de calentamiento o enfriamiento. Los fluidos de trabajo pueden ser: Agua, glicolpropileno, glicol-etileno, sales fundidas, aceites térmicos y aire (Velázquez, 2014). La elección del tipo de fluido depende de las temperaturas que se desee obtener. Por ejemplo, si se desea obtener temperaturas mayores a 175 °C el agua desmineralizada como fluido de trabajo es ideal, ya que la presión de trabajo no es excesiva. Por otro lado, la aplicación de aceites sintéticos como fluido de trabajo permite obtener temperaturas más altas (175 °C< T <400 °C).

2.7. Aplicación de los concentradores solares

Actualmente los concentradores solares tienen muchas aplicaciones. Según Balado (2011) los contradores solares pueden aplicarse como cocinas solares, para el calentamiento de agua, generar electricidad, aplicaciones metalurgicas como el caso del Horno Solar de Tashkent (ex URSS) donde se logra obtener aleaciones para la industria aeroespacial. En Piura Echevarría (2011), propone el diseño de un colector cilindrico parabolico con aplicación para el calentamiento de agua. Por otro lado, Daghero, *et al.* (2015) en Argentina, proponen el diseño, desarrollo y estudio de funcionamiento de un prototipo de concentrador cilíndrico parabólico (CCP) destinado a la generación de vapor de agua de baja entalpía para uso industrial. En Colmbia Almanza & Cabarcas (2013), diseñan un sistema de secado industrial basado en la concentración de energía solar usando un concetrador solar cilindrico parabolico acoplado a un inetrcambiador de calor tubo coraza.

La construción del concentrador solar cilindrico parabolico en este proyecto estara acoplado a un intercambiador de calor de contraflujo que será aplicado para calentamiento de agua.

21

2.8. Intercambiador de calor

Los intercambiadores de calor son dispositivos que estan diseñados de forma que permiten transferir calor entre fluidos, que esten separados por una barrera o en contacto (Cuadrado, 2010). Según Palomino (2010), el proceso de transferencia de calor se realiza en fluidos que presentan diferentes temperatruras, pues el objetivo de esta transeferencia de calor es variar dichas temperaturas hasta alcanzar un equilibrio termico. Esta transferencia comprende convección en cada fluido y conducción mediante la pared que los separa. Los intercambiadores de calor según Cengel (2004) son utilizados para: Calentar fluidos frios mediante fluidos que tienen mayor tempertura, reducir la temperatura de un fluido a traves de fluidos con temperturas bajas, llevar al punto de ebullicón a un fluido, asi mismo condensar un fluido que se encuentre en estado gaseoso mediante un fluido frío.

Se puede clasificar de diferentes maneras los intercambiadores de calor, según su tipo de construcción y su tipo de operación. En este proyecto nos enfocaremos a su clasificción según su operación.

2.8.1. Tipos de intercambiadores de calor

Según su operación, existen tres categorias según Cengel (2004), estos son: Flujo pralelo, contraflujo y flujo cruzado.

Flujo paralelo

En este tipo de intercambiadores el flujo interno y externo fluyen en la misma dirección. Estos fluidos ingresan al intercambiador por el mismo extremo y tienen una diferencia de temperatura significativa. La temperatura de dichos fluidos se aproximan, un fluido disminuye de temperatura y el otro aumenta, hasta alcanzar el equilibrio térmico.

Flujo cruzado

En este caso uno de los fluidos circula de manera perpendicular al otro, un fluido circula a traves de los tubos internos mientras el otro fluido pasa alrededor de estos. Estos intercambiadores son usados comunmente cuando un fluido presenta un cambio de fase.

Contraflujo

En los intercambiadores de calor a contraflujo los fluidos van hacia una misma dirección, pero uno de estos fluidos tiene sentido contrario (Fig. 7). El ingreso de los fluidos se da por diferentes extremos. Esto permite que al salir un fluido de temperatura menor por el extremo donde entra el fluido de mayor temperatura, la tempratura del primer fluido se aproxime a la temperatura del fluido de entrada. Este tipo de intercambidores son considerados como los mas eficientes.

Figura 7. Intercambiador de calor a contra flujo. Fuente: Jaramillo (2007).

Método de la diferencia de temperatura media logarítmica, LMTD

Los intercambiadores de calor a contraflujo determinan la Δ Tm mediante el uso de un balance de energía para elementos diferenciales de fluidos caliente y frio (Holman, 1998). Donde la diferencia de temperatura media apropiada es la diferencia de temperatura media logarítmica Δ Tml. En consecuencia:

$$\mathbf{q} = \mathbf{U}.\mathbf{A}.\Delta \mathbf{T}_{\mathrm{ml}} \tag{2.1}$$

Siendo: q = calor total (W), U = coeficiente global de transferencia de calor (W/ m^2 . °C), A = área de transferencia de calor (m^2) y ΔT_{ml} = temperatura media logarítmica (°C).

$$\Delta T_{\rm ml} = \frac{\Delta T 2 - \Delta T 1}{\ln(\frac{\Delta T 1}{\Delta T 2})} \tag{2.2}$$
2.9. Diseño de un concentrador cilíndrico parabólico

2.9.1. Características generales

Un CSCP consiste de un arreglo de espejos, formados de lámina de acero inoxidable con acabado espejo, diseñado en forma de cilindro que presenta generatriz parabólica. Este mecanismo tiene un solo grado de libertad, con orientación Este- Oeste y un sistema de seguimiento Norte – Sur. Estos CCP tienen un tubo de cobre en la línea focal, por donde pasa el fluido termo portador, que absorbe la radiación solar y posteriormente la transforma en energía calorífica permitiendo calentar agua a altas temperaturas.

2.9.2. Balances energéticos del concentrador cilíndrico parabólico

Según Salgado (2013), los CCP tienen dos parámetros básicos: la razón de concentración geométrica [C] y el Angulo de aceptancia [φ].

$$C = \frac{Ac}{Aa} \tag{2.3}$$

Siendo: Ac = área de la superficie del concentrador (m^2) ; Aa = área de la superficie del absorbedor (m^2) .

El ángulo máximo que pueden formar dos rayos en un plano transversal a la apertura de un concentrador se denomina ángulo de aceptancia, de tal forma que dichos rayos reflejados interceptan en el tubo receptor en su reflexión. El valor de la razón de concentración se encuentra alrededor de 220 teóricamente, sin embargo, en la práctica es 20. El ángulo de aceptancia de los CCP actuales son inferiores a 1°, esto se toma como referencia para el error máximo que se puede presentar en el sistema de seguimiento solar. Por otro lado, la temperatura ideal de trabajo se encuentra dentro del rango 150-400°C (Paredes, 2012).

2.9.2.1.Perdidas en un concentrador cilíndrico parabólico

La radiación solar que alcanza la superficie de un concentrador parabólico, se pierde en una cantidad importante por diferentes factores. Estas pérdidas se dividen en tres grupos, que ordenadas de mayor a menor importancia son: pérdidas ópticas, térmicas y geométricas (Balado, 2011).

Pérdidas ópticas: Estas pérdidas de radiación se debe a que los elementos del concentrador no son perfectos. Esto provoca que solo una cantidad de la radiación solar directa llegue a la apertura del concentrador y alcance al fluido que se encuentra en el interior del tubo receptor (Balado, 2011). Los cuatro parámetros que afectan a las pérdidas ópticas son:

- Reflectividad de la superficie del concentrador → ρ ± 90% según aumenta la suciedad en la superficie del CCP los valores de Reflectividad disminuyen de manera progresiva.
- Factor de interceptación → γ ± 95% debido a las imperfecciones de los espejos del CCP y los errores de seguimiento solar de este, no todos los rayos solares que se reflejan interceptan en el tubo receptor. Por ello, se aplica este factor de intercepción.
- Transmisividad de la cubierta de cristal → τ ± 90 95% la transmitividad de cubierta de vidrio está dado por la razón existente entre la radiación solar que pasa a través de la cubierta de cristal, y la radiación total reflejada sobre ella. Teniendo en cuenta que solo un parte de la radiación reflejada por los espejos y alcanzada por la cubierta de vidrio del tubo receptor es atravesada en el interior.
- Absortividad → α ± 90 96% determina la cantidad de radiación solar que alcanza la superficie selectiva que se absorbe.

Estos parámetros tienen valores entre 0 a 1 (o en porcentaje %) y son adimensionales. El conjunto de esto parámetros se define en un rendimiento óptico del concentrador, η_{opt} (Kostyuk & Frolov, 1988).

$$\eta_{\text{opt}} = \rho. \gamma. \tau. \alpha. d \tag{2.4}$$

Estos valores permanecen constantes, siempre y cuando no se degraden los materiales del CSCP, debido a que no depende ni la radiación solar ni de la temperatura del fluido. Sin embargo, las partículas del polvo o suciedad que se encuentren sobre las superficies del tubo receptor y de los espejos del CSCP, producto de tener una instalación al aire libre, si influye en el rendimiento óptico.

Por tal motivo lo habitual es proporcionar los parámetros ópticos con un grado del 100% de limpieza (Paredes, 2012).

Pérdidas Térmicas: Estas pérdidas se encuentran relacionadas a dos elementos del CSCP, el tubo receptor y las tuberías de fluido térmico.

Estas pérdidas están formadas por: pérdidas de conducción (tubo metálico), convección (la cubierta de cristal) y radiación (atmósfera) de los diferentes elementos que componen el tubo receptor. Cada una de estas pérdidas pueden calcularse de forma independiente según ecuaciones de transferencia de calor. Sin embargo, en la práctica estas pérdidas térmicas totales Q_L se engloban en un único coeficiente global $U_L[W/m^2 abs. °C]$. (Zarza, *et al.*, 2006).

$$Q_L = U_{L,abs} . \pi. D. L. (T_{abs} - T_{amb})$$

$$(2.5)$$

Donde:

 $T_{abs} \rightarrow$ Temperatura media del tubo absorbente metálico (°C).

 $T_{amb} \rightarrow$ Temperatura ambiente (°C).

 $D \rightarrow Diámetro exterior del tubo metálico absorbente (m).$

 $L \rightarrow$ Longitud del tubo metálico absorbente (m).

Para un CSCP con tubo receptor de vacío es de unos 4 (W/m^2 .°C) para temperaturas de entorno a los 350°C.

Perdidas geométricas: Estas pérdidas provocan la disminución del área efectiva de captación solar. Un CSCP tiene pérdidas debido a su posición relativa de los concentradores entre sí, las pérdidas inherentes a cada concentrador son motivo del ángulo de incidencia, lo que provoca que en los extremos del concentrador exista una pérdida de superficie reflexiva útil. El área que el concentrador pierde se define de la siguiente manera:

$$S_e = L_r \cdot L_e = L_r \cdot F_m \cdot \tan(\Theta)$$
(2.6)

$$F_{\rm m} = F + (F \cdot Lr^2/48 \cdot F^2)$$

Siendo:

 $S_e \rightarrow El$ área de perdida (m^2).

 $L_r \rightarrow El$ lado recto de la parábola (m).

 $F \rightarrow$ La distancia focal (m).

 $\Theta \rightarrow$ El ángulo de incidencia de la radiación solar directa (°).

 $F_m \rightarrow$ Distancia media entre la superficie de la parábola (m).

Es importante tener en cuenta que el ángulo de incidencia también afecta a la reflectividad, absortividad y transmisividad, puesto que, estos parámetros presentan su óptimo valor cundo este ángulo es 0°. K, es un parámetro que cuantifica el efecto del ángulo de incidencia en el rendimiento del concentrador.

2.9.2.2.Rendimiento de un concentrador cilíndrico parabólico

Después de describir todas las pérdidas energéticas, es claro que no toda la radiación solar incidente se transforma en potencia térmica útil en el fluido, por ende, el proceso presenta un determinado rendimiento. Según Balado (2011), en un CSCP se define cuatro tipos de rendimientos.

Rendimiento óptico, Este rendimiento consiste en considerar para un ángulo de incidencia nulo, los efectos de la reflectividad de los espejos, la absortividad del tubo receptor, la transmisividad de la cubierta de vidrio y el factor de intercepción del concentrador. Donde se debe tener en cuenta el grado de ensuciamiento de la instalación a través del llamado factor de ensuciamiento (o limpieza).

Rendimiento térmico, η_{th} este rendimiento considera todas las pérdidas que existe en el CSCP.

Rendimiento geométrico, depende del ángulo de incidencia θ y, en menor medida, a otros factores (pérdidas por final de colector, sombreamientos, etc.). Todos estos fenómenos, están valorados mediante el modificador de ángulo de incidencia 5 K (θ) y el factor de sombras (F_{sombras} o F_{shad}).

Rendimiento global, η_{global} Considera todas las pérdidas. Que puede definirse como el cociente entre la potencia térmica útil que entrega al fluido térmico, y el recurso solar disponible en ese instante, es decir, la potencia Q_{sol} .

$$Q_{\text{sol}} = S_{\text{c.}} I_{\text{o.}} \cos \left(\Theta\right) \tag{2.7}$$

Donde:

 $Q_{sol} \rightarrow$ energía solar incidente sobre el concentrador (W).

 $S_c \rightarrow Area$ de apertura de la superficie reflexiva del concentrador (m^2) .

 $I_o \rightarrow \text{Radiación solar directa } (W/m^2).$

 $\Theta \rightarrow Angulo de incidencia$

La energía térmica útil suministrada por el concentrador solar está dada, en términos de incremento entálpico que ocurre en el fluido de trabajo en el concentrador, por:

$$Q_{\text{útil}} = Q_{\text{m}} \cdot (h_{\text{sal}} - h_{\text{ent}})$$
(2.8)

Siendo:

 $Q_{\text{útil}} \rightarrow$ energía térmica útil suministrada por el concentrador (W).

 $Q_m \rightarrow$ caudal másico del fluido de trabajo (kg/s).

 h_{sal} \rightarrow entalpía del fluido de trabajo a la entrada al concentrador (J/kg).

 $h_{ent} \rightarrow$ entalpía del fluido de trabajo a la salida del concentrador (J/kg).

El cociente entre la energía térmica útil suministrada por el CSCP y la energía solar que incide sobre el concentrador se denomina rendimiento global (Fig. 8).

Figura 8. Balance energético de un CCP. Paredes 2011.

Para un grado de limpieza del 100% habitualmente el valor del rendimiento óptico pico es 0.75, K, depende directamente del ángulo de incidencia, siendo K = 1 para $\varphi = 0^\circ$, y K = 0 para $\varphi = 90^\circ$. El valor de K es una función K=K (φ) que se determina experimentalmente. La radiación solar directa y la temperatura de trabajo del fluido influyen en el rendimiento térmico (Balado, 2011).

CAPITULO III

III. MATERIALES Y MÉTODO

3.1. Materiales

- 01 unid. Plancha de aluminio anodizado de (1.5 m de largo/1.2 m de ancho).
- 1.5 m de tubo de cobre de $\frac{1}{2}$ ".
- 01unid. Cubierta de vidrio (1.5 m de largo/1.2 m de ancho).
- 10 m. Manguera de $\frac{1}{2}$ ".
- 6 unid. Niples de ¹/₂"x 8mm.
- 10 und de acoples.
- 01 gal. De pegamento de PVC.
- 01 gal. Pintura negra para cobre.
- 1 und. Tanque Rotoplas de 750 Lts.
- 10 und. Válvulas de ½".
- 15 und. De codo de 90 °.
- 10 und. Termocúplas.

3.2. Método

3.2.1. Determinación de la radiación efectiva en Nuevo Chimbote

3.2.1.1.Estimación de la radiación directa para procesos de cálculos

El sol, como cualquier estrella, es un reactor de fusión en el que cada segundo se generan 600 millones de toneladas de helio a través del ciclo protón-protón. Estos procesos de fusión liberan una gran cantidad de potencia calorífica, la cual se evalúa en $3.86x10^{23}$ Wth. A pesar de que la estructura solar es muy compleja, para el aprovechamiento de su energía se adopta un modelo simplificado, donde se toma el sol como a un cuerpo negro que radia energía a una temperatura de 5.780K, ya que su distribución espectral es muy parecida a la de dicho cuerpo negro.

Figura 9. Espectro de Radiación Solar. Fuente: Paredes, 2012.

Al atravesar la atmosfera terrestre, parte de la radiación es difundida y absorbida (puede ser reflejada también) por las moléculas en suspensión de la atmósfera, como ejemplo y así se refleja en la figura 9, las moléculas de vapor de agua, el CO_2 o el O_3 . En cambio, otra parte de la radiación sí que consigue llegar a la superficie terrestre, es por ello por lo que se introducen los conceptos de radiación directa, difusa y de albedo. La radiación total es la suma de los tres componentes anteriores.

3.2.1.1. Parámetros para estimar la radiación directa de Nuevo Chimbote Ángulo cenital solar (Θ_s): esta basado en en el ángulo que conforma la radiación directa del sol perpendicularmente con el lugar. El ángulo cenital solar cambia a lo largo del día y esta en función de la altitud y de la declinación. En el momento que el plano del terreno es igual con la horizontal del lugar, se tiene $\Theta_s = \Theta$. **Declinación (\delta):** es la ubicación angular del sol en el medio día solar, en referencia al plano del Ecuador. Sabiéndose que su valor está definido y varía entre $\pm 23^{\circ}15'$.

Ángulo horario (τ): esta defino por ser el movimiento angular del sol en relación al mediodía, siendo este el instante del día donde el sol se encuentra más alto en el cielo. Siendo cada hora correspondiente a 15° de longitud.

$$\tau$$
 (tiempo) $\rightarrow \tau$ (t = 12:00h) = Θ_s mínimo

Latitud (λ): se define como la distancia angular a traves de la línea ecuatorial y un liugar determinado del planeta, dimendionada en todo el meridiano donde se encuentra el punto angula. Conforme el hemisferio, se tiene que la latitud puede ser Norte o Sur.

Longitud (**L**): manisfiesta la distancia angular que existe en un punto especificado de la superficie de la tierra y el meridiano que se exprese como 0° , el meridiano base, estableciendo como el centro angula el núcleo de la tierra. Hoy en día el meridiano 0° , se diferencia entre longitud Este u Oeste.

Figura 10. Relaciones angulares terrestres. Fuente: Vásquez & Zúñiga (2015)

Para desarrollar el proyecto, es necesario definir la radiación directa, sabiendo que los Concentradores Solares Cilíndricos Parabólicos únicamente captan este tipo de radiación, por ende, las demás radiaciones (difusa y reflejada) se descartan. Para minimizar los cálculos, se plasmó una serie de prototipos estadísticos el cual permitirán encontrar varios valores de la radiación directa I_o teniendo en cuenta las siguientes ecuaciones:

$$I_{o \text{(media)}} = 1230.e^{\left(\frac{-1}{(3.8).\cos(\theta s - 1.6)}\right)}, \text{ siendo para condiciones normales.}$$
$$I_{o \text{(máxima)}} = 1220. \ e^{\left(\frac{-1}{6.\cos(\theta s - 1)}\right)}, \text{ siendo para cielos muy puros.}$$
$$I_{o \text{(mínima)}} = 1260. \ e^{\left(\frac{-1}{(2.3).\cos(\theta s - 3)}\right)}, \text{ siendo para zonas industriales.}$$

Se debe tener en cuenta otro componente importante en el Concentrador Solar y es la orientación el cual debe contener un mecanismo que permita realizar un seguimiento a la ubicación del sol, el cual debe ser lo más preciso posible. El seguimiento ideal del sol será cuando el vector unitario n, coincida con el vector unitario (s) de la radiación directa, sabiendo que, de esta manera el plano de abertura del concentrador solar estará perpendicular a la radiación incidente.

Figura 11. Esquema solar frente al vector normal a la superficie. Fuente: Vásquez & Zúñiga (2015)

El ángulo Θ es muy importante en esta clase de concentrador ya que es un factor multiplicativo de la radiación directa, otorgando como producto la energía por unidad de superficie sobre el Concentrador Solar Cilíndrico Parabólico.

$$\mathbf{I}_{\rm efc} = \mathbf{I}_{\rm o}.\cos\Theta \tag{3.1}$$

Teniendo en cuenta la orientación y el tipo de seguimiento, se muestra los diversos valores de Θ :

Concentrador fijo: es el plano de abertura del CSCP perpendicular a I_o al mediodía en los equinoccios de verano e invierno.

$$\cos\Theta = \cos\delta .\cos\tau \tag{3.2}$$

Giro del colector sobre el eje horizontal Este-Oeste, teniendo un control diario: lo vectores n y s tienen igual dirección al mediodía de cada día.

$$\cos\Theta = (\operatorname{sen}\delta \cdot \operatorname{sen}\lambda) + (\cos\delta \cdot \cos\lambda \cdot \cos\tau)$$
(3.3)

Giro del colector sobre el eje horizontal Este-Oeste, teniendo un ajuste continuo en dirección del sol: n y s, forman un plano perpendicular a la superficie de abertura a cada instante.

$$\cos\Theta = \sqrt{1 - (\cos^2 \delta . \, \sin^2 \tau)} \tag{3.4}$$

Giro del colector en el eje horizontal Norte-Sur con ajuste continúo.

$$\cos\Theta = \sqrt{(sen\lambda.\,sen\delta + \cos\delta.\,\cos\tau)^2 + \cos^2\delta.\,sen^2\tau} \tag{3.5}$$

Giro sobre un eje paralelo al eje de la tierra, con ajuste continuo.

$$\cos\Theta = \cos\delta \tag{3.6}$$

Giro sobre dos ejes perpendiculares, teniendo un control constante del seguimiento del sol, de modo que constantemente se cumpla que n = s. Puesto que, $I_{efec} = I_o$ y los rayos solares penetran a cada instante normalmente al plano de abertura, paralelos al plano de simetría del colector, $\cos\Theta = 1$.

3.2.1.2. Cálculos

Para realizar el cálculo de la irradiación efectiva en la zona de Nuevo Chimbote, específicamente en la loza solar de la Universidad Nacional del Santa se tomaron como coordenadas de referencia 773465.40 m E y 8990624.47 m S.

Figura 12. Mapa del territorio de la loza solar de la Universidad Nacional del Santa. Fuente: Google Earth

El cálculo de la declinación se realizó a través de la siguiente formula:

$$\delta = 23.45^{\circ} \cdot \left[360.(\frac{(284+n)}{365})\right], \text{ siendo "n" el n" de día natural.}$$
(3.7)

Se tomó la declinación media de cada mes para los cálculos correspondientes.

Declinación						
Meses	Día del año	sexagesimal	radianes			
Enero	17	-20.92	-0.37			
Febrero	47	-12.95	-0.23			
Marzo	75	-2.42	-0.04			
Abril	105	9.41	0.16			
Mayo	135	18.79	0.33			
Junio	162	23.09	0.40			
Julio	198	21.18	0.37			
Agosto	228	13.45	0.23			
Septiembre	258	2.22	0.04			
Octubre	288	-9.60	-0.17			
Noviembre	318	-18.91	-0.33			
Diciembre	344	-23.05	-0.40			

Tabla 2. Declinación media mensual en grados sexagesimal y en radianes.

Para calcular el ángulo horario se tiene la siguiente formula: $\tau = 15^{\circ}$.(hs-12) sabiendo que "hs" es la hora del reloj. También se debe tener en cuenta que, el valor es (-) por la mañana y (+) tras el mediodía. También, se estableció que las horas de luz útil están en el rango de las 7.00 h hasta las 17.00 h.

Tabla 3. Angulo horario en grados sexagesimales y en radianes.

Ángulo horario					
Tiempo (h)	τ en seg.	τ en rad.			
6	-90	-1.57			
7	-75	-1.31			
8	-60	-1.05			
9	-45	-0.79			
10	-30	-0.52			
11	-15	-0.26			
12	0	0.00			
13	15	0.26			
14	30	0.52			
15	45	0.79			
16	60	1.05			
17	75	1.31			
18	90	1.57			

Para hallar el valor de la radiación directa (I_o) se tuvo en cuenta la región de Nuevo Chimbote en condiciones normales, y se tiene lo siguiente:

$$I_{o \text{ (media)}} = 1230.e^{\left(\frac{-1}{(3.8)\cos(\theta s - 1.6)}\right)}$$
(3.8)

Asimismo, la orientación de concentrador solar que se empleó fue a un solo eje horizontal E-O con rastreo al mediodía, por consiguiente: $\cos\Theta = (\operatorname{sen}\delta \cdot \operatorname{sen}\lambda) + (\cos\delta \cdot \cos\lambda \cdot \cos\tau)$. Estos cálculos se realizan cada mes del año.

ENERO							
Tiempo	Angulo horario seg.	Angulo horario rad.	latitud	Declinación rad.	cos O	Io media	
07:00	75	1.31	-0.16	-0.37	0.295	489.622	
08:00	60	1.05	-0.16	-0.37	0.516	744.376	
09:00	45	0.79	-0.16	-0.37	0.705	856.265	
10:00	30	0.52	-0.16	-0.37	0.856	911.970	
11:00	15	0.26	-0.16	-0.37	0.947	938.466	
12:00	0	0	-0.16	-0.37	0.978	945.306	
13:00	15	0.26	-0.16	-0.37	0.947	938.466	
14:00	30	0.52	-0.16	-0.37	0.856	911.970	
15:00	45	0.79	-0.16	-0.37	0.705	856.265	
16:00	60	1.05	-0.16	-0.37	0.516	744.376	
17:00	75	1.31	-0.16	-0.37	0.295	489.622	

Tabla 4. Cálculo del $\cos \Theta$ y de I_o para el mes de enero.

El resultado que es importante saber, sabiendo que el que se usó al final es de $I_{efectiva}$ (W/m²). Para determinar este valor fue esencial realizar el cálculo del rendimiento óptico en el sistema de concentración, también en función del tipo de concentración, del área de reflexión y absolvedora. Por tanto, se usó como área de reflexión una plancha de vidrio espejo de alta calidad de marca Mirage. Siendo un tubo de cobre el que recibe y absorbe la radiación solar y para aumentar la absorción en el tubo se añadió una pintura negra que es resistente a las altas temperaturas y a las condiciones meteorológicas, siendo capaz de absorber el 95% de la radiación solar incidente.

Para calcular el rendimiento óptico se usó la siguiente fórmula:

$$\eta_{\text{opt}} = \rho. \gamma. \tau. \alpha. d \tag{3.9}$$

Tabla 5. Cálculo del rendimiento óptico

Rendimiento Óptico	
ρ: reflectividad, superficie reflectora.	0.76
τ: trasmisividad del cristal absorbedor.	1
α: Absortividad del tubo del absorbedor.	0.95
d: reflectancia espectral.	0.80
f: error óptico de reflexión.	Х
y: factor de interceptación.	0.96
Rend.opt=	0.554496

Por tanto, se pudo hallar la Irradiación Efectiva (I_{efec}) como el producto de I_o por el cos Θ y por el rendimiento óptico.

 $I_{ef} = I_o.cos\Theta.rend.\acute{o}ptico$

(3.10)

Tabla 6. Cálculo de la Iefect para el mes de enero.

Enero								
Tiempo	Angulo horario seg.	Angulo horario rad.	latitud	Declinación rad.	cos θ	Io media	Efic. Óptica	I _{efec.} W/m ²
07:00	75	1.31	-0.16	-0.37	0.295	489.622	0.55	79.426
08:00	60	1.05	-0.16	-0.37	0.516	744.376	0.55	211.084
09:00	45	0.79	-0.16	-0.37	0.705	856.265	0.55	332.226
10:00	30	0.52	-0.16	-0.37	0.856	911.970	0.55	429.541
11:00	15	0.26	-0.16	-0.37	0.947	938.466	0.55	488.849
12:00	0	0	-0.16	-0.37	0.978	945.306	0.55	508.496
13:00	15	0.26	-0.16	-0.37	0.947	938.466	0.55	488.849
14:00	30	0.52	-0.16	-0.37	0.856	911.970	0.55	429.541
15:00	45	0.79	-0.16	-0.37	0.705	856.265	0.55	332.226
16:00	60	1.05	-0.16	-0.37	0.516	744.376	0.55	211.084
17:00	75	1.31	-0.16	-0.37	0.295	489.622	0.55	79.426

En la gráfica 1 se presenta la curva que forma la radiación a lo largo de las horas de luz (07:00 - 17:00 h) definido para el mes de enero.

Gráfica 1. Irradiación efectiva del mes de enero medida en W/m^2 .

Si realizo una símil entre la irradiación media, la efectiva y la máxima para un mismo mes (ver Anexo 1), se muestra en la gráfica 2 y se ve existe muchas diferencias entre las tres curvas, siendo el causante de esto el rendimiento óptico.

Finalmente, en la gráfica 3 se muestra la irradiación efectiva mensual para todo un año.

Gráfica 3. Irradiación media por mes y por año (E-O).

Para determinar el valor de la Irradiación efectiva, se efectuó una media aritmética de los distintos parámetros que constituyen el cálculo de la misma (ver Anexo 2).

Cos θ promedio = 0.65, I_o promedio = 802.43 W/m², Rendimiento óptico = 0.55

Irradiación efectiva = $I_{ef} = I_{o}.cos\Theta.rend.óptico$

Irradiación efectiva = $(802.43) \cdot (0.65) \cdot (0.55)$

Irradiación efectiva (E-O)= 286.9 W/m^2

En el estudio de la radiación solar, se vio por conveniente realizar una orientación horizontal N - S, con su sistema de seguimiento constante.

Para llevar a cabo los cálculos en la orientación del concentrador solar N-S (ver Anexo 2), se tuvo en cuenta la ecuación (3.5).

Gráfica 4. Irradiación media por mes (W/m^2) y por año (N-S).

Por tanto, para poder tener un único valor de Irradiación efectiva para una orientación Norte - Sur, se realizó una media aritmética de los diferentes parámetros que conforman el cálculo de la misma (ver Anexo 2).

Cos θ promedio = 0.95, I_o promedio = 802.43 W/m² y Rendimiento óptico = 0.55

Irradiación efectiva = $I_{ef} = I_0.cos\Theta.rend.óptico.$

Irradiación efectiva = $(802.43) \cdot (0.95) \cdot (0.55)$

Irradiación efectiva (N-S)= 419.27 W/ m^2

3.3.2. Dimensionamiento del concentrador solar cilíndrico parabólico

3.3.2.1.Cálculo del lado recto y de los puntos máximos (determinación del foco "F")

Para llevar a cabo el diseño del concentrador solar, se utilizó una plancha de aluminio cuyas dimensiones fueron de 1.5x1.2 m. Se tomó el lado de 1.20 m para el lado curvo de parábola debido a que estructuralmente es más fácil un soporte para una abertura menor. Para determinar las dimensiones del lado recto, se procedió a efectuar una serie de cálculos dependiendo de diferentes distancias focales.

Figura 13. Perfil de la superficie captadora.

Se tomó como inicio de coordenadas el punto (0,0) en el vértice de la parábola y los cálculos se realizaron para tres posibles distancias focales: 20, 30 y 50 cm.

Para determinar la abertura, siendo el lado recto "L", se usó la ecuación del arco de una curva, el cual permitió conocer la longitud de lado recto de la parábola.

Donde:

Se conoce la longitud de la curva y es igual a S=0.60 m, donde f'(x) es la primera derivada de la ecuación de la parábola. El límite a=0, y el límite b no se conoce. Luego, operando, sustituyendo y despejando b, se determinó el valor de la semiabertura ($X_{máx}$.) (ver Anexo 3).

Se sabe que f(x) depende del valor del foco, pues f(x) = y = $\frac{X^2}{4*F}$, por lo que:

$$\mathbf{F} = \mathbf{0.50} \ \mathbf{m} \to \mathbf{f}(\mathbf{x}) = \frac{X^2}{4*0.5} = \mathbf{f}'(\mathbf{x}) = \mathbf{x} \to X_{\text{máx.}} = 0.43$$

$$\mathbf{F} = \mathbf{0.30} \ \mathbf{m} \to \mathbf{f}(\mathbf{x}) = \frac{X^2}{4*0.3} = \mathbf{f}'(\mathbf{x}) = 1.67\mathbf{x} \to \mathbf{X}_{\text{máx.}} = 0.39$$

$$\mathbf{F} = \mathbf{0.20} \ \mathbf{m} \to \mathbf{f}(\mathbf{x}) = \frac{X^2}{4*0.2} = \mathbf{f}'(\mathbf{x}) = 2.5 \ \mathbf{x} \to \mathbf{X}_{\text{máx.}} = 0.39$$

Para hallar $Y_{máx}$, se sustituye X_{max} hallada, en la formula general de la parábola y se determinan los siguientes valores. (ver Anexo 3).

Tabla 7. Relación de focos con sus respectivas coordenadas de abertura máxima.

Foco	0.20 m	0.30 m	0.50 m
X _{máx} .	0.39	0.39	0.43
Ymáx.	0.19	0.13	0.09

Una vez encontrado los valores máximos de la parábola, se procedió a realizar una gráfica para escoger con que distancia focal nos quedaremos para el proceso de dimensionamiento del concentrador solar cilíndrico parabólico.

Gráfica 5. Relación de focos con sus respectivas coordenadas de abertura máxima.

Tal como se aprecia en la gráfica 5, se tiene que la abertura para un foco con 50 cm de distancia nos da un valor muy elevado para lo que se necesita en el proyecto, puesto que la altura máxima sobre el vértice es de 9cm, por consiguiente, este valor del foco queda descartado. En un foco de 20 cm se tiene una altura máxima ($Y_{máx}$) y es la misma, viendo la gráfica se puede ver que la parábola es más favorable para el propósito de este trabajo, ya que el foco y $Y_{máx}$ se ajustan perfectamente al mismo plano Z. Por último, en un foco de 30 cm se cuenta con la relación *distancia focal – altura máxima*, que es casi el doble la una de la otra. Descrito lo anterior se tomó la decisión que la distancia focal será de 30 cm siendo el que más se asemejó a los propósitos del trabajo de investigación. Las razones porque no se escogió el foco de 20 cm se explica más adelante.

La parábola definitiva tiene las dimensiones siguientes: Foco = 0.30 metros, lado curvo = 1.2 metros y lado recto = 0.78 metros. Y se muestra a continuación:

Gráfica 6. Perfil de la parábola de trabajo.

perfil del CSCP.

A continuación, se calcula el ángulo de abertura (α)

$$Tg\left(\frac{\alpha}{2}\right) = \frac{Xm\dot{a}x}{F - Ym\dot{a}x} \tag{3.11}$$

Reemplazamos los valores en la ecuación (3.11) y se obtienen los siguientes resultados:

$$Tg\left(\frac{\alpha}{2}\right) = \frac{Xm\dot{a}x}{F - Ym\dot{a}x} = \frac{0.39}{0.30 - 0.13} = 2.29$$

$$\alpha = 2.\operatorname{arctg}(2.29) = 133 \quad {}^{o} [Deg]$$

$$\alpha = 2.32 \text{ rad.}$$

Y para la distancia ρ mediante la fórmula (3.12):

$$\rho = \sqrt{W^2 + (F - Y)^2}$$
(3.12)
$$\rho = \sqrt{W^2 + (F - Y)^2} = \sqrt{0.39^2 + (0.30 - 0.13)^2}$$

$$\rho = 0.425 \text{ m}$$

3.3.2.3. Cálculo del diámetro del tubo receptor

El sol no es una fuente solar luminosa puntual. Visto desde la superficie de la tierra, el disco solar que conforma corresponde a un ángulo de apertura de 32['], por tanto, la radiación solar directa sobre la superficie terrestre no está formada por rayos perfectamente paralelos entre sí, sino que se distribuyen sobre un cono de direcciones se semiángulo igual a 16['] alrededor de la línea que une el punto de observación con el centro del disco solar. Así, no todos los rayos de este cono alcanzarán un receptor de tamaño arbitrario.

Se sabe que el sol no es un origen luminoso, mirado desde la superficie de la tierra, el circulo solar que contiene está determinado por un ángulo de apertura de 32⁻, puesto que, la radiación solar directa incidente a la superficie de la tierra no está conformada por rayos bien definidos entre sí, más bien, se reparten sobre un cono direccionados al centro del disco solar. Por tanto, no todos los rayos del cono conseguirán un receptor de tamaño no deseado.

Figura 15. Proyección del disco solar sobre el absorbedor.

El diámetro mínimo que debe tener el tubo receptor está en función de la distancia focal a través del valor de ρ , puesto que, para un foco ubicado a 30 cm sobre el vértice del colector, el diámetro mínimo del tubo se determinó haciendo uso de la siguiente ecuación:

$$\Phi_{\min} = \frac{2.\rho.tg16'}{\cos\left(\frac{a}{2}\right)} \tag{3.13}$$

$$\Phi_{\min} = \frac{2.\rho.tg16'}{\cos(\frac{a}{2})} = \frac{2.(0.425).tg16'}{\cos(\frac{133}{2})}$$

 $\Phi_{\rm min} = 0.99 \ {\rm cm} \approx 1 {\rm cm} \approx 1/2$ "

3.3.2.4. Cálculo de las pérdidas geométricas del concentrador solar

Habiéndose definido el perfil del concentrador solar cilíndrico parabólico, se procedió a determinar las pérdidas geométricas asociadas al ángulo de incidencia:

$$S_e = L_r \cdot L_e = L_r \cdot F_m \cdot \tan(\Theta)$$
(3.14)

$$F_{\rm m} = F + (F \cdot Lr^2/48 \cdot F^2) \tag{3.15}$$

Haciendo uso de las fórmulas (3.15) y (3.14), se procede a cálcular las perdidas geométricas en el concentrador solar y se desarrolla a cotinuación:

$$F_{\rm m} = 0.3 + (0.3 \cdot 0.78^2/48 \cdot 0.3^2) = 0.342 \text{ m}$$

$$S_{\rm e} = 0.78 \cdot 0.342 \cdot \tan(\arccos 0.65) = 0.088 \text{ } m^2$$

Luego, para determinar el área efectiva de capatación se realiza con la siguiente ecuación:

Area efectiva = Atotal – Aperdidas
$$S_c = 1.8 - 0.088$$

$$S_c = 1.712 m^2$$

3.3.3. Cálculo de la energía solar incidente real en el CSCP

Como producto final se hace el cálculo de la energía solar incidente real sobre el concentrador solar cilíndrico parabólico, haciendo uso de la fórmula (3.15) el cual se muestra a continuación:

$$Q_{sol} = S_c.I.cos\left(\Theta\right) \tag{3.16}$$

Donde, se tienen todos los valores para reemplazar en dicha formula, siendo indespensable el valor de la irradiación solar incidendete real (Ver anexo 5).

Reemplazando los valores tenemos:

 $Q_{sol} = (1.712).(693.98).(0.95) = 1128.69 \text{ W}$

Finalmente :

$$Q_{sol} = 1128.69 W$$

3.3.4. Flujo másico a la entrada y salida en el concentrador solar (kg/s)

El flujo másico expresado en kg/s se determinó por el método volumétrico para lo cual se empleó un cronometro que determinó el tiempo en segundos y una probeta de 70 ml para medir el volumen. En la figura 16, se muestra la prueba que se realizó para dicho método.

Figura 16. Método volumétrico para hallar el flujo másico.

Estos datos fueron reemplazados en la siguiente formula.

$$\dot{\mathbf{m}} = \boldsymbol{\rho} \cdot \boldsymbol{Q} \tag{3.17}$$

Donde:

 \dot{m} = flujo másico (kg/s), ρ = densidad del agua (kg/m³) y Q = Caudal (l/s),

Reemplazando en la ecuación (3.17) se tiene lo siguiente:

$$\dot{\mathbf{m}} = \rho. \, Q = \frac{\left(1000\frac{kg}{s}\right).(70x10^{-3} \, l)}{(15 \, s)} \cdot \frac{1m^3}{1000 \, l}$$

Finalmente:

$$\dot{m} = 4.67 \times 10^{-3} kg/s$$

3.3.5. Gradiente de temperatura del concentrador solar (°C)

El gradiente de temperatura expresado en °C, se determinó teniendo en cuenta la temperatura del fluido que ingresa al concentrador ($T_{amb} = 22$ °C) y la temperatura que sale del concentrador, haciendo uso de una termo-cupla y un multímetro con medición de temperatura se determinó los valores de temperaturas. Cabe mencionar que el fluido que ingresa al concentrador es controlado mediante una válvula tanto a la entrada y salida de la misma.

Figura 17. Medición del gradiente de temperatura. A) Ingreso y salida del flujo de agua. B) Instrumentos para la medición de temperatura.

El gradiente de temperatura se determinó de la siguiente manera:

$$\Delta T = T_s - T_s \tag{3.18}$$

Dónde: ΔT = gradiente de temperatura (°C), T_s = temperatura a la salida del concentrador (°C) y Te = temperatura a la entrada del concentrador (°C).

$$\Delta T = T_s - T_e = 66.3 - 22 \text{ °C}$$
$$\Delta T = 44.3 \text{ °C}$$

3.3.6. Rendimiento global del CSCP

El rendimiento global del concentrador solar se calculó de la fórmula (2.9) y se tiene lo siguiente:

$$\dot{\eta}_{global} = \frac{Q\acute{u}til}{Qsol}$$

Dónde: Q_{sol} = energía solar incidente sobre el concentrador solar cilíndrico parabólico, este valor ya se ha calculado anteriormente en el enunciado 3.3.

Al tener el valor de la energía solar incidente sobre el concentrador solar, se procedió a calcular el calor útil en el concentrador de la siguiente formula:

$$Q_{\text{util}} = Q_c - Q_{\text{perd.}} \tag{3.19}$$

Dónde: Q_{util} = energía útil, Q_c = energía que se tiene en el concentrador y $Q_{perd.}$ = Perdidas de calor en la tubería de cobre por conducción, convección y radiación.

Se procedió a hallar el valor de Q_c teniendo en cuenta que el fluido de trabajo es agua, esto para poder obtener su poder calorífico promediando las T_e y T_s ($C_{p\ a\ (44^{\circ}C)\ =\ 4179\ J/kg\ K}$) y conociendo los demás valores se procedió a remplazar los datos en la siguiente formula:

$$Q_c = \dot{m}.C_p.(T_s - T_e)$$
 (3.20)
 $Q_c = (4.67 \times 10^{-3}) . (4179). (66.3 - 22)$
 $Q_c = 864.56 \text{ W}$

Luego se calculó las pérdidas de calor en la tubería de cobre en el concentrador solar, para esto se estableció las ecuaciones correspondientes:

Se realizó el cálculo para un metro lineal y se pudo extender luego a la longitud total de la tubería, esto multiplicando el resultado por dicha longitud, en este caso por 1.5 metros.

Los mecanismos de transferencia de calor que ocurren son:

Convección en el interior a través del agua para el caso que tenemos suponemos una temperatura interior de la tubería e igual a la temperatura en la pared interior del tubo Ti = T1.

$$\mathbf{Q} = \mathbf{h}\mathbf{A} \left(\mathbf{T}_2 - \mathbf{T}_a\right) \tag{3.21}$$

Dónde: h=coeficiente conectivo (W/°C m^2), A=superficie de la tubería (m^2), T₂= temperatura al exterior de la tubería (°C) y T_a = temperatura ambiente (°C).

Conducción a través del material sólido, es decir a través de la pared circular del tubo y se expresa con la siguiente formula:

$$\mathbf{Q} = \frac{K(T1 - T2)}{d} \tag{3.22}$$

Dónde: k=conductividad térmica (W/°C m^2), d=Longitud de la tubería (m), T₂= temperatura al exterior de la tubería (°C) y T₁= temperatura interior de la tubería (°C).

A continuación, se presenta el gráfico de la tubería de cobre con las temperaturas correspondientes:

Tubería de cobre

Figura 18. Perdidas por conducción, convección y radiación en la tubería.

3.3.6.1. Cálculos

Una vez presentado la tubería de cobre con sus temperaturas se procede a calcular las pérdidas de calor en la tubería, y se procede de la siguiente manera:

Área interna:
$$A_1 = \pi$$
. D_1 . $L = \pi$. (0.0117). (1m) = 0.037m²
Área externa: $A_2 = \pi$. D_2 . $L = \pi$. (0.0127). (1m) = 0.040m²

Calculando las resistencias térmicas:

$$R_i = R_{conv,1} = \frac{1}{h_1 A}$$
 (3.23)

$$R_1 = R_{TUBO} = \frac{Ln\left(\frac{r_2}{r_1}\right)}{2\pi k_1 L}$$
(3.24)

$$R_{o} = R_{conv,2} = \frac{1}{h_{2}A_{3}}$$
(3.25)

Ahora se procede a determinar los valores de los coeficientes convectibos (h_1 y h_2), para luego reemplazarlos en las ecuaciones (3.23 y3.25) respectivamente y se desarrolla de la siguiente manera:

1°. Calculamos el valor de h₁

Para desarrollar los cálculos correspondientes se tienen los siguientes datos:

 $D_{int}=0.0117 \text{ m}$, $D_{ext}=0.0127 \text{ m}$, espesor de la tubería = 0.003 m. Como se puede apreciar el espesor de la tubería de cobre es mínima, por tal razón se tomó la decisión de despreciar el flujo de calor por conducción entre la pared de tubo de cobre, puesto que la temperatura interior de la tubería es aproximadamente el mismo a la temperatura en la superficie del tubo.

Dicho lo anterior se procede a calcular la velocidad del fluido dentro de la tubería:

$$V = \frac{4.Q}{\pi D^2}$$
(3.26)

Dónde: V=velocidad del fluido (m/s), Q=caudal del fluido (m $^3/s$), D=diámetro interior de la tubería (m).

Reemplazando los valores en la ecuación 3.26, se tiene lo siguiente.

$$V = \frac{4. (4.67 \times 10^{-6})}{\pi (0.0117)^2} = 0.043 \ m/s$$

Ahora se procede a calcular el número de Reynolds, haciendo uso de la siguiente ecuación.

$$R_e = \frac{\rho. V. D}{\mu}$$
(3.27)

Donde,

D: es el diámetro interno de la tubería por donde pasa el fluido (m).

V: es la velocidad que lleva el fluido al interior del tubo (m/s).

 ρ : Es la densidad del fluido que pasa por el interior de la tubería (kg/m³)

μ: Es la viscosidad del fluido que pasa por el interior de la tubería (kg/m.s).

Los valores de la densidad y de la viscosidad del fluido se encuentran en la (Tabla – A15) del libro de Cengel (Ver anexo 4), esto a temperatura de película, siendo esto el promedio entre la temperatura en la superficie de la tubería y la temperatura del medio ambiente, dicho esto los valores se muestran a continuación: $\rho = 979.6 (\text{kg/m}^3)$ y $\mu = 0.425 \times 10^{-3} (\frac{\text{kg}}{\text{m.s}})$. Reemplazamos estos valores en la ecuación 3.27 y hallamos el número de Reynolds.

$$R_{e} = \frac{0.425 \times 10^{-3} \cdot 0.043 \cdot 0.0117}{0.425 \times 10^{-3}} = 1159.62$$

Una vez obtenido el valor del número de Reynolds y sabiendo que es un flujo laminar, se usa la ecuación de Hilpeth para hallar el Nuset (Nu) y se detalla a continuación dicha ecuación:

$$N_{u} = CR_{e}^{m} P_{r}^{1/3}$$
(3.28)

Donde, los valores de C y m se encuentran definidas en función al número de Reynolds.

$$N_u = 0.683(1159.62)^{0.7243} \cdot (0.7243)^{\frac{1}{3}} = 16.43$$

Habiendo determinado el Nuset, ya se puede hallar el valor de h_1 y se realiza de la siguiente manera:

$$h = \frac{N_u * k}{D}$$
(3.29)

Reemplazando los valores encontrados se tiene lo siguiente.

$$h_1 = \frac{(16.43)(0.02693)}{0.0117} = 37.87 \text{w/m}^{20}\text{C}$$

2°. Calculamos el valor de h2

Para hallar el valor de h_2 se tiene que determinar el número de Reynolds y se logra usando la siguiente fórmula:

$$R_e = \frac{V.D}{v}$$
(3.30)

Dónde: V=velocidad del fluido (m/s), D=diámetro interior de la tubería (m). v = viscosidad cinemática (m²/s).

La velocidad del viento promedio es igual a 3.65 m/s, el cual es un valor real medido (Ver anexo 5) y la viscosidad cinemática es igual a $1.742 \times 10^{-5} \frac{m^2}{s}$ y se encuentra en la tabla A-15 del libro de Yunus A. Cengel (Ver anexo 4). Reemplazando los valores en la ecuación 3.30 se tiene lo siguiente:

$$R_{e} = \frac{(3.65).(0.01127)}{1.742 \times 10^{-5}} = 2661.02$$

Una vez obtenido el valor del número de Reynolds y sabiendo que es un flujo laminar, se usa la ecuación de Crurchil y Berstein para hallar el Nuset (Nu) y se detalla a continuación dicha ecuación:

$$N_{u} = \frac{0.3 + 0.62 \left(R_{e}^{\frac{1}{2}}\right) \left(P_{r}^{\frac{1}{3}}\right)}{\left\{\left(1 + \left(0.4/P_{r}\right)^{\frac{2}{3}}\right)\right\}^{\frac{1}{4}}} \cdot \left\{\left(1 + \left(R_{e}/282000\right)^{\frac{5}{8}}\right)\right\}^{\frac{4}{5}}$$
(3.31)

Reemplazando los valores y se obtiene lo siguiente:

$$N_{u} = \frac{0.3 + 0.62 \left(2661.02^{\frac{1}{2}}\right) \left(0.7243^{\frac{1}{3}}\right)}{\left\{\left(1 + (0.4/0.7243)^{\frac{2}{3}}\right)\right\}^{\frac{1}{4}}} \cdot \left\{\left(1 + (2661.02/282000)^{\frac{5}{8}}\right)\right\}^{\frac{4}{5}}}$$
$$N_{u} = 26.62$$

Habiendo determinado el Nuset, ya se puede hallar el valor de h_1 y se hace uso de la ecuación 3.29 y se obtiene lo siguiente:

$$h_2 = \frac{(26.62)(0.02693)}{0.0127} = 56.447 \text{ W/m}^{20}\text{C}$$

Habiendo encontrado los valores de $h_{1y}h_2$, procedemos a calcular las resistencias térmicas haciendo uso de las ecuaciones 3.23, 3.24, 3.25 y se muestra a continuación.

$$R_{i} = R_{conv,1} = \frac{1}{h_{1}A} = \frac{1}{37.82 \frac{W}{m^{2} \circ C} \cdot (0.037)m^{2}} = 0.7146 \frac{\circ C}{W}$$

$$R_{1} = R_{TUBO} = \frac{\ln\left(\frac{D_{2}}{D_{1}}\right)}{2\pi k_{1}L} = \frac{\ln\left(\frac{0.0127}{0.0117}\right)}{2\pi \left(385 \frac{W}{m^{\circ}C}\right) \cdot 1m} = 3.3588x10^{-5} \frac{\circ C}{W}$$

$$R_{o} = R_{conv,2} = \frac{1}{h_{2}A_{2}} = \frac{1}{56.447 \frac{W}{m^{2} \circ C} * 0.040m^{2}} = 0.4429 \frac{\circ C}{W}$$

Resistencia total:

$$R_{\text{Total}} = R_{\text{i}} + R_{1} + R_{0}$$

$$R_{\text{Total}} = 0.7146 \frac{{}^{\text{o}}\text{C}}{W} + 3.3588 \times 10^{-5} \frac{{}^{\text{o}}\text{C}}{W} + 0.4429 \frac{{}^{\text{o}}\text{C}}{W}$$

$$R_{\text{Total}} = 1.1575 \frac{{}^{\text{o}}\text{C}}{W}$$

$$\frac{q_{cd}}{L} = \frac{(66.3 - 22)^{\circ}C}{1.1575 \frac{{}^{\circ}C}{W}} = 38.27W$$

Calculo del flujo de calor perdido a través de toda la longitud de tubería

$$q = 38.27 \frac{W}{m} * 1.5m = 57.41 W$$

Habiendo hallado los valores de la energía en el concentrador solar y las pérdidas de calor existentes en la tubería de cobre, se reemplazó en la ecuación de energía útil y se obtuvo lo siguiente:

$$Q_{util} = Q_c - Q_{perd.}$$

 $Q_{util} = 864.56 - 57.41$
 $Q_{util} = 807.15 W$

Luego se procedió a calcular el rendimiento del concentrador solar, puesto que ya se tiene los valores de la energía incidente en el concentrador y la energía útil y se realizó de la siguiente manera:

$$\hat{\eta}_{global} = \frac{Q \hat{u} t i l}{Q s o l}$$

$$\hat{\eta}_{global} = \frac{807.15}{1128.69}$$

 $\mathbf{\hat{\eta}}_{global} = 71 \%$
3.3.7. Temperatura media logarítmica en el intercambiador de calor a contra flujo (°c)

La temperatura media logarítmica medida en °C, es un parámetro muy importante dentro de los intercambiadores de calor, en este caso se podrá ver como se da el fenómeno de transferencia de calor. En el proyecto se está usando un intercambiador de calor a contra flujo, que pertenece al laboratorio de termo fluidos de la escuela Ingeniería en Energía (Figura 19).

Figura 19. Intercambiador de calor a contraflujo

Al tener el concentrador solar cilíndrico parabólico en funcionamiento, con agua caliente a la salida del concentrador, se inyectó esta agua hacia el intercambiador de calor y por otra conexión se hizo el ingreso de agua a temperatura ambiente $(T = 22^{\circ}C)$ para llevar acabo la transferencia de calor entre los fluidos (agua caliente y agua fría). Las distintas temperaturas fuero medidas como se observa en la figura 20.

Figura 20. Medición de temperatura en el intercambiador de calor. A) Temperatura de salida que perdió calor. B) Temperatura de salida que gano calor.

A continuación, se muestra en la gráfica 7, las temperaturas reales obtenidas en el intercambiador de calor para luego calcular la temperatura media logarítmica.

Gráfica 7. Temperaturas reales obtenidas del intercambiador de calor a contra flujo

De la gráfica 7 se obtuvo los gradientes de temperatura:

$$\Delta T_1 = T_{ce} - T_{fs} = 66.3 - 41.9 = 24.4 \ ^{\circ}\text{C}$$

$$\Delta T_2 = T_{cs} - T_{fe} = 41.2 - 22 = 19.2 \ ^{\circ}C$$

Se reemplazó en la ecuación de la temperatura media logarítmica

$$\Delta T_{\rm ml} = \frac{\Delta T_1 - \Delta T_2}{\ln(\frac{\Delta T_1}{\Delta T_2})} = \frac{24.4 - 19.2}{\ln(\frac{24.4}{19.2})}$$

$$\Delta T_{ml} = 21.7 \ ^{\circ}C$$

Se debe de hacer mención que esta Temperatura Media Logarítmica obtenida, es en un intervalo de tiempo, el cual está en función del gradiente d temperatura en el CSCP, puesto que, para generar dicho gradiente de temperatura es necesario un lapso de tiempo de aproximadamente de 1 minuto con 30 segundos (Ver anexo 5), teniendo en cuenta que dichas mediciones se realizaron al medio día solar. Una vez generado el agua caliente se inyecta en el intercambiador de calor a contraflujo.

3.3.8. Sistema de seguimiento solar

El sistema de seguimiento solar se basó en la transmisión simple de una rueda con un pedal de bicicleta acoplado al eje que soporta la estructura del concentrador solar. En la figura 21, se muestra cómo funciona y como se controla la rueda, mediante el uso de un fierro que es introducido entre los agujeros de la rueda y del eje del concentrador solar.

Figura 21. Sistema de seguimiento solar.

Este sistema de seguimiento solar nos permitió ajustar el concentrador solar en cualquier posición, dependiendo de la hora y de la posición que se encuentra el sol. Se resume en tres posiciones más importantes a lo largo del día:

Primera posición del concentrador: orientado hacia el este, esto fue posible en horas de la mañana, sabiendo que el sol sale por el este como se muestra en la figura 22.

Figura 22. Concentrador solar orientado hacia el este.

Segunda posición del concentrador: orientado perpendicular a la posición del sol, esto es al medio día solar (12:00 h), a esta hora se tiene la mayor cantidad de radiación, haciendo más eficiente al concentrador solar cilíndrico parabólico (Fig. 23).

Figura 23. Concentrador solar orientado perpendicularmente a la posición del sol al medio día solar (12:00 h).

Tercera posición del sol: orientado hacia el oeste, siendo esto posible en horas de la tarde, sabiendo que el sol a esas horas se oculta por el oeste (Fig. 24)

Figura 24. Concentrador solar orientado hacia el oeste.

CAPITULO IV

IV. RESULTADOS Y DISCUSIÓN

4.1. Irradiación efectiva teórico con orientación del eje este-oeste y norte- sur

En la tabla 8, se muestra la irradiación efectiva con orientación en el eje E-O y N-S de la ciudad de Nuevo Chimbote, expresada en (W/m^2) .

Irra	diación efectiva	a (W/m²)
Orientación	E - O	N - S
Enero	326.43	427.36
Febrero	330.38	438.34
Marzo	325.41	439.65
Abril	307.53	424.12
Mayo	282.65	397.73
Junio	269.99	383.52
Julio	275.58	389.84
Agosto	298.32	414.68
Septiembre	319.78	435.50
Octubre	330.10	440.45
Noviembre	328.22	431.35
Diciembre	324.75	423.92
I efectiva	286.90	419.27

Tabla 8. Comparación de la irradiación efectiva (W/m^2) con dos orientaciones.

En la tabla 8, se reporta los datos de cálculos de irradiación efectiva teórico, donde se evidencia que la irradiación efectiva con orientación Este - Oeste calculado fue de 286.90 W/m^2 y la irradiación con orientación Norte – Sur de 419.27 W/m^2 .

Los valores de irradiación efectiva reportados por Almanza *et al.* (2013), fueron $900 \text{ W/}m^2$ siendo estos valores superiores a los obtenidos en este trabajo de investigación debido a su ubicación geográfica.

A continuación, se presenta un cuadro comparativo entre los valores teóricos y reales de la radiación solar medidas para los meses de abril y mayo del 2018 (ver anexo 5).

Irradiación so de la	olar real en la a UNS (W/m ²)	losa solar)		Irradiación sola solar de la	r teórico ei UNS (W/m	n la losa 1 ²)
Hora	Abril	Mayo		Hora	Abril	Mayo
7:00	473.19	476.39		7:00	263.97	251.36
8:00	634.44	585.53		8:00	397.89	376.13
9:00	755.21	737.18		9:00	453.72	426.08
10:00	783.25	751.84		10:00	479.45	447.75
11:00	794.75	759.42		11:00	490.85	456.81
12:00	803.52	863.35	1 [12:00	493.52	458.74
13:00	794.33	759.37	1 [13:00	490.85	456.81
14:00	783.2	752.21	1 [14:00	479.45	447.75
15:00	755.04	736.72	1 [15:00	453.72	426.08
16:00	634.46	685.76	1	16:00	397.89	376.13
17:00	471.63	476.78		17:00	263.97	251.36
Promedios	693.	98		Promedios	410).92

Tabla 8.1. Cuadro comparativo entre los datos reales y teóricos de la radiación solar, medida para los meses de abril y mayo del 2018.

Al ver en la tabla 8.1 se puede apreciar una comparación entre las Irradiaciones Solares reales y teóricas. Por el lado de los valores obtenidos de Irradiación Solar real, se realizaron las mediaciones para los meses de abril – mayo, siendo el día 1, 15 y 30 de abril – mayo que se llevaron a cabo las mediciones de Irradiación solar incidente en el Concentrador Solar Cilíndrico Parabólico. Todo lo descrito se muestra en los cuadros existentes en el anexo 5.

La elección de la mejor irradiación efectiva para el cálculo de la energía incidente en el Concentrador Solar Cilíndrico Parabólico, se hizo en base al promedio de los valores obtenidos de los datos tomados en la práctica, en este caso fue 693.98 W/ m^2 con una orientación del eje de Norte – Sur, tal como se muestra en los cuadros y en la gráfica 8, se hizo la comparación de dichos valores solamente para los meses de abril - mayo. Cabe resaltar que dichos valores de Irradiación fueron obtenidos, mediante el uso de un piranómetro.

Gráfica 8. Comparación de las irradiaciones solares reales y teóricas para los meses de abril-mayo.

En la gráfica 8, se muestra la medición de irradiación efectiva obtenida durante los meses (abril – mayo) del 2018, donde se puede observar que la Irradiación real que ingresa al CSCP es mayor que la radiación teórica, estando sujeto a la buena radiación existente en esas fechas en la localidad de nuevo Chimbote, específicamente en la loza solar de la Universidad Nacional del Santa.

4.2. Dimensionamiento del concentrador solar cilíndrico parabólico

En la tabla 9, se presenta los parámetros más importantes para el concentrador solar cilíndrico parabólico de este proyecto.

Parámetros de diseño del concen	trador solar
Foco	30 cm
Angulo de abertura (α)	2.32 rad
Distancia (p)	0.425 m
Diámetro del tubo (Φ_{\min})	1 cm
Perdidas geométricas (Se)	$0.088 \ m^2$

Tabla 9. Parámetro de diseño del concentrador solar cilíndrico parabólico.

Utilizando las ecuaciones más importantes del modelado termodinámico del concentrador solar cilíndrico parabólico presentados en la sección 3.2, se obtuvo los valores de foco = 30 cm, habiéndose escogido entre tres valores tal como se muestra en la gráfica 5, donde la abertura para un foco de 50 cm de distancia fue demasiado grande para las necesidades térmicas del proyecto, además de que la altura máxima sobre el vértice es de tan solo 9 cm, quedando por lo pronto descartado. Por otro lado, para un foco de 20 cm, la altura Y_{max} es prácticamente la misma, siendo estructuralmente este el caso más favorable, ya que el foco y la altura máxima se pueden ajustar al mismo plano Z. Sin embargo, al calcular el diámetro de la tubería con esta distancia de 20 cm se necesitaría una tubería con un diámetro de 13.8 cm, siendo este diámetro muy excesivo dificultando la captación de energía, por consecuencia esta distancia también queda descartado. Dicho lo anterior se decidió que la distancia focal adecuada es de 30 cm, obteniendo con esta distancia focal un diámetro de 1cm.

En la tabla 9, el valor del ángulo de abertura obtenido fue 2.32 rad, y una distancia de 0.425 metros, siendo estos valores los que definieron la posición del tubo de cobre respecto al concentrador solar cilíndrico parabólico, teniendo en cuenta que la distancia focal es 30 cm. Así mismo, el diámetro el tubo receptor obtenido fue 1 cm, siendo este un diámetro aceptable para el diseño dado que el presente trabajo de investigación es a pequeña escala, teniéndose un flujo másico pequeño. Finalmente, el valor reportado para las perdidas geométricas fue 0.088 m^2 , implicando esto una reducción aproximada del 5 % de la superficie total de reflexión.

4.3. Características generales en el diseño del concentrador solar cilíndrico parabólico

En la tabla 10, se presenta las características generales del diseño del concentrador solar cilíndrico parabólico, los cuales fueron obtenidos mediante las ecuaciones presentadas en el capítulo 3 y se tiene lo siguiente:

Resultados de cálculos en el	CSCP
Energía solar incidente (W)	1128.69
Calor absorbido (W)	864.56
Calor útil (W)	807.15
Flujo másico del agua (kg/s)	0.00467
ΔT (°C)	44.3
Rendimiento global %	71

Tabla 10. Resultado de cálculos en el concentrador solar cilíndrico parabólico.

Según los datos obtenidos, la energía solar incidente reportada es 1128.69 W, en base a estos resultados obtenidos es posible asegurar que el diseño del concentrador solar es factible termodinámicamente, puesto que como se evidencia en el enunciado 3.3, dicho valor es directamente proporcional de la irradiación efectiva, el área del concentrador y el ángulo de incidencia. Se puede notar que el valor de la energía incidente no es muy alto, debido a que se presenta un trabajo a pequeña escala con la finalidad de generar agua caliente y abastecer a un intercambiador de calor a contra flujo.

Se tiene un valor de 864.56 W de calor absorbido por el concentrador solar, siendo el flujo másico (0.00467 kg/s) y el gradiente de temperatura (44.3 °C) los factores importantes para calcular el calor útil, siendo esto posible al restar las pérdidas de calor en la tubería de cobre, obteniendo un valor de 807.15 W de calor útil.

En la tabla 10, se muestra que el gradiente de temperatura en el concentrador solar cilíndrico parabólico es 44.3 °C, siendo este valor similar al gradiente de temperatura en el intercambiador de calor a contra flujo que se encuentra acoplado al concentrador solar, demostrando de esta manera que se puede realizar las practicas del laboratorio del curso de transferencia de calor y así conocer de manera experimental los fenómenos de transferencia de calor en un intercambiador de calor a contra flujo.

Teniendo los valores de energía solar incidente y del calor útil se determinó que el concentrador solar cilíndrico parabólico tiene un rendimiento de 71 %, que es adecuado en este tipo de investigación y se pudo demostrar en la práctica.

4.4. Temperatura media logarítmica en el intercambiador de calor a contra flujo (°c)

En la figura 25, se presenta el concentrador solar cilíndrico parabólico ya construido y a la vez esta acoplado al intercambiador de calor a contra flujo.

Figura 25. Concentrador solar cilíndrico parabólico acoplado al intercambiador de calor a contra flujo.

Según los datos obtenidos en el enunciado 3.7, se tiene 21.7°C de temperatura media logarítmica en el intercambiador de calor, temperatura requerida para realizar las prácticas de laboratorio de transferencia de calor por parte de los alumnos de la Escuela Académico Profesional de Ingeniería en Energía, siendo este el principal objetico en el trabajo de investigación.

V. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

Se determinó el potencial de energía incidente 1128.69 W en el concentrador solar cilíndrico parabólico, habiendo hecho uso de la irradiación efectiva 693.98 W/m^2 orientado el eje Norte-Sur, siendo esta orientación donde se aprovecha la mayor cantidad de radiación solar debido a que el concentrador cuenta con un sistema manual de seguimiento solar.

Se evaluó el área de captación del concentrador solar teniendo una plancha de aluminio de 1.8 m^2 , obteniéndose como el área de captación útil 1.712 m^2 debido a las perdidas existentes en la construcción del concentrador, siendo vidrio de alta calidad el material reflectante.

Se determinó el flujo másico de trabajo 0.00467 kg/s de forma experimental, usando el método volumétrico que consistió en hacer ingresar agua al tubo absorbente de cobre y llenar un recipiente con su determinado volumen y el tiempo que demora en ser llenado.

Se estableció el gradiente de temperatura (44.3 °C) en el concentrador solar cilíndrico parabólico, siendo este valor muy cercano al gradiente de temperatura mínimo requerido por el intercambiador de calor a contra flujo, puesto que su gradiente de temperatura es 60 °C.

Se determinó el rendimiento global (71 %) del concentrador solar cilíndrico parabólico, siendo un valor aceptable para este tipo de concentrador a pesar de no ser un concentrador muy sofisticado, esto se debe a la buena radiación existente en nuevo Chimbote y las horas de trabajo, especialmente al medio día solar (12:00 h).

Se evaluó la temperatura media logarítmica en el intercambiador de calor a contra flujo, siendo 21.7 °C la temperatura que se obtuvo, demostrando de esta manera la transferencia de calor entre los fluidos de agua fría y caliente, de esta forma los alumnos de la EAPIE podrán realizar sus prácticas de transferencia de calor.

5.2. Recomendaciones

Se recomienda implementar una bomba en el sistema instalado que consta de un concentrador solar, el intercambiador de calor y un tanque de abastecimiento de agua, esto para que se cumpla el proceso de recirculación del agua y así hacer más eficiente el concentrador solar.

Se recomienda implementar un sistema de almacenamiento del agua caliente que es generado en el concentrador solar, puede ser un termo tanque para luego realizar las prácticas en el intercambiador de calor y así tener el agua a una temperatura estable.

La reflectividad del espejo de vidrio instalado en el CSCP, es de 0.93 cuando están limpios, disminuyendo diariamente su valor debido al ensuciamiento progresivo de los espejos. La velocidad de ensuciamiento depende de los factores medioambientales, siendo mayor en verano que en invierno. Como valor medio representativo podemos decir que la reflectividad de los espejos se reduce diariamente en un 0.2%. Por este motivo es necesario proceder a la limpieza de los espejos de forma periódica.

VI. REFERENCIAS BIBLIOGRÁFICAS Y VIRTUALES

- Abril, D. (2010). Silicio a partir de cáscara de arroz para la confección de paneles fotovoltaicos. *Revista Académica de la Universidad Católica del Maule.* 38, 11-30.
- Almanza Gómez, G., & Cabarcas Toscano, J. (2013). Diseño de un sistema de secado industrial basado en la concentración de energía solar usando un colector tipo cilíndrico parabólico acoplado a un intercambiador de calor de tubo coraza. (Tesis de pregrado). Universidad de Cartagena. Colombia.
- Almanza, R. & Muñoz, F. (2003). Ingeniería de la energía solar. En serie ingeniería (Edit.), México: cromo color.
- Bagarozza Bastidas, E., & Del Risco De León, J. (2002). Diseño de un colector solar cilíndrico parabólico y construcción de un prototipo. (Tesis de maestría).
 Corporación Universitaria Tecnológica Del Bolívar. Cartagena- Colombia.
- Balado Leal, E. (2011). Prototipo de campo de colectores solares cilindro-parabólicos para generación de calor a alta temperatura. (Tesis de pregrado). Universidad Carlos III de Madrid. Madrid, España.
- Castañeda Rufino, A., & Hernández Morales, J. (2013). *Control y monitoreo de un concentrador solar de disco parabólico reflector*. (tesis de pre grado). Instituto Politécnico Nacional. México.
- Cengel Yunus, A. (2004). *Transferencia de calor, 2° Edición*. Monterrey, México: McGraw-Hill Interamericana.
- Cuadrado Mazón, K. (2010). Diseño, construcción y pruebas de un intercambiador de calor de carcasa y tubos para laboratorio de térmicas de la facultad de mecánica. (Tesis de grado). Escuela Superior Politécnica de Chimborazo. Riobamba-Ecuador.

- Daghero, J., Garnica, J., Buitrago, A., Dubini, D., Lorenzo, C., Manero, C., . . . Sayago, U. (2015). Concentrador cilíndrico parabólico aplicado a la generación de vapor de uso industrial. evaluación óptica y térmica de un prototipo. *Energías Renovables y Medio Ambiente, 19*(2), 45-54.
- Echeverría López, C. (2011). *Diseño de un colector cilíndrico parabólico compuesto con aplicación para el calentamiento de agua*. (Tesis de pregrado). Universidad De Piura. Piura, Perú.
- Holman, J. (1998). *Transferencia de calor*. 8 ° *edición*. España: McGraw-Hill/Interamericana.
- Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Moscú, Rusia: Editorial Mir.
- Mendieta Cruz, T. (2007). *Diseño, construcción, control y automatización de un concentrador solar cilíndrico parabólico*. (Tesis de pre grado). Escuela superior de ingeniera mecánica y eléctrica. México.
- Montes Pita, M. (2008). Análisis y propuestas de sistemas solares de alta exergía que emplean agua como fluido calorífico. (Tesis doctoral). Universidad Politécnica de Madrid. Madrid.
- Palomino Masco, J. (2010). Modelamiento experimental del intercambiador de calor de tubos y carcasa de langener. (Tesis de grado). Pontificia Universidad Católica Del Perú. Lima Perú.
- Paredes Velasco, C. (2012). Diseño de captador solar cilíndrico parabólico para aplicaciones rurales en Paraguay. (Tesis de pregrado). Escuela Técnica Superior De Ingenieros de Minas. Paraguay.
- Polo Bravo, C., Sacari Sacari, E., & Choque Chacolla, J. (2011). Preliminary results with solar concentrating systems for water vapor generation. *Ciencia & desarrollo*. *13*(1), 11-20.

- Salgado Conrado, L. (2013). *Modelado y control de un concentrador solar cilíndrico* parabólico con un mecanismo por desplazamiento de agua. (Tesis de doctorado). Instituto Politécnico Nacional. México.
- Sánchez, C., Piedra Castillo, D., & Mendoza, I. (2008). Validación y ajuste de modelos de radiación solar directa para la ciudad de Bogotá a partir de datos experimentales tomados en la Universidad Distrital Francisco José de Caldas. (Tesis posgrado). Universidad Distrital. Colombia.
- Solartronic S.A. (2003). Irradiaciones global, directa y difusa, en superficies horizontales e inclinadas, así como irradiación directa normal, para la República Mexicana.
 (3). Recuperado de http://www.solartronic.com.
- Vásquez Chigne, L., & Zuñiga Anticona, B. (2015). Proyecto de pre factibilidad para la implementación de energía solar fotovoltaica y térmica en el campamento minero Comihuasa. (Tesis de pregrado). Universidad Peruana de Ciencias Aplicadas. Lima. Perú.
- Velasquez Lucho, K. (2014). Construcción y evaluación de un concentrador solar de canal parabólico para calor del proceso de baja entalpia. (Tesis de maestría).
 Universidad Veracruzana.
- Venegas, E., Jaramillo, O., Castrejón, R., Aguilar, J., & Montemayor, F. (2012). Desing, construction and testing of a parabolic trough solar concentrator for hot water and low enthalpy steam generation. *Renewable sustainable energy*. 2(4). 303-320.
- Yunus, C. (2004). *Transferencia de calor. México*: McGraw Hill / interamericanas de México.
- Zarza Moya, E. (2015). Electricidad Termo solar: Componentes y parámetros fundamentales de os captadores cilíndricos parabólicos. (Tesis Doctoral). Escuela de Organización Industrial.

VII. ANEXOS

ANEXO 1. COMPARACIÓN ENTRE LA IRRADIACIÓN MEDIA, LA EFECTIVA Y LA MÁXIMA PARA UN MISMO MES (ENERO)

					E	Inero					
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos O	I₀ media	I₀ máxima	I₀ mínima	I _{efec} media	I _{efec} máxima	I _{efec} mínima
07:00	75	1.31	-0.44	-0.36	0.29	489.62	666.44	308.55	79.43	108.108	50.05
08:00	60	1.05	-0.44	-0.36	0.52	744.38	882.72	567.12	211.08	250.314	160.82
09:00	45	0.79	-0.44	-0.36	0.71	856.26	967.69	701.91	332.23	375.459	272.34
10:00	30	0.52	-0.44	-0.36	0.86	911.97	1008.33	773.48	429.54	474.925	364.31
11:00	15	0.26	-0.44	-0.36	0.95	938.47	1027.45	807.85	488.85	535.202	420.81
12:00	0	0.00	-0.44	-0.36	0.98	945.31	1032.68	815.24	508.50	555.497	438.53
13:00	15	0.00	-0.44	-0.36	0.95	938.47	1027.45	807.85	488.85	535.202	420.81
14:00	30	0.00	-0.44	-0.36	0.86	911.97	1008.33	773.48	429.54	474.925	364.31
15:00	45	0.00	-0.44	-0.36	0.71	856.26	967.69	701.91	332.23	375.459	272.34
16:00	60	0.00	-0.44	-0.36	0.52	744.38	882.72	567.12	211.08	250.314	160.82
17:00	75	0.00	-0.44	-0.36	0.29	489.62	666.44	308.55	79.43	108.108	50.05

ANEXO 2. IRRADIACIÓN EFECTIVA ANUAL- ORIENTACION ESTE-OESTE / NORTE-SUR

ORIENTACIÓN ESTE - OESTE

	Enero											
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I _{efec} (W/m ²)				
07:00	75	1.31	-0.16	-0.37	0.295	489.622	0.55	79.426				
08:00	60	1.05	-0.16	-0.37	0.516	744.376	0.55	211.084				
09:00	45	0.79	-0.16	-0.37	0.705	856.265	0.55	332.226				
10:00	30	0.52	-0.16	-0.37	0.856	911.970	0.55	429.541				
11:00	15	0.26	-0.16	-0.37	0.947	938.466	0.55	488.849				
12:00	0	0	-0.16	-0.37	0.978	945.306	0.55	508.496				
13:00	15	0.26	-0.16	-0.37	0.947	938.466	0.55	488.849				
14:00	30	0.52	-0.16	-0.37	0.856	911.970	0.55	429.541				
15:00	45	0.79	-0.16	-0.37	0.705	856.265	0.55	332.226				
16:00	60	1.05	-0.16	-0.37	0.516	744.376	0.55	211.084				
17:00	75	1.31	-0.16	-0.37	0.295	489.622	0.55	79.426				
					0.69244591	802.43		326.432				

				Febrero				
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (ð)	cos Θ	I ₀ media (W/m ²)	Eficiencia óptica (ή́)	$ I_{efec} \\ (W/m^2) $
07:00	75	1.31	-0.16	-0.23	0.28417416	489.6218002	0.55	76.52583
08:00	60	1.05	-0.16	-0.23	0.5146012	744.3759507	0.55	210.6812
09:00	45	0.79	-0.16	-0.23	0.71287822	856.2648251	0.55	335.7269
10:00	30	0.52	-0.16	-0.23	0.87049483	911.9698369	0.55	436.6258
11:00	15	0.26	-0.16	-0.23	0.96524404	938.4661737	0.55	498.2169
12:00	0	0	-0.16	-0.23	0.997551	945.3062152	0.55	518.6451
13:00	15	0.26	-0.16	-0.23	0.96524404	938.4661737	0.55	498.2169
14:00	30	0.52	-0.16	-0.23	0.87049483	911.9698369	0.55	436.6258
15:00	45	0.79	-0.16	-0.23	0.71287822	856.2648251	0.55	335.7269
16:00	60	1.05	-0.16	-0.23	0.5146012	744.3759507	0.55	210.6812
17:00	75	1.31	-0.16	-0.23	0.28417416	489.6218002	0.55	76.52583

	Marzo												
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos O	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)					
07:00	75	1.31	-0.16	-0.04	0.260724	489.6218002	0.55	70.21088					
08:00	60	1.05	-0.16	-0.04	0.49719382	744.3759507	0.55	203.5545					
09:00	45	0.79	-0.16	-0.04	0.70067052	856.2648251	0.55	329.9777					
10:00	30	0.52	-0.16	-0.04	0.8624205	911.9698369	0.55	432.5758					
11:00	15	0.26	-0.16	-0.04	0.95965445	938.4661737	0.55	495.3318					
12:00	0	0	-0.16	-0.04	0.99280864	945.3062152	0.55	516.1795					
13:00	15	0.26	-0.16	-0.04	0.95965445	938.4661737	0.55	495.3318					
14:00	30	0.52	-0.16	-0.04	0.8624205	911.9698369	0.55	432.5758					
15:00	45	0.79	-0.16	-0.04	0.70067052	856.2648251	0.55	329.9777					
16:00	60	1.05	-0.16	-0.04	0.49719382	744.3759507	0.55	203.5545					

17:00	75	1.31	-0.16	-0.04	0.260724	489.6218002	0.55	70.21088

	Abril												
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)					
07:00	75	1.31	-0.16	0.16	0.22592292	489.6218002	0.55	60.83923					
08:00	60	1.05	-0.16	0.16	0.45955926	744.3759507	0.55	188.1467					
09:00	45	0.79	-0.16	0.16	0.66059782	856.2648251	0.55	311.1057					
10:00	30	0.52	-0.16	0.16	0.82040965	911.9698369	0.55	411.5039					
11:00	15	0.26	-0.16	0.16	0.9164785	938.4661737	0.55	473.0462					
12:00	0	0	-0.16	0.16	0.94923542	945.3062152	0.55	493.525					
13:00	15	0.26	-0.16	0.16	0.9164785	938.4661737	0.55	473.0462					
14:00	30	0.52	-0.16	0.16	0.82040965	911.9698369	0.55	411.5039					
15:00	45	0.79	-0.16	0.16	0.66059782	856.2648251	0.55	311.1057					
16:00	60	1.05	-0.16	0.16	0.45955926	744.3759507	0.55	188.1467					
17:00	75	1.31	-0.16	0.16	0.22592292	489.6218002	0.55	60.83923					

	Мауо													
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	$\frac{I_{efec}}{(W/m^2)}$						
07:00	75	1.31	-0.16	0.33	0.18919536	489.6218002	0.55	50.94879						
08:00	60	1.05	-0.16	0.33	0.41308491	744.3759507	0.55	169.1198						
09:00	45	0.79	-0.16	0.33	0.60573658	856.2648251	0.55	285.269						
10:00	30	0.52	-0.16	0.33	0.75888142	911.9698369	0.55	380.6423						
11:00	15	0.26	-0.16	0.33	0.85094248	938.4661737	0.55	439.2194						
12:00	0	0	-0.16	0.33	0.88233286	945.3062152	0.55	458.7411						
13:00	15	0.26	-0.16	0.33	0.85094248	938.4661737	0.55	439.2194						
14:00	30	0.52	-0.16	0.33	0.75888142	911.9698369	0.55	380.6423						

15:00	45	0.79	-0.16	0.33	0.60573658	856.2648251	0.55	285.269
16:00	60	1.05	-0.16	0.33	0.41308491	744.3759507	0.55	169.1198
17:00	75	1.31	-0.16	0.33	0.18919536	489.6218002	0.55	50.94879

				Junio				
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (ð)	cos Θ	I₀ media (W/m²)	Eficiencia óptica (ή́)	I_{efec} (W/m^2)
07:00	75	1.31	-0.16	0.40	0.17242071	489.6218002	0.55	46.43152
08:00	60	1.05	-0.16	0.40	0.3903982	744.3759507	0.55	159.8317
09:00	45	0.79	-0.16	0.40	0.57796268	856.2648251	0.55	272.189
10:00	30	0.52	-0.16	0.40	0.72706355	911.9698369	0.55	364.683
11:00	15	0.26	-0.16	0.40	0.81669363	938.4661737	0.55	421.5416
12:00	0	0	-0.16	0.40	0.84725511	945.3062152	0.55	440.5035
13:00	15	0.26	-0.16	0.40	0.81669363	938.4661737	0.55	421.5416
14:00	30	0.52	-0.16	0.40	0.72706355	911.9698369	0.55	364.683
15:00	45	0.79	-0.16	0.40	0.57796268	856.2648251	0.55	272.189
16:00	60	1.05	-0.16	0.40	0.3903982	744.3759507	0.55	159.8317
17:00	75	1.31	-0.16	0.40	0.17242071	489.6218002	0.55	46.43152

				Julio				
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	$\frac{I_{efec}}{(W/m^2)}$
07:00	75	1.31	-0.16	0.37	0.17971815	489.6218002	0.55	48.39666
08:00	60	1.05	-0.16	0.37	0.40036192	744.3759507	0.55	163.9109
09:00	45	0.79	-0.16	0.37	0.59022067	856.2648251	0.55	277.9619
10:00	30	0.52	-0.16	0.37	0.74114533	911.9698369	0.55	371.7462
11:00	15	0.26	-0.16	0.37	0.83187177	938.4661737	0.55	429.3759
12:00	0	0	-0.16	0.37	0.86280707	945.3062152	0.55	448.5893

13:00	15	0.26	-0.16	0.37	0.83187177	938.4661737	0.55	429.3759
14:00	30	0.52	-0.16	0.37	0.74114533	911.9698369	0.55	371.7462
15:00	45	0.79	-0.16	0.37	0.59022067	856.2648251	0.55	277.9619
16:00	60	1.05	-0.16	0.37	0.40036192	744.3759507	0.55	163.9109
17:00	75	1.31	-0.16	0.37	0.17971815	489.6218002	0.55	48.39666

				Agosto				
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I _{efec} (W/m ²)
07:00	75	1.31	-0.16	0.23	0.21153222	489.6218002	0.55	56.96393
08:00	60	1.05	-0.16	0.23	0.44195926	744.3759507	0.55	180.9411
09:00	45	0.79	-0.16	0.23	0.64023628	856.2648251	0.55	301.5165
10:00	30	0.52	-0.16	0.23	0.79785289	911.9698369	0.55	400.1898
11:00	15	0.26	-0.16	0.23	0.8926021	938.4661737	0.55	460.7223
12:00	0	0	-0.16	0.23	0.92490906	945.3062152	0.55	480.8773
13:00	15	0.26	-0.16	0.23	0.8926021	938.4661737	0.55	460.7223
14:00	30	0.52	-0.16	0.23	0.79785289	911.9698369	0.55	400.1898
15:00	45	0.79	-0.16	0.23	0.64023628	856.2648251	0.55	301.5165
16:00	60	1.05	-0.16	0.23	0.44195926	744.3759507	0.55	180.9411
17:00	75	1.31	-0.16	0.23	0.21153222	489.6218002	0.55	56.96393

	Septiembre										
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	$ I_{efec} \\ (W/m^2) $			
07:00	75	1.31	-0.16	0.04	0.24798194	489.6218002	0.55	66.77955			
08:00	60	1.05	-0.16	0.04	0.48445176	744.3759507	0.55	198.3378			
09:00	45	0.79	-0.16	0.04	0.68792846	856.2648251	0.55	323.9769			
10:00	30	0.52	-0.16	0.04	0.84967845	911.9698369	0.55	426.1846			

11:00	15	0.26	-0.16	0.04	0.94691239	938.4661737	0.55	488.7549
12:00	0	0	-0.16	0.04	0.98006658	945.3062152	0.55	509.5547
13:00	15	0.26	-0.16	0.04	0.94691239	938.4661737	0.55	488.7549
14:00	30	0.52	-0.16	0.04	0.84967845	911.9698369	0.55	426.1846
15:00	45	0.79	-0.16	0.04	0.68792846	856.2648251	0.55	323.9769
16:00	60	1.05	-0.16	0.04	0.48445176	744.3759507	0.55	198.3378
17:00	75	1.31	-0.16	0.04	0.24798194	489.6218002	0.55	66.77955

				Octubre				
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (ð)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)
07:00	75	1.31	-0.16	-0.17	0.27784092	489.6218002	0.55	74.82034
08:00	60	1.05	-0.16	-0.17	0.51108855	744.3759507	0.55	209.2431
09:00	45	0.79	-0.16	-0.17	0.71179263	856.2648251	0.55	335.2156
10:00	30	0.52	-0.16	-0.17	0.87133857	911.9698369	0.55	437.049
11:00	15	0.26	-0.16	-0.17	0.96724758	938.4661737	0.55	499.251
12:00	0	0	-0.16	-0.17	0.99995	945.3062152	0.55	519.8924
13:00	15	0.26	-0.16	-0.17	0.96724758	938.4661737	0.55	499.251
14:00	30	0.52	-0.16	-0.17	0.87133857	911.9698369	0.55	437.049
15:00	45	0.79	-0.16	-0.17	0.71179263	856.2648251	0.55	335.2156
16:00	60	1.05	-0.16	-0.17	0.51108855	744.3759507	0.55	209.2431
17:00	75	1.31	-0.16	-0.17	0.27784092	489.6218002	0.55	74.82034

	Noviembre										
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (ð)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)			
07:00	75	1.31	-0.16	-0.33	0.29244726	489.6218002	0.55	78.75371			
08:00	60	1.05	-0.16	-0.33	0.51633682	744.3759507	0.55	211.3918			

09:00	45	0.79	-0.16	-0.33	0.70898849	856.2648251	0.55	333.895
10:00	30	0.52	-0.16	-0.33	0.86213332	911.9698369	0.55	432.4318
11:00	15	0.26	-0.16	-0.33	0.95419439	938.4661737	0.55	492.5135
12:00	0	0	-0.16	-0.33	0.98558477	945.3062152	0.55	512.4237
13:00	15	0.26	-0.16	-0.33	0.95419439	938.4661737	0.55	492.5135
14:00	30	0.52	-0.16	-0.33	0.86213332	911.9698369	0.55	432.4318
15:00	45	0.79	-0.16	-0.33	0.70898849	856.2648251	0.55	333.895
16:00	60	1.05	-0.16	-0.33	0.51633682	744.3759507	0.55	211.3918
17:00	75	1.31	-0.16	-0.33	0.29244726	489.6218002	0.55	78.75371

				Diciembre				
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή)	I efec (W/m ²)
07:00	75	1.31	-0.16	-0.40	0.29650358	489.6218002	0.55	79.84604
08:00	60	1.05	-0.16	-0.40	0.51448107	744.3759507	0.55	210.632
09:00	45	0.79	-0.16	-0.40	0.70204554	856.2648251	0.55	330.6253
10:00	30	0.52	-0.16	-0.40	0.85114641	911.9698369	0.55	426.9209
11:00	15	0.26	-0.16	-0.40	0.9407765	938.4661737	0.55	485.5878
12:00	0	0	-0.16	-0.40	0.97133797	945.3062152	0.55	505.0165
13:00	15	0.26	-0.16	-0.40	0.9407765	938.4661737	0.55	485.5878
14:00	30	0.52	-0.16	-0.40	0.85114641	911.9698369	0.55	426.9209
15:00	45	0.79	-0.16	-0.40	0.70204554	856.2648251	0.55	330.6253
16:00	60	1.05	-0.16	-0.40	0.51448107	744.3759507	0.55	210.632
17:00	75	1.31	-0.16	-0.40	0.29650358	489.6218002	0.55	79.84604

	CUADRO RESUMEN PROMEDIOS										
$\label{eq:mesesdel} \begin{array}{c c} \mbox{Meses del año} & \mbox{cos}\Theta & \mbox{I}_o & \mbox{I}_{efec} & \mbox{\acute\eta}_{\mbox{\acuteoptica}} \end{array}$											
ENERO	0.69	802.43	326.43	0.55							
FEBRERO	0.70	802.43	330.38	0.55							
MARZO	0.69	802.43	325.41	0.55							
ABRIL	0.65	802.43	307.53	0.55							
MAYO	0.59	802.43	282.65	0.55							
JUNIO	0.57	802.43	269.99	0.55							
JULIO	0.58	802.43	275.58	0.55							
AGOSTO	0.63	802.43	298.32	0.55							
SEPTIEMBRE	0.67	802.43	319.78	0.55							
OCTUBRE	0.70	802.43	330.10	0.55							
NOVIEMBRE	0.70	802.43	328.22	0.55							
DICIEMBRE	0.69	802.43	324.75	0.55							

ORIENTACIÓN NORTE - SUR

				Enero				
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	$\begin{array}{c} I_{efec} \\ (W/m^2) \end{array}$
07:00	75	1.31	-0.16	-0.37	0.94785684	489.6218	0.55	255.250255
08:00	60	1.05	-0.16	-0.37	0.95909363	744.375951	0.55	392.659428
09:00	45	0.79	-0.16	-0.37	0.96761001	856.264825	0.55	455.691727
10:00	30	0.52	-0.16	-0.37	0.97363921	911.969837	0.55	488.361274
11:00	15	0.26	-0.16	-0.37	0.9769535	938.466174	0.55	504.260799
12:00	0	0	-0.16	-0.37	0.97803091	945.306215	0.55	508.496286
13:00	15	0.26	-0.16	-0.37	0.9769535	938.466174	0.55	504.260799
14:00	30	0.52	-0.16	-0.37	0.97363921	911.969837	0.55	488.361274
15:00	45	0.79	-0.16	-0.37	0.96761001	856.264825	0.55	455.691727

16:00	60	1.05	-0.16	-0.37	0.95909363	744.375951	0.55	392.659428
17:00	75	1.31	-0.16	-0.37	0.94785684	489.6218	0.55	255.250255
					0.96621248	802.427581		427.358478

	Febrero										
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (ð)	cos Θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)			
07:00	75	1.31	-0.16	-0.23	0.98272586	489.6218	0.55	264.640204			
08:00	60	1.05	-0.16	-0.23	0.98900516	744.375951	0.55	404.90541			
09:00	45	0.79	-0.16	-0.23	0.99326285	856.264825	0.55	467.772822			
10:00	30	0.52	-0.16	-0.23	0.99590126	911.969837	0.55	499.527551			
11:00	15	0.26	-0.16	-0.23	0.99717175	938.466174	0.55	514.696576			
12:00	0	0	-0.16	-0.23	0.997551	945.306215	0.55	518.645138			
13:00	15	0.26	-0.16	-0.23	0.99717175	938.466174	0.55	514.696576			
14:00	30	0.52	-0.16	-0.23	0.99590126	911.969837	0.55	499.527551			
15:00	45	0.79	-0.16	-0.23	0.99326285	856.264825	0.55	467.772822			
16:00	60	1.05	-0.16	-0.23	0.98900516	744.375951	0.55	404.90541			
17:00	75	1.31	-0.16	-0.23	0.98272586	489.6218	0.55	264.640204			

	Marzo										
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cosθ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)			
07:00	75	1.31	-0.16	-0.04	0.99999877	489.6218	0.55	269.291659			
08:00	60	1.05	-0.16	-0.04	0.99921045	744.375951	0.55	409.083524			
09:00	45	0.79	-0.16	-0.04	0.99736353	856.264825	0.55	469.70402			
10:00	30	0.52	-0.16	-0.04	0.99512019	911.969837	0.55	499.135776			
11:00	15	0.26	-0.16	-0.04	0.99343917	938.466174	0.55	512.76998			
12:00	0	0	-0.16	-0.04	0.99280864	945.306215	0.55	516.179496			

13:00	15	0.26	-0.16	-0.04	0.99343917	938.466174	0.55	512.76998
14:00	30	0.52	-0.16	-0.04	0.99512019	911.969837	0.55	499.135776
15:00	45	0.79	-0.16	-0.04	0.99736353	856.264825	0.55	469.70402
16:00	60	1.05	-0.16	-0.04	0.99921045	744.375951	0.55	409.083524
17:00	75	1.31	-0.16	-0.04	0.99999877	489.6218	0.55	269.291659

	Abril										
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cosθ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)			
07:00	75	1.31	-0.16	0.16	0.98023457	489.6218	0.55	263.969319			
08:00	60	1.05	-0.16	0.16	0.97186396	744.375951	0.55	397.887686			
09:00	45	0.79	-0.16	0.16	0.9634227	856.264825	0.55	453.719734			
10:00	30	0.52	-0.16	0.16	0.95587407	911.969837	0.55	479.450575			
11:00	15	0.26	-0.16	0.16	0.95097093	938.466174	0.55	490.849729			
12:00	0	0	-0.16	0.16	0.94923542	945.306215	0.55	493.524977			
13:00	15	0.26	-0.16	0.16	0.95097093	938.466174	0.55	490.849729			
14:00	30	0.52	-0.16	0.16	0.95587407	911.969837	0.55	479.450575			
15:00	45	0.79	-0.16	0.16	0.9634227	856.264825	0.55	453.719734			
16:00	60	1.05	-0.16	0.16	0.97186396	744.375951	0.55	397.887686			
17:00	75	1.31	-0.16	0.16	0.98023457	489.6218	0.55	263.969319			

	Мауо									
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (ð)	cos θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)		
07:00	75	1.31	-0.16	0.33	0.93342687	489.6218	0.55	251.364378		
08:00	60	1.05	-0.16	0.33	0.91872458	744.375951	0.55	376.132065		
09:00	45	0.79	-0.16	0.33	0.90472837	856.264825	0.55	426.077896		
10:00	30	0.52	-0.16	0.33	0.89267378	911.969837	0.55	447.75036		
11:00	15	0.26	-0.16	0.33	0.88501625	938.466174	0.55	456.806799		
12:00	0	0	-0.16	0.33	0.88233286	945.306215	0.55	458.741104		
13:00	15	0.26	-0.16	0.33	0.88501625	938.466174	0.55	456.806799		
14:00	30	0.52	-0.16	0.33	0.89267378	911.969837	0.55	447.75036		
15:00	45	0.79	-0.16	0.33	0.90472837	856.264825	0.55	426.077896		
16:00	60	1.05	-0.16	0.33	0.91872458	744.375951	0.55	376.132065		
17:00	75	1.31	-0.16	0.33	0.93342687	489.6218	0.55	251.364378		

	Junio										
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos O	I₀ media (W/m²)	Eficiencia óptica (ή́)	I efec (W/m ²)			
07:00	75	1.31	-0.16	0.40	0.90646461	489.6218	0.55	244.103659			
08:00	60	1.05	-0.16	0.40	0.88923078	744.375951	0.55	364.057103			
09:00	45	0.79	-0.16	0.40	0.87299568	856.264825	0.55	411.133524			
10:00	30	0.52	-0.16	0.40	0.85911073	911.969837	0.55	430.915692			
11:00	15	0.26	-0.16	0.40	0.8503273	938.466174	0.55	438.901873			
12:00	0	0	-0.16	0.40	0.84725511	945.306215	0.55	440.503537			
13:00	15	0.26	-0.16	0.40	0.8503273	938.466174	0.55	438.901873			
14:00	30	0.52	-0.16	0.40	0.85911073	911.969837	0.55	430.915692			
15:00	45	0.79	-0.16	0.40	0.87299568	856.264825	0.55	411.133524			
16:00	60	1.05	-0.16	0.40	0.88923078	744.375951	0.55	364.057103			

17:00	75	1.31	-0.16	0.40	0.90646461	489.6218	0.55	244.103659

	Julio										
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos O	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)			
07:00	75	1.31	-0.16	0.37	0.91855344	489.6218	0.55	247.359084			
08:00	60	1.05	-0.16	0.37	0.90239768	744.375951	0.55	369.447723			
09:00	45	0.79	-0.16	0.37	0.88711758	856.264825	0.55	417.784169			
10:00	30	0.52	-0.16	0.37	0.87401461	911.969837	0.55	438.39123			
11:00	15	0.26	-0.16	0.37	0.86571282	938.466174	0.55	446.843209			
12:00	0	0	-0.16	0.37	0.86280707	945.306215	0.55	448.589287			
13:00	15	0.26	-0.16	0.37	0.86571282	938.466174	0.55	446.843209			
14:00	30	0.52	-0.16	0.37	0.87401461	911.969837	0.55	438.39123			
15:00	45	0.79	-0.16	0.37	0.88711758	856.264825	0.55	417.784169			
16:00	60	1.05	-0.16	0.37	0.90239768	744.375951	0.55	369.447723			
17:00	75	1.31	-0.16	0.37	0.91855344	489.6218	0.55	247.359084			

	Agosto										
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cosθ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I_{efec} (W/ m^2)			
07:00	75	1.31	-0.16	0.23	0.96423081	489.6218	0.55	259.659633			
08:00	60	1.05	-0.16	0.23	0.95322862	744.375951	0.55	390.258251			
09:00	45	0.79	-0.16	0.23	0.94248513	856.264825	0.55	443.859277			
10:00	30	0.52	-0.16	0.23	0.93307412	911.969837	0.55	468.014497			
11:00	15	0.26	-0.16	0.23	0.92703503	938.466174	0.55	478.49506			
12:00	0	0	-0.16	0.23	0.92490906	945.306215	0.55	480.877256			
13:00	15	0.26	-0.16	0.23	0.92703503	938.466174	0.55	478.49506			
14:00	30	0.52	-0.16	0.23	0.93307412	911.969837	0.55	468.014497			

15:00	45	0.79	-0.16	0.23	0.94248513	856.264825	0.55	443.859277
16:00	60	1.05	-0.16	0.23	0.95322862	744.375951	0.55	390.258251
17:00	75	1.31	-0.16	0.23	0.96423081	489.6218	0.55	259.659633

	Septiembre										
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cos θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I_{efec} (W/ m^2)			
07:00	75	1.31	-0.16	0.04	0.99675252	489.6218	0.55	268.417469			
08:00	60	1.05	-0.16	0.04	0.99293168	744.375951	0.55	406.512957			
09:00	45	0.79	-0.16	0.04	0.98845354	856.264825	0.55	465.5079			
10:00	30	0.52	-0.16	0.04	0.98409782	911.969837	0.55	493.607141			
11:00	15	0.26	-0.16	0.04	0.98113597	938.466174	0.55	506.419606			
12:00	0	0	-0.16	0.04	0.98006658	945.306215	0.55	509.554665			
13:00	15	0.26	-0.16	0.04	0.98113597	938.466174	0.55	506.419606			
14:00	30	0.52	-0.16	0.04	0.98409782	911.969837	0.55	493.607141			
15:00	45	0.79	-0.16	0.04	0.98845354	856.264825	0.55	465.5079			
16:00	60	1.05	-0.16	0.04	0.99293168	744.375951	0.55	406.512957			
17:00	75	1.31	-0.16	0.04	0.99675252	489.6218	0.55	268.417469			

				Octubre				
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (δ)	cosθ	I _o media (W/m ²)	Eficiencia óptica (ή́)	I efec (W/m ²)
07:00	75	1.31	-0.16	-0.17	0.99196235	489.6218	0.55	267.127514
08:00	60	1.05	-0.16	-0.17	0.99604127	744.375951	0.55	407.786041
09:00	45	0.79	-0.16	-0.17	0.99840246	856.264825	0.55	470.193298
10:00	30	0.52	-0.16	-0.17	0.99952695	911.969837	0.55	501.346137
11:00	15	0.26	-0.16	-0.17	0.99988329	938.466174	0.55	516.096157

12:00	0	0	-0.16	-0.17	0.99995	945.306215	0.55	519.892423
13:00	15	0.26	-0.16	-0.17	0.99988329	938.466174	0.55	516.096157
14:00	30	0.52	-0.16	-0.17	0.99952695	911.969837	0.55	501.346137
15:00	45	0.79	-0.16	-0.17	0.99840246	856.264825	0.55	470.193298
16:00	60	1.05	-0.16	-0.17	0.99604127	744.375951	0.55	407.786041
17:00	75	1.31	-0.16	-0.17	0.99196235	489.6218	0.55	267.127514

				Noviembre				
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (ð)	cos O	I _o media (W/m ²)	Eficiencia óptica (ή)	I efec (W/m ²)
07:00	75	1.31	-0.16	-0.33	0.95969591	489.6218	0.55	258.438421
08:00	60	1.05	-0.16	-0.33	0.96954599	744.375951	0.55	396.938694
09:00	45	0.79	-0.16	-0.33	0.97687323	856.264825	0.55	460.054201
10:00	30	0.52	-0.16	-0.33	0.9819569	911.969837	0.55	492.533289
11:00	15	0.26	-0.16	-0.33	0.98470178	938.466174	0.55	508.260122
12:00	0	0	-0.16	-0.33	0.98558477	945.306215	0.55	512.423673
13:00	15	0.26	-0.16	-0.33	0.98470178	938.466174	0.55	508.260122
14:00	30	0.52	-0.16	-0.33	0.9819569	911.969837	0.55	492.533289
15:00	45	0.79	-0.16	-0.33	0.97687323	856.264825	0.55	460.054201
16:00	60	1.05	-0.16	-0.33	0.96954599	744.375951	0.55	396.938694
17:00	75	1.31	-0.16	-0.33	0.95969591	489.6218	0.55	258.438421

	Diciembre									
Tiempo (h)	Angulo horario (τ seg)	Angulo horario (τ rad)	Latitud (°)	Declinación (ð)	cos θ	I _o media (W/m ²)	Eficiencia óptica (ή́)	$\begin{array}{c} I_{efec} \\ (W/m^2) \end{array}$		
07:00	75	1.31	-0.16	-0.40	0.93801043	489.6218	0.55	252.598695		
08:00	60	1.05	-0.16	-0.40	0.95026911	744.375951	0.55	389.046611		
09:00	45	0.79	-0.16	-0.40	0.95966064	856.264825	0.55	451.948009		
10:00	30	0.52	-0.16	-0.40	0.96638505	911.969837	0.55	484.722709		
11:00	15	0.26	-0.16	-0.40	0.97011775	938.466174	0.55	500.732479		
12:00	0	0	-0.16	-0.40	0.97133797	945.306215	0.55	505.016504		
13:00	15	0.26	-0.16	-0.40	0.97011775	938.466174	0.55	500.732479		
14:00	30	0.52	-0.16	-0.40	0.96638505	911.969837	0.55	484.722709		
15:00	45	0.79	-0.16	-0.40	0.95966064	856.264825	0.55	451.948009		
16:00	60	1.05	-0.16	-0.40	0.95026911	744.375951	0.55	389.046611		
17:00	75	1.31	-0.16	-0.40	0.93801043	489.6218	0.55	252.598695		

CUADRO RESUMEN PROMEDIOS								
Meses del año	cos O	Io	I _{efec}	$\acute{\eta}_{optica}$				
ENERO	0.97	802.43	427.36	0.55				
FEBRERO	0.99	802.43	438.34	0.55				
MARZO	1.00	802.43	439.65	0.55				
ABRIL	0.96	802.43	424.12	0.55				
MAYO	0.90	802.43	397.73	0.55				
JUNIO	0.87	802.43	383.52	0.55				
JULIO	0.89	802.43	389.84	0.55				
AGOSTO	0.94	802.43	414.68	0.55				
SEPTIEMBRE	0.99	802.43	435.50	0.55				
OCTUBRE	1.00	802.43	440.45	0.55				
NOVIEMBRE	0.98	802.43	431.35	0.55				
DICIEMBRE	0.96	802.43	423.92	0.55				

Т	
1	efectiva final
120	$E 4 W/m^2$
420	.34 VV/IIL

ANEXO 3. CÁLCULOS PARA HALLAR VOS VALORES MAXIMOS DE LA PARÁBOLA.

$$S = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx$$

Este valor depende del foco "F" que se escoja, pues $f(x) = y = \frac{X^2}{4*F}$, por lo que:

F = 0.50 m → f(x) =
$$\frac{X^2}{4(0.5)}$$
 = f'(x) = x → X_{máx}. =0.43

S = $\int_{a}^{b} \sqrt{1 + (x)^2} dx$, integrando y luego reemplazando en f(x) se obtiene X_{máx}.

F = 0.30 m → f(x) =
$$\frac{X^2}{4.(0.3)}$$
 = f'(x) = 1.67x → X_{máx}. =0.39

S = $\int_{a}^{b} \sqrt{1 + (1.67x)^2} dx$, integrando y luego reemplazando en f(x) se obtiene X_{máx}.

► **F** = 0.20 **m** →
$$f(x) = \frac{X^2}{4.(0.2)} = f'(x) = 2.5 x → X_{máx} = 0.39$$

S = $\int_{a}^{b} \sqrt{1 + (2.5x)^2} dx$, integrando y luego reemplazando en f(x) se obtiene X_{máx.}

ANEXO 4: Tabla para hallar las propiedades del agua saturada.

Temp.,	Presión de	sión de Densidad, ración ρkg/m ³	sidad, kg/m³	Entalpía de d, vapori- ³ zación	a Calor Conductivic específico, térmica, c _p , J/kg - K k W/m - 1		ctividad nica, 'm + K	id Viscosidad dinámica, μ kg/m - s		Número de Prandtl, Pr		Coeficiente de expansión volumétrica, β 1/Κ	
T ⁰C	P _{sat} , kPa	Líquido	Vapor	h _g , kJ/kg	Líquido	Vapor	Líquido	Vapor	Líquido	Vapor	Liquido	Vapor	Líquido
0.01	0.6113	999.8	0.0048	2 501	4 217	1 854	0.561	0.0171	1.792 × 10 ⁻³	0.922×10^{-5}	13.5	1.00	-0.068×10^{-1}
5	0.8721	999.9	0.0068	2 4 9 0	4 205	1 857	0.571	0.0173	1.519×10^{-3}	0.934×10^{-5}	11.2	1.00	0.015×10^{-1}
10	1.2276	999.7	0.0094	2 4 7 8	4 1 9 4	1 862	0.580	0.0176	1.307×10^{-3}	$0.946 imes 10^{-5}$	9.45	1.00	0.733 × 10
15	1.7051	999.1	0.0128	2 466	4 186	1 863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00	0.138 × 10
20	2.339	998.0	0.0173	2 4 5 4	4 182	1 867	0.598	0.0182	1.002×10^{-3}	0.973×10^{-5}	7.01	1.00	0.195×10^{-1}
25	3.169	997.0	0.0231	2 4 4 2	4 180	1 870	0.607	0.0186	0.891×10^{-3}	0.987×10^{-5}	6.14	1.00	0.247 × 10
30	4.246	996.0	0.0304	2 4 3 1	4178	1 875	0.615	0.0189	0.798×10^{-3}	1.001×10^{-5}	5.42	1.00	0.294×10^{-1}
35	5.628	994.0	0.0397	2419	4178	1 880	0.623	0.0192	0.720×10^{-3}	1.016×10^{-5}	4.83	1.00	0.337×10^{-1}
40	7.384	992.1	0.0512	2 407	4 179	1 885	0.631	0.0196	0.653 × 10-3	1.031 × 10-5	4.32	1.00	0.377 × 10
45	9.593	990.1	0.0655	2 3 9 5	4 180	1 892	0.637	0.0200	0.596×10^{-3}	1.046×10^{-5}	3.91	1.00	0.415×10^{-1}
50	12.35	988.1	0.0831	2 383	4 181	1 900	0.644	0.0204	0.547×10^{-3}	1.062×10^{-5}	3.55	1.00	0.451×10^{-1}
55	15.76	985.2	0.1045	2 371	4 183	1 908	0.649	0.0208	0.504×10^{-3}	1.077×10^{-5}	3.25	1.00	0.484×10^{-1}
60	19.94	983.3	0.1304	2 359	4 185	1 916	0.654	0.0212	0.467×10^{-3}	1.093×10^{-5}	2.99	1.00	0.517 × 10
65	25.03	980.4	0.1614	2 3 4 6	4 187	1 926	0.659	0.0216	0.433×10^{-3}	1.110 × 10 5	2.75	1.00	0.548×10^{-1}
70	31.19	977.5	0.1983	2 3 3 4	4 190	1 936	0.663	0.0221	0.404 × 10 ⁻³	1.126×10^{-5}	2.55	1.00	0.578×10^{-1}
75	38.58	974.7	0.2421	2 3 2 1	4 193	1 948	0.667	0.0225	0.378 × 10-3	1.142 × 10-5	2.38	1.00	0.607×10^{-1}
80	47.39	971.8	0.2935	2 309	4 197	1 962	0.670	0.0230	0.355 × 10-3	1.159 × 10 ⁻⁵	2.22	1.00	0.653 × 10
85	57.83	968.1	0.3536	2 2 9 6	4 201	1 977	0.673	0.0235	0.333×10^{-3}	1.176×10^{-5}	2.08	1.00	0.670×10^{-1}
90	70.14	965.3	0.4235	2 283	4 206	1 993	0.675	0.0240	0.315×10^{-3}	1.193 × 10 ⁻⁵	1.96	1.00	0.702×10^{-1}
95	84,55	961.5	0.5045	2 2 7 0	4 212	2 010	0.677	0.0246	0.297 × 10-3	1.210 × 10-5	1.85	1.00	0.716 × 10
100	101.33	957.9	0.5978	2 257	4 217	2 0 2 9	0.679	0.0251	0.282 × 10-3	1.227 × 10 ⁻⁵	1.75	1.00	0.750×10^{-1}
110	143.27	950.6	0.8263	2 230	4 229	2 071	0.682	0.0262	0.255×10^{-3}	1.261×10^{-5}	1.58	1.00	0.798×10^{-1}
120	198.53	943.4	1.121	2 203	4 2 4 4	2 120	0.683	0.0275	0.232×10^{-3}	1.296×10^{-5}	1.44	1.00	0.858×10^{-1}
130	270.1	934.6	1,496	2174	4 263	2 177	0.684	0.0288	0.213×10^{-3}	1.330 × 10-5	1.33	1.01	0.913×10^{-1}
140	361.3	921 7	1 965	2145	4 286	2 244	0.683	0.0301	0 197 × 10-3	1 365 × 10-5	1 24	1.02	0.970 × 10
150	475.8	916.6	2.546	2114	4 311	2 314	0.682	0.0316	0 183 × 10 ⁻³	1.399 × 10 ⁻⁵	1.16	1.02	1.025 × 10
160	617.8	907.4	3 256	2 083	4 340	2 420	0.680	0.0331	0 170 × 10-3	1.434 × 10-5	1.09	1.05	1.145×10^{-1}
170	791.7	897.7	4 119	2 050	4 370	2 490	0.677	0.0347	0 160 × 10 ⁻³	1.468 × 10-5	1.03	1.05	1.178×10^{-1}
180	1.002.1	887 3	5 153	2015	4 410	2 590	0.673	0.0364	0.150×10^{-3}	1 502 × 10 ⁻⁵	0.983	1.07	1.210 x 10
190	1 254 4	876.4	6 388	1 979	4 460	2 710	0.669	0.0382	0.142 × 10 ⁻³	1.537 × 10-5	0.947	1.09	1.280 × 10
200	1 553.8	864.3	7 852	1941	4 500	2 840	0.663	0.0401	0.134 × 10-3	1.571 × 10-9	0.910	1 11	1.350 × 10
220	2 318	840.3	11.60	1 859	4 610	3 110	0.650	0.0442	0.122 × 10-3	1.641×10^{-5}	0.865	1.15	1.520×10^{-1}
240	3 344	8137	16 73	1 767	4 760	3 520	0.632	0.0487	0.111 × 10-3	1712 × 10-5	0.836	1 24	1.720 × 10
260	4 688	783 7	23.69	1 663	4 970	4 070	0.609	0.0540	0 102 × 10-3	1.788 × 10-5	0.832	1.35	2.000 × 10
280	6 412	750.8	33 15	1 544	5 280	4 835	0.581	0.0605	0.094 × 10-3	1 870 × 10-5	0.854	1 49	2 380 × 10
300	8 581	713.8	46 15	1 405	5 750	5 980	0.549	0.0605	0.086 × 10-3	1 965 × 10-5	0.902	1.69	2 950 × 10
320	11 274	667 1	64 57	1 239	6 540	7 900	0.509	0.0836	0.078 × 10 ⁻³	2 084 × 10-5	1.00	1.05	2.550 × 10
340	14 586	610.5	92.62	1 028	8 240	11 870	0.469	0 110	0.070 × 10-3	2 255 × 10-5	1.00	2 43	
0.00	10.000	C00.0	1110	7020	14 600	0000	0.103	0.170	0.070 10	A 571 10 5	1.2.0	0.70	-2-2-

ANEXO 5. Mediciones de la radiación en los meses de abril y mayo el 2018.

	Irradiación solar en la losa solar de la UNS									
	Abril del 2018 - Orientación (N-S)									
	Día: 1 de Día: 15 de Día: 30 de									
Item	Hora	abril	abril	abril	I (W/m²)					
1	7:00	474.24	469.47	475.87	473.19					
2	8:00	602.21	697.89	603.21	634.44					
3	9:00	755.24	752.74	757.65	755.21					
4	10:00	783.05	780.35	786.35	783.25					
5	11:00	794.32	792.69	797.25	794.75					
6	12:00	802.21	805.21	803.14	803.52					
7	13:00	793.98	792.02	796.99	794.33					
8	14:00	782.79	780.69	786.13	783.20					
9	15:00	754.98	752.11	758.03	755.04					
10	16:00	603.01	697.01	603.36	634.46					
11	17:00	474.01	465.86	475.02	471.63					
	Promedio									

	Irradiación solar en la losa solar de la UNS									
	Mayo del 2018 - Orientación (N-S)									
	Día: 1 de Día: 15 de Día: 31 de									
Item	Hora	mayo	mayo	mayo	I (W/m²)					
1	7:00	475.24	477.36	476.58	476.39					
2	8:00	584.26	586.45	585.89	585.53					
3	9:00	736.02	738.28	737.23	737.18					
4	10:00	749.89	753.24	752.39	751.84					
5	11:00	758.25	760.35	759.65	759.42					
6	12:00	862.35	864.35	863.35	863.35					
7	13:00	758.02	761.02	759.07	759.37					
8	14:00	749.02	754.25	753.36	752.21					
9	15:00	735.21	737.89	737.05	736.72					
10	16:00	684.02	686.01	687.24	685.76					
11	17:00	476.11	478.02	476.21	476.78					
	Promedio									
ANEXO 6.

Item	Tiempo	Volumen
	(s)	(ml)
1	15.8	70
2	15.2	70
3	15.4	70
4	14.7	70
5	14.9	70
6	15.6	70
7	14.2	70
8	15.2	70
9	14.8	70
10	14.6	70
Promedio	15.04	70

a) Cuadros de datos para obtener el flujo másico (realizado el 17 de abril del 2018).

b) Cuadro de datos para obtener el gradiente de temperatura en el concentrador solar.

Item	Tiempo (h)	Te,cs	T _{s,cs}	Intervalo de
		(°C)	(°C)	tiempo (s)
1	11.00	22	56.21	84
2	11.05	22	56.32	81
3	11.10	22	56.45	85
4	11.15	22	57.42	87
5	11.20	22	57.52	91
6	11.25	22	58.38	85
7	11.30	22	58.45	92
8	11.35	22	59.21	81
9	11.40	22	59.36	85
10	11.45	22	60.32	87
11	11.50	22	68.7	83
12	11.55	22	69.08	86
13	12:00	22	75.24	89
14	12:05	22	75.26	94
15	12:10	22	74.98	90
16	12:15	22	73.89	92
17	12:20	22	74.21	81
18	12:25	22	74.01	85

• Datos tomados el 17 de abril del 2018.

19	12:30	22	69.21	87
20	12:35	22	69.48	83
21	12:40	22	70.04	87
22	12:45	22	72.4	83
23	12:50	22	72.84	86
24	12:55	22	74.04	89
25	13:00	22	74.21	94
PR	OMEDIO	22	66.69	91

• Datos tomados el 18 de abril del 2018.

Item	Tiempo (h)	$T_{e,cs}(\ ^{\circ}C)$	$T_{s,cs}(^{\circ}C)$	Intervalo de
				tiempo (s)
1	11.00	22	48.24	85
2	11.05	22	48.34	92
3	11.10	22	49.21	81
4	11.15	22	51.24	85
5	11.20	22	54.21	87
6	11.25	22	58.24	83
7	11.30	22	58.45	86
8	11.35	22	59.21	89
9	11.40	22	59.78	87
10	11.45	22	60.32	83
11	11.50	22	68.7	86
12	11.55	22	69.08	89
13	12:00	22	73.21	91
14	12:05	22	73.45	85
15	12:10	22	73.45	92
16	12:15	22	73.89	81
17	12:20	22	74.21	85
18	12:25	22	73.5	87
19	12:30	22	68.95	83
20	12:35	22	69.48	83
21	12:40	22	70.04	86
22	12:45	22	71.8	89
23	12:50	22	71.42	91
24	12:55	22	71.45	85
25	13:00	22	71.59	92
PRO	OMEDIO	22	64.86	89

Item	Tiempo (h)	Te,cs (T _{s,cs}	Intervalo de
		°C)	(°C)	tiempo (s)
1	11.00	22	57.24	86
2	11.05	22	57.26	89
3	11.10	22	58.47	87
4	11.15	22	57.42	83
5	11.20	22	57.52	86
6	11.25	22	58.24	89
7	11.30	22	59.24	91
8	11.35	22	60.45	85
9	11.40	22	65.24	92
10	11.45	22	66.24	81
11	11.50	22	71.24	83
12	11.55	22	73.02	86
13	12:00	22	74.64	89
14	12:05	22	74.51	91
15	12:10	22	73.45	85
16	12:15	22	73.89	92
17	12:20	22	74.21	81
18	12:25	22	73.5	85
19	12:30	22	68.95	87
20	12:35	22	69.48	85
21	12:40	22	70.04	87
22	12:45	22	71.8	83
23	12:50	22	71.42	83
24	12:55	22	72.9	86
25	13:00	22	73.01	89
PR	OMEDIO	22	67.34	90

• Datos tomados el 19 de abril del 2018.

• Promedios de las T_e y T_s, para obtener el gradiente de temperatura en el concentrador solar.

	Temperatura de Salida promedio (°C)		
	Día 1	Día 2	Día 3
	66.69	64.86	67.34
Promedio	66.2967		

c) Cuadros de datos para obtener la temperatura media logarítmica en el intercambiador de calor a contra flujo.

Item	Tiempo	Tc,entr (°C)	T _c ,sal (°C)	Tf,entr (°C)	T _f ,sal (°C)
	(h)				
1	11.00	56.21	37.11	22	38.45
2	11.05	56.32	37.17	22	38.50
3	11.10	56.45	36.35	22	38.71
4	11.15	57.42	36.24	22	39.81
5	11.20	57.52	37.18	22	39.94
6	11.25	58.38	37.28	22	39.54
7	11.30	58.45	37.25	22	39.84
8	11.35	59.21	35.4	22	39.61
9	11.40	59.36	36.96	22	40.01
10	11.45	60.32	37.52	22	40.21
11	11.50	68.7	45.5	22	42.98
12	11.55	69.08	45.58	22	43.15
13	12:00	75.24	46.1	22	43.65
14	12:05	75.26	46.18	22	43.75
15	12:10	74.98	45.98	22	42.14
16	12:15	73.89	45.9	22	43.34
17	12:20	74.21	45.75	22	43.45
18	12:25	74.01	45.61	22	43.00
19	12:30	69.21	44.21	22	43.05
20	12:35	69.48	44.36	22	41.98
21	12:40	70.04	44.41	22	42.45
22	12:45	72.4	44.89	22	42.14
23	12:50	72.84	44.91	22	42.32
24	12:55	74.04	45.71	22	42.36
25	13:00	74.21	45.86	22	42.40
PRO	OMEDIO	66.69	41.3	22	42.12

• Datos tomados el 17 de abril del 2018.

Item	Tiempo	Tc,entr (°C)	Tc,sal (°C)	Tf,entr (°C)	T _f ,sal
	(h)				(°C)
1	11.00	48.24	36.98	22	38.08
2	11.05	48.34	37.04	22	38.45
3	11.10	49.21	37.24	22	38.69
4	11.15	51.24	37.6	22	39.75
5	11.20	54.21	37.18	22	39.86
6	11.25	58.24	37.28	22	39.45
7	11.30	58.45	37.36	22	39.78
8	11.35	59.21	37.71	22	39.56
9	11.40	59.78	36.96	22	39.91
10	11.45	60.32	37.52	22	40.09
11	11.50	68.69	45.5	22	42.79
12	11.55	69.08	44.68	22	43.10
13	12:00	73.21	45.24	22	43.45
14	12:05	73.45	45.36	22	43.70
15	12:10	73.45	45.26	22	42.10
16	12:15	73.89	45.1	22	42.98
17	12:20	74.21	45.82	22	43.52
18	12:25	73.5	45.2	22	42.97
19	12:30	68.95	45.45	22	43.01
20	12:35	69.48	45.61	22	41.86
21	12:40	70.04	45.64	22	42.32
22	12:45	71.8	44.89	22	42.09
23	12:50	71.42	44.76	22	42.16
24	12:55	71.45	44.79	22	42.24
25	13:00	71.59	44.96	22	42.38
PRO	OMEDIO	64.86	40.89	22	41.56

• Datos tomados el 18 de abril del 2018.

Item	Tiempo	Tc,entr	Tc,sal (°C)	T _f ,entr	T _{f,sal} (°C)
	(h)	(°C)		(°C)	
1	11.00	57.24	36.45	22	38.45
2	11.05	57.26	36.51	22	38.50
3	11.10	58.47	36.75	22	38.71
4	11.15	57.42	36.45	22	39.81
5	11.20	57.52	36.56	22	39.94
6	11.25	58.24	37.85	22	39.54
7	11.30	59.24	38.42	22	39.84
8	11.35	60.45	38.6	22	39.61
9	11.40	65.24	42.1	22	40.01
10	11.45	66.24	42.31	22	40.21
11	11.50	71.24	44.24	22	42.98
12	11.55	73.02	45.21	22	43.15
13	12:00	74.64	45.78	22	43.65
14	12:05	74.51	45.62	22	43.75
15	12:10	73.45	45.24	22	42.14
16	12:15	73.89	45.36	22	43.34
17	12:20	74.21	45.76	22	43.45
18	12:25	73.5	45.37	22	43.00
19	12:30	68.95	38.16	22	43.05
20	12:35	69.48	38.02	22	41.98
21	12:40	70.04	38.21	22	42.45
22	12:45	71.8	43.2	22	42.14
23	12:50	71.42	43.15	22	42.32
24	12:55	72.9	43.25	22	42.36
25	13:00	73.01	45.27	22	42.40
PRO	OMEDIO	67.34	41.32	22	41.98

• Datos tomados el 19 de abril del 2018.

• Promedios de las temperaturas a la salida del intercambiador de calo.

T _{c,sal} (°C)	$T_{f,sal}(^{\circ}C)$
41.3	42.12
40.89	41.56
41.32	41.98
41.2	41.9